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The motion of a radiating point particle can be represented by a series of geodesics whose “constants” of
motion evolve slowly with time. The evolution of these constants of motion can be determined directly
from the self-force equations of motion. In the presence of spacetime symmetries, the situation simplifies;
there exist not only constants of motion conjugate to these symmetries, but also conserved currents whose
fluxes can be used to determine their evolution. Such a relationship between point-particle motion and
fluxes of conserved currents is a flux-balance law. However, there exist constants of motion that are not
related to spacetime symmetries, the most notable example of which is the Carter constant in the Kerr
spacetime. In this paper, we first present a new approach to flux-balance laws for spacetime symmetries,
using the techniques of symplectic currents and symmetry operators, which can also generate more general
conserved currents. We then derive flux-balance laws for all constants of motion in the Kerr spacetime,
using the fact that the background, geodesic motion is integrable. For simplicity, we restrict derivations in
this paper to the scalar self-force problem. While generalizing the discussion in this paper to the
gravitational case will be straightforward, there will be additional complications in turning these results into
a practical flux-balance law in this case.

DOI: 10.1103/PhysRevD.108.104029

I. INTRODUCTION

True test bodies in general relativity follow geodesics
determined by the metric in a given spacetime. This
analysis, however, is an idealization; physical objects
source gravitational fields themselves, changing the metric
of the spacetime through which they are traveling. At
zeroth order in the mass of the body in question, it follows
a geodesic, but the higher-order corrections are important
for long-lived systems; these corrections are collectively
known as the self-force.
While self-force effects are typically neglected, one

situation in which they are particularly relevant is the case
of extreme mass-ratio inspirals (EMRIs). These are systems
characterized by a stellar-mass compact object (of mass m)
orbiting a supermassive black hole (of mass M ≫ m).
These systems emit gravitational waves in frequency
ranges inaccessible to ground-based gravitational wave
detectors (for example, due to seismic noise and arm
length limitations), but will be detectable by space-based
interferometers such as LISA [1–3]. These systems present

an entirely different regime in which to study gravitational
waves: since the inspiral will last for years, and capture
∼M=m orbits, the details of the waveform will provide
detailed information about the spacetime of the super-
massive black hole [2,4]. Moreover, not only first-order
self-force, but second-order self-force effects will be
relevant for data analysis of EMRI waveforms detected
by LISA [5,6].
The self-force formalism itself has a long history; for a

review, see [7] and references therein. For most of its
history, much of the focus has been on the first-order self-
force, although second- (and higher-) order effects have
now been placed on a firm footing as well (see [8] and
references therein). In this paper, we will take the self-force
formalism as given, and will focus exclusively on solving
the equations.
The solution to the self-force equations of motion comes

in two parts; the motion of the body, and the perturbations
to the fields which propagate on the background spacetime.
For practical applications, it is only the latter that we
fundamentally wish to compute; we want to know the
asymptotic radiation that is emitted by the system and
reaches our detectors. Given the motion of the body,*a.m.grant@soton.ac.uk
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computing this radiation at first order only requires the
first-order field asymptotically. At second order, while the
first-order field is required everywhere, the second-order
field is still only required to be known asymptotically.
In contrast, the computation of the motion itself is

difficult: it involves fields at the location of the object,
not just asymptotically. While black hole perturbation
theory most easily produces components of the Weyl
tensor (see the recent review [9], and references therein),
the self-force evolution of the motion requires the metric
perturbation, and so a metric reconstruction procedure is
needed [10,11], unless the metric perturbation has been
computed directly. While the methods for reconstructing
a perturbed metric are relatively well-understood at first
order [12–14] (for certain gauge choices), second-order
metric reconstruction procedures are much more compli-
cated and will require significantly more work [15].
Moreover, metric reconstruction is far easier in asymptotic
regions far away from the object.
The goal of flux-balance laws is to short-circuit this

unfortunate complication: instead of determining the
motion of the object using local fields, flux-balance laws
determine some aspect of the motion using only asymptotic
fields. The intuitive picture for these flux-balance laws is
one that often is used in electromagnetism (see, for
example, Sec. 16.2 of [16]); determining the change in
energy of a charged particle only requires knowledge of
the total power radiated, and not the details of the local
electromagnetic forces that act upon it. It is important,
however, to note that this only holds in a time-averaged
sense; at any instant of time, the electromagnetic field itself
contains energy, some of which will be radiated off to
infinity and some of which will return to the particle at a
later point.
This intuitive picture of flux-balance laws, while useful,

does not ultimately provide a firm foundation on which to
base a calculation. One needs to prove that a flux-balance
law holds, by relating the evolution of some property of an
object’s motion to the flux of a conserved current at infinity.
Such flux-balance laws were first developed in the Kerr
spacetime, relating the changes in energy E and the z
component of the angular momentum Lz to fluxes at
infinity (and, importantly, the horizon of the black hole!)
by Gal’tsov [17]. These relationships only held for changes
in these quantities in the limit where one considered an
infinite amount of time, but by dividing by the time
difference before taking the limit, this provides a relation-
ship for average rates of change of these quantities. A
rigorous analysis [18] later showed that such an analysis
held for any spacetime possessing Killing vectors. Mino
[19] showed that orbital averages of the changes in E and
Lz could also be written as expressions involving only
asymptotic fields at the horizon and infinity.
The results of Mino [19] were surprising, since they also

contained an expression for the orbit-averaged change in

the third constant of motion in the Kerr spacetime, the
Carter constant K [20]. While the conserved currents used
by [17,18] for arbitrary Killing vectors were constructed
from the stress-energy tensor of the theory in question (or
effective stress-energy tensor, in the case of gravity), it was
not known if conserved currents associated with Killing
tensors (from which the Carter constant can be constructed
[21]) could be constructed in a similar way. Moreover, it
was later shown that there could be no conserved current
that could be constructed from the stress-energy tensor and
this Killing tensor, under the assumption that this conserved
current reduced to the Carter constant of a point particle
when evaluated using the point-particle stress-energy
tensor [22]. While there existed conserved currents asso-
ciated with the Carter constant for scalar fields [23], and
these results were extended to the case of linearized gravity
in [24], it was not clear if these conserved currents could be
used to generate a flux-balance law.
In this paper, we attempt to derive flux-balance laws

using a class of conserved currents that was used in [24].
Instead of arising from the stress-energy tensor, these
conserved currents are defined from the symplectic current,
a bilinear conserved current that is defined for perturbations
to a field theory defined from a Lagrangian [25,26], and
symmetry operators, which are operators which map the
space of solutions to a theory into itself [27,28]. We first use
these techniques in order to derive flux-balance laws for
conserved quantities that arise from spacetime symmetries,
such as E and Lz. For the Carter constant, however, it seems
that, despite the existence of conserved currents related
to the Killing tensor, these conserved currents do not
provide flux-balance laws that determine the evolution
of the Carter constant.
The failure of these conserved currents to determine the

evolution of the Carter constant seems, in part, to be caused
by the fundamental difference between the Carter constant
and E and Lz: as it is constructed from a rank two Killing
tensor, it is quadratic in the momentum of the particle. As
such, we are motivated to consider a formulation in which
all of the constants of motion for geodesic motion are on
equal footing: action-angle variables for the Hamiltonian
formulation. The four conserved quantities, E, Lz, K, and
m2, can be written in terms of a set of four action variables,
which we collectively denote by Jα. The evolution of these
action variables can then be written in a unified manner in
terms of the Hamiltonian.
Somewhat miraculously, changes in the action variables

can be understood in terms of a flux-balance law. While
flux-balance-like expressions for the action variables have
appeared previously in [29], here we show that there exist
flux-balance laws that can be derived directly in terms of a
conserved current. This conserved current is generated
using a different sort of symmetry operator for the fields in
question; these operators take advantage of the fact that the
fields that occur in this problem are not arbitrary, but are
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dependent upon some given worldline. This worldline, in
turn, depends on an initial point at some given time, and
therefore these fields can be differentiated with respect to
this initial point. This differential operator provides a map
from the space of solutions (dependent on a worldline)
into itself, and so is a symmetry operator. The resulting
symmetry operator can be used to generate a conserved
current, the flux of which, as we will show, determines the
evolution of the action variables Jα.
Since these flux-balance laws require only fields off the

worldline (though, due to a caveat which we will discuss
further in Sec. III C, they are not asymptotically defined
fields), this flux-balance computation forms the basis for a
potentially useful means of computing the evolution of the
Carter constant. Moreover, while the computations in this
paper are entirely at first order, the generalization to the
second-order self-force is expected to be simpler than
generalizing the results of Mino [19] directly.
The layout of the rest of the paper is as follows: in Sec. II,

we discuss the equations of motion of a point particle under
the scalar self-force, both in terms of the usual formulation
in terms of the force that acts on the particle and in terms of
a Hamiltonian formulation. In particular, we discuss the
quasiconserved quantities that arise, and discuss how the
self-force is described by a perturbed Hamiltonian system.
In Sec. III, we then turn to the derivation of flux-balance laws
for the scalar self-force. To do so, we first discuss conserved
currents that arise in this theory, in particular the symplectic
current, and then derive a series of “integrated” flux-balance
laws related to changes in quantities considered in Sec. II, as
well as “averaged” flux-balance laws which capture their
average evolution. We provide our conclusions, and a road-
map for the gravitational case, in Sec. IV.We also include an
example calculation in the Appendix which is motivated by
the discussion in Sec. III C.
We use the following notation and conventions in this

paper: following Wald [30], we use the “mostly plus”
metric signature convention and lowercase Latin letters
(a, b, etc.) for abstract indices for tensor fields defined on
the spacetime manifold M, while for coordinate indices
we use lowercase Greek letters (α, β, etc.). We also use
the conventions for differential forms from Appendix B
of [30]. For tensor fields on phase space T�M, we use
uppercase Latin letters (A, B, etc.) for abstract indices, and
Hebrew letters (ℵ, ℶ, etc.) for coordinate indices. Typically,
quantities on phase space that are related to quantities on
the spacetime manifold are the uppercase versions thereof;
for example, a curve γ on the spacetime manifold is given
by the projection of a curve Γ through phase space. For
arbitrary collections of abstract tensor indices, we use
uppercase script Latin letters (A , B, etc.). Our notation
for bitensors matches that of [7], and we use the convention
that indices at a point x with some adornments have the
same adornments: for example, a0, b0, etc. denote indices at
x0. As such, we drop the explicit dependence of bitensors on

points at which they are evaluated, unless it is a scalar at
that point. We occasionally drop indices (such as in the
case where we are considering differential forms); in such
cases, we denote the tensors in bold, and directly apply any
adornments (such as primes) to the tensor itself. Finally,
we denote the arguments of (multi)linear functionals with
curly brackets, to distinguish them from general, non-
linear functionals (which are typically denoted with square
brackets).

