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The measurability of multiple quasinormal (QN) modes, including overtones and higher harmonics, with
the Laser Interferometer Space Antenna is investigated by computing the gravitational wave (GW) signal
induced by an intermediate or extreme mass ratio merger involving a supermassive black hole (SMBH). We
confirm that the ringdown of rapidly spinning black holes are long-lived, and higher harmonics of the
ringdown are significantly excited for mergers of small mass ratios. We investigate the measurability and
separability of the QN modes for such mergers and demonstrate that the observation of GWs from rapidly
rotating SMBHs has an advantage for detecting superposed QN modes and testing the no-hair theorem of
black holes.
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I. INTRODUCTION

We are in a golden age of gravitational-wave (GW)
astronomy, where mergers of binary black holes (BHs) are
discovered by GW interferometers [1–7]. The end product
of a merger is a distorted single BH, which settles down to a
Kerr BH by radiating GWs. This ringdown phase is
characterized by a set of damped sinusoids called quasi-
normal (QN) modes, and is an important probe to test
general relativity in the strong-gravity regime [8–10]. QN
modes from BH merger remnants have been detected for a
large number of events, and were used for various tests of
general relativity (e.g., [11–14]).
QN modes consist of fundamental modes and overtones,

where the latter is short-lived but can be important for
characterizing the ringdown signal [15,16]. Detection of
overtones from ringdowns is important for, e.g., tests of the
no-hair theorem [17]. Evidence of an overtone was claimed
in the ringdown of GW 150914 [18], although its signifi-
cance is still controversial [19–21].

A key parameter that governs the relative strength
between fundamental modes and overtones is the spin
parameter,1 j≡ J=M2, of the remnant BH. J is the angular
momentum and M is the mass of the BH. Recently, one of
the authors found [16,22] that remnants with rapid spin
(j ≳ 0.9) can have a ringdown dominated by higher over-
tones and higher angular modes. The more QN modes are
detected, the more accurate the test of general relativity
would be. Therefore GW ringdown of a highly spinning or
near-extremal BH may be a preferred signal to test general
relativity. However, the final spin of observed BH mergers
is typically ≈0.7 [2,3,5], and such extreme spins may be
difficult to probe for mergers of stellar-mass BHs whose
natal spins are expected to be rather low [23].
In this work we consider the possibility of exploring

overtones and higher angular modes of rapidly spinning
BHs with intermediate/extreme mass ratio mergers involv-
ing a supermassive BH (SMBH).2 These sources, espe-
cially with SMBHs in the mass range 106–107M⊙, are
targets for space-based GW detectors like the Laser
Interferometer Space Antenna (LISA) [24,25]. Notably*naritaka.oshita@yukawa.kyoto-u.ac.jp
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1In this work we use the natural units c ¼ ℏ ¼ 1 and G ¼ 1.
2The self-force of the plunging object is ignored in our

computation, as we consider the orbit of a light object. In other
words, dephasing of GWs and the backreaction of the object to
the trajectory are assumed to be subdominant.
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these SMBHs are predicted to have large spins due to gas
accretion upon their growth ([26–28], but see Ref. [29]).
Although systematic uncertainties may exist in the fitting,
X-ray spectra of local SMBHs in this mass range indicate
high spins of > 0.9, consistent with this scenario [30–32].
Using the waveform modeling of a particle plunging into

a rapidly spinning BH and extracting the excited QNmodes
with a fitting analysis, we estimate the measurability of
multiple QN modes, including higher overtones and higher
angular modes, by LISA.3 We find that these modes can be
detectable out to cosmological distances, realizing a novel
probe of gravity in the near-extreme Kerr spacetime. We
also evaluate the error of the measurability and separability
of the QN modes [34,35] to assess the feasibility of
measuring individual modes.

