
Entropy bound and a geometrically nonsingular universe

Takamasa Kanai ,1,* Kimihiro Nomura ,2,† and Daisuke Yoshida 1,‡

1Department of Mathematics, Nagoya University, Nagoya 464-8602, Japan
2Department of Physics, Kobe University, Kobe 657-8501, Japan

(Received 14 April 2023; accepted 12 October 2023; published 14 November 2023)

Bousso’s entropy bound is a conjecture that the entropy through a null hypersurface emanating from a
two-dimensional surface with a nonpositive expansion is bounded by the area of that two-dimensional
surface. We investigate the validity of Bousso’s entropy bound in the spatially flat, homogeneous, and
isotropic universe with an adiabatic entropy current. We find that the bound is satisfied in the entire
spacetime in which a cutoff time is introduced based on the entropy density and the energy density.
Compared to the previously used prescription which puts a cutoff near the curvature singularity, our
criterion for introducing the cutoff is applicable even to a nonsingular universe. Our analysis provides an
interpretation of the incompleteness implied by the recently proposed singularity theorem based on the
entropy bounds.
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I. INTRODUCTION

Singularity theorems [1–3] (see also Refs. [4–6]) are the
most important theorems in general relativity. They state
that the presence of spacetime singularity is inevitable
under assumptions about geodesic convergence (energy
condition) and the global structure of spacetime. The
singularity theorem by Penrose [1] is formulated based
on a property of null geodesics and hence the timelike
convergence condition (strong energy condition) is not
required, while the null convergence condition (null energy
condition) is assumed. Hence, the theorem by Penrose is
useful to discuss the universe before an inflationary stage
where the strong energy condition is violated. Since
Penrose’s theorem aims to formulate the black hole
singularity in asymptotically flat spacetime, the topology
of the Cauchy surface is assumed to be noncompact. Thus,
the universe with a compact Cauchy surface can avoid
Penrose’s theorem. Properties of the nonsingular universe
that evades the assumption of Penrose’s theorem are
investigated in Ref. [7] for black holes and in Ref. [8]
for cosmology.
One of the generalizations to relax the assumption of the

noncompactness of the Cauchy surface is suggested by
Tipler [9], where Penrose’s theorem is found to hold when
the universal covering of the Cauchy surface is not
topologically S3. Recently, a new kind of singularity
theorem is proposed in Ref. [10]. There the singularity
theorem is formulated based on the entropy bounds and the

theorem is applicable to any topology of the Cauchy
surface. As a related work on the singularity theorem
based on the entropic arguments, see also Ref. [11] for the
singularity theorem based on the generalized second law
and Ref. [12] for that based on the quantum Bousso bound.
The entropy bounds claim that there is an upper bound

on the amount of entropy contained in a finite circumstance
area. The first entropy bound, the Bekenstein bound [13], is
proposed based on the validity of the generalized second
law of black hole thermodynamics [14–16]. It is proven in
free field theory when the gravitational backreaction is
negligible [17]. A naive generalization of the Bekenstein
bound to general spacetimes is called spatial entropy
bound. However, this bound can be easily violated.
Bousso [18] proposes that the entropy should be evaluated
on null hypersurfaces called light sheets, and this entropy
bound is called Bousso bound. See Refs. [19,20] for a
review of these entropy bounds. In the original paper [18],
the Bousso bound is confirmed in the expanding universe
with an initial curvature singularity, introducing a cutoff
time near the singularity. See also Refs. [21,22] for
discussion on the entropy bound in the universe including
accelerating one. Proofs of the classical and quantum
Bousso bounds with some assumptions are provided in
Refs. [23,24].
The singularity theorem based on the entropy bounds

[10] basically states that, assuming the global hyperbolicity,
the null energy condition, and the validity of the Bousso
bound, the violation of the spatial entropy bound leads to
the incompleteness of the spacetime. The assumptions
other than the validity of the Bousso bound are satisfied
for any spatially flat homogeneous and isotopic universe,
that is flat Friedmann-Lemaître-Robertson-Walker (FLRW)

*m19013d@math.nagoya-u.ac.jp
†knomura@stu.kobe-u.ac.jp
‡dyoshida@math.nagoya-u.ac.jp

PHYSICAL REVIEW D 108, 104024 (2023)

2470-0010=2023=108(10)=104024(16) 104024-1 © 2023 American Physical Society

https://orcid.org/0009-0002-0345-676X
https://orcid.org/0000-0002-5206-3578
https://orcid.org/0000-0001-8424-8828
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.104024&domain=pdf&date_stamp=2023-11-14
https://doi.org/10.1103/PhysRevD.108.104024
https://doi.org/10.1103/PhysRevD.108.104024
https://doi.org/10.1103/PhysRevD.108.104024
https://doi.org/10.1103/PhysRevD.108.104024


universe, following the null energy condition. Thus, for such
a universe, the singularity theorem predicts the presence of
the geometrical singularity (geodesic incompleteness) of
spacetimeor theviolationof theBousso bound.An important
note here is thatwe can construct a geometrically nonsingular
(geodesically complete) flat FLRWuniverse consistent with
the null energy condition. It is possible by considering the
maximal extension beyond a coordinate singularity of the
inflationary universe [8,25–27]. The conditions for the past
boundary of the inflationary universe predicted by the
Borde–Guth–Vilenkin theorem [28] (see also Ref. [29]) to
be locally extendible are clarified in Refs. [25–27]. (A
possible inextendibility due to globally nontrivial topology
is investigated in Ref. [30].) In the case of the geometrically
nonsingular universe, the consequence of the singularity
theorem should be incompleteness of the spacetime region
satisfying the Bousso bound, not a geometrical singularity,
by construction. More precisely, the singularity theorem
should be applied after introducing some “cutoff” in space-
time so that the Bousso bound is satisfied in the entire
resultant region, and the theorem implies incompleteness of
that region. In addition, from the consideration of the
geometrically nonsingular universe, the cutoff should be
independent of the presence or absence of the geometrical
singularity.
In light of the above argument, the main purpose of this