II. EQUATIONS OF MOTION

The body whose motion we wish to determine follows a
curve γðεÞ, parametrized by proper time τ, with a parameter
ε that we use to track the scale of small perturbations. The
fundamental equation that we are concerned with is the
following:1

γ̇bðεÞ∇bpaðεÞ ¼ −εq∇aϕ
R þOðε2Þ; ð1Þ

where

paðεÞ≡mðεÞgabγ̇bðεÞ; ð2Þ

and

γ̇aðεÞγ̇bðεÞgab ¼ −1: ð3Þ

We use the overdot (as in γ̇a) to represent differentiation
with respect to proper time. Below, for brevity, we denote
by γ the “background” curve γðεÞjε¼0, and more generally
places where an expected ε argument is dropped indicates
that the equation holds when ε ¼ 0.
The only two properties that we will assume for the

scalar field ϕR which appears in Eq. (1) is that it is a
solution to the sourceless, massless scalar field equation,

□ϕR ¼ 0; ð4Þ

and that it can be constructed by a procedure similar to
integrating a Green's function over γ,

ϕRðxÞ ¼
Z
Vð∞;−∞Þ

ϵ0GRðx; x0Þρðx0Þ; ð5Þ

1Apart from a minus sign, this equation agrees with Eq. 17.50
of [7]. This minus sign is such that Eq. (8) does not have a minus
sign (compare with the discussion of scalar self force in [31]).
Choosing to have or not have this minus sign is equivalent to
changing the sign of the scalar charge in all expressions. Note that
there should also be a factor of 4π present in Eq. (8), comparing to
Eq. 12.1 of [7]. By dropping this factor, we are choosing to use a
rationalized system of units (see the preface to [32]) for the scalar
field, and so this factor of 4π appears in the Green’s functions
GRðx; x0Þ and Gþðx; x0Þ, or generally in solutions to the field
equations, instead of the field equations themselves.
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where Vðτ0; τÞ denotes a spacetime volume which contains
γðτ00Þ for τ00 ∈ ½τ; τ0� and is such that γðτÞ; γðτ0Þ∈ ∂Vðτ0; τÞ.
The volume 4-form is represented by ϵ and is adorned
according to the integration point. Moreover, the density ρ
is defined by

ρðxÞ≡ q
Z

∞

−∞
dτ δ½x; γðτÞ�: ð6Þ

Here, the delta function is defined to be the distribution that
satisfies

Z
V
ϵ0fðx0Þδðx; x0Þ ¼

�
fðxÞ x∈V

0 x ∉ V
: ð7Þ

We also consider a different scalar field ϕþ which is the
retarded solution to the massless scalar field equation, with
source ρ,

□ϕþ ¼ ρ ð8Þ

and

ϕþðxÞ ¼
Z
Vð∞;−∞Þ

ϵ0Gþðx; x0Þρðx0Þ; ð9Þ

where Gþðx; x0Þ ¼ 0 if x0 is not in the past of x.

A. Conserved quantities

In the presence of a Killing vector ξa, the background
curve γ possesses a conserved quantity given by

Eξ ≡ ξapa: ð10Þ

In the case where ξa ¼ −ð∂tÞa, this conserved quantity is
the energy, while in the case where ξa ¼ ð∂ϕÞa, it is the
z-component of the angular momentum. We now define a
“conserved” quantity Eξðτ; εÞ by

Eξðτ; εÞ≡ ξapaðεÞ: ð11Þ

By Killing’s equation ∇ðaξbÞ ¼ 0, this quantity satisfies

dεEξðεÞ
dτ

¼ −εq£ξϕR þOðε2Þ; ð12Þ

where we use the notation dε to remind the reader that this
derivative is along the curve γðεÞ, not γ. As such, the
change in the conserved quantity Eξðτ; εÞ can be written as
an integral over the worldline γðτ; εÞ,

ΔEξðτ0; τ; εÞ≡ Eξðτ0; εÞ − Eξðτ; εÞ

¼ −εq
Z

τ0

τ
dτ00£ξϕR½γðτ00; εÞ� þOðε2Þ: ð13Þ

We now vary with respect to ε, which we denote with a δ;
for any quantity QðεÞ,

δQ≡ dQ
dε

����
ε¼0

: ð14Þ

We find therefore that

δΔEξðτ0;τÞ¼−q
Z

τ0

τ
dτ00£ξϕR½γðτ00Þ�

¼−q
Z

τ0

τ
dτ00

Z
Vð∞;−∞Þ

ϵ000δ½x000;γðτ00Þ�£ξϕRðx000Þ:

ð15Þ

Using the fact thatZ
τ0

τ
dτ00

Z
Vð∞;−∞Þ

ϵ000δ½x000; γðτ00Þ�fðx000Þ

¼
Z
Vðτ0;τÞ

ϵ000
Z

∞

−∞
dτ00δ½x000; γðτ00Þ�fðx000Þ; ð16Þ

we can therefore write

δΔEξðτ0; τÞ ¼ −
Z
Vðτ0;τÞ

ϵρ£ξϕR: ð17Þ

Note, however, that there are more types of conserved
quantities that can be defined in arbitrary spacetimes;
particularly relevant for the Kerr spacetime are those
defined using a rank two Killing tensor Kab:

QK ≡ Kabpapb: ð18Þ

As before, we define QKðτ; εÞ using paðεÞ, and it follows
from the rank two Killing tensor equation∇ðaKbcÞ ¼ 0 that

dεQKðεÞ
dτ

¼ −2εq£K·pðεÞϕR þOðε2Þ; ð19Þ

where

ðK · pÞaðεÞ≡ KabpbðεÞ: ð20Þ

A similar set of steps as above shows that

δΔQKðτ0; τÞ ¼ −2
Z
Vðτ0;τÞ

ϵρ£K·pϕR; ð21Þ

where ΔQKðτ0; τÞ is defined in a manner analogous to
Eq. (13). Note that this equation is well-defined, since the
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presence of ρ in the integrand implies that the integrand has
support only on the worldline (where pa is defined).

B. Hamiltonian formulation

Writing coordinates on the manifold M as xα, and
considering momenta pα, we write coordinatesXℵ on phase
space T�M (the cotangent bundle) as

Xℵ ≡
�
xα

pα

�
: ð22Þ

As remarked in the introduction, we use Hebrew letters for
coordinate indices on phase space.
For simplicity, we show that the self-force problem has

a Hamiltonian form in these coordinates. Consider the
following Hamiltonian:2

HðX; εÞ≡ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβðxÞpαpβ

q
þ εqϕRðxÞ þOðε2Þ: ð23Þ

Hamilton’s equations then take the form

dxα

dτ
¼ gαβpβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gγδpγpδ

q þOðε2Þ; ð24aÞ

dpα

dτ
¼ −

1

2

pβpγ∂αgβγffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gδϵpδpϵ

p − εq∂αϕR þOðε2Þ: ð24bÞ

Note that the first of these equations implies Eq. (3),
while the second, using

∂αgβγ ¼ −2Γðβ
δαgγÞδ; ð25Þ

implies Eq. (1).
Hamilton’s equations can be recast in a covariant form on

phase space by constructing a symplectic two-form ΩAB,
where we use capital Latin letters as abstract indices on
phase space:

Ω≡ dpα ∧ dxα: ð26Þ

Note, in particular, that ΩAB is a closed two-form,

dΩ ¼ 0; ð27Þ

because it is also an exact form, being the exterior
derivative of the canonical one-form Θ,

Ω ¼ dΘ; ð28Þ

where

Θ≡ pαdxα: ð29Þ

Using Eq. (26), Eq. (24) can be written as

ðdHÞAðεÞ þOðε2Þ ¼ ΩABΓ̇BðεÞ; ð30Þ

where ΓðεÞ is the path that the particle takes through phase
space, and is parametrized also by τ. Moreover, ΩAB is
nondegenerate and has an inverse, ΩAB, such that

ΩACΩCB ¼ δAB; ð31Þ

so we may finally reexpress the equations of motion in the
covariant form,

Γ̇AðεÞ ¼ ΩABðdHÞBðεÞ þOðε2Þ: ð32Þ

1. Geometric construction for the Hamiltonian
phase space

In the below analysis, we are interested in the differ-
ences between covariant representations of phase-space
quantities at different points in τ. From such differences,
we construct a covariant description of the evolution of
quasiconserved worldline quantities for the perturbed
Hamiltonian system.
Before performing a perturbative analysis, we first review

a few notions from differential geometry. First, we recall the
definition of pullbacks and pushforwards. Consider some

mapϕ∶M → fM, whereM and fM are arbitrary manifolds.
Wewill use capital Latin letters to indicate indices onM, and
capital Latin indiceswith tildes to indicate indices on fM. For

some scalar field f̃ on fM, there is a scalar field on M,
denoted by ϕ�f̃, that is defined by

ϕ�f̃ ≡ f̃ ○ ϕ: ð33Þ

The operation ϕ� is called the pullback (as it goes in the
opposite direction of ϕ, from scalar fields on fM to those
on M). Similarly, for any vector field vA on M, there is a

corresponding vector field ðϕ�vÞÃ on fM that is defined by

ðϕ�vÞðf̃Þ≡ vðf̃ ○ ϕÞ; ð34Þ

where we consider vA and ðϕ�vÞÃ as a differential operators
acting on scalar fields; see Chapter 2 ofWald [30] (as there is
no risk of confusion here, we do not bold vector fields when

