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We show that the dynamics of Schwarzschild-(anti–)de Sitter [(A)dS] black holes admits a symmetry
under the 2D Schrödinger group, whatever the sign or value of the cosmological constant. This is achieved
by reformulating the spherically symmetric reduction of general relativity as a 2D mechanical system with
a nontrivial potential controlled by the cosmological constant, and explicitly identifying the conserved
charges for black hole mechanics. We expect the Schrödinger symmetry to drive the dynamics of quantum
Schwarzschild-(A)dS black holes. This suggests that Schrödinger-preserving nonlinear deformations
(of the Gross-Piteavskii type) should capture universal quantum gravity corrections to the black hole
geometry. Such a scenario could be realized in condensed matter analog models.
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I. INTRODUCTION

Black holes are iconic predictions of general relativity
which stand as a fantastic window to unravel the funda-
mental structure of space-time. Indeed, the laws of black
hole mechanics and their thermodynamical interpretation
have revealed that they are equipped with an entropy and
a temperature [1,2]. It follows that black holes can be
understood as many-body systems built from the collective
behavior of (still unknown) microscopic degrees of free-
dom. Such a thermodynamical point of view on gravita-
tional systems has been widely extended since then, to
cosmological space-time, causal diamonds and light cones
geometries. The key challenges in completing this picture
are on the one hand, to identify the nature of these
microscopic degrees of freedom, and on the other hand,
to understand the emergence of classical geometries from
such microscopic description. While there might be differ-
ent ways to encode the microscopic degrees of freedom
depending on the chosen model or theory, one expects that
their dynamics, and thus the emergence of space-time in the
continuum hydrodynamical approximation, to be governed
by universal symmetries.
Dualities between gravitational and condensed matter

systems, for which the mean-field approximation methods
are well under control, provide a powerful avenue to shed
light on these issues. Such mapping naturally emerged in
the nonrelativistic regime of holographic gauge/gravity
dualities such as the AdS=CFT correspondence. In view
of the prominent role played by the Schrödinger equation
and its nonlinear extensions in nonrelativistic physics,

an important effort has been devoted to constructing cold
atoms/gravity correspondence based on the Schrödinger
group [3,4]. Concretely, nonrelativistic holography relates
manifolds with Schrodinger isometries to nonrelativistic
conformal field theory living on their boundary [5–7].
Condensed matter systems enjoying such nonrelativistic
conformal symmetry are characterized by an anisotropic
scaling invariance of the space-time coordinates of the form

t → λt; xi → λzxi; ð1Þ

where z ¼ 2 is the critical exponent. Such invariance
appears in a variety of contexts, from strongly correlated
fermions, vortices, monopoles, compressible fluid mechan-
ics and in Bose-Einstein condensates. In particular, this
conformal symmetry is realized for suitable nonlinear
Schrödinger equations describing ultracold atom gases, such
as the Gross-Piteavskii condensate and the Tonks-Girardeau
gas [8,9]. While the construction of dualities between such
condensed matter systems and gravity has mostly been
investigated in the framework of nonrelativistic holography,
it seems that dictionaries between nonlinear Schrödinger and
gravity could be identified based directly on the shared
symmetries of the two classes of systems.
The goal of this short paper is to develop this storyline

for Schwarzschild-(anti–)de Sitter [(A)dS] black holes.
Concretely, we consider the spherically symmetric sta-
tionary reduction of general relativity, that can be called
more descriptively Schwarzschild-(A)dS black hole
mechanics. And we show that this reduced gravitational
model admits a symmetry under the 2D Schrödinger
group, whatever the sign and value of the cosmological
constant. This is achieved by explicitly identifying the
conserved charges generating this symmetry. We expect
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this symmetry to be conserved when quantizing the system.
Indeed, standard quantization is meant to identify suitable
representations (in the mathematical sense) of the sym-
metry group. Then breaking a classical symmetry at the
quantum level usually reveals a deep physical phenome-
non, with strong experimental signatures such as anoma-
lies, phase transitions, emergent collective modes or new
propagating degrees of freedom. Here the 2D Schrödinger
group is the symmetry group of classical 2D mechanics,
consisting of the Galilean relativity transformations plus
conformal transformations. It is conserved by standard
quantum mechanics. One can thus expect this symmetry to
also be preserved when considering quantum gravity
corrections to the black hole geometry. Deforming it, or
breaking it, would signal a departure from the standard
quantization scheme (e.g., such as noncommutative defor-
mations [10]) and/or new physics for quantum black holes.
This sets a strong criterion to discriminate between

regularized black hole metric proposals in quantum gravity
phenomenology. For instance, assuming that quantum
Schwarzschild-(A)dS black holes could be generally mod-
eled as a nonlinear extension of 2D quantum mechanics
with a self-interaction between black hole quanta, preserv-
ing the Schrödinger group symmetry fixes the self-
interaction term to be in ψ4, thus implying a universal
UV behavior to quantum black holes and the existence of a
dictionary between black hole quantum mechanics and
the Gross-Pitaevskii equation. This scenario is especially
interesting with respect to the possibility of imagining a
new type of analog quantum black hole systems, e.g., with
Bose-Einstein condensates, based on an exact mapping
between dynamical conserved charges and no longer on
mimicking the Schwarzschild space-time metric as for
sonic black holes. This possibility could then be extended
to a large class of cosmological dynamics following the
symmetry and conserved charge analysis of [11–13].
We start by reviewing the Schrödinger symmetry of