II. RINGDOWN FOR A SMALL
MASS RATIO MERGER

In this work we focus on simulating a merger of small
mass ratio, such that its dynamics can be well approxi-
mated by a test particle plunging into a SMBH. We
numerically compute the GW signal induced by a particle
plunging into a rotating hole using the Sasaki-Nakamura
(SN) equation [36]:

�
d2

dr�2
− Flm

d
dr�

− Ulm

�
Xlm ¼ T̃lm; ð1Þ

where Xlm is a perturbation variable of the gravitational
field, r� is the tortoise coordinate, Flm andUlm are functions
with explicit form given in Ref. [36], and T̃lm is the source
term associated with the plunging particle.4 The form of
T̃lm is given in Ref. [37] and can be obtained from the
geodesic motion of the object. The orbital angular momen-
tum of the plunging orbit is μ × Lz, and the infalling
condition is −2Mð1þ ffiffiffiffiffiffiffiffiffiffi

1þ j
p Þ<Lz < 2Mð1þ ffiffiffiffiffiffiffiffiffi

1− j
p Þ.

We here assume that the value of Lz for infalling objects
is typically OðMÞ and take Lz ¼ 2M throughout the
manuscript.5 Integers l and m are, respectively, the angular
and azimuthal numbers of the spheroidal harmonics. We
here consider a situation where the trajectory of a compact

object of mass μ is restricted to the equatorial plane6

(θ ¼ π=2) and the total energy of the object (including rest
energy) is μ. The self-force of the object can be neglected,
which is valid for a small mass ratio q≡ μ=M ≪ 1. Using
the Green’s function technique, one can solve the SN
equation as

lim
r�→∞

Xlmðω;r�Þ¼XðoutÞ
lm ðωÞeiωr�

¼
Z

dr0T̃lmðr0;ωÞGðr0;r�;ωÞ; ð2Þ

where Gðr0; r�;ωÞ is the Green’s function that is obtained
from the homogeneous solution of the SN equation. We
then obtain the GW spectrum

h̃ ¼
X
l;m

h̃lmðωÞ ¼
X
l;m

−
2

ω2 −2Slmðaω; π=2ÞRlmðωÞ; ð3Þ

where a≡ J=M and −2Slm is the spin-weighted spheroidal
harmonics, assuming an edge-on observer with argument
π=2. The time-domain data h ¼ hþ þ ih× ¼ P

ðl;mÞ hlm is

obtained by the inverse Laplace transformation of h̃. The
function RlmðωÞ is obtained by properly normalizing Xlm,
and its explicit form is provided in Ref. [36]. The GW
spectra computed with this scheme is shown in Fig. 1. One
can see that ðl; mÞ ¼ ð2; 2Þ dominates the GW signal for an
intermediate spin (j ¼ 0.8 in Fig. 1), but higher angular
modes are significantly excited for a near-extremal Kerr BH
of j ¼ 0.99. We are interested in the signal induced by a
compact object plunging into a rapidly spinning BH, as
more QN modes are long-lived for higher spins (Fig. 2).
In the next section, we show that a number of highly

damped modes dominate the early ringdown of a near-
extremal BH by fitting multiple overtones and fundamental
modes to the GW signal. Then we show that rapidly
spinning BHs are better targets to perform a high-precision
detection of multiple QN modes, including higher angular
modes and higher overtones.

III. EXCITATION OF OVERTONES

The measurability of the QN modes is highly sensitive to
the start time of ringdown t� because (i) it is a superposition
of QN modes, each of which is exponentially damped in
time, and (ii) overtones may dominate the signal at early
times. The exact start time of the ringdown is unknown, but
one can obtain a best fit value by fitting multiple QN modes
to the GW signal. We then show that the ringdown starts
earlier than the strain peak, around the time when the object
plunges into the photon sphere.

3For the LISA detectability of the fundamental mode and the
first overtone whose amplitude is assumed to be 1=10 that of the
fundamental one, see Ref. [33].

4To simulate a particle plunging from a finite distance from the
SMBH (not from infinity as was assumed in Ref. [37]), we
modified the source term in Ref. [37]. We suppress the con-
tribution of the source term at ω ≪ 1=M including at ω ¼ 0
(originating from the particle motion at infinity), by multiplying
f0 and f1 in the source term in Appendix B in Ref. [37] by 2Mω.