2Note that, in this Hamiltonian, we are considering the
dependence on the worldline in ϕR to be fixed: while constructing
Hamilton’s equations, we do not vary this worldline γ, and then
set the value of x to be along the curve γ at the very end of the
calculation. As such, this is not truly a Hamiltonian system in the
strict sense: see the discussion in [33–35] (as mentioned in [35],
this discussion applies for scalar, electromagnetic, and gravita-
tional self force). However, this will not affect the analysis of
this paper, and so we drop the explicit dependence of ϕR on γ for
brevity.
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treating them as differential operators). This definition is
linear, and so we can define a linear map ðϕ�ÞÃA by

ðϕ�vÞÃ ¼ ðϕ�ÞÃAvA: ð35Þ

This mapping is known as the pushforward, and in coor-
dinates it can be written as

ðϕ�Þℵ̃ℵ ¼ ∂ϕℵ̃

∂Xℵ ; ð36Þ

where ϕℵ̃ denotes the coordinates of ϕðXÞ. By comparing
Eq. (35) to the definition of the exterior derivative of scalar
fields, namely that

vAðdfÞA ≡ vðfÞ; ð37Þ

we find that

ðdϕ�f̃ÞA ¼ ðϕ�ÞÃAðdf̃ÞÃ: ð38Þ
Next, recall that, as phase space is a fiber bundle

(the cotangent bundle), there is a natural projection
π∶ T�M → M. This projection can be used to generate
a curve γðεÞ that can be defined by

γðτ; εÞ≡ π½Γðτ; εÞ�; ð39Þ

which is a curve in M that is determined by solutions to
Hamilton’s equations.
For our below exploration of flux-balance laws in

Sec. III, we are interested in the evolution of worldline
quantities defined on phase space, and their relation to the
field ϕ that is sourced by the worldline motion. Because the
field values are determined by the phase-space trajectory of
the worldline motion, those field values themselves may be
regarded as functions of phase space ϕðx; XÞ. Such field
values are the subclass of fields that can be sourced by a
particular Hamiltonian system, and so have properties
dependent on the source equation of motion.
In the below Sec. III, we make use of the derivatives of

field quantities with respect to phase-space coordinates X,
denoted byDA. To derive the relationship of such quantities
to worldline evolution, we then need to understand the
relationship between such derivatives on phase space and
the evolution of worldline quantities. The remainder of this
section is given to a formalization of the necessary phase
space identities for our later derivation.
We next use the notion of pullbacks and pushforwards

to define a propagator in phase space, in order to relate
indices at different points. Since Hamilton’s equations are a
set of first-order ordinary differential equations, there is a
map ϒðΔτ; εÞ that maps any point X ¼ Γðτ; εÞ to a point
X0 ¼ Γðτ þ Δτ; εÞ. We refer to the map ϒ as the Hamilton
flow map. This is a map from phase space to itself, and so
possesses a pushforward ðϒ�ÞA0

AðΔτ; εÞ.

Note that this pushforward is a bitensor on phase
space; it is a tensor field at two different points, X and
X0, which is defined so long as X and X0 are both on a single
curve ΓðεÞ through phase space, such that X ¼ Γðτ; εÞ and
X0 ¼ Γðτ þ Δτ; εÞ. In particular, it is only defined at such
pairs of points; if one takes a derivative of this bitensor (in
some sense) with respect to X0, then the point X must move
in order for Δτ to stay fixed. Instead of ðϒ�ÞA0

AðΔτ; εÞ, we
will therefore work with a subtly different bitensor, which
we denote by ϒA0

AðεÞ and call the Hamilton propagator,

ϒA0
AðεÞ≡ ðϒ�ÞA0

A½ΔτðX0; X; εÞ; ε�; ð40Þ

where ΔτðX0; X; εÞ is such that

X ¼ Γðτ; εÞ; X0 ¼ Γ½τ þ ΔτðX0; X; εÞ; ε�: ð41Þ

When one takes derivatives of the Hamilton propagator
with respect to X or X0, the other point does not move with
it, as Δτ is no longer fixed.
In this paper, we use four key properties of the Hamilton

propagator:
(i) Composition of the Hamilton propagator

ϒA
A0 ðεÞϒA0

BðεÞ ¼ δAB; ð42Þ

(ii) Derivative of the Hamilton flow map

fd½f ○ ϒðτ0 − τ; εÞ�gA ¼ ϒA0
AðεÞðdfÞA0 jX0¼Γðτ0;εÞ;

ð43Þ

(iii) Equation of motion of the Hamilton propagator

£Γ̇0ðεÞϒA0
AðεÞ ¼ 0 ð44Þ

(note that this Lie derivative only acts at the pointX0);
(iv) Hamilton propagation of the symplectic two-form

ΩAB ¼ ϒA0
AðεÞϒB0

BðεÞΩA0B0 þOðε2Þ: ð45Þ

Composition of the Hamilton propagator: The compo-
sition property follows from the composition identity for
the Hamilton flow map,

ϒðΔτ1; εÞ ○ ϒðΔτ2; εÞ ¼ ϒðΔτ1 þ Δτ2; εÞ: ð46Þ

As such, applying the definition of the pushforward (34),
we conclude that

ϒA0
A00 ðεÞϒA00

AðεÞ ¼ ϒA0
AðεÞ: ð47Þ

Similarly, since ϒð0; εÞ is the identity,

ϒA
A0 ðεÞϒA0

BðεÞ ¼ δAB: ð48Þ
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Derivative of the Hamilton flow map: The derivative
property comes directly from the derivative of the pullback
[Eq. (38)]. Suppose that one has a scalar field f that is
evaluated at X0 ¼ Γðτ0; εÞ. There is another scalar field,
f ○ ϒðτ0 − τ; εÞ, which is evaluated at X ¼ Γðτ; εÞ. So long
as the relations between X and τ and X0 and τ0 remain fixed,
it follows from Eq. (38) that

fd½f ○ ϒðτ0 − τ; εÞ�gA ¼ ϒA0
AðεÞðdfÞA0

���
X0¼Γðτ0;εÞ

; ð49Þ

where (for brevity) we have dropped the explicit point that
each side is being evaluated at X ¼ Γðτ; εÞ.
Equation of motion of the Hamilton propagator: To

determine the equation of motion, we use the definition of
the Lie derivative from, for example, Eq. (C.2.1) Wald [30],
in terms of pushforwards; in our notation, where we note
that ϒðΔτ; εÞ is the diffeomorphism that moves you along
the integral curve of Γ̇A, we have that

£Γ̇0ðεÞϒA0
AðεÞ≡ d

dτ00
n
ðϒ�ÞA0

A00 ðτ00 − τ0; εÞϒA00
AðεÞ

���
X00¼Γðτ00;εÞ

o���
τ00¼τ0

¼ d
dτ00

ϒA0
AðεÞ

���
τ00¼τ

¼ 0; ð50Þ

where we have simplified the argument of the derivative
using the composition property of the Hamilton propagator
[Eq. (42)].
Hamilton propagation of the symplectic two-form: One

particular application of the equation of motion of the
Hamilton propagator [Eq. (44)] is to derive the Hamilton
propagation of ΩAB. As the techniques we use here are
useful in Sec. II B 2, we go through this calculation in
detail here. To prove Eq. (45), we first use Cartan’s magic
formula,

£Γ̇ðεÞΩAB ¼ Γ̇CðεÞðdΩÞCAB þ fd½Γ̇ðεÞ ·Ω�gAB; ð51Þ

where · denotes contraction of a vector with the first index
of a differential form, and then use Eq. (32) to show that

Γ̇ðεÞ ·Ω ¼ dHðεÞ þOðε2Þ; ð52Þ

and so the second term in Eq. (51) is Oðε2Þ, since d2 ¼ 0.
The symplectic two-form is closed [Eq (27)], so the first
term vanishes, and we find that

£Γ̇ðεÞΩAB ¼ Oðε2Þ: ð53Þ

We can then solve this equation by considering the
following expression:

d
dτ0

½ϒA0
AðεÞϒB0

BðεÞΩA0B0 � ¼ Oðε2Þ; ð54Þ

which follows from the equation of motion of the Hamilton
propagator [Eqs. (44)] and (53), together with the fact that
the argument of the derivative in Eq. (54) is now a scalar at
X0, and for any scalar field f,

df
dτ

¼ Γ̇AðdfÞA ¼ £Γ̇f: ð55Þ

We have now converted the problem into an ordinary
differential equation in τ0, which can be solved using the
initial condition that ΩA0B0 at τ0 ¼ τ is just ΩAB,

ϒA0
AðεÞϒB0

BðεÞΩA0B0 ¼ ΩAB þOðε2Þ: ð56Þ

Inverting the Hamilton propagators using the composition
identity Eq. (48), we recover the Hamilton propagation of
the symplectic two-form Eq. (45).
Starting instead from

£Γ̇ΩAB ¼ Oðε2Þ; ð57Þ

which follows from the symplectic two-form equation of
motion [Eq. (53)] and the definition of the inverse of
the symplectic two-form [Eq. (31)], a similar derivation
shows that

ΩA0B0 ¼ ϒA0
AðεÞϒB0

BðεÞΩAB þOðε2Þ: ð58Þ

2. Perturbative analysis

Unlike in the case of conserved quantities, the perturba-
tive analysis is somewhat complicated by the fact that the
quantity of interest, namely Γðτ; εÞ, is not a scalar, but a
function that returns points on phase space T�M.
Previously, we had considered this function at fixed ε,
and varied τ to obtain a curve ΓðεÞ. However, one can
instead fix τ, and vary ε to obtain a different curve in T�M;
at ΓðτÞ, we denote the tangent vector to this curve by δΓA.
The aim of the present derivation is to determine the

tangent vector δΓA as a function of τ. The vector δΓA

encodes the dependence of worldline phase space quan-
tities on the field ϕR that perturbs the worldline motion.
Ultimately, we show that the difference of δΓA at different
points on the worldline is equivalent to an integral over the
field-dependent forcing term of the Hamiltonian,
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ϒA
A0δΓA0 − δΓA ¼ ΩAB