classical mechanics, which encodes its invariance under
Galilean and conformal transformations, and showing that
it is indeed preserved under quantization. The Casimirs of
the Schrödinger group, initially vanishing at the classical
level, acquire nonzero values in quantum mechanics and
reflect the extra degrees of freedom represented by the
wave function dressing the classical system. Although this
material is not new, these aspects are often not emphasized.
They are nevertheless crucial to the identification of the
symmetry of the black hole dynamics. Then moving to
Schwarzschild-(A)dS black holes, the spherically symmet-
ric reduction of general relativity can be written as a
mechanical system, with a nontrivial potential given by
the cosmological constant term, and we show that this
potential does not spoil the invariance under the
Schrödinger symmetry. We underline an important differ-
ence with standard mechanics: the nonpositive signature
of the kinetics, which actually comes from studying a

relativistic system. In particular, we identify the black hole
mass (thus its energy) as a boost generator within the
symmetry algebra, thereby echoing discussions about the
modular Hamiltonian for black hole thermodynamics.
Finally, we argue that this should be a key symmetry for
quantum black holes, and we discuss its relevance for
quantum gravity.

II. SCHRÖDINGER SYMMETRY
AND GALILEAN RELATIVITY

Let us start with reviewing the algebra of conserved
charges for the classical mechanics of a free particle in d
spatial dimensions, driven by the action

S½t; xa� ¼ m
2

Z
dt ẋa ẋa; ð2Þ

where m is the particle’s mass and the index a runs from 1
to d. The canonical analysis defines the conjugate momen-
tum and Poisson bracket,

pa ¼ mẋa; fxa; pbg ¼ δab; ð3Þ

and the Legendre transform gives the Hamiltonian

S½t; xa� ¼
Z

dt ½paẋa −H� with H ¼ 1

2m
papa: ð4Þ

By the Noether theorem, symmetries are generated by
conserved charges. In general, those conserved charges can
depend explicitly on time and satisfy

dtO ¼ ∂tOþ fO; Hg ¼ 0: ð5Þ

The algebra of conserved charges for the free particle is
well known. It leads to the Schrödinger algebra, which
reflects the free particle’s invariance under the Galilean
transformations and conformal transformations. This con-
struction is crucial, because this is the maximal symmetry
preserved by the quantization. In more detail, a first set
of conserved charges consists of the momentum pa,
the Galilean boost generator ba and the angular
momentum jab,

ba ¼
1

m
½mxa − tpa�; jab ¼ xapb − xbpa; ð6Þ

which satisfy the Galilean algebra

fpa; pbg ¼ fba; bbg ¼ 0; fba; pbg ¼ δab;

fjab; pcg ¼ δacpb − δabpc; fjab; bcg ¼ δacbb − δabbc;

fjab; jcdg ¼ δacjbd − δadjbc − δadjbc þ δbdjac: ð7Þ
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The momentum pa generates the symmetry under space
translations xa ↦ xa þ wa, while the angular momentum
jab generates the symmetry under SOðdÞ space rotations.
The vector ba depends explicitly on the time t; it is an
evolving constant of motion, indicating the initial condition
(at t ¼ 0) for the particle position. It can be interpreted as
an extra component of the angular momentum with respect
to a pair of conjugate variables ðx0; p0Þ ¼ ðt; mÞ. It gen-
erates the symmetry under translation by a fixed speed,

xa ↦ xa þ vat; pa ↦ pa þmva: ð8Þ

Together, ðpa; ba; jabÞ encode the Galilean relativity of the
free classical particle. To these, we add three other con-
served charges qμ, defined as

qþ ¼ mH;

2q0 ¼ D − 2Ht;

2mq− ¼ mxaxa − 2tDþ 2t2H; ð9Þ

where we have introduced the dilatation generatorD¼xapa.
These three observables form a slð2;RÞ Lie algebra,

fq0; q�g ¼ �q�; fqþ; q−g ¼ −2q0; ð10Þ

and generate the conformal symmetry of the free particle:
qþ ∝ H generates time translations, q0 is the initial
condition for D and generates inverse rescalings of the
position and momentum, and finally q− gives the initial
condition for the squared distance x2 and generates special
conformal transformations. This conformal symmetry is a
universal feature of mechanical systems, leading for
instance to the conformal structure of the Hydrogen atom
spectrum (e.g., [14]).
The slð2;RÞ does not commute with the Galilean sector;

the nonvanishing brackets are

fq0; pag ¼ þ 1

2
pa; fq−; pag ¼ þba;

fq0; bag ¼ −
1

2
ba; fqþ; bag ¼ −pa: ð11Þ

Putting all the conserved charges together, this algebra is
known as the d-dimensional Schrödinger algebra shðdÞ,

shðdÞ ¼ ðslð2;RÞ ⊕ soðdÞÞ ⊕s ðRd ⊕ RdÞ; ð12Þ

where ⊕s denotes a semidirect sum, where the slð2;RÞ
sector generated by the q’s and the soðdÞ sector generated
by the j’s act nontrivially on the Rd ⊕ Rd sector consisting
of the p’s and b’s. Once exponentiated, these charges give
the Schrödinger symmetry group,

ShðdÞ ¼ ðSLð2;RÞ × SOðdÞÞ ⋉ ðRd × RdÞ: ð13Þ

This is the key symmetry group of mechanics preserved
by quantization.
An important remark is that, while there are 2D

independent variables in the phase space, given by the
pairs ðxa; paÞ, we have identified 3þ dðd − 1Þ=2þ 2d
conserved charges. This means that these constants of
motion are clearly redundant and that there exist relations
between them. These relations are nevertheless not linear,
and it is important to keep in mind that a nonlinear
polynomial of Lie algebra generators does not automati-
cally belong to that Lie algebra: the symmetry trans-
formations generated by a conserved charge or a power
of that charge are a priori not the same.
Let us focus here on the 2D case d ¼ 2. A more

systematic treatment for arbitrary dimension can be found
in [15]. For d ¼ 2, the angular momentum has a single
component j≡ j12. A first relation expresses it in terms of
the two pairs of constants of motion ðba; paÞ,