5We plan to investigate the dependence of GW signals on Lz in
a forthcoming paper. Note that when jLmax =min − Lzj=M ≪ 1,
where Lmax and Lmin are, respectively, the upper and lower limits
of Lz, the object follows a circulating orbit and the self-force
would not be negligible.

6The Carter constant, one of the parameters characterizing
trajectories around BHs, is set to zero in our computation.
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We perform fitting analysis of QN modes7 with a
complex frequency ωlmn including overtones of n ≤ nmax
and angular modes of 2 ≤ l ¼ m ≤ 5. The fitting is done in
the frequency domain by using the QN mode model,

h̃lm ¼
Xnmax

n

Almn

ω − ωlmn
eiωlmnt�þiϕlmn ; ð4Þ

to avoid the instability at early ringdown [22] and to treat t�
as one of the fitting parameters [41]. In Eq. (4), Almn and
ϕlmn are fitting parameters associated with the amplitude
and phase of a QN mode with ω ¼ ωlmn, respectively.
Figure 3(a) shows that the best fit value of t� (in units of
2M) is in the range 40≲ t� ≲ 43, where the mismatchM is
less than 0.01. The range of t� with M < 0.1 corresponds
to the moments after the particle plunges into the photon
sphere [see Fig. 3(b)]. This is consistent with the fact
that GW ringdown is a signal associated with the photon

sphere [42]. We also find that including up to higher
overtones (nmax ≳ 15) in the fit is necessary to guarantee
the convergence of the mismatch (Fig. 4). That is, once we
admit the start time of ringdown is soon after the compact
object plunges into the photon sphere (t� ∼ 42 in our setup),
not only the fundamental modes with quadrupole moment
but also a number of long-lived modes and higher har-
monics are significantly excited for a near-extremal BH. It
has an advantage for measuring multiple QN modes,
including overtones and higher harmonics, and for accu-
rately testing general relativity. Indeed, it is reported that a

FIG. 2. Kerr QN frequencies for ðl; mÞ ¼ ð2; 2Þ, with the
normalization 2M ¼ 1. Different markers correspond to different
BH spins, and n increases from top to bottom of this plot. For a
higher spin, an increasing number of overtones have small
ImðωlmnÞ and are long-lived.

FIG. 3. Expected GW signal induced by the compact object
plunging into a SMBHwith j ¼ 0.99. (a) Time-domain waveform
of the GW signal h×ðtÞ (black solid) and the QN-mode model
obtained by the fitting analysis, with t� ¼ 42 and nmax ¼ 20 for
each angular mode in 2 ≤ l ¼ m ≤ 5 (red dashed). The blue dotted
lines are jhlmj for each angular mode included in our analysis.
(b)MismatchMwith respect to t� for ðl; mÞ ¼ ð2; 2Þ, (3, 3), (4, 4),
and (5, 5). All angular modes we computed satisfy M < 0.01 in
the range 40≲ t� ≲ 43. (c) Trajectory of the compact object
plunging into the BH. The red and pink lines on the trajectory
correspond to the shaded regions in (b) with red (M < 0.01) and
pink (M < 0.1), respectively. The blue triangle indicates the
position at which the particle sources the signal peak.

FIG. 1. Spectra of the GW signal induced by a compact object plunging into a BH with Lz ¼ 1 and two BH spins, j ¼ 0.8 (left) and
0.99 (right). We adopt the normalization 2M ¼ 1.

7The pseudospectrum of QN modes implies [38] that a small
modification in the angular momentum potential or the boundary
condition at the horizon may destroy the distribution of the Kerr
QN frequencies. However, such an instability could be negligible
at the early ringdown (e.g., see Refs. [39,40]), and we are
interested in the fit of the standard QN-mode model to the early
ringdown in this work.
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fraction of SMBHs can have near-extremal spin parameters
of j≳ 0.99 [30–32]. In the following, we show such
SMBHs are suitable observation targets to detect multiple
QN modes.