paper is to clarify the implication of the singularity theorem
based on the entropy bounds [10] for the geometrically
nonsingular (geodesically complete) universe. We will
propose a criterion for introducing a cutoff time in
spacetime based on the local entropy density, not relying
on the presence of a geometrical singularity. And then, we
will check that the Bousso bound is always satisfied in the
entire region left after introducing the cutoff. Once the
cutoff is introduced so that the Bousso bound is entirely
satisfied, we can apply the singularity theorem even to the
geometrically nonsingular universe. Then, the origin of the
incompleteness predicted by the singularity theorem should
be understood as the presence of the cutoff introduced due
to a large entropy density, not a geometrical singularity.
This paper is organized as follows. In the next section,

we review the entropy bounds and the singularity theorem
based on the entropy bounds formulated in Ref. [10]. In
Sec. III, we evaluate the entropy-to-area ratio, which is the
quantity relevant to the Bousso bound, of adiabatic fluid in
the flat FLRW universe. There, we propose a criterion for a
cutoff time that should be introduced so that the Bousso
bound is satisfied. In Sec. IV, we explicitly check the
Bousso bound is satisfied after introducing the cutoff in the
universe with a fluid with a constant equation-of-state
parameter. Then, in Sec. V, we also check the validity of the
Bousso bound in a geometrically nonsingular universe
consistent with the null energy condition. The final section
is devoted to the summary and discussion.
Throughout this paper, we use the unit c ¼ kB ¼ ℏ ¼ 1,

where c; kB, and ℏ are the speed of light, the Boltzmann

constant, and the reduced Planck constant, respectively. We
assume that spacetime is 4-dimension though the gener-
alization to arbitrary dimension is straightforward. We use
the Newton constantG and the reduced Planck massMpl ¼
ð8πGÞ−1=2 interchangeably.

II. REVIEW OF ENTROPY BOUNDS

In this section, we review several entropy bounds; the
Bekenstein bound [13], the spatial entropy bound, and the
Bousso bound [18]. Then, we also review the singularity
theorem based on these entropy bounds [10].

A. The Bekenstein bound and the spatial entropy bound

Motivated by an argument on the validity of the
generalized second law of black hole thermodynamics
[14–16], in Ref. [13], Bekenstein proposed that the amount
of entropy S of matter that has the total energy E and is
enclosed by a sphere with a radius R has the upper bound
given by

S ≤ 2πER: ð1Þ

This inequality does not include the gravitational constant
G and hence it is regarded as a property of matter itself,
without gravity. Actually, this inequality is proven for the
free field theory when the gravitational backreaction is
negligible [17]. There, S is defined as the difference of the
entanglement entropy by tracing out the outside of the ball
from that in the vacuum state.
In curved spacetime, the notion of the energy E and the

radius R of a sphere loses the exact meaning. To rewrite the
Bekenstein bound in a well-defined manner in curved
spacetime, let us assume that the size of the system R is
larger than the Schwarzschild radius 2GE, that is,
E ≤ R=ð2GÞ. Then Bekenstein bound can be rephrased as

S ≤
A
4G

; ð2Þ

where A is the area of 2-sphere, A ¼ 4πR2. This form of
inequality is well-defined in curved spacetime and it results
in the spatial entropy bound. In this way, we can consider
the following spatial entropy bound as a natural generali-
zation of the Bekenstein bound: Let Σin be a closed,
3-dimensional spacelike hypersurface with a nonvanishing
boundary σ ≔ ∂Σin ≠ ∅. Then the spatial entropy bound
states that

SðΣinÞ ≤
AðσÞ
4G

: ð3Þ

Throughout this paper, we focus on the entropy of
thermal fluid. Thus, we assume that there is an entropy
current sμ∂μ and the total entropy within a 3-volume V can
be defined as the volume integral of the entropy current,
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SðVÞ ≔
Z
V
s3; ð4Þ

where s3 is the 3-form defined through the Hodge dual of
the entropy current by

s3 ≔ − � ðsμdxμÞ: ð5Þ

Once the spacetime geometry and the entropy current are
given, the spatial entropy bound (3) can be tested. We call
the spatial volume Σin that violates the spatial entropy
bound as hyperentropic hypersurface as defined
in Ref. [10].

B. Light sheets and the Bousso bound

The Bousso bound [18] is proposed as a possible
generalization of the spatial entropy bound. There, the
spatial volume Σin is replaced with a null hypersurface L
called light sheet defined below. The Bousso bound states
that the entropy through a light sheet L should be bounded
by the area of its boundary σ:

SðLÞ ≤ AðσÞ
4G

: ð6Þ

For L to be a light sheet of σ ¼ ∂Σin ≠ ∅, the following
properties are required:

(i) L is a null hypersurface generated by a null geodesic
congruence orthogonal to σ.

(ii) The congruence of the null generators of L has a
nonpositive expansion θ ≤ 0 everywhere on L.