Z
τ0

τ
dτ00ϒB00

BðdδHÞB00 : ð59Þ

This expression is the first step required for our derivation
in Sec. III B of the flux-balance law associated with phase-
space symmetry operators; it establishes the relationship
between differences in worldline phase-space quantities
and the local field that appears in the Hamiltonian. The
remaining steps to relate the field values on the worldline to
fluxes on a remote worldtube are given in Sec. III B.
To work towards proving Eq. (59), one would hope to

obtain a differential equation by writing something like

D
dτ

δΓA ¼ …; ð60Þ

and then integrate this equation. However, the right-hand
side, since it involves the derivative of a vector field,
requires a connection on phase space; something which we
do not possess. We therefore need a notion of a derivative
of a vector field along a curve that does not require a
connection; this can be given by the Lie derivative.
To compute the Lie derivative of δΓA with respect to Γ̇A,

we use the definition of vector fields as differential operators
acting on scalar fields mentioned below Eq. (34). For the
specific cases of the tangent vectors δΓA, Γ̇AðϵÞ, and
Γ̇A ¼ Γ̇AðϵÞjϵ¼0, the differential operators are defined by

δΓðfÞ
���
ΓðτÞ

≡ ∂

∂ε
f½Γðτ; εÞ�

���
ε¼0

; ð61aÞ

Γ̇ðf; εÞ
���
Γðτ;εÞ

≡ ∂

∂τ0
f½Γðτ0; εÞ�

���
τ0¼τ

; ð61bÞ

for any scalar field on phase space f. Then,

Γ̇ðfÞ
���
ΓðτÞ

¼ Γ̇ðf; ϵÞ
���
Γðτ;ϵÞ

���
ϵ¼0

¼ ∂

∂τ0
f½Γðτ0Þ�

���
τ0¼τ

: ð62Þ

In these equations, wemake explicit that the vector fields are
at ΓðτÞ.
The Lie derivative of δΓA with respect to Γ̇A is then

given by the commutator [see Eqs. (C.2.7) and (2.2.14) of
Wald [30] ]:

ð£Γ̇δΓÞðfÞ
���
ΓðτÞ

≡ Γ̇½δΓðfÞ�
���
ΓðτÞ

− δΓ½Γ̇ðfÞ�
���
ΓðτÞ

: ð63Þ

The first of the expressions on the right-hand side is easy to
compute:

Γ̇½δΓðfÞ�
���
ΓðτÞ

¼ ∂

∂τ0
δΓðfÞ

���
Γðτ0Þ

���
τ0¼τ

¼ ∂
2

∂τ0∂ε
f½Γðτ0; εÞ�

���
τ0¼τ;ε¼0

¼ ∂

∂ϵ
Γ̇ðf; ϵÞ

���
Γðτ;ϵÞ

���
ϵ¼0

; ð64Þ

where we have first expanded the tangent vectors using
Eqs. (62) and (61a), then, using the commutativity of the
partial derivatives simplified the ϵ-dependent field expres-
sion using Eq. (61b).
The second expression on the right-hand side of the

commutator form of the Lie derivative (63), on the other
hand, is given by

δΓ½Γ̇ðfÞ�
���
ΓðτÞ

¼ ∂

∂ε
Γ̇ðfÞ

���
Γðτ;εÞ

����
ε¼0

: ð65Þ

Note that this is not the same as the right-hand side of the
second equality of Eq. (64)—in Eq. (64), we include the ϵ
variation of the tangent vector as well as the worldline point
at which the scalar is evaluated, where in Eq. (65), the ϵ
dependence is confined to only the worldline point.
As such, we have that

ð£Γ̇δΓÞðfÞ
���
ΓðτÞ

¼ ∂

∂ϵ

h
Γ̇ðf; εÞ

���
Γðτ;εÞ

− Γ̇ðfÞ
���
Γðτ;εÞ

i���
ε¼0

: ð66Þ

Using the covariant form of the equations of motion
[Eq. (32)], we find that the right-hand side can be written
in terms of the Hamiltonian HðεÞ:

Γ̇ðf; εÞ − Γ̇ðfÞ ¼ ΩABðdfÞAfd½HðεÞ −H�gB þOðε2Þ
¼ εΩABðdfÞAðdδHÞB þOðε2Þ; ð67Þ

where this equation is evaluated at Γðτ; εÞ. Evaluating the
derivative in (66) therefore yields

ð£Γ̇δΓÞðfÞ
���
ΓðτÞ

¼ ΩABðdfÞAðdδHÞB
���
ΓðτÞ

; ð68Þ

and so

£Γ̇δΓA ¼ ΩABðdδHÞB: ð69Þ

To solve Eq. (69), we can use similar logic as was used to
determine the Hamilton propagation of the symplectic two-
form [Eq. (45)] from its Lie derivative with respect to Γ̇
[Eq. (51)]. We use the equation of motion of the Hamilton
propagator [Eq. (44)] and the Hamilton propagation of the
inverse symplectic form [Eq. (58)] to reexpress Eq. (69) as
a Lie derivative of a quantity that is a scalar at Γðτ; ϵÞ and a
vector at Γðτ0; ϵÞ. Then, the Lie derivative may be replaced
with d=dτ0 and we have that
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d
dτ0

ðϒA
A0δΓA0 Þ ¼ ΩABϒB0

BðdδHÞB0 : ð70Þ

This ordinary differential equation can be integrated,
yielding

ϒA
A0δΓA0 − δΓA ¼ ΩAB

Z
τ0

τ
dτ00ϒB00

BðdδHÞB00 ; ð71Þ

where X00 ¼ Γðτ00Þ. Typically, we will assume that δΓA ¼ 0,
and so we will only concern ourselves with the right-
hand side.

3. Action-angle variables

We next assume that the worldline motion determined by
the background Hamiltonian H is completely integrable,
with n constants of motion Pα satisfying

dPα

dτ
¼ ΩABðdPαÞAðdHÞB ¼ 0; ð72Þ

ΩABðdPαÞAðdPβÞB ¼ 0; ð73Þ

and where the ðdPαÞA are linearly independent (the indices
α and β range from 0 to n − 1). We are primarily interested
in states of the system in the neighborhood of level setsMP
of these constants of motion:

MP ¼ fX∈T�MjPαðXÞ ¼ Pαg: ð74Þ
In the case of interest, bound motion in the Kerr

spacetime, a generalization to the Liouville-Arnold
Theorem [5,36,37] shows that there exist coordinates in
a neighborhood of MP, known as action-angle variables

Xℵ ≡
�
qα

Jα

�
; ð75Þ

such that
(i) the Jα (the action variables) are constants of motion,

where each Pα is a function only of Jα;
(ii) the qα (the angle variables) are such that q0 is a non-

compact coordinate, while q1;…; qn are periodic in
2π; and

(iii) this set of coordinates is symplectic; that is,

Ω ¼ dJα ∧ dqα: ð76Þ

The main utility of these coordinates is that the Hamilton
propagator takes a particularly simple form in these
coordinates. This follows from the fact that Hamilton’s
equations take the form

dJα
dτ

¼ 0; ð77aÞ

dqα

dτ
≡ ναðJÞ: ð77bÞ

Using the fact that ϒℵ0
ℵ ¼ ∂Xℵ0

=∂Xℵ, it follows that:

ϒA0
A ¼ ð∂qαÞA0

�
ðdqαÞA þ ðτ0 − τÞ ∂ν

α

∂Jβ
ðdJβÞA

�
þ ð∂JαÞA

0 ðdJαÞA: ð78Þ

These coordinates are also useful because the constants
of motion can be determined entirely from the action
variables. Given changes ΔJα in the action variables due
to the perturbing scalar field, the corresponding changes in
the constants of motion can be determined entirely from the
relationship PαðJÞ. In particular, this allows one to deter-
mine changes in the usual constants of motion considered
for bound orbits in the Kerr spacetime: m2 ≡ −Qg,
E≡ −E∂t

, Lz ≡ E∂ϕ
, and Q≡QK , where Kab is the usual

Carter Killing tensor in Kerr,

Kab ¼ r2gab þ
1

Δ
vþðav

−
bÞ; ð79Þ

where

ðv�Þa ≡ ðr2 þ a2Þð∂tÞa þ að∂ϕÞa � Δð∂rÞa ð80Þ

and Δ≡ r2 − 2Mrþ a2. Note, however, that PαðJÞ is not
given by a known, closed-form expression; as such,
determining the evolution of the Carter constant Q
(for example) requires both a specification of the action
variables and a numerical inversion of the (known) expres-
sions for the function JαðPÞ in [5], which is one-to-one in a
neighborhood of the submanifold of constant Pα.