IV. NO-HAIR TEST OF SMBHs WITH LISA

A. Measurability of superposed QN modes

Let us evaluate the measurability of multiple QN modes
of rotating BHs, and its feasibility for tests of the no-hair
theorem. We here consider detections of them with LISA,
which is sensitive to signals of ∼0.01 Hz and is suitable for
detecting ringdown of SMBHs with mass ∼106–107M⊙.
The sensitivity curve can be modeled by an analytic
function S̃nðfÞ [43]:

S̃n ¼
1

F

�
POMS

L2
þð1þ cos2ðf=f�ÞÞ

2Pacc

ð2πfÞ4L2

�
; ð5Þ

F ≡ 3

10
ð1þ 0.6 × ðf=f�Þ2Þ−1; ð6Þ

where 2L is the round-trip light travel distance, f� ≡
c=ð2πLÞ is the transfer frequency, POMS and Pacc are the
single-link optical metrology noise and the single test mass
acceleration noise, respectively. The function F is the sky/
polarization average of the antenna pattern functions.8 We
include the galactic confusion noise from compact binaries,

ScðfÞ ¼ Af−7=3e−f
αþβf sin ðκfÞ½1þ tanhðγðfk − fÞÞ� Hz−1;

ð7Þ
where A ¼ 9 × 10−45 and the parameter set fα; β; γ; κ; fkg
is fixed with the values for a four-year mission (we use
Table 1 in Ref. [43]). Then we obtain the full sensitivity
curve as SnðfÞ ¼ S̃nðfÞ þ ScðfÞ. Using Sn, we evaluate the
signal-to-noise ratio (SNR) of the GW signal and the
likelihood ratio, to investigate the support for the model

of the no-hair QN modes H0 over a modified model Hδ

consisting of a set of complex frequencies deviated from
the no-hair values.
For the modification of the no-hair model, we consider

two types of modifications: (i) a modelHðFþOÞ
δ for which all

QN frequencies, including fundamental modes and over-
tones, are modified as

ωlmn ¼ ReðωðGRÞ
lmn Þð1þ δfRÞ þ iImðωðGRÞ

lmn Þð1þ δfIÞ; ð8Þ

where ωðGRÞ
lmn are the QN frequencies in general relativity,

and (ii) a modelHðOÞ
δ for which only overtones are modified

with the above expressions.9 Depending on the parameters
of the remnant mass and spin, the whole QN mode

frequencies coherently change like the model HðFþOÞ
δ . As

such, we can estimate the feasibility of the test of the no-
hair theorem, which states that the frequency and decay rate
of QN modes are uniquely set by the remnant mass and
spin. On the other hand, comparing the likelihood ratio with

HðFþOÞ
δ and the one with HðOÞ

δ , we can see the efficiency of
the inclusion of overtones in the test of the no-hair theorem.
The models H0, Hδ are respectively given by the super-
position of GR or modified QN modes, and the model
parameters, i.e., an amplitude and phase, are assigned to
each QN mode. The best fit values of the amplitudes and
phases are determined by the Mathematica function “Fit.”
Our artificial modification to QN modes affects the model
parameters and the likelihood ratio. The SNR ρ and the
likelihood ratio L are [44]

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hh̃þ; h̃þi þ hh̃×; h̃×i

q
; ð9Þ

L ¼ pðh̃þjH0Þ
pðh̃þjHδÞ

pðh̃×jH0Þ
pðh̃×jHδÞ

; ð10Þ

where Hδ is HðFþOÞ
δ or HðOÞ

δ ,

hx; yi≡ 4Re
Z

∞

0

xðfÞy�ðfÞ
Sn

df; ð11Þ

h̃þ=×ðfÞ is the Fourier transform of hþ=×ðtÞ, and pðdjHÞ is
the likelihood

pðdjHðϑ⃗ÞÞ ∝ exp

�
−
1

2
hd −Hðϑ⃗Þ; d −Hðϑ⃗Þi

�
; ð12Þ

with a given data, d, and a model function, Hðϑ⃗Þ, for a set
of the fitting parameters ϑ⃗, i.e., the amplitude and phase of
each QN mode and t�.