(iii) Each generator of L has an endpoint on σ.
Here the expansion θ is defined by θ ¼ ∇μkμ, letting kμ∂μ
be the tangent of null geodesics pointing away from the
surface σ.
There are variations of the definition of the light sheet

regarding the other endpoint. The first version is proposed
in the original paper by Bousso [18]. There, each generator
of L is assumed to have an endpoint at the conjugate point
(θ → −∞). In this definition, a light sheet can be self-
intersecting in general. Another version is discussed in
Refs. [23,31]. There, the generator of L is assumed to have
an endpoint at either the conjugate point or the point where
it meets another generator. Wewould like to note that, in the
proof of the singularity theorem [10], the Bousso bound is
evaluated for the light sheet with the latter definition.
Therefore, we will use the latter definition here. We note
that we will focus only on spherically symmetric light
sheets in the homogeneous and isotropic universe. For such
light sheets, indeed there is no difference between these
definitions.

C. Singularity theorem based on entropy bounds

The singularity theorem based on the entropy bounds
formulated by Ref. [10] can be summarized, for our

purpose, as follows: Let ðM; gÞ be a spacetime manifold
with a conserved entropy current. Suppose that the Bousso
bound is satisfied for any light sheet. In addition, let the
spacetime satisfy the following properties:
(1) It is globally hyperbolic.
(2) It satisfies the null convergence condition.
(3) There is a closed subset Σin of a Cauchy surface Σ,

that satisfies following three properties:
—Σin has a compact, nonvanishing boundary σ ≔
∂Σin ≠ ∅ and a nonvanishing interior intðΣinÞ ≠ ∅.

—Σin is a hyperentropic hypersurface: SðΣinÞ >
AðσÞ=4G.

—The future (past) directed inward null geodesic
congruence orthogonal to σ has a negative ex-
pansion on σ.

Then the spacetime is future (past) incomplete.
Here an inward null geodesic means that the geodesic is

toward the direction of Σin. We note that the spacetime
ðM; gÞ is not assumed to be inextendible here. Thus,
ðM; gÞ could be a globally hyperbolic subregion of a
spacetime. In the original paper [10], the definition of
entropy is not specified. The theorem is applicable if the
entropy S satisfies the following property: SðV1Þ ¼ SðV2Þ
if DðV1Þ ¼ DðV2Þ, where DðV1Þ represents the domain of
dependence of V1, and so on. In our case, where the entropy
is defined through the entropy current of fluid, this require-
ment means that the entropy current is conserved.
Contrary to the singularity theorem by Penrose, non-

compactness of the Cauchy surface is not required. Thus, it
is applicable to a wider class of geometry. Instead, we need
to assume the presence of nonzero conserved entropy
current and the validity of the Bousso bound. For given
spacetime and an entropy current, basically, we are not sure
whether the Bousso bound is valid for any light sheet. Thus,
when the above assumptions 1–3 are satisfied, it might
mean the violation of the Bousso bound.
Actually, in examples where the Bousso bound was

tested so far (e.g., the FLRW universe in Ref. [18]), the
Bousso bound is confirmed after introducing a cutoff near
geometrical curvature singularity. In this case, the singu-
larity theorem is applicable by regarding M as spacetime
after introducing the cutoff. Then, the incompleteness
predicted by the theorem indicates the presence of the
cutoff originated by the violation of the Bousso bound, not
the geometrical inextendibility of the spacetime.
Here we should note that, as we will see later, in fact,

there exist examples of the geometrically nonsingular flat
FLRW universe that satisfy the above assumptions 1–3.
Since they are geometrically nonsingular, the Bousso
bound must be violated as is the case of a universe with
curvature singularity. In the case of the singular universe,
the Bousso bound is confirmed after introducing the cutoff
time near the singularity where the curvature becomes unity
in the Planck unit. However, contrary to the geometrically
singular universe, we cannot introduce the cutoff following
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the rule based on the curvature because the curvature
remains small in the nonsingular universe. The main
purpose of this paper is to clarify a criterion for introducing
a cutoff so that the Bousso bound is valid not relying on the
curvature, which should be applicable to both singular and
nonsingular universes. Such a criterion will clarify the
origin of incompleteness predicted by the singularity
theorem based on the entropy bounds.

III. THE BOUSSO BOUND IN THE UNIVERSE:
GENERAL ANALYSIS

A. Setup

Let us focus on an expanding flat FLRW universe where
the metric is locally expressed as

gμνdxμdxν ¼ −dt2 þ aðtÞ2ðdr2 þ r2ðdθ2 þ sin2 θdϕ2ÞÞ
¼ aðηÞ2ð−dη2 þ dr2 þ r2ðdθ2 þ sin2 θdϕ2ÞÞ;

ð7Þ

where η is the conformal time defined through dt ¼ adη.
Let us assume the universe is filled with ideal fluid with the
energy density ρ and the pressure p. Now Friedmann
equations are written as

H2 ¼ 8πG
3

ρ; ∂tH ¼ −4πGðρþ pÞ; ð8Þ

where H ¼ ∂ta=a.
We also assume that the fluid has thermodynamic

entropy that is characterized by an entropy current

sμ∂μ ¼ sðtÞ∂t: ð9Þ

The total entropy within a 3-volume V is defined as

SðVÞ ¼
Z
V
s3; ð10Þ

where s3 is calculated as

s3 ¼ sðtÞaðtÞ3r2 sin θdr ∧ dθ ∧ dϕ: ð11Þ

Throughout this paper, we assume that the expansion of the
universe is adiabatic; that is, we assume

sðtÞ ¼ s̄
aðtÞ3 ð12Þ

with a constant s̄.With this assumption, the entropy current is
conserved ∇μsμ ¼ 0 and the singularity theorem based on
the entropy bounds is applicable. When the 3-dimensional
volume V is parametrized by r; θ;ϕ as t ¼ tðrÞ; r∈ ½r1; r2�;
θ∈ ½0; π�;ϕ∈ ½0; 2πÞ, the entropy can be evaluated as

SðVÞ ¼ 4π

Z
r2

r1

sðtðrÞÞaðtðrÞÞ3r2dr

¼ s̄ ·
4π

3
ðr32 − r31Þ: ð13Þ

Herewe used the fact that sðtÞaðtÞ3 is equal to the constant s̄.