C2≡b∧p−j¼0 with b∧p¼ðb1p2−b2p1Þ; ð14Þ

which reflects that the ba’s are simply the evolving
constants of motion for the positions xa. This actually is
the quadratic Casimir of the Schrödinger algebra: it
commutes with all the Schrödinger charges, and thus is
invariant under translations, boosts, rotations and con-
formal transformations. Another set of conditions resulting
from the expressions of the charges in terms of x’s and p’s
gives the conformal charges in terms of the boost charges
and momenta:

qþ ¼ p2

2
; q0 ¼

bapa

2
; q− ¼ b2

2
: ð15Þ

But these relations are not invariant under conformal
transformations. Another important relation is the balance
equation giving the slð2;RÞ Casimir in terms of the
angular momentum,

qþq− − q20 ¼
1

4
j2; ð16Þ

but it is not invariant under translations or boosts. It is
nevertheless possible to repackage these relations in terms
of the cubic Casimir of the Schrödinger algebra,

C3 ≡ q20 − qþq− þ 1

4
j2 þ b2

2
qþ

þ p2

2
q− − bapaq0 −

b ∧ p
2

j ¼ 0; ð17Þ

which is appropriately invariant under all Schrödinger
symmetries.
Although the Schrödinger symmetry algebra is

preserved by the quantization, and even characterizes the
quantization procedure, these relations and vanishing
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Casimir conditions, C2 ¼ C3 ¼ 0, are not valid at the
quantum level anymore. Their nonzero values actually
encode the dressing of the classical particle with quantum
fluctuations and reveal the infinite tower of new degrees of
freedom when upgrading the classical variables ðxa; paÞ to
a wave function ΨðxaÞ.
The goal of the present paper is to show that the

dynamics of (spherically symmetric) black holes in general
relativity is also driven by the same Schrödinger symmetry
charges, as pointed out in [11], to extend those previous
results to include a nonvanishing cosmological constant,
and to discuss its role in describing quantum black holes.

III. SYMMETRY OF QUANTUM MECHANICS

Before moving on to black holes, we discuss the fate
of the Schrödinger symmetry in standard nonrelativistic
quantum mechanics. We consider the free Schrödinger
system in d-spatial dimension defined by the field theory
Lagrangian:

S½Ψ; Ψ̄� ¼
Z

dtddx

�
iℏΨ̄∂tΨ −

ℏ2

2m
∂aΨ∂aΨ̄

�
: ð18Þ

The resulting field equation is the Schrödinger equation:

i∂tΨ ¼ −
ℏ
2m

∂a∂
aΨ; ð19Þ

which gives the equation of motion for the wave functionΨ
in the x polarization. The canonical analysis of this action
gives the pair of conjugate variables,

fΨðxÞ; Ψ̄ðyÞg ¼ 1

iℏ
δðdÞðx − yÞ; ð20Þ

and the field theory Hamiltonian,

H ¼ −
ℏ2

2m

Z
ddx Ψ̄∂a∂aΨ: ð21Þ

We introduce the probability integral n ¼ R
ddx Ψ̄Ψ, also

understood as the number of particles, and the average
position and momentum,

Xa ¼
Z

ddx Ψ̄xaΨ; Pa ¼ −iℏ
Z

ddx Ψ̄∂aΨ; ð22Þ

as well as the quadratic moments of the wave function,

Jab ¼ −iℏ
Z

ddx Ψ̄ðxa∂b − xb∂aÞΨ; ð23Þ

D ¼ −iℏ
2

Z
dxd Ψ̄ðxa∂a þ ∂axaÞΨ; ð24Þ

X ¼
Z

ddx Ψ̄xaxaΨ: ð25Þ

The angular momentum Jab, the expectation value C of the
dilatation generator x⃗ · p⃗ and the position uncertainty X
characterize the shape of the wave packet.
The integrals, n, Pa and Jab, have vanishing Poisson

brackets with the Hamiltonian, and are thus constants of
motion, fn;Hg¼fPa;Hg¼fJab;Hg¼0. As for classical
mechanics, we introduce the evolving position observable:

Ba ¼ Xa −
t
m
Pa; dtBa ¼ ∂tBa þ fBa;Hg ¼ 0: ð26Þ

We compute the Poisson brackets between those
observables,

fBa; Pbg ¼ δabn;

fJab; Pcg ¼ δacPb − δbcPa;

fJab; Bcg ¼ δacBb − δbcBa;

fJab; Jcdg ¼ δacJbd − δbcJad − δadJbc þ δbdJac; ð27Þ

which form a centrally extended Galilean algebra, with
the number of particles n as the central charge. We
complete this set of conserved charges with the constants
of motion encoding the evolution of the quadratic quantum
uncertainty:

Qþ ¼ mH;

2Q0 ¼ D − 2Ht;