FIG. 4. Mismatch of the fit of QN modes to the GW data for
j ¼ 0.99. The fitting is performed for l ¼ m ¼ 2, 3, 4, and 5.

8Note that the information of the antenna pattern is already
included in the noise curve, and we do not need to include this in
the signal (see Ref. [43]).

9The source parameters of the SMBH (M and j) are assumed to
be fully known. We leave a more realistic inference with LISA,
considering measurement errors of these parameters, to a future
study.
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Figure 5 shows the precision of constraining deviations
of multiple QNmodes for different thresholds ofL. We find
that no-hair tests of rapidly rotating BHs are more powerful

than those with BHs of intermediate spin. For the HðFþOÞ
δ

model in the left panel, the measurement error of the real
frequency is ≲80% for j ¼ 0.8, but only ≲10% for
j ¼ 0.99. We here take ðDL;M̃;qÞ¼ ð3Gpc;107M⊙;10−3Þ,
where DL is the luminosity distance and M̃ ¼ ð1þ zÞM is
the redshifted mass of a SMBH that includes the effect of
redshift z.
Overtones more quickly damp with time, and hence

measuring deviations of overtones is likely more challeng-
ing. Nevertheless, for near-extremal BHs, the damping is
very weak and even overtones may be measured with good

precision. The right panel in Fig. 5 shows the high
feasibility of measuring overtones for a rapidly spinning
BH. We here assume ðDL; M̃; qÞ ¼ ð1 Gpc; 107M⊙; 10−3Þ.
In both models that we considered, the uncertainty in the
damping rate δfI of QN modes is larger. This would be
caused by the dispersive distribution of QN mode frequen-
cies towards the imaginary axis in the complex frequency
plane (see Fig. 2). That is, the fundamental mode and
overtones have close values of the real part of QN mode
frequencies whereas they have dispersive values in the
imaginary part. This may cause the large uncertainty in δfI
as shown in Fig. 5. A similar conclusion and a large
uncertainty in the imaginary part was reported in [18],
where the no-hair test was performed for GW150914 [46].
Figure 6 summarizes the expected distance out to which

we can measure multiple QN modes with high precision.
In this section we discuss the prospects for LISA, for
moderate and extreme mass ratios.
For moderate mass ratios of q ∼ 10−3, it corresponds to a

merger between a SMBH and an intermediate-mass BH
(IMBH). A scenario usually considered for such mergers
is clusters hosting IMBHs falling into the galactic
nuclei [47–51]. The event rate is uncertain, but recent
N-body simulations find a range 0.003–0.03 Gpc−3 yr−1

[50,51], or 2–20 yr−1 within z < 1 (DL ≲ 7 Gpc) [25]. For

the HðFþOÞ
δ model with j ¼ 0.99 multiple QN frequencies

can be measured within ∼5% (∼1%) for sources at DL ≲
10 Gpc (≲3 Gpc), and thus no-hair tests of SMBHs are

promising. For the HðOÞ
δ model, one may constrain the real

frequencies within ≲10% for sources out to a few Gpc,
corresponding to an event rate of 0.1–1 yr−1.
The likelihood ratio for the model of HðOÞ

δ with
δfR > 0 is more significant than that with δfR < 0 (see
Fig. 6). Being sensitive to the modification of δfR > 0 is
reasonable since the higher-frequency modes of ω≳ ωlmn in
the GW signal are exponentially suppressed (see Ref. [22]
for more details).