III. FLUX-BALANCE LAWS

A. Conserved currents

Consider a theory for a field ΦA , where capital, script
Latin indices indicate some collection of indices associa-
ted with the field (in the case where ΦA denotes the
vector potential, A ¼ a, while if ΦA denotes the metric,
A ¼ ab, etc.). We denote by L the Lagrangian four-form,
which is a functional of ΦA . For brevity, we do not denote
the dependence in such functionals on ΦA explicitly. The
utility of considering the Lagrangian four-form, instead of
the action (its integral), is provided by the fact that one does
not need to worry about whether any of the integrals that
arise are finite.
The equations of motion arise from a variation of the

Lagrangian four-form by

δL ¼ EA δΦA þ dθfδΦg: ð81Þ

The term EA in the first term is a functional of ΦA , and
reflects the equations of motion; for a free field theory, the
equations of motion read
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EA ¼ 0: ð82Þ

The second term, the exterior derivative of the presym-
plectic form θfδΦg, defines the presymplectic form up to a
closed three-form. This three-form is a linear functional of
δΦA ; this we indicate explicitly using curly brackets (in the
rare cases where we will need to denote the dependence of
a nonlinear functional, we will use the traditional square
brackets). From this presymplectic form, one can define the
symplectic current from two variations, δ1 and δ2,

ωfδ1Φ; δ2Φg≡ δ1θfδ2Φg − θfδ1δ2Φg
− ðδ1 ⟷ δ2Þ: ð83Þ

This three-form current is bilinear and antisymmetric in
δ1ΦA and δ2ΦA , and is moreover independent of δ1δ2ΦA ,
even if the two variations are not independent.
In this paper, we will not need any properties of the

symplectic current other than the fact that Eqs. (81) and
(83) imply that, assuming that δ1;2 and d commute,

dωfδ1Φ; δ2Φg ¼ δ1ΦA E
ð1Þ

ABδ2ΦB − ðδ1 ⟷ δ2Þ; ð84Þ

where the linear operator E
ð1Þ

AB is defined by

δEA ≡ E
ð1Þ

ABδΦB: ð85Þ

This implies that the symplectic current is conserved,
provided that the linearized equations of motion hold for
δ1ΦA and δ2ΦA ,

E
ð1Þ

ABδ1ΦB ¼ E
ð1Þ

ABδ2ΦB ¼ 0: ð86Þ

Since Eq. (84) is the only feature of the symplectic current
which we use, the discussion in the rest of this paper holds
for any other bilinear current defined on the space of
variations which differs from the symplectic current by a
closed three-form.
In particular, given any linear differential operatorOAB,

there exists a bilinear current JO and an operator, the
adjoint ðO†ÞAB, such that [38]

dJOfΦ;Ψg≡ΦAOABΨB − ΨA ðO†ÞABΦB: ð87Þ

The current JO is unique up to a closed three-form.
Equation (84) shows that the operator E

ð1Þ
AB is self-adjoint,

with a choice of this current JE
ð1Þ

being the symplectic

current ω. Some references (see, for example, [39]) use the
self-adjointness of E

ð1Þ
AB as the motivation for the con-

struction of this current, whereas the approach presented
here constructs this current explicitly from the Lagrangian.

In order to derive a flux-balance law, one needs a current
that is conserved in the absence of sources. As described
above, such a current arises in the form of the symplectic
current, which depends on two solutions to the linearized
field equations. However, one typically only has one such
solution δΦA ; in order to form a nonzero conserved current
from δΦA alone, we need a mapping from the space of
solutions to the linearized field equations to itself. Such a
mapping is called a symmetry operator.
Explicitly, we define a symmetry operator DA

B as a
linear operator acting on δΦA such that

E
ð1Þ

ACDC
B ¼ D̃A

C E
ð1Þ

CB; ð88Þ

for some other operator D̃A
B. In terms of these operators,

we have that

dωfδ1Φ;D · δ2Φg ¼ δ1ΦA D̃A
C E
ð1Þ

CBδ2ΦB

− ðDA
C δ2ΦC ÞEð1Þ

ABδ1ΦB: ð89Þ

Here, we still consider two different linearized fields δ1ΦA

and δ2ΦA , since in the case of interest we do have two such
fields, although they will not both be solutions to the free,
linearized equations of motion; there will be source terms.
This discussion so far has been applicable to general

theories that can be constructed from a Lagrangian. In this
paper, we specialize to the case of a massless scalar field ϕ,
with a Lagrangian four-form

L ¼ 1

2
ϵð∇aϕÞð∇aϕÞ: ð90Þ

It then follows that

E ¼ −ϵ□ϕ; θabcfδϕg ¼ ðδϕ∇dϕÞϵdabc; ð91Þ

where the latter follows from the fact that [see, for example,
Eq. (B.2.22) of Wald [30] ]

ð∇eveÞϵ ¼ dðv · ϵÞ: ð92Þ

As such, we have that

E
ð1Þ

¼ −ϵ□; ð93Þ

ωabcfδ1ϕ; δ2ϕg ¼ ϵdabc½δ2ϕ∇dδ1ϕ − ðδ1 ↔ δ2Þ�: ð94Þ

Furthermore, since the Lagrangian is quadratic in ϕ, and
so the equations of motion linear in ϕ, ϕ itself can be
considered a variation by defining a one-parameter family
of scalar fields by ϕðεÞ≡ εϕ. In this paper, we take
advantage of this fact by dropping the variation symbols
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in the arguments of the symplectic current, writing ϕ1 and
ϕ2 instead of δ1ϕ and δ2ϕ.

B. Integrated flux-balance laws

In Sec. II, we wrote the quantities of interest, such as
first-order changes in conserved quantities δΔEξðτ0; τÞ, as
integrals over the worldline; see the earlier expressions
for the change in quantities associated with Killing vectors
Eξ [Eq. (17)], those associated with Killing tensors QK

[Eq. (21)], and general perturbations of Γðτ; ϵÞ [Eq. (71)].
In this section, we relate these integrals over the worldline
to fluxes of conserved currents that we construct using the
tools of the previous section.

1. Spacetime symmetries

One particular example of a symmetry operator is given
by the Lie derivative with respect to a vector field; if
£ξgab ¼ 0, then

£ξ□ −□£ξ ¼ 0: ð95Þ

This is Eq. (88), with D ¼ D̃ ¼ £ξ. As such, we can
consider the symplectic current constructed by

Eξfϕ1;ϕ2g≡ ωfϕ1; £ξϕ2g; ð96Þ

which is known as the canonical current (see, for example,
[40,41]). This current is conserved if □ϕ1 ¼ □ϕ2 ¼ 0; in
general, we have from Eq. (89) that

dEξfϕ1;ϕ2g ¼ −ϵ½ϕ1£ξ□ϕ2 − ð£ξϕ2Þ□ϕ1�: ð97Þ

The analog of this current in the gravitational case, up to a
boundary term, is equivalent to the conserved current
coming from the effective stress-energy tensor and the
Killing vector ξa (see [40] for the gravitational case, [42]
for more general gravitational theories, and [41] for a
similar result in the electromagnetic case).
We now consider the canonical current constructed

by using ϕ1 ¼ ϕþ (the retarded field) and ϕ2 ¼ ϕR (the
regular field), where these two scalar fields were defined by
Eqs. (9) and (5), respectively. Using the field equations for
the retarded and regular fields [Eqs. (8) and (4)] with
Eq. (97), we find that

dEξfϕþ;ϕRg ¼ ϵρ£ξϕR: ð98Þ

Integrating this equation over Vðτ0; τÞ and using Stokes’
theorem, the right-hand side becomes the negative of the
right-hand side of our earlier equation for the change in Eξ,
and so Eq. (17) may be written as

δΔEξðτ0; τÞ ¼ −
Z
∂Vðτ0;τÞ

Eξfϕþ;ϕRg: ð99Þ

This equation is our flux-balance law: it relates quantities
on the worldline to an integral of a conserved current.

2. Second-order “hidden symmetries”

We now briefly consider the case of the Carter constant,
which is generated not by an isometry of spacetime, but the
existence of a Killing tensor. First, note that there exists a
symmetry operator, DK , which exists in the presence of a
Killing tensor [23],

DKϕ≡∇aðKab∇bϕÞ: ð100Þ

As such, one can define a conserved current analogous to
the canonical current by

QKfϕ1;ϕ2g≡ ωfϕ1;DKϕ2g: ð101Þ

In Eq. (21), we wrote down the formula for δΔQK, giving
the first-order change in the Carter constant. One might
hope that a flux balance law analogous to Eq. (99) would
hold, but one instead has that

−2
Z
∂Vðτ0;τÞ

QKfϕþ;ϕRg ¼ −2
Z

ϵρ∇aðKab∇bϕÞ

≠ δΔQK: ð102Þ

As such, QKfϕþ;ϕRg seems to provide some information
about the worldline of the particle, but it is not clearly
related to changes in the Carter constant. Determining
exactly what information is provided by this conserved
current (as well as by generalizations to other field theories
[24,43]) is outside of the scope of this paper, and will be
pursued in future work.
Note that the fact that this conserved current is not

directly applicable to the evolution of the Carter constant is
suggested by the following property of the fluxes derived
in [19]; while the flux-balance laws for E and Lz contain
only information about the field at the horizon and infinity,
the “flux-balance laws” for the Carter constant involve
quantities averaged over the worldline of the particle. This
suggests that there is something fundamentally different
about the Carter constant, and motivates considering the
Hamiltonian approach, where all of the conserved quan-
tities are on equal footing in terms of action variables.

3. Hamiltonian systems

We now show how to write the change in perturbations
δΓA given by Eq. (71) in the form of a flux-balance law.
A key realization about the type of symmetries discussed
in this section is that they are entirely specialized to the
system of Hamiltonian motion coupled to a field. This is a
notable departure from the symmetries discussed in the first
two parts of this section, which hold for arbitrary field
solutions ϕ.
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To derive the flux balance law associated with
Hamiltonian worldline quantities, we first note that the
retarded field ϕþ can be considered as a function of the
phase space coordinates X of the worldline at τ; write

ϕþðx0; XÞ ¼
Z
Vð∞;−∞Þ

ϵ00Gþðx0; x00Þρðx00; XÞ; ð103Þ

where, recalling that the worldline γðτ00Þ may be written in
terms of the projection of phase space points [Eq. (39)], and
that the Hamilton flow map ϒ is used to map between
different phase space points on the worldline,

ρðx0; XÞ ¼
Z

∞

−∞
dτ00δfx0; ½π ○ ϒðτ00 − τÞ�ðXÞg: ð104Þ

This way of writing ϕþ is inspired by similar techniques
that arise in the two-timescale formulation of the self-force
[44]. The key insight here is that one can now consider
derivatives of ϕþ and ρ with respect to X; we will denote
such derivatives byDA. Since the retarded Green’s function
doesn’t depend on the worldline, it follows that:

□DAϕ
þ ¼ DAρ; ð105Þ

and so □ and DA commute.
We now consider the following symplectic current:

J þ
Afϕg≡ ωfϕ;DAϕ

þg; ð106Þ

for any scalar field ϕ, and where we evaluate these fields at
some x0. It follows that

dJ þ
Afϕgjx0 ¼ −ϵ0fϕðx0ÞDAρðx0; XÞ

− ½DAϕ
þðx0; XÞ�□0ϕðx0Þg: ð107Þ

In the case where ϕ ¼ ϕR, the fact that ϕR is source-free
implies that

dJ þ
AfϕRg

���
x0
¼ −ϵ0ϕRðx0ÞDAρðx0; XÞ: ð108Þ

To evaluate DAρðx0; XÞ, we use the derivative of the
Hamilton flow map [Eq. (43)], so that