2mQ− ¼ mX − 2tDþ 2t2H: ð28Þ

The evolving constants of motion Q0 and Q− are the initial
conditions at t ¼ 0, respectively for the observable D and
the position spread X . Their explicit time dependence
exactly compensates for their nonvanishing brackets
with the Hamiltonian. As expected, these form a
slð2;RÞ algebra,

fQ0; Q�g ¼ �Q�; fQþ; Q−g ¼ −2Q0; ð29Þ

whose Casimir is Csl ¼ Q2
0 −QþQ−. This is the quadratic

uncertainty algebra of [16]. The remaining nonvanishing
bracket is given by

fQ0; Pag ¼ þ 1

2
Pa; fQ−; Pag ¼ þBa;

fQ0; Bag ¼ −
1

2
Ba; fQþ; Bag ¼ −Pa: ð30Þ

We recognize the same d-dimensional Schrödinger algebra
shðdÞ as for classical mechanics,

shðdÞ ¼ ðslð2;RÞ ⊕ soðdÞÞ ⊕s ðRd ⊕ RdÞ: ð31Þ
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The important difference with classical mechanics is that
the Schrödinger Casimirs do not vanish anymore. This
reveals a tower of extra degrees of freedom. Indeed, the
Schrödinger charges for the classical particle could all be
written as polynomials in the canonical position and
momentum. This is no longer the case in quantum
mechanics. The wave function Ψ contains infinitely more
information than the classical position and momentum: the
charges ðJij; Q0; Q�Þ are now independent from the linear
observables ðPi; BiÞ and encode the shape of the wave
packet; they are legitimate degrees of freedom, representing
the quantum fluctuations on top of the classical motion.
To be more precise, we can look into the d ¼ 2 case.

A nonzero quadratic Casimir reveals an extra contribution
to the angular momentum,

C2 ¼ hx̂1ihp̂2i − hx̂2ihp̂1i − nhJ12i ≠ 0; ð32Þ

which actually means that the quantum state Ψ carries
nontrivial correlation and entanglement between the two
directions x1 and x2. Similarly, the cubic Casimir C3 relates
the sl2 Casimir for the conformal symmetry to the Galilean
generators. The fact that it does not vanish anymore, and
that it can take arbitrary values, reflects that the (quadratic)
quantum uncertainty—the spread of the wave packet—
measured by the Q’s can evolve independently from the
classical degrees of freedom Xa, Pa. From this perspective,
nonzero values of the Schrödinger Casimirs, C2 ≠ 0,
C3 ≠ 0, are witnesses of the quantumness of the system.
Once exponentiated, these conserved charges generate

symmetries of the system according to Noether’s theorem.
This gives the Schrödinger group,

ShðdÞ ¼ ðSLð2;RÞ × SOðdÞÞ ⋉ ðRd × RdÞ; ð33Þ

identified as the maximal symmetry group of the free
Schrödinger equation by Niederer in [17]. We catalog, in
Table I, the various symmetry transformations. While phase
multiplication, translations and boosts are usual trans-
formations, it is instructive to give a closer look at the
conformal transformations. Indeed, these are not mere
rescalings. They are nontrivial symmetry transformations,
creating a complex phase factor, affecting the complex

width of Gaussian wave packets, thus leading to physical
effects. More precisely, these are given by time reparamet-
rization, with a nontrivial rescaling of the space coordi-
nates, following e.g., [18],

t ↦ t̃ ¼ fðtÞ; xa ↦ x̃a ¼ ḟðtÞ12xa; ð34Þ

and both a conformal rescaling and a nontrivial phase for
the wave function,

Ψ ↦ Ψ̃ðt̃; x̃aÞ ¼ ḟðtÞ−d
e ei

m
4
f̈
ḟ
xaxa Ψðt; xaÞ; ð35Þ

which leads to the following transformation of the action,

S½t̃; x̃; Ψ̃� ¼ S½t; x;Ψ� −m
4

Z
Sch½f�ðtÞxaxa ΨΨ̄; ð36Þ

with the Schwarzian derivative of the reparametrization
function,

Sch½f� ¼ ḣ −
1

2
h2; with h ¼ f̈=ḟ: ð37Þ

This is a symmetry as soon as the Schwarzian derivative
vanishes, i.e. when f is a Moëbius transformation,

Sch½f� ¼ 0 ⇔ fðtÞ ¼ αtþ β

γtþ δ
: ð38Þ

This is the SLð2;RÞ symmetry group generated by the three
conserved charges Q0 and Q�, as can be directly checked
by looking at infinitesimal Moëbius transformations.
The purpose of the present work is to show that this

Schrödinger symmetry also controls black hole dynamics
in general relativity. This underlines the universality of
the Schrödinger charges, but also provides a direct bridge
between black hole mechanics and quantum mechanics,
which should shed clarifying light on the quantization of
black holes.

IV. SCHWARZSCHILD-(A)dS BLACK HOLE
MECHANICS

We now turn to the main proof-of-concept model for
general relativity, namely the eternal Schwarzschild-(A)dS
black hole. The action driving the dynamics of the
geometry of the black hole is obtained by symmetry
reduction and gauge fixing from the vacuum Einstein-
Hilbert-Λ action

S½g� ¼ 1

l2
P

Z
M

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gj

p
½R − 2Λ�; ð39Þ

where lP is the Planck length. Boundary terms do not play
any relevant role in the present analysis. We consider a

TABLE I. Schrödinger conserved charges.

Charge Symmetry

n Phase transformation
Pa Space translations
Ba Galilean boosts
Qþ ∝ H Time translation
Q0 Time dilatation
Q− Special conformal
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static spherically symmetric manifold M ¼ R × Σϵ with
line element

ds2 ¼ ϵð−N2ðrÞdr2 þ γttðrÞdt2Þ þ γθθðrÞdΩ2; ð40Þ

where γijðrÞ is the induced metric on the constant r
hypersurfaces Σϵ, and dΩ2 ¼ dθ2 þ sin2θdφ2 is the stan-
dard 2-metric on the angular sector. The parameter ϵ ¼ �1
allows one to deal with both the interior and exterior of the
black hole using the same formalism. Our conventions
are naturally adapted to the case ϵ ¼ þ corresponding to
the black hole interior: the coordinate r is timelike, and the
radial metric component NðrÞ plays the role of the lapse
between hypersurfaces. The case ϵ ¼ − corresponds to the
exterior region of the black hole where r is a spacelike
coordinate and t is timelike.
We decompose the metric components as