FIG. 5. Precision for measuring deviations of multiple QN
modes from general relativity, for (left) HðFþOÞ

δ model with

ðDL; M̃; qÞ ¼ ð3 Gpc; 107M⊙; 10−3Þ and (right)HðOÞ
δ model with

ð1 Gpc; 107M⊙; 10−3Þ. Red and black colors show spins of j ¼
0.99 and 0.8, respectively. Outside the solid, dashed and dot-
dashed contours, the likelihood ratio L takes values of > 3.2,
> 10, and > 100, respectively. As higher overtones can be
important for higher angular modes (see Fig. 4 and cf. Ref. [45]),
we include many overtones to model the waveforms. For
j ¼ 0.99, we include QN modes up to n ¼ 21 for each mode
l ¼ m ¼ 2, 3, 4, and 5. For j ¼ 0.8, on the other hand, QN modes
up to n ¼ 16 are included for each mode l ¼ m ¼ 2, 3, and 4.

FIG. 6. Distances out to which tests with multiple QN modes are possible. The contours show the SNR of the ringdown, as a function
of the redshifted SMBH mass M̃ and the luminosity distance DL with mass ratio q scaled as 10−3. The solid and dashed lines indicate
δfR > 0 and δfR < 0, respectively. In the shaded regions, below both the solid and dashed lines, one can measure the real part of QN
frequencies with (green) ≲1%, (red) ≲5%, and (blue) ≲10%, respectively. We here set δfI ¼ 0, as observations are rather insensitive to
δfI (see Fig. 5).
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For extreme mass ratios of q < 10−5, it corresponds to a
stellar-mass BH plunging into a SMBH. Such plunges
are expected not to be strong GW emitters, as we
also deduce from Fig. 6. The extreme-mass-ratio inspiral
(EMRI) rate for a Milky-Way like Galaxy is estimated to be
10−6–10−5 yr−1, i.e. an event rate of 10−8–10−7 Mpc−3 yr−1

([52] and references therein). Plunge orbits can be up to 100
timesmore likely than EMRIs [53,54], sowe expect plunges
of∼10M⊙ BHswithin the detectable distance (≲10 Mpc) at
a rate of < 0.1 yr−1. Recently a new formation channel of
IMBHs in galactic nuclei was proposed, where stellar-mass
BHs grow in situ up to ∼104M⊙ by collisions with
surrounding stars [55]. If such growth is efficient, this
would likely enhance the above rates.

B. Separability and measurability
of individual QN modes

In the previous section, we studied the measurability of
superposed QN modes, where we required that the SNR for
the secondary QN mode is above a given detectability
threshold. However, to assess LISA’s potential for no-hair
tests with ringdown signals, it also is important to evaluate
the separability and measurability of individual QN modes
(BH spectroscopy).
Let us evaluate the measurability and separability of the

fundamental QN mode and the first overtone to see the
feasibility of the BH spectroscopy [34,35]. The statistical
errors on a model parameter θa are given by

σθa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þaa

q
; ð13Þ

where Γ−1 is the inverse of the Fisher matrix,

Γab ¼
�
∂h̃
∂θa

;
∂h̃
∂θb

�
; ð14Þ

with hx; yi defined as in Eq. (11). We here compute the
Fisher matrix with the following parameter set:

θa ¼ ∪
lmn

ffRlmn; fIlmn; Almn;ϕlmng; ð15Þ

where the parameter set has the fundamental mode (n ¼ 0)
and the first overtone (n ¼ 1). The angular modes in the
parameter set are ðl; mÞ ¼ ð2; 2Þ, (3, 3), (4, 4), (5, 5) for
j ¼ 0.99. For j ¼ 0.8, it has ðl; mÞ ¼ ð2; 2Þ, (3, 3), (4, 4).
We use the waveform we numerically obtained in Sec. II
and use a Mathematica function “Fit” to obtain the best fit
model of (4). We then compute the Fisher matrix (14) by
analytically computing the derivative of (4) and estimate
the statistical errors from the inverse matrix ðΓ−1Þab. From
the statistical errors, we can evaluate the separability based
on the Rayleigh criterion [34,35]:

s½θa; θb�≡max½σa; σb�=jθ̂a − θ̂bj < 1; ð16Þ

where θ̂a is the true value of θa. Also, we can estimate the
measurability (i.e., measurement error) with [35]