B. Entropy-to-area ratio for spatial hypersurfaces

Let us focus on a 2-dimensional sphere σ defined by
η ¼ η0 and r ¼ r0. Let us call the inside (0 < r < r0) and
the outside (r0 < r) of σ on the Cauchy surface Σ as Σin and
Σout, respectively. We call the direction toward Σin as
ingoing, and that toward Σout as outgoing. Now we can
check the spatial entropy bound for Σin and Σout. The total
entropy within the hypersurface Σin can be estimated as

SðΣinÞ ¼ s̄ ·
4

3
πr30; ð14Þ

whereas the physical area of the surface σ is written as

AðσÞ ¼ aðη0Þ2 · 4πr20: ð15Þ

Let us introduce the entropy-to-area ratio for the spatial
entropy bound Rsp by

Rspðr0; η0Þ ≔
SðΣinÞ

AðσÞ=4G : ð16Þ

We obtain

Rspðr0; η0Þ ¼
1

6π

sðη0Þ
M3

pl

aðη0Þr0
M−1

pl

; ð17Þ

and since it is proportional to r0, the spatial entropy bound
is violated for the inside of a sufficiently large sphere.
Similarly, since the entropy on Σout diverges, the

Bekenstein bound for the outside of any sphere is violated:

SðΣoutÞ
AðσÞ=4G ¼ ∞: ð18Þ

Thus, Σin and Σout can be hyperentropic hypersurfaces.

C. Light sheets

Suppose that the null convergence condition is satisfied;
Rμνkμkν ≥ 0 for any null vector kμ, where Rμν is the Ricci
tensor. A null surface generated by null geodesics which are
orthogonal to σ and initially converging on σ becomes a light
sheet from σ because the expansion on it is always negative.
Let us calculate the initial expansion on σ for all the possible
directions, future-outgoing, future-ingoing, past-outgoing,
and past-ingoing, which are indicated by the suffixes “f,o,”
“f,i,” “p,o,” and “p,i,” respectively. The tangent of the
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affine parametrized null geodesics orthogonal to σ can be
expressed as

kμf;o∂μ ¼
1

aðtÞ ∂t þ
1

aðtÞ2 ∂r; ð19Þ

kμf;i∂μ ¼
1

aðtÞ ∂t −
1

aðtÞ2 ∂r; ð20Þ

kμp;o∂μ ¼ −
1

aðtÞ ∂t þ
1

aðtÞ2 ∂r; ð21Þ

kμp;i∂μ ¼ −
1

aðtÞ ∂t −
1

aðtÞ2 ∂r: ð22Þ

As explained above, the terminology of outgoing/ingoing is
based on the r coordinate. Note that kμf;o ¼ −kμp;i and
kμf;i ¼ −kμp;o. The expansion of each congruence of null
geodesics is evaluated as [8]

θf;o ¼
2

a

�
H þ 1

ar

�
; ð23Þ

θf;i ¼
2

a

�
H −

1

ar

�
; ð24Þ

θp;o ¼
2

a

�
−H þ 1

ar

�
; ð25Þ

θp;i ¼
2

a

�
−H −

1

ar

�
: ð26Þ

Since we focus on the expanding universe H > 0, θf;o is
always positive and θp;i is always negative. θf;i and θp;o
change their sign at the cosmological apparent horizon

rAHðηÞ ≔
1

aðηÞHðηÞ : ð27Þ

For the inside of the apparent horizon [r0 ≤ rAHðη0Þ], the
ingoing directions (future-ingoing and past-ingoing) are
converging as in flat spacetime because the effect of the
expansion of the universe isweek enough.On the other hand,
for the outside of the apparent horizon (rAHðη0Þ ≤ r0), the
future directions are expanding due to the expansion of the
universe; in other words, both the past directions (past-
ingoing and past-outgoing) are converging. Hence, there are
future-ingoing light sheet Lf;i and past-ingoing light sheet
Lp;i inside the apparent horizon ½r0 ≤ rAHðη0Þ�. On the other
hand, there are past-ingoing light sheetLf;i andpast-outgoing
light sheet Lp;i outside the apparent horizon ðrAHðη0Þ ≤ r0Þ.
The singularity theorem is applicable when the hyper

entropic hypersurface is located in a trapped direction of σ.
For a sufficiently large sphere that is larger than the
apparent horizon, there are both ingoing and outgoing

light sheets, and hence the hyperentropic regions Σin and
Σout satisfy the conditions in the singularity theorem. On
the one hand, if one considers a sphere smaller than the
apparent horizon, Σout is actually hyperentropic but there is
no outgoing light sheet. Such a hypersurface does not
satisfy the assumption in the singularity theorem.