DAρðx0; XÞ ¼ q
Z

∞

−∞
dτ00ϒA00

A∇A00δ½x0; πðX00Þ�
���
X00¼ϒðτ00−τÞðXÞ

: ð109Þ

At this point, we evaluate Eq. (108) at some x00 and integrate over the volume Vðτ0; τÞ, yieldingZ
∂Vðτ0;τÞ

J þ
AfϕRg ¼ −q

Z
Vðτ0;τÞ

ϵ00ϕRðx00Þ
Z

∞

−∞
dτ000ϒA000

A∇A000δ½x00; πðX000Þ�
���
X000¼ϒðτ000−τÞðXÞ

¼ −q
Z

τ0

τ
dτ000ϒA000

A∇A000

Z
Vð∞;−∞Þ

ϵ00ϕRðx00Þδ½x00; πðX000Þ�
���
X000¼ϒðτ000−τÞðXÞ

¼ −q
Z

τ0

τ
dτ00ϒA00

AðdϕRÞA00 ; ð110Þ

where in the second equality, we have switched the order
of integration and updated the bounds according to
Eq. (16), and in the third equality we have simply integrated
over the delta function. For brevity, we implicitly write
X00 ≡ Γðτ00Þ ¼ ϒðτ00 − τÞðXÞ.
Using the fact that δH ¼ qϕR [Eq. (23)], we now find that

the integral on the right-hand side of Eq. (110) is equivalent
to the integral over the worldline we found in the right-hand
side of our earlier result for the change in δΓA [Eq. (71)].
Combining these two equations, we therefore find that

ϒA
A0δΓA0 − δΓA ¼ −ΩAB

Z
∂Vðτ0;τÞ

J þ
BfϕRg: ð111Þ

This is of the form of a flux-balance law; it relates a
“change” in the vector δΓA (defined in an appropriate way)
to the integral of a conserved current. Taking the “action-
variable” component of Eq. (111), and using the fact that

ΩAB ¼ 2ð∂qαÞ½Að∂JαÞB� ð112Þ

[which follows from Eq. (76)], one finds the following
formula in terms of coordinates:

ðdJαÞA0δΓA0 − ðdJαÞAδΓA ¼ ð∂qαÞA
Z
∂Vðτ0;τÞ

JþAfϕRg: ð113Þ

Moreover, in coordinates, we have that (at any time τ)

Jαðτ; εÞ ¼ JαðτÞ þ εðdJαÞAδΓA þOðε2Þ; ð114Þ

and so

ΔJαðτ0;τÞ≡Jαðτ0Þ−JαðτÞ

¼ ε

Z
∂Vðτ0;τÞ

ωfϕR;ð∂qαÞADAϕ
þgþOðε2Þ: ð115Þ
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C. Averaged flux-balance laws

Another type of flux-balance law that one can consider
are those that are in an “average” form. These flux-
balance laws are useful in determining the average
evolution of the quantities of interest, which is what
one would expect a flux-balance law to physically
provide. The integrated flux-balance laws described in
the previous subsection, while describing the full evolu-
tion of the system, do so in terms of a flux that is
difficult to compute. This is because the surface Vðτ; τ0Þ
which appears in these flux-balance laws intersects the
worldline. In contrast, the averaged flux-balance laws can
be written in terms of a flux that is truly “far away” from
the worldline (up to a caveat which we will discuss at the
end of this section).
To describe these averaged flux-balance laws, we

consider the region Vðτ þ T ; τ − T Þ, where T is a
quantity which will be taking to infinity. Moreover, we
split up the boundary of this region into three surfaces; a
worldtube Bðτ; T Þ which does not intersect γ, and two
“end-caps” Σ�ðτ;T Þ which intersect γ at γðτ � T Þ,
respectively. For simplicity, we assume that Σ�ðτ; T Þ
intersect γ orthogonally, and that Σ�ðτ; T Þ maintain the
same rough size as T → ∞, and in particular do not
become infinitely large in this limit. These surfaces are
shown in Fig. 1.
We start with the case of flux-balance laws related to

isometries, as those are simpler. We first define

	
dEξ

dτ



≡ lim

T →∞

ΔEξðτ þ T ; τ − T Þ
2T

: ð116Þ

From Eq. (99), we therefore have that

	
dEξ

dτ



¼ − lim

T →∞

ε

2T

Z
Bðτ;T Þ

Eξfϕþ;ϕRg þOðε2Þ: ð117Þ

Here, we have dropped the contribution to the integral from
the integrals over Σ�ðτ; T Þ, since these terms stay finite in
the limit T → ∞, and get divided by T .3 Since Bðτ; T Þ is a
surface that does not intersect the worldline, this is more of
an “asymptotic” flux-balance law than those described in
the previous subsection.
The result for the flux-balance laws related to the

trajectory on phase space has a similar form. To start, note
that the derivation of Eq. (110) did not rely upon τ being
one of the endpoints of the integral, and so one has that

Z
∂VðτþT ;τ−T Þ

J þ
AfϕRg ¼ −q

Z
τþT

τ−T
dτ00ϒA00

AðdϕRÞA00 :

ð118Þ

Combining this with Eq. (71) gives

	
DδΓA

dτ



≡ lim

T →∞

ϒA
A00δΓA00 −ϒA

A0δΓA0

2T

¼ −ΩAB lim
T →∞

1

2T

Z
Bðτ;T Þ

J þ
BfϕRg; ð119Þ

where we have taken τ0 ≡ τ − T , τ00 ≡ τ þ T in the first
line of this equation. In coordinates, a set of steps similar to
those used to derive Eq. (115) yields

FIG. 1. The boundary of a region Vðτ − T ; τ þ T Þ that sur-
rounds the worldline γ and intersects γ at τ � T . This boundary is
composed of three pieces; a worldtube Bðτ; T Þ that surrounds γ
but does not intersect it, and two “end-caps” Σ�ðτ; T Þ.

3Some care must be taken here, as it is not clear that these
integrals are even well-defined, due to the singularity of ϕþ on the
worldline. However, this singularity is not problematic, by the
following argument; near the worldline, the normal to Σ�ðτ; T Þ
is perpendicular to the radial vector by our orthogonality
assumption. As such, the single derivative that appears in the
symplectic current is nonradial, and so does not affect the scaling
of the integrand with s, the proper radial distance from the
worldline. In the case of Eξ, the symmetry operator (which can
contain a single radial derivative) acts on ϕR, and so does not
make the integrand more singular. The volume element goes as
s2, and ϕþ goes as 1=s, and so the integrand goes as s near the
worldline, and so this integral is finite. Similarly, in the case of
J þ

A , the symmetry operator can contain a single radial derivative,
and so the contribution to the integrand from DAϕ

þ goes at worst
like 1=s2. Combining this with the volume element, the integrand
goes as a constant near the worldline, and so the integral, once
again, is finite. As such, in both of the cases considered in this
section, we can drop the integrals at Σ�ðτ; T Þ.
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dJα
dτ



≡ lim

T →∞

ΔJαðτ þ T ; τ − T Þ
2T

¼ lim
T →∞

ε

2T

Z
Bðτ;T Þ

ωfϕR; ð∂qαÞADAϕ
þg þOðε2Þ:

ð120Þ

This is the averaged flux-balance law for the action
variables.
We now address the limitations that even this approach

to flux-balance laws possesses: the surface Bðτ; T Þ
cannot be taken all the way to the horizon of the central
black hole and null infinity. In fact, it cannot be taken
beyond a convex normal neighborhood of γ. This follows
from the fact that the flux-balance laws considered here
involve ϕR, unlike those typically used in the literature,
which only depend on the retarded field ϕþ [17–19].
Unlike ϕþ, ϕR is typically only defined within a convex
normal neighborhood of the worldline, and (except in a
few cases) it is not clear if it can be extended to the entire
spacetime [7]. Note that this issue applies equally to the
results of this section and those in Sec. III B, as they are
both defined in terms of ϕR. As our flux-balance laws are
of this different form, it is also unclear how one might
use them to derive those that have appeared in the
literature.
There are two resolutions to these issues. The first,

although somewhat unsatisfying, does give a flux-balance
law that is in terms of things which can be computed far
away from the worldline. If one is only concerned with
dissipative self-force, in principle one should be able to
replace ϕR in the equations of motion with the radiative
field ϕrad ≡ 1

2
ðϕþ − ϕ−Þ, where ϕ− is the advanced sol-

ution.4 Since ϕþ and ϕ− can be computed outside of a
convex normal neighborhood, this resolves the first of these
issues; one could then explicitly determine if these flux-
balance laws match those which appear in the literature
using mode amplitudes. We have performed this (somewhat
lengthy) calculation in Appendix.
The other resolution (in principle) fixes both problems;

instead of starting with the equations of motion, start with
the conserved currents that occur in these flux-balance
laws, but use ϕþ instead of ϕR. Splitting ϕþ into ϕR and the
singular field ϕS ≡ ϕþ − ϕR, one will find contributions
that match the fluxes in the flux-balance laws we have
derived. The remaining terms need to be properly under-
stood, and we will explore them in future work covering the
case of gravitational self-force. For example, in the context
of flux-balance laws using the effective stress-energy tensor

and conserved quantities arising from isometries, this
approach will be explored further in [46].