Δθa ¼ σθa=θ̂a: ð17Þ

The signal has x% measurability if the set of fΔθag
satisfies

max
i
½Δθi� <

x
100

: ð18Þ

From this quantity, we can also examine the hierarchy of
measurability among the modes we are interested in.
Figures 7 and 8 show the value of Δθa and s½θa; θb�,

respectively. We can read that the errors in the measur-
ability and that in the separability for j ¼ 0.99 are generally
smaller than those for j ¼ 0.8 at the same luminosity
distance DL, remnant mass M, and the mass ratio of
q ≤ 0.005. The real parts of the QN mode frequencies
for j ¼ 0.8 all have larger measurement errors. In the case
of j ¼ 0.99, the error of the real part of the QN frequencies
with n ¼ 0 and ðl; mÞ ¼ ð4; 4Þ and (5, 5) take the smallest
values (i.e., highest precision) among them. The real part of
QN frequencies of the first overtones can be still measur-
able in the level of ΔfRlm1 ≲ 0.01. On the other hand, the
imaginary parts of the QN frequencies for higher harmonics
are measurable with ΔfIlm1 ∼ 0.1. The error of the

FIG. 7. The measurability of the real (solid) and imaginary
(dashed) parts of the QN modes for a near-extremal (j ¼ 0.99)
and medium spin (j ¼ 0.8) are shown with respect to the mass
ratio q. The luminosity distance and the mass of the SMBHs are
set to DL ¼ 1 Gpc and M ¼ 107M⊙, respectively.
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imaginary part of QN frequencies in the separability is
smaller and can be resolvable for the modes of higher
harmonics (see Fig. 8). On the other hand, the real parts of
QN frequencies for n ¼ 0 and n ¼ 1 are too close to
resolve especially for j ∼ 0.99 (see Figs. 2 and 8). The QN
modes for j ¼ 0.8 are difficult to distinguish each other in
our setup as the damping rates in QN modes are larger.
In a previous work [35], such measurement errors by

LISAwere computed for mergers of nonspinning BHs with
mass ratio of 0.1≲ q ≤ 1 and total mass of 106M⊙. While
varying q just changes the overall scale of the measurement
error, varying the remnant mass and spin may change even
the hierarchy among different modes. Indeed, our result
shows that the higher angular modes, i.e., (4, 4, 0) and

(5, 5, 0), have the first three smallest measurement errors
for j ¼ 0.99 whereas (2, 2, 0) mode takes the smallest error
for the case considered by [35] (their Fig. 4). As the higher
angular modes may dominate the ringdown signal for a
rapidly spinning BH as shown in Fig. 1, the rapid spin of
the remnant BH may affect the hierarchy.

V. CONCLUSION

In this paper, we studied the measurability and separabil-
ity of multiple QNmodes emitted by near extremal SMBHs,
which may exist at the center of galaxies according to the
X-ray observation of the accretion disks [26–28]. The
measurability of superposed QN modes is estimated by
the SNR of a ringdown signal that is obtained by the fit of
QN modes to the whole GW data (Fig. 6). The goodness of
the fit with theGRQNmodeswas assessed by the likelihood
ratio (Figs. 5 and 6). To assess the ability of the BH
spectroscopy, we computed the statistical error to obtain the
errors in the separability (16) and in the measurability (17).
We then found that the separability and measurability for
mergers involving near-extremal SMBHs of j ¼ 0.99 are
generally better than those with SMBHs of moderate spins
of j ¼ 0.8 (Figs. 7 and 8). The measurement error of the
real part of QN frequencies can be ≲1% and the separ-
ability condition is satisfied for the imaginary part when
DL ≲ 1 Gpc and q ∼ 0.005. We thus conclude that inter-
mediate (and possibly extreme) mass ratio mergers can be
unique targets for LISA to probe multiple QN modes of
rapidly spinning BHs, and an important target for tests of
gravity in a near-extreme Kerr spacetime.
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