γtt ≔ 2βðrÞ=αðrÞ; γθθ ≔ l2
sαðrÞ; ð41Þ

where we introduce a fiducial length scale ls defining the
dimensionful unit for the 2-sphere radius. Evaluating the
full Einstein-Hilbert-Λ action on this metric ansatz gives
the reduced action encoding the dynamics of the black hole
geometry [11,19]:

Sϵ½α; β� ¼ ϵclP

Z
dτ

�
ϵ

l2
s
−
ϵα

l2
Λ
þ βα̇2 − 2αα̇ β̇

2α2

�
; ð42Þ

where we have introduced a field-rescaled radial coordinate
τ defined by

dτ ¼
ffiffiffiffiffi
2β

α

r
NðrÞdr; ð43Þ

and the dot denotes the derivative with respect to τ.
The length scale lΛ ¼ 1=

ffiffiffiffi
Λ

p
encodes the cosmological

constant. The dimensionless constant c comes from
restricting the range of spatial integration to a bounded
region of the hypersurface Σϵ. Indeed, the metric being
homogeneous, the integration over the noncompact
3-manifold automatically yields an infinite result. This is
naturally resolved by introducing an infrared cutoff l0 for
the coordinate t. This gives

c ¼ 1

l3
p

Z
tf

ti

dt
I

l2
sdΩ ¼ 4π

l0l2
s

l3
p

; ð44Þ

as the ratio between the IR scale and the UV scale of
the system.
The lapse NðrÞ has been completely absorbed in the

definition of the radial coordinate τ. We can safely proceed
to describing the system’s phase space and evolution with
respect to this coordinate. This is equivalent to gauge fixing
the lapse to N ¼ ffiffiffiffiffiffiffiffiffiffi

α=2β
p

. We must nevertheless retain the

equation of motion corresponding to lapse variations δN,
which implies that the Hamiltonian vanishes, as customary
for relativistic systems. Solving the field equations gives
the metric

ds2 ¼ −ϵ
α

2β
dτ2 þ ϵ

2β

α
dt2 þ l2

sαdΩ2; ð45Þ

with α ¼ k2ðτ − τ0Þ2 and

−2ϵβ ¼ 1

l2
s
ðτ − τ0Þðτ − τ1Þ −

k2

3l2
Λ
ðτ − τ0Þ4; ð46Þ

where τ0, τ1 and k are constants of integration. Rescaling
the coordinates as r ¼ klsðτ − τ0Þ and t̃ ¼ t=kls, we
recover the Schwarzschild-(A)dS solutions,

ds2 ¼ −fðrÞdt̃2 þ fðrÞ−1dr2 þ r2dΩ2; ð47Þ

with the metric component,

fðrÞ ¼ 1 −
lM

r
−

r2

3l2
Λ

with lM ¼ klsðτ1 − τ0Þ: ð48Þ

The constant of integration τ0; τ1; k and the IR regulariza-
tion scale ls are combined together into the single physical
parameter lM, which gives the Schwarzschild mass of the
black hole.
In order to study the symmetries of black hole mechan-

ics, it is convenient to switch to its phase space description.
We compute the canonical momenta

pα ¼
ϵclP

α2
ðβα̇ − αβ̇Þ; pβ ¼ −ϵclP

α̇

α
; ð49Þ

forming the canonical pairs fα; pαg ¼ fβ; pβg ¼ 1. The
Hamiltonian reads as

H ¼ HðΛÞ −
clP

l2
s

with HðΛÞ ¼ Hð0Þ þ clP

l2
Λ
α; ð50Þ

and Hð0Þ ¼ −
1

ϵclP

�
αpαpβ þ

1

2
βp2

β

�
: ð51Þ

Remember that we need to impose that the Hamiltonian
vanishes H ¼ 0. This Hamiltonian constraint consists in a
kinetic term Hð0Þ, a potential term whose coupling is the
cosmological constant and a constant shift. This constant
shift depends on the IR/UV ratio c. It is crucial, since it
changes the on shell value of HðΛÞ. Now that the dynamics
of black holes has been formulated as a mechanical system,
let us show that it admits a symmetry group isomorphic to
the Schrödinger group.
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V. SCHRÖDINGER CHARGES
FOR BLACK HOLES

As static spherically symmetric metrics in general
relativity have been recast as a mechanical system with
2 degrees of freedom, we expect a symmetry under the
d ¼ 2 Schrödinger group, if it were a free system. The
potential actually vanishes when the cosmological constant
is set to 0, or equivalently when the cosmological scale is
set to infinity, lΛ → þ∞. In that case, we naturally identify
Schrödinger charges. Below, we further show that, surpris-
ingly, the cosmological potential does not spoil this
symmetry, and so the Schrödinger group still drives the
black hole dynamics whatever the value of Λ.
Let us start with the case lΛ → þ∞, corresponding to a

vanishing cosmological constant Λ ¼ 0 and asymptotically
flat Schwarzschild black holes. Symmetries are generated
by conserved charges O, here satisfying

dτO ¼ ∂τOþ fO;Hð0Þg ¼ 0: ð52Þ

Time-independent charges, i.e. with ∂τO ¼ fO;Hð0Þg ¼ 0,
correspond to conformal Killing vectors in the field
configuration space ðα; βÞ, while explicitly time-dependent
charges, i.e. ∂τO ≠ 0, correspond to conformal Killing
vectors in an extended field configuration space given
by the Eisenhart-Duval lift [20]. This general approach
was pushed forward in [11] to investigate symmetries of
gravitational minisuperspaces. Here, we identify translation
and boost charges:

Pþ ¼ ffiffiffi
α

p
pα þ

βpβ

2
ffiffiffi
α

p ; clPBþ ¼ ϵclP
βffiffiffi
α

p þ τPþ;