D. Entropy-to-area ratio for light sheets

Let us evaluate the entropy-to-area ratio in a general
setting where the conformal time is defined in η∈ ðηi; ηfÞ.
We note that ηi and ηf could be infinite.
In case where ηi is finite, we can define the particle

horizon by

rPHðηÞ ¼ η − ηi: ð28Þ

For rPH < r0, a past-ingoing light sheet Lp;i hits the η ¼ ηi
hypersurface.
Similarly, when ηf is finite, we can define the event

horizon by

rEHðηÞ ¼ −ηþ ηf : ð29Þ

For rEH < r0, a future-ingoing light sheet Lf;i hits the η ¼
ηf hypersurface.
When ηi ¼ −∞, there is no particle horizon. In this case

we regard rPH ¼ ∞. Similarly, when ηf ¼ þ∞, there is no
event horizon and we regard rEH ¼ ∞.
When the value of the r coordinate of a light sheet runs

r1 ≤ r ≤ r2, from Eqs. (13) and (15) the entropy-to-area
ratio can be evaluated as

SðLÞ
AðσÞ=4G ¼ 1

6π

sðη0Þ
M3

pl

aðη0Þr0
M−1

pl

r32 − r31
r30

: ð30Þ

1. Past-ingoing light sheets Lp;i

The past-ingoing light sheet Lp;i exists for any value of
r0. Let us calculate the entropy-to-area ratio for a past-
ingoing light sheet

Rp;iðr0; η0Þ ≔
SðLp;iÞ
AðσÞ=4G : ð31Þ

For r0 ≤ rPH, Lp;i does not intersect with the initial η ¼
ηi hypersurface and hence the coordinate value r of the light
sheet runs r∈ ½0; r0�. Thus, the entropy-to-area ratio of the
past-ingoing light sheet Rp;i is evaluated as

Rp;iðr0; η0Þ ¼
1

6π

sðη0Þ
M3

pl

aðη0Þr0
M−1

pl

; ð32Þ

for r0 ≤ rPHðη0Þ. The maximum value is obtained when
r0 ¼ rPHðη0Þ. Note that if there is no particle horizon
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rPH ¼ ∞, the entropy-to-area ratio of a past-ingoing light
sheet is unbounded. Thus, in order to satisfy the Bousso
bound, ηi must be finite.
For rPHðη0Þ < r0, Lp;i touches to the initial time slice

η ¼ ηi and hence the coordinate value r runs
r0 − rPHðη0Þ ≤ r ≤ r0. Thus, the entropy-to-area ratio
can be evaluated as

Rp;iðr0; η0Þ ¼
1

6π

sðη0Þ
M3

pl

aðη0Þr0
M−1

pl

r30 − ðr0 − rPHÞ3
r30

¼ 1

6π

sðη0Þ
M3

pl

aðη0ÞrPH
M−1

pl

�
3 − 3

rPH
r0

þ r2PH
r20

�
ð33Þ

for rPHðη0Þ < r0. Noting that 0 < rPH=r0 ≤ 1, it takes the
maximum value when r0 → ∞.
The maximum value of the entropy-to-area ratio of past-

ingoing light sheets from the η ¼ η0 slice

Rmax
p;i ðη0Þ ≔ max

r0 ∈ ½0;∞Þ
Rp;iðr0; η0Þ ð34Þ

can be evaluated as

Rmax
p;i ðη0Þ ¼ Rp;ið∞; η0Þ

¼ 1

6π

sðη0Þ
M3

pl

aðη0ÞrAHðη0Þ
M−1

pl

· 3
rPHðη0Þ
rAHðη0Þ

: ð35Þ

By the definition, ifRmax
p;i ðη0Þ ≤ 1, all the past-ingoing light

sheets starting from the η ¼ η0 slice satisfy the Bousso
bound, Rp;iðr0; η0Þ ≤ 1.

2. Future-ingoing light sheets Lf;i

The future-ingoing light sheet exists if r0 ≤ rAHðη0Þ. Let
us calculate the entropy-to-area ratio for a future-ingoing
light sheet defined by

Rf;iðr0; η0Þ ≔
SðLf;iÞ

AðσÞ=4G : ð36Þ

Below, we consider following two cases separately: rAH ≤
rEH and rEH < rAH.
In the case with rAH ≤ rEH, for any value of

r0 ≤ rAHð≤ rEHÞ, the entropy-to-area ratio for a future-
ingoing light sheet is given by

Rf;iðr0; η0Þ ¼
1

6π

sðη0Þ
M3

pl

aðη0Þr0
M−1

pl

: ð37Þ

It takes the maximum value when r0 ¼ rAH.
In the case with rEH < rAH, there are two kinds of future-

ingoing light sheets depending on the radius. One is with
r0 ≤ rEHð< rAHÞ, where the entropy-to-area ratio can be
evaluated as the above case:

Rf;iðr0; η0Þ ¼
1

6π

sðη0Þ
M3

pl

aðη0Þr0
M−1

pl

: ð38Þ

It takes the maximum value when r0 ¼ rEH. The other is the
light sheets with rEH < r0 ≤ rAH, where each light sheet
touches the time slice η ¼ ηf and hence the r coordinate
runs r0 − ðηf − η0Þ ≤ r ≤ r0. Then, the entropy-to-area
ratio can be evaluated as