IV. DISCUSSION

In this paper, we have applied a new method, using
symplectic currents and symmetry operators, to the prob-
lem of generating flux-balance laws for the scalar, first-
order self-force. These flux-balance laws come in two
varieties: those that give the evolution of conserved
quantities which arise due to isometries of the background
spacetime, and those which determine the evolution of the
trajectory of the particle through phase space. Through the
use of action-angle variables, the latter would allow one to
compute the evolution of any conserved quantity, such as
the Carter constant. It should be stressed that, while the
flux-balance laws for conserved quantities coming from
isometries can be understood in terms of conserved currents
generated from the stress-energy tensor (as in, say [18]),
understanding a particle’s trajectory through phase space
using flux-balance laws seems to require using bilinear
currents like the symplectic current.
While this calculation is only for the toy case of a particle

coupled to a scalar field, it seems that the general principles
here may be applicable beyond this rather narrow scope.
The most interesting generalization would be to the
gravitational case, which, based upon preliminary inves-
tigations, seems to be relatively straightforward, as every
step of the calculation has a gravitational analog. General
relativity, as a theory determined by a Lagrangian, pos-
sesses a symplectic current, and the operator £ξ is a
symmetry operator in the case ξa is a Killing vector of
the background metric. Moreover, the first-order gravita-
tional self-force can be easily re-written as a Hamiltonian
system, since the curve γðεÞ is a geodesic in an “effective
metric” gab þ εhRab (where h

R
ab is analogous to ϕR). In fact,

an equation similar to Eq. (111) appears to hold, even in the
gravitational case.
There are, however, a few key differences between the

scalar and the gravitational cases. While these are not
relevant for deriving the bulk of the results that appear in
this paper, these differences will somewhat complicate the
process of turning these results into a practical flux-balance
law, which was discussed at the end of Sec. III C. The first
of these differences is that the flux-balance laws that one
can write down in the gravitational case involve the metric,
as computed in some specific gauge. The gauge for the
asymptotic fields will need to be the same as the gauge
that is used for the fields in the equations of motion, as
the symplectic current is not gauge invariant. This may
introduce issues; for example, one would like to use the
radiation gauge which is well-behaved at null infinity, but
it is not well-behaved at the location of the particle [47].
One possible resolution may come from the fact that the
symplectic current, while not gauge-invariant, is always
gauge-invariant up to a total derivative [26]. Great care

4Similarly, it seems reasonable that the difference between ϕR

and ϕrad, the field whose Green’s function is a symmetric two-
point function defined by Detweiler and Whiting [45], should not
contribute to the final result, although we have not been able to
prove that this is the case.
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must be taken to ensure that these total derivative terms can
either be neglected or are reasonably easy to compute. In a
similar vein, these flux-balance laws are written entirely in
terms of metric variables, which are precisely the variables
that are difficult to compute due to the need to employ the
technique of metric reconstruction. However, the main
issues with metric reconstruction occur near the worldline,
due to the presence of the source, so while the need to
reconstruct the metric is an annoyance, it should not be a
serious issue.
There are additional effects that can also potentially

be explored in the framework of this paper. For example,
flux-balance laws for conserved quantities arising from
isometries for spinning systems have recently been
explored in [48], and it seems possible that the calcula-
tions in this paper may extend to such a case, as (at linear
order in spin) the system both has a Hamiltonian formu-
lation [49,50] and, while not integrable [51], possesses
action-angle variables [52]. Of more pressing interest,
however, is whether these results generalize to the second-
order gravitational self-force; as mentioned in the intro-
duction, this was an initial motivation for reexploring the
derivations of these flux-balance laws.
There are numerous complications that arise at second

order. First, note that the symplectic current is designed
to work with first-order perturbations. While one can, in
principle, use second-order perturbations, many results in
this paper will fail, as second-order perturbations are not
solutions to “vacuum” equations ofmotion, but instead obey

E
ð1Þ

ABδ2ΦB ¼ −
1

2
E
ð2Þ

A fδΦ; δΦg; ð121Þ

for some bilinear functional E
ð2Þ

A . Amore fruitful approach is

probably to consider a generalization of the symplectic
current that can deal with full, nonlinear perturbations, and
then truncate at second order. Such a generalization can be
defined as follows: in Eq. (14), we introduced the variation
of a field as a derivative with respect to ε, with ε set to zero
thereafter. One can instead perform the operation of com-
puting a symplectic current, without setting ε ¼ 0 at any
point in the calculation, obtaining a three-formcurrentω that
is a bilinear functional of two “variations” ∂ΦA =∂ε1 and
∂ΦA =∂ε2 [40]. One can show that

dω ¼ ∂EA

∂ε2

∂ΦA

∂ε1
−
∂EA

∂ε1

∂ΦA

∂ε2
: ð122Þ

It seems that this equation is sufficiently close toEq. (84) that
one could, in principle, carry through much of this calcu-
lation to all orders in ε, and then truncate to second order at
the end. Particularly useful in this regard is that, at least to
second order, the gravitational self-force is equivalent to
treating the curve γðεÞ as a geodesic in an effective metric
gab þ hRab, where h

R
ab ¼ ε h

ð1Þ
R
ab þ ε2 h

ð2Þ
R
ab þOðε3Þ, which is

a vacuum solution [53]. Note, however, that this is only a
preliminary outline of how the calculation might be carried
out, and we defer a full discussion to future work.
Another limitation of this work is that it addresses the

self-force using a perturbation scheme that is, in many
ways, unsuited to real problems. This is because perturba-
tions are considered relative to some fixed background
geodesic γ, and over the course of the evolution of
the system, the curve γðεÞ will diverge from γ. A more
reasonable scheme is to use the so-called “self-consistent”
approach, where the curve γðεÞ is considered to source the
self-force that determine its motion: there is no background
geodesic, and the evolution of γðεÞ is determined directly
by solving a coupled set of equations for γðεÞ and the
metric simultaneously [8,54]. Adapting the flux-balance
laws in this paper to a self-consistent formulation of the
self-force problem will potentially be quite difficult.
Another approach that attempts to resolve the issue of

large deviations from the background geodesic, and may be
more tractable for constructing flux-balance laws, is the two-
timescale formalism [5,9,44,55]. This approach captures the
large changes in the trajectory of the particle by adding in an
extra time variable to the problem, the “slow time” t̃≡ εt.
Evolution in slow time allows the perturbative expansion to
capture effects, such as large deviations from a background
curve, that occur on long timescales. A more thorough
exploration of flux-balance laws in the two-timescale
formalism, for conserved quantities coming from isometries
(and using the effective stress-energy tensor, instead of the
symplectic current), will be explored in [46]. Further work
will be necessary to adapt the results of this paper to the two-
timescale formalism, although the fact that both are built on
action-angle variables may make such an adaptation easier.
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APPENDIX: RADIATIVE FIELD
FLUX-BALANCE LAW

In this appendix, we compute explicit expressions for the
flux-balance laws in Eqs. (117) and (120), assuming when
determining the averaged, dissipative motion that only the
radiative field contributes, as suggested in Sec. III C above.
Where comparable results exist, we match those which
appear in the literature: in particular, we compare our
results for isometries against [56], with which we have
exact agreement, and our results for action-angle variables
against [29], with which we have qualitative agreement
(which is the most we can have, as we are considering a
scalar field theory, instead of gravity).
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1. Integration over null infinity and the horizon

As we need to integrate various differential forms at
future null infinity (Iþ) and the future horizon (Hþ), we
review exactly how this can be done. In order to integrate at
null infinity or the horizon, we need to find an appropriate
coordinate system. Here, we use the coordinate systems
which appear in [57], were t and φ are replaced with

dw≡ dtþ λ0dr�; dψ ≡ dφþ λ0
a
Δ
dr; ðA1Þ

where r� is the tortoise coordinate defined by

dr� ≡ r2 þ a2

Δ
dr; ðA2Þ

and where λ0 ¼ �1, depending on whether the coordinates
are used at the horizon or null infinity. For the future
horizon or past null infinity, λ0 ¼ 1, and we denote w and ψ
by v and η, respectively; in contrast, for the past horizon or
future null infinity, λ ¼ −1, and we denote w and ψ by u
and χ, respectively. This is a set of good coordinates, in the
sense that the metric is well-behaved at the horizons in
these coordinates, and also H� and I� can be defined as
surfaces that go to r ¼ rþ (the outer horizon radius defined
by the larger of the two roots of Δ) or r ¼ ∞ at fixed w,
respectively.
Next, we need volume forms on these surfaces. The

volume form in Kerr is

ϵ ¼ Σ sin θdw ∧ dr ∧ dθ ∧ dψ ðA3Þ

in the coordinates defined by Eqs. (A1) and (A2), where
Σ ¼ r2 þ a2 cos2 θ. In order to determine the volume form
on some surface, one needs to first write the spacetime
volume form in the form

ϵ ¼ df ∧ ϵS; ðA4Þ

where f is some coordinate which increases as one
approaches the boundary, and ϵS will be the surface volume
form (see the discussion in Appendix B.2 of [30]). For our
current problem, f ¼ λ1r, where λ1 ¼ 1 at null infinity and
λ1 ¼ −1 at the horizon. As such, we find that

ϵS ¼ −λ1Σ sin θdw ∧ dθ ∧ dψ ; ðA5Þ

the sign that appears here is unimportant, since we will
always be integrating differential forms of the form fϵS,
and the importance of an orientation is in determining the
order of coordinates that is used for defining integration of
arbitrary differential forms [see Eqs. (B.2.1)—(B.2.3) of
[30] ]. Instead, it is the sign appearing in λ1dr which
matters, and for any current of the form

J ¼ j · ϵ; ðA6Þ

we find that, defining dΩ ¼ sin θdθdψ , we have that

Z
S
J ¼ λ1

Z
dwdΩ lim

→S
jr: ðA7Þ

A short calculation shows that

jr ¼ λ0½ðr2 þ a2Þjw þ ajψ � þ Δjr: ðA8Þ

In the cases in question (S ¼ Hþ or Iþ), we have that
λ0λ1 ¼ −1, and so

Z
Hþ

J ¼ −2Mrþ

Z
dvdΩ lim

r→rþ

�
jv þ ωþjη þ

Δjr
2Mrþ

�
;

ðA9aÞ

Z
Iþ

J ¼ −
Z

dudΩ lim
r→∞

r2
�
ju − jr þ

a
r2
jχ

�
; ðA9bÞ

where ωþ ≡ a=ð2MrþÞ, and assuming thatΔjr and jχ have
a nonzero limit as one approaches these two surfaces,
respectively.