P− ¼ ffiffiffi
α

p
pβ; clPB− ¼ ϵclP2

ffiffiffi
α

p þ τP−:

ð53Þ

They form a closed Lie algebra with the charge J ¼ 2αpα:

fP−; Pþg ¼ 0; fB−; Bþg ¼ 0;

fB�; P�g ¼ 0; fB�; P∓g ¼ ϵ;

fJ; B�g ¼ �B�; fJ; P�g ¼ �P�; ð54Þ

where J generates soð1; 1Þ boosts. We recognize the algebra
of Galilean symmetries in two dimensions. Further intro-
ducing the dilatation generator D ¼ ðαpα þ βpβÞ, we com-
plete this set of conserved charges with the following
observables:

Qþ ¼ clPHð0Þ; Q0 ¼ D − τHð0Þ;

clPQ− ¼ −2ϵclPβ − 2τDþ τ2Hð0Þ; ð55Þ

which form a slð2;RÞ Lie algebra,

fQ0; Q�g ¼ �Q�; fQþ; Q−g ¼ −2Q0: ð56Þ

The two sectors are coupled by nonvanishing Poisson
brackets:

fQ0; P�g ¼ 1

2
P�; fQ0; B�g ¼ −

1

2
B�;

fQ−; P�g ¼ −B�; fQþ; B�g ¼ P�; ð57Þ

leading to the 2D centrally extended Schrödinger algebra
shð2Þ ¼ ðslð2;RÞ ⊕ soð1; 1ÞÞ ⊕s ðR2 ⊕ R2Þ. The fact
that we have the symmetry subalgebra soð1; 1Þ instead of
soð2Þ comes from working with a relativistic system,
whose kinetic terms have a nonpositive signature. This will
become clearer below when diagonalizing explicitly the
kinetic terms. Its quadratic and cubic Casimir both vanish, as
expected in classical mechanics:

C2 ¼ PþB− − P−Bþ − ϵJ ¼ 0; ð58Þ

C3 ¼ Q2
0 −QþQ− −

1

4
J2 − ϵBþB−Qþ − ϵPþP−Q−

− ϵðB−Pþ þ BþP−ÞQ0 þ
ϵ

2
ðB−Pþ − BþP−ÞJ ¼ 0:

The latter is the Schrödinger-invariant expression of the
balance equation for the sl2 Casimir,

Q2
0 −QþQ− ¼ 1

4
J2: ð59Þ

It is interesting to notice that the evolving position observ-
ables B� allow one to define a canonical transformation
to phase space coordinates that diagonalize the kinetic
Hamiltonian. Indeed, we read position coordinates from
Bpmðτ ¼ 0Þ:

Xþ ¼ β=
ffiffiffi
α

p
; X− ¼ 2

ffiffiffi
α

p
; fX∓; P�g ¼ 1: ð60Þ

Now the Hamiltonian takes a very simple form,

HðΛÞ ¼ −
ϵ

clP
P−Pþ þ clP

4l2
Λ
X2
−

¼ ϵ

2clP
ðP2

2 − P2
1Þ þ

clP

8l2
Λ
ðX1 þ X2Þ2; ð61Þ

where we have introduced

P� ¼ P1 � P2ffiffiffi
2

p ; X� ¼ X1 ∓ X2ffiffiffi
2

p : ð62Þ

This clarifies the mapping of black hole mechanics onto the
d ¼ 2 particle, with the awkward sign switch in the kinetic
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term, here ðP2
2 − P2

1Þ instead of ðP2
2 þ P2

1Þ. This sign is a
central feature of general relativity: we are working with a
1þ 1-d relativistic particle. The nonpositive signature sig-
nals the gravitational instability (due to conformal factor)
that leads to gravitational collapse, black holes and cosmo-
logical expansion. The black hole phase space IR/UV ratio c
plays the role of the 1þ 1-d particle mass. Keep in mind that
the black hole mass is a variable in black hole mechanics. It
is a property of the chosen classical solution. More precisely,
it is actually a conserved quantity, which we express in terms
of the Schrödinger charges below in (66). The cosmological
constant creates a quadratic trapping potential for the center
of mass of the system. As this is a quadratic potential,
it seems that one could absorb it in a redefinition of the
momenta. It is indeed what happens, as we show below. This
is our main result.
Indeed, turning on the cosmological constant Λ ≠ 0,

we find, quite remarkably, that the Schrödinger algebra is
preserved. The conserved charges are mildly modified.
Explicitly, while P− and B− do not acquire corrections, the
other translation and boost charges become

PðΛÞ
þ ¼ Pþ − ϵ

c2l2
P

l2
Λ

ffiffiffi
α

p
pβ

;

BðΛÞ
þ ¼ βðΛÞffiffiffi

α
p þ ϵ

τ

clP
PðΛÞ
þ ;

JðΛÞ ¼ J − ϵ
4c2l2

P

3l2
Λ

α

pβ
: ð63Þ

The conformal sector is similarly modified,

QðΛÞ
þ ¼ clPHðΛÞ; QðΛÞ

0 ¼ DðΛÞ − τHðΛÞ;

clPQðΛÞ
− ¼ −2ϵclPβ

ðΛÞ − 2τDðΛÞ þ τ2HðΛÞ; ð64Þ

with the following Λ corrections:

βðΛÞ ¼ β − ϵ
2c2l2

P

3l2
Λ

α

p2
β

; DðΛÞ ¼ D − ϵ
4c2l2

P

3l2
Λ

α

pβ
: ð65Þ

The new conserved charges satisfy ∂τOþ fO;HðΛÞg ¼ 0,
and the Hamiltonian simply reads as clPHðΛÞ ¼
−ϵP−P