Rf;iðr0;η0Þ ¼
1

6π

sðη0Þ
M3

pl

aðη0Þr0
M−1

pl

r30 − ðr0 − ðηf − η0ÞÞ3
r30

¼ 1

6π

sðη0Þ
M3

pl

aðη0ÞrEH
M−1

pl

�
3− 3

rEH
r0

þ r2EH
r20

�
: ð39Þ

Noting that

0 ≤
rEH
rAH

≤
rEH
r0

≤ 1; ð40Þ

the maximum value is obtained when r0 ¼ rAH. The
entropy-to-area ratio of the light sheet from r0 ¼ rAH
surface is greater than that from r0 ¼ rEH. Thus the
maximum value of the entropy-to-area ratio is given at r0 ¼
rAH even in the rEH < rAH case.
To summarize, letting Rmax

f;i ðη0Þ be the maximum value
of the entropy-to-area ratio for future-ingoing light sheets
from the time slice η ¼ η0,

Rmax
f;i ðη0Þ ≔ max

r0 ∈ ½0;rAHðη0Þ�
Rf;iðr0; η0Þ; ð41Þ

it is given by the value at the apparent horizon rAH,

Rmax
f;i ðη0Þ ¼ Rf;iðrAHðη0Þ; η0Þ

¼ 1

6π

sðη0Þ
M3

pl

aðη0ÞrAHðη0Þ
M−1

pl

×

8<
:

1; ðrAH ≤ rEHÞ
rEH
rAH

�
3 − 3

�
rEH
rAH

�
þ
�
rEH
rAH

�
2
�
; ðrEH < rAHÞ:

ð42Þ
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3. Past-outgoing light sheets Lp;o

The past-outgoing light sheet exists if rAH ≤ r0. Let us
calculate the entropy-to-area ratio for a past-outgoing light
sheet defined by

Rp;oðr0; η0Þ ≔
SðLp;oÞ
AðσÞ=4G : ð43Þ

Since the light sheet touches the initial time slice η ¼ ηi, the
coordinate value r runs r0 ≤ r ≤ r0 þ η0 − ηi. The entropy-
to-area ratio can be evaluated as

Rp;oðr0;η0Þ ¼
1

6π

sðη0Þ
M3

pl

aðη0Þr0
M−1

pl

ðr0 þ ðη0 − ηiÞÞ3 − r30
r30

¼ 1

6π

sðη0Þ
M3

pl

aðη0ÞrPH
M−1

pl

�
3þ 3

rPH
r0

þ r2PH
r20

�
; ð44Þ

for rAH ≤ r0. It takes the maximum value at r0 ¼ rAH. Thus,
by defining the maximum value of the entropy-to-area ratio
for the past-outgoing light sheets from the η ¼ η0 slice by

Rmax
p;o ðη0Þ ≔ max

r0 ∈ ½rAHðη0Þ;∞Þ
Rp;oðr0; η0Þ; ð45Þ

it can be evaluated as

Rmax
p;o ðη0Þ ¼ Rp;oðrAHðη0Þ; η0Þ

¼ 1

6π

sðη0Þ
M3

pl

aðη0ÞrAHðη0Þ
M−1

pl

×
rPH
rAH

�
3þ 3

�
rPH
rAH

�
þ
�
rPH
rAH

�
2
�
: ð46Þ

4. Summary of the calculations

Summarizing the above results, the maximum value of
the entropy-to-area ratio for the past-ingoing light sheets,
future-ingoing light sheets, and past-outgoing light sheets
from the η ¼ η0 surface are given by Eqs. (35), (42), and
(46), respectively. In order to satisfy the Bousso bound, all
of them should be smaller than 1. Let us define the
maximum value of the entropy-to-area ratio on the η ¼
η0 slice by

Rmaxðη0Þ ≔ maxfRmax
p;i ðη0Þ;Rmax

f;i ðη0Þ;Rmax
p;o ðη0Þg: ð47Þ

The Bousso bound on the η ¼ η0 slice can be rephrased as
Rmaxðη0Þ ≤ 1. Comparing Eqs. (35) with (46), the maxi-
mum value for the past-ingoing light sheets is always
smaller than that for the past-outgoing light sheets,
Rmax

p;i ðη0Þ < Rmax
p;o ðη0Þ. Thus the maximum value of the

entropy-to-area ratio is given by either that of the future-
ingoing light sheets or that of the past-outgoing light sheets.
Next, let RAH

sp ðη0Þ be the entropy-to-area ratio with
respect to the spatial volume Σin with r0 ¼ rAH. From
the definition (16), RAH

sp ðη0Þ reads

RAH
sp ðη0Þ ≔ RspðrAHðη0Þ; η0Þ

¼ 1

6π

sðη0Þ
M3

pl

aðη0ÞrAHðη0Þ
M−1

pl

: ð48Þ

Then, Rmaxðη0Þ can be represented as

Rmaxðη0Þ ¼ RAH
sp ðη0Þ ×

8>><
>>:

max
n
1; rPHrAH

�
3þ 3

�
rPH
rAH

�
þ
�
rPH
rAH

�
2
�o

; ðrAH ≤ rEHÞ;

max
n
rEH
rAH

�
3 − 3

�
rEH
rAH

�
þ
�
rEH
rAH

�
2
�
; rPHrAH

�
3þ 3

�
rPH
rAH

�
þ
�
rPH
rAH

�
2
�o

; ðrEH < rAHÞ:
ð49Þ

E. Our criterion for the cutoff time

The important observation here is that RAH
sp can be

expressed by the local quantity of the matter contents, the
entropy density s and the energy density ρ,