2. Asymptotic form of the scalar fields

Following [56], we write the scalar field in terms of
mode functions ϕin=out=down=up

ωlm , which satisfy5

ϕin
lmω

���
Hþ ¼ eiðmη−ωvÞΘlmωðθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Mrþjpmωj
p ½1þOðΔÞ�; ðA10aÞ

ϕout
lmω

���
Hþ ¼ eiðmη−ωvÞΘlmωðθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Mrþjpmωj
p ½1þOðΔÞ�e2ipmωr� ; ðA10bÞ

ϕup
lmω

���
Iþ ¼ eiðmχ−ωuÞΘlmωðθÞ

r
ffiffiffiffiffiffijωjp ½1þOð1=rÞ�; ðA10cÞ

ϕdown
lmω

���
Iþ ¼

eiðmχ−ωuÞΘlmωðθÞ
r

ffiffiffiffiffiffijωjp ½1þOð1=rÞ�e−2iωr: ðA10dÞ

5Here, for simplicity, we set 2αlmωτlmω ¼ 1, 2βlmω ¼ 1 in the
notation of [56]. Note, moreover, that we have written everything
in terms of η and v or χ and u, unlike what is done in [56], which
works exclusively using t and φ. In this regard, we are more
closely following the discussion in [57]. By an appropriate choice
of the constants of integration in Eqs. (A1) and (A2), it is possible
to show that these formulations are equivalent.
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Here, the angular function Θlmω satisfiesZ
dΩΘlmωðθÞΘl0mωðθÞ ¼ δll0 ; ðA11Þ

and is real. Moreover, pmω ≡ ω −mωþ.
It is often stressed (for example, in [56]) that the “in” and

“up” modes form a basis, and that the “out” and “down”
modes form a basis. While this is certainly true, it is not
particularly useful here: it is easier to see that “in” and “out”
form a basis that is purely ingoing/outgoing atHþ, and that
“up” and “down” form a basis that is purely outgoing/
ingoing atIþ. As such, for example, we can write ϕout

lmω in
terms of ϕup

lmω and ϕdown
lmω , by comparing their expressions at

null infinity,

ϕout
lmω ¼ 1

τ̄lmω
ðϕup

lmω þ σ̄lmωϕ
down
lmω Þ; ðA12Þ

for some coefficients τlmω and σlmω. Similarly, by compar-
ing expressions at the horizon, we have that

ϕdown
lmω ¼ sgnðωpmωÞðμ̄lmωϕ

in
lmω þ ν̄lmωϕ

out
lmωÞ: ðA13Þ

There are relationships between τlmω, σlmω, μlmω, and νlmω

that are given by

μlmω ¼ 1=τlmω; νlmω ¼ −σ̄lmω=τ̄lmω: ðA14Þ

These imply that we can write

ϕdown
lmω ¼ sgnðωpmωÞ

τ̄lmω

�
ϕin
lmω −

τ̄lmω

τlmω
σlmωϕ

out
lmω

�
: ðA15Þ

To compute the flux-balance expressions, we use the
values of the symplectic current ω when applied to the
scalar field mode functions. Integrating over some portion
ΔV of the horizon, we have that

1

ΔV

Z
ΔHþ

ω
n
ϕin
lmω;ϕ

in
lmω

o
¼ 2isgnpmω; ðA16Þ

while integrating over some portion ΔU of null infinity
we find

1

ΔU

Z
ΔIþ

ω
n
ϕup
lmω;ϕ

up
lmω

o
¼ 2i sgnω: ðA17Þ

Meanwhile, since dr�=dr ¼ 2Mrþ=Δ, we have that
Δ∂ϕout

lmω=∂r is finite in the limit r → rþ, and we get that

1

ΔV

Z
ΔHþ

ω
n
ϕout
lmω;ϕ

out
lmω

o
¼ −2i sgnpmω: ðA18Þ

Moreover, since ∂ϕdown
lmω =∂r now has a finite contribution in

the limit r → ∞, we find that

1

ΔU

Z
ΔIþ

ω
n
ϕdown
lmω ;ϕdown

lmω

o
¼ −2i sgnω: ðA19Þ

Next, note that any combination where them’s differ will
be killed by the integration over η or χ, any combination
where the l’s differ will result in zero by Eq. (A11),
and similarly any combination where the ω’s differ will
vanish when ΔU or ΔV is taken to infinity. Moreover, the
symplectic product of ϕin

lmω and ϕout
lmω vanishes at Hþ and

the product of ϕup
lmω and ϕdown

lmω vanishes at Iþ, precisely
because the two contributions upon differentiating the two
scalar fields have opposite signs, and do not add as they did
in Eqs. (A16)–(A19).
Finally, since we will need these below, we note that, by

using Eqs. (A12) and (A15), we have that

1

ΔV

Z
ΔHþ

ω
n
τlmωϕ

in
lmω;ϕ

down
lmω

o
¼ 2isgnω ðA20Þ

and

1

ΔU

Z
ΔIþ

ω
n
τlmωϕ

up
lmω;ϕ

out
lmω

o
¼ 2isgnω: ðA21Þ

Note that taking a complex conjugate and flipping the
arguments of the symplectic form will yield the same
results.

3. Results

Next, since our flux-balance laws involve the retarded
and radiative fields, we write down (in our conventions) the
form that these fields take, in terms of the mode functions
of the previous section. First, we define the collection of
indices lmkn as Λ, and write

X
Λ

≡X∞
l¼0

X
jmj≤l

X
k;n∈Z

: ðA22Þ

We then define ωmkn by

ωmkn ≡mΩϕ þ kΩθ þ nΩr; ðA23Þ
where theseΩ’s are frequencies, and functions of the action
variables of the (background) worldline. In terms of this
frequency, we define

pmkn ≡ pmωmkn
; ðA24Þ

together with

τΛ ≡ τlmωmkn
; ϕin=out=up=down

Λ ≡ ϕin=out=up=down
lmωmkn

: ðA25Þ
In terms of this notation, we have that

ϕþ ¼ 1

4πi

X
Λ
sgnðωmknÞτΛ

�
Zout
Λ ϕup

Λ r → ∞;

Zdown
Λ ϕin

Λ r → rþ
ðA26Þ
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and

ϕrad ¼ 1

8πi

X
Λ
jτΛj2½sgnðωmknÞZout

Λ ϕout
Λ

þ sgnðpmknÞZdown
Λ ϕdown

Λ �: ðA27Þ

Here, the coefficients Zout=down
Λ have the following proper-

ties: first, they satisfy [29]

Zout=down
Λ ¼ Z̃out=down

Λ eiχmkn ; ðA28Þ

where Z̃out=down
Λ is independent of the initial angle variables

qα and

χmkn ¼ ωmknqt − ðmqϕ þ kqθ þ nqrÞ: ðA29Þ

Next, we consider the action of the symmetry operators
on ϕrad (for the action of Killing vectors) and on ϕþ (for the

action of ∂qα). For consistency with the body of the paper,
and the equations above for symplectic products, we apply
these symmetry operators to the versions of the expansions
with the complex conjugate applied. As such, since

ϕout=down
Λ ∝ e−iðmφ−ωtÞ ðA30Þ

when written in Boyer-Lindquist coordinates, we find that

£ξϕ
out=down
Λ ¼ −iΞξϕ

out=down
Λ ; ðA31Þ

where

Ξξ ¼
�
ωmkn ξa ¼ −ð∂tÞa
m ξa ¼ ð∂φÞa

: ðA32Þ

Combining this with Eqs. (A20) and (A21), we therefore
find that Eq. (117) becomes

	
dEξ

dτ



¼ −ε lim

ΔU;ΔV→∞

�
1

ΔU

Z
ΔI

Eξfϕþ;ϕradg þ 1

ΔV

Z
ΔH

Eξfϕþ;ϕradg
�
þOðε2Þ

¼ −
ε

16π2
X
Λ
ΞξjτΛj2½sgnðωmknÞjZout

Λ j2 þ sgnðpmknÞjZdown
Λ j2� þOðε2Þ: ðA33Þ

Note that, apart from differences in definitions of Eξ (that
is, whether or not it includes the mass), this expression
agrees exactly with Eq. (9.7) of [56]. There is also a
difference in the parameter that is used for the derivative
and the averaging, but such differences do not ultimately
matter, as averaging dEξ=dt with respect to t is the same as
averaging dEξ=dτ with respect to τ.
Next, we consider the action of the operator ð∂qαÞADA on

ϕþ. Due to the dependence of the coefficients Zout=down
Λ on

the initial angles, we have that

ð∂qαÞADAZ
out=down
Λ ¼ iΞαZ

out=down
Λ ; ðA34Þ

where

Ξα ¼

8>>><
>>>:

−ωmkn α ¼ t

m α ¼ φ

k α ¼ θ

n α ¼ r

: ðA35Þ

As such, we find that Eq. (120) becomes [by using
Eqs. (A20) and (A21) and the comments below those
equations]

	
dJα
dτ



¼ ε lim

ΔU;ΔV→∞

�
1

ΔU

Z
ΔI

ωfϕrad; ð∂qαÞADAϕ
þg þ 1

ΔV

Z
ΔH

ωfϕrad; ð∂qαÞADAϕ
þg

�
þOðε2Þ

¼ −
ε

16π2
X
Λ
ΞαjτΛj2½sgnðωmknÞjZ̃out

Λ j2 þ sgnðpmknÞjZ̃down
Λ j2� þOðε2Þ: ðA36Þ

Note that there is a difference in signs between Eqs. (A31)
and (A34); this exactly cancels the difference in signs for the
two expressions in terms of symplectic products. Since we
cannot truly compare this to Eq. (3) of [29], we only note that
it qualitatively agrees, possessing an overall factor of Ξα

(called εα in that paper) for each mode, and the correct

relative sign for the two terms in brackets. Finally, note that,
in the case where α ¼ φ, this yields the same answer as the
Killing vector case when ξa ¼ ð∂φÞa, as it should: qφ ¼ φ
and E∂φ

¼ Jφ. Moreover, note that qt ¼ t, and E∂t
¼ Jt, so

this also gives the correct answer for the energy (which is
defined above as −E∂t

).
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