ðΛÞ
þ . We get the same Lie algebra as for the

Λ ¼ 0 case. It follows that the mechanics of
Schwarzschild-(A)dS black holes is also invariant under
the nonrelativistic conformal Schrödinger symmetry.
This result parallels the fact that the Schrödinger

symmetry for 1d classical mechanics is preserved for
two specific potentials: the harmonic potential and the
inverse square potential (whose quantization was studied
in [21]). From that point of view, the Schwarzchild-(A)dS
black hole mechanics can be viewed as an extension of
the flat Schwarzchild black hole mechanics similar to the

extension of the free particle to the harmonic oscillator
(with a positive or negative pulsation).
We can compute the value of those observables on

classical solutions. In particular, we get

JðΛÞ ¼ clP

l2
s
ðτ1 − τ0Þ; P− ¼ −ϵ2clPk;

which allows one to identify the black hole mass as a
conserved charge:

lM ¼ −ϵ
2l3

s

c2l2
P
JðΛÞPðΛÞ

− : ð66Þ

It is definitely intriguing that the black hole mass is equal to
the boost generator JðΛÞ (up to the velocity factor P−). This
evocates recent discussions on black hole thermodynamics
where Hawking’s thermal radiation is derived from the
identification of the (modular) Hamiltonian as a boost
generator within a slð2;RÞ algebra of asymptotic sym-
metry generators (see e.g., [22]). Although the symmetry
structure is very similar, the link between the present work
and this framework is not obvious at all.
An important remark is that the cosmological constant

lΛ never appears in the on shell values of the Schrödinger
charges. For instance, the cosmological constant does not
change the Schrödinger Casimirs C2 ¼ C3 ¼ 0. In fact,
Λ shifts the definition of the conserved charges but does not
affect at all the Schrödinger symmetry. Let us insist that
these are not space-time isometries or diffeomorphisms, but
nontrivial symmetry of general relativity under transforma-
tions acting on the space of metrics.
Here, we have found that the cosmological constant

does not affect the symmetry of general relativity, at least
in the spherically symmetric sector. From the point of
view of symmetries, Λ will appear back when breaking the
Schrödinger symmetry, for instance by introducing an
“observer.” This can be simply achieved by going beyond
the gravitational sector and looking at the dynamics of
matter fields coupled to the geometry, in case the cosmo-
logical constant will surely modify the dynamics and
symmetries of the matter field evolution.

VI. DISCUSSION AND PROSPECTS

We have shown that the dynamics of stationary spheri-
cally symmetric metrics in general relativity can be for-
mulated as a 2D mechanical system with a nontrivial
potential whose coupling constant is the cosmological
constant. We call this model black hole mechanics. Keep
in mind that the evolution parameter here is the radial
coordinate, which is spacelike outside the black hole and
timelike in the interior region. This allowed us to show that
the black hole mechanics is invariant under the d ¼ 2
Schrödinger group. This invariance holds both for the
interior and the exterior regions of the black hole.
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Moreover, it holds whatever the value of the cosmological
constant Λ is. The symmetry transformations act on the
phase space of geometries and are not mere space-time
transformations. They change the black hole mass lM and
the singularity position τ0, as well as the IR regularization
scale ls, while leaving the equations of motion invariant.
Since the Schrödinger group is the key (maximal)

symmetry of classical mechanics which is preserved under
quantization, it is natural to expect quantum black holes to
retain this symmetry. Breaking this symmetry when quan-
tizing black holes would definitely signal a strong deviation
with respect to the standard quantization logic and would
reveal some important hidden physical ingredients in the
description of black holes in general relativity.
Digging deeper in this direction, here we have taken the

perspective of considering quantum mechanics as a field
extension of classical mechanics. Putting aside conceptual
issues (e.g., the measurement problem and collapse of the
wave function), quantum mechanics is mathematically
formulated as a description of the dynamics of the wave
function: classical positions and momenta, evolving in time,
are replaced by a wave function, considered as a space-time
field, interpreted as a dressed classical object with classical
positions and momenta, plus extra degrees of freedom
representing the shape fluctuations of the wave packet.
From this viewpoint of quantization as field extension

and turning to black holes, there are actually two natural
field extensions of black hole mechanics:
(1) On the one hand, it is natural to quantize black hole

mechanics and lift a classical black hole metric to a
wave function with a fuzzy mass and a fuzzy
singularity. Let us underline that this does not mean
relaxing the hypothesis of stationarity or spherical
symmetry: we describe quantum superposition of
spherically symmetric metrics. This goes in the same
direction as the line of research on effective black
hole metrics taking into account quantum gravity
corrections and attempting to solve the singularity
problem without introducing anisotropy or leaving
spherical symmetry, e.g., [23–25]. Our analysis
means that preserving the Schrödinger symmetry
should be crucial to this approach (see e.g., [26]
using the conformal symmetry to constrain regular-
ized black hole metrics in effective quantum
gravity models).

(2) On the other hand, the natural field theory of black
hole mechanics is general relativity, which reestab-
lishes inhomogeneities and anisotropies on top of
the spherically symmetric background and describes
their dynamics. From this perspective, general rel-
ativity is to be interpreted more as the nonperturba-
tive field theory of black hole excitations, instead
of its usual interpretation as the field theory encod-
ing the nonlinear properties of gravitational waves.
More precisely, general relativity would lead to a

nonperturbative hydrodynamic description of the
black holes microstates with the black hole sector
identified by the Schrödinger symmetry we have
found here. Then it would be natural to understand if
general relativity is invariant under an extension of
the Schrödinger symmetry group. Let us underline
that we expect that these symmetries would not be
space-time diffeomorphisms, but nontrivial trans-
formations on the phase space of geometries. Inter-
estingly, it has been recently shown that the static
perturbations of the Schwarzschild and Kerr black
holes relevant to compute the Love numbers are also
governed by a Schrödinger symmetry [27]. It would
be interesting to further understand how this sym-
metry for perturbations can be related to the back-
ground symmetry discussed here. From a more
general perspective, it would be enlightening to
compare the Schrödinger charges derived here
to the existing extended Bondi–Metzner–Sachs
charges and w1þ∞ charge algebra for asymptotically
flat space-time as derived in e.g., [28–31].