RAH
sp ðη0Þ ¼

1

6π

sðη0Þ
M3

pl

Mpl

Hðη0Þ
¼ 1

2
ffiffiffi
3

p
π

sðη0Þ
M3

pl

ffiffiffiffiffiffiffiffiffiffiffi
M4

pl

ρðη0Þ

s
; ð50Þ

where we used the Friedmann equation in the expanding
universe (8). Also, note that the inequality

rPH
rAH

�
3þ 3

�
rPH
rAH

�
þ
�
rPH
rAH

�
2
�

≤ 1 ð51Þ

is satisfied for rPH=rAH ≤ q� ≃ 0.260, where q� is defined
as the positive root of q�ð3þ 3q� þ q2�Þ ¼ 1. Then, we can
see that at least on the time slice η ¼ η0 satisfying
rPHðη0Þ=rAHðη0Þ ≤ q� ≃ 0.260, i.e., the time slice where
the particle horizon is sufficiently smaller than the apparent
horizon, the Bousso bound is guaranteed by assuming
the local condition RAH

sp ðη0Þ ≤ 1 because Rmaxðη0Þ ¼
RAH

sp ðη0Þ in this case. Motivating by this fact, we shall
propose the condition
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RAH
sp ðηcutÞ ¼

1

2
ffiffiffi
3

p
π

sðηcutÞ=M3
plffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρðηcutÞ=M4
pl

q ¼ Oð1Þ ð52Þ

as our criterion for introducing the cutoff time ηcut in
spacetime so that the Bousso bound is satisfied in the
resultant region. Depending on the situation, it might be a
past cutoff ηcut ¼ ηi or a future cutoff ηcut ¼ ηf . We will
expect that the description of classical gravity with entropic
fluid is valid only when RAH

sp ðη0Þ ≤ Oð1Þ. In the later
sections, we will explicitly check whether the Bousso
bound is actually satisfied in the entire region left after
introducing our cutoff (52).
We note that the behavior of RAH

sp is controlled by the
dominant energy condition because RAH

sp ðηÞ ∝ 1=ða3HÞ
and the time derivative can be evaluated as

∂ηR
AH
sp ðηÞ ∝ ∂η

�
1

a3H

�

¼ −3H2 − ∂tH
a2H2

¼ −4πGðρ − pÞ
a2H2

: ð53Þ

Thus, RAH
sp is decreasing in time if ρ > p, which follows

from the dominant energy condition ρ > jpj. In the case
where ρ > p is satisfied in the arbitrary past, we possibly
need to introduce the initial cutoff ηi based on our criterion.
On the one hand, if ρ < p is satisfied in the arbitrary future,
we possibly need to introduce the final cutoff ηf .
Let us see the relations between our criterion and others

used in the previous studies. In Refs. [18,22], the cutoff
time is introduced because of the curvature singularity.
Thus, the classical description of spacetime is considered to
be reliable until the energy density (or curvature of the
spacetime) approaches the Planck scale and the cutoff time
ηi is introduced by ρðηiÞ=M4

pl ∼Oð1Þ. In addition, the
entropy density on the cutoff surface is assumed to be
of the order 1 in the Planck unit, sðηiÞ=M3

pl ∼Oð1Þ. Our
criterion includes this previous criterion as a special case
where ρðηiÞ=M4

pl ∼Oð1Þ. One merit of our criterion is that
it is applicable even when the energy density remains
smaller than the Planck scale but the entropy density
diverges. This actually happens if one considers a geomet-
rically nonsingular universe that is consistent with the null
energy condition, as we will see later.

IV. CONSTANT EQUATION OF STATE

Let us focus on the case where the equation of state of the
fluid is given by p ¼ wρ with a constant w. We assume
w ≠ −1=3 for now, and the case w ¼ −1=3 is investigated
later. The conservation law of the energy-momentum tensor
can be solved as

ρ ¼ ρ̄

�
1

a

�
3ð1þwÞ

¼ ρ̄

�
1

a

�
2ð1þqÞ=q

; ð54Þ

where ρ̄ is the energy density per unit comoving volume
and we introduce a constant q by

q ¼ 2

1þ 3w
: ð55Þ

The correspondence between w and q is summarized in
Table I.
The Friedmann equation can be solved as

a ¼
�
η

η̄

�
q
; ð56Þ

with defining η̄ by

η̄ ¼ q

ffiffiffiffiffiffiffiffiffiffiffi
3

8πGρ̄

s
: ð57Þ

Here we fix the origin of the conformal time so that η ¼ η̄
corresponds to a ¼ 1. By this definition, the smooth
spacetime is defined in η∈ ð0;∞Þ for q > 0 and in
η∈ ð−∞; 0Þ for q < 0, that means the spacetime is con-
formally isometric to the upper half of the Minkowski space
for q > 0 and the lower half of the Minkowski space
for q < 0.
The Hubble parameter can be evaluated as

H ¼ ∂ηaðηÞ
aðηÞ2 ¼ q

η̄

�
η

η̄

�
−ð1þqÞ

: ð58Þ

The Hubble parameter H diverges at η ¼ 0 when
qþ 1 > 0, which corresponds to w < −1 or −1=3 < w.
H diverges at η ¼ −∞when qþ 1 < 0, which corresponds
to −1 < w < −1=3. These cases correspond to the scalar
curvature singularity. The quantity ∂tH=a2 diverges at η ¼
−∞ when q < −1=2 with q ≠ −1, which corresponds to
−5=3 < w < −1;−1 < w < −1=3. This case corresponds
to (nonscalar) curvature singularity [25–27]. See also

TABLE I. The correspondence between w and q.

w −∞ � � � −1 � � � −1=3 − 0 −1=3þ 0 � � � 0 � � � 1=3 � � � 1 � � � þ∞
q −0 ↘ −1 ↘ −∞ þ∞ ↘ 2 ↘ 1 ↘ 1=2 ↘ þ0
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Ref. [32] for the general analysis of the structure of the
FLRW universe with a constant equation of state.
Since aH ¼ ∂η log a ¼ q=η, the apparent horizon can be

evaluated as

rAHðηÞ ¼
η

q
: ð59Þ

The apparent horizon is timelike when jqj > 1
ð−1 < w < 1=3Þ, null when jqj ¼ 1 ðw ¼ −1; 1=3Þ, and
spacelike when jqj < 1 ðw < −1; 1=3 < wÞ.
Since RAH

sp ðηÞ scales as

RAH
sp ðηÞ ∝ 1

aðηÞð2q−1Þ=q ¼
1

aðηÞ3ð1−wÞ=2 ; ð60Þ

and our criterion requires RAH
sp ðηÞ < Oð1Þ for a spacetime

region in which the description of the system is trustable,
we need to introduce a past cutoff for w < 1 and a future
cutoff for w > 1.
From the first Friedmann equation (8), the energy

density of the fluid ρ must be positive. Then, to satisfy
the null energy condition, which is one of the assumptions
of the singularity theorem, we must have w ≥ −1. Thus,
below we consider the cases with w ≥ −1.

A. − 1 ≤ w < − 1=3
Let us consider the case with −1 ≤ w < −1=3 (q ≤ −1),

which represents the accelerated expanding universe con-
sistent with the null energy condition. In this case, the
conformal time is defined in η∈ ð−∞; 0Þ and the conformal
diagram can be written as Fig. 1.
Since w < 1, RAH

sp ðη0Þ diverges at η0 → −∞. Thus, by
our criterion, we need to introduce the initial cutoff time ηi
by RAH

sp ðηiÞ ¼ Oð1Þ. We would like to emphasize that this
cutoff is introduced independently from the presence of the
curvature singularity. For example, in the case of w ¼ −1,
η ¼ −∞ is a geometrically extendible regular boundary,
that is just a coordinate singularity of the flat chart of the de
Sitter universe. Nonetheless, we need a cutoff because, as
opposed to the de Sitter universe made by a cosmological
constant or a vacuum energy, we are assuming that the
universe is made by a thermal fluid with a nonzero entropy
current along comoving observers in the flat chart and the
entropy current is singular at the geometrically regular
boundary.
By introducing the initial cutoff ηi, the reliable region of

the spacetime is now defined in η∈ ðηi; 0Þ. Note that the
particle horizon appears by introducing the initial cutoff, as
well as the event horizon:

rPHðηÞ ¼ η − ηi; ð61Þ

rEHðηÞ ¼ −η: ð62Þ

The apparent horizon is given by

rAHðηÞ ¼
η

q
; ðq ≤ −1Þ: ð63Þ

The apparent horizon is always smaller than the event
horizon, rAH < rEH, and rPHðηiÞ=rAHðηiÞ ¼ 0. Thus, by
Eq. (49), we obtain RmaxðηiÞ ¼ RAH

sp ðηiÞ ¼ Oð1Þ.
The expression of Rmaxðη0Þ at an arbitrary time

η0 ∈ ðηi; 0Þ normalized by the value at η ¼ ηi can be
obtained as

Rmaxðη0Þ
RmaxðηiÞ

¼ ð−λÞ1−2q maxf1; qð1 − ð−λÞ−1Þ

× ½3þ 3qð1 − ð−λÞ−1Þ þ q2ð1 − ð−λÞ−1Þ2�g;
ð64Þ

with λ ¼ η0=jηij∈ ð−1; 0Þ. Note that λ is increasing from
−1 to 0 as η0 grows. The function (64) is plotted in Fig. 2.
The maximum value of this function is 1 for any q ≤ −1.
Hence the entropy-to-area ratio can be evaluated as

Rmaxðη0Þ ≤ RmaxðηiÞ ¼ RAH
sp ðηiÞ ¼ Oð1Þ; ð65Þ

where the last equality follows from the definition of the
initial cutoff ηi based on our criterion. This relation tells us
that the Bousso bound is satisfied everywhere in the reliable

FIG. 1. Penrose diagram of the accelerated expanding flat
FLRW universe with −1 < w < −1=3: The gray region is the
region excluded by the initial cutoff ηi. The solid lines express the
particle horizon rPH and the event horizon rEH. The dashed curve
represents the apparent horizon rAH. For w ¼ −1 (flat de Sitter
universe), the curvature singularity (wavy line) must be replaced
by the extendible boundary. In this case, the apparent horizon is
null and coincides with the event horizon.
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region η0 ∈ ðηi; 0Þ, in the sense Rmaxðη0Þ ≤ Oð1Þ, once the
cutoff ηi is introduced by our criterion.

B. − 1=3 < w < 1

Next, we consider the decelerated expanding universe
fulfilled with a fluid with a constant equation-of-state
parameter −1=3 < w < 1, which corresponds to
q > 1=2. This fluid satisfies both the strong energy con-
dition and the dominant energy condition. The conformal
time runs η∈ ð0;∞Þ, and hence the universe is conformally
isometric to the upper half of the Minkowski space. Since
the Hubble parameter diverges at η → 0, there corresponds
to the initial scalar curvature singularity. Since w < 1,RAH

sp

also diverges at η → 0. By our criterion, we need to
introduce the initial cutoff time ηi by RAH

sp ðηiÞ ¼ Oð1Þ.
The Penrose diagram can be drawn as Fig. 3. There is the
particle horizon rPHðηÞ ¼ η − ηi but there is no event
horizon rEH ¼ ∞.