For both field theory extensions of black hole mechanics,
we expect the Schrödinger Casimirs, C2 and C3, not to
vanish anymore, and to reflect the extra structures and
degrees of freedom dressing the black hole evolution.
If both quantum black holes and asymptotically flat
general relativity turn out both to preserve the Schrödinger
symmetry, it should definitely be a key symmetry of
quantum gravity.
As a direct application of the present work, we would

like to point out that the Schrödinger symmetry can be used
to select quantum corrections to black hole dynamics.
Indeed, now that the canonical analysis of the classical
black hole dynamics has been clarified, it is straightforward
to quantize the system. We define quantum states as wave
functions of the metric components. Instead of using the
original variables α, β, our analysis suggests that using
the variable X1, X2, and thus considering wave functions
ΨðX1; X2Þ, is more convenient. Then this wave function is
driven by a field action:

S½Ψ; Ψ̄� ¼
Z

dτ
h
iℏΨ̄∂τΨ − Ψ̄ dHðΛÞΨ

i
; ð67Þ

where the Hamiltonian operator dHðΛÞ consists of a kinetic
operator, given by the 1þ 1-dimensional Laplacian, plus a
harmonic potential term whose coupling constant is given
by the cosmological constant. The analysis of the symmetry
of quantum mechanics, reviewed in Sec. III, shows that the
Schrödinger symmetries are preserved by this standard
quantization scheme. Just as atom-atom microscopic inter-
actions in quantum mechanics can be taken into account
by introducing a potential V½Ψ;Ψ�, which encodes the
self-interaction of the wave-function fluctuations and
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excitations, e.g., [8,9], we similarly expect that quantum
gravity will lead to a self-interaction between the quanta
of geometry forming the black hole, thus leading to an
effectively modified field action:

SQG ¼
Z

dτ
h
iℏΨ̄∂τΨ − Ψ̄ dHðΛÞ Ψþ V½Ψ;Ψ�

i
: ð68Þ

The key point is that the Schrödinger charge algebra also
holds for precise nonlinear extensions of the Schrödinger
dynamics. Remarkably, depending on the spatial dimension
d, one can show that the Schrödinger charge algebra is
preserved for suitable self-interaction. Since such a poten-
tial is homogeneous, it does not affect the symmetry under
phase transformations, translations and boosts. And one
easily checks that the conformal symmetry (35) is pre-
served for V ∝ jΨj2n when dðn − 1Þ ¼ 2. For d ¼ 1, this
selects a self-interaction potential V ∝ jΨj6 leading to the
Tonks-Girardeau equation, which defines a quintic non-
linear extension of the Schrödinger equation. Here, the
black hole minisuperspace model corresponds to d ¼ 2
dimensions, and preserving the full Schrödinger symmetry
selects a quadratic potential V ∝ jΨj4:

SκQG ¼
Z

dτ
h
iℏΨ̄∂τΨ − Ψ̄ dHðΛÞΨ − κjΨj4

i
: ð69Þ

This shows that there exists a nontrivial UV corrected
quantum dynamics protected by the Schrödinger symmetry.
The evolution of the black hole wave function is then driven
by a Gross-Pitaevskii equation,

iℏ∂τΨ ¼ dHðΛÞΨþ 2κjΨj2Ψ: ð70Þ

The new coupling κ controls the attraction or repulsion
between wave packets depending on its sign. It will thus
determine when and where one can have stable quantum
superpositions of black hole states, and enter in a crucial
fashion in the identification of the transitions between the
semiclassical regime and the deep quantum regime.

Playing with this new parameter κ should lead to a new
phenomenology for quantum black holes. It is very differ-
ent from modified gravity theories, which usually propose
modifications of the Hamiltonian operator but do not
consider nonlinear self-interaction terms. We consider such
symmetry-protected nonlinear extension of the Wheeler-
de Witt equation as a universal template for the effective
dynamics of quantum black holes. It would be enlightening
to understand which quantum gravity models or scenarios
generate such quantum black hole dynamics.
We would like to conclude with the remark that, using

the phase-amplitude factorization of the wave function
Ψ ¼ ffiffiffi

ρ
p

eiθ, the Schrödinger equation and its nonlinear
extension can be understood as Navier-Stokes’s equation
for compressible fluid dynamics leading to the hydro-
dynamics reformulation of quantum mechanics, e.g.,
see the original seminal work by Madelung [32] and
the more recent analysis [33]. Since black hole mechanics
is invariant under the d ¼ 2 Schrödinger group, this
means that we get an intriguing mapping between
black hole quantum mechanics and 2D hydrodynamics.
It is tempting to speculate that this could be related
to a fluid dynamics for gravitational quanta on the black
hole horizon considered as a 2D membrane (as in the
corner dynamics for general relativity [34]). A more
down-to-earth expectation is that this mapping surely
provides a promising avenue to reformulate quantum
black hole as a many-body Schrödinger system. In fact, it
opens the door to the possibility of a new class of analog
condensed matter models for black holes, cosmology and
quantum gravity phenomenology, based on an exact
mapping of symmetries, conserved charges and dynam-
ics, instead of focusing on shaping and manufacturing
equivalents of space-time metrics.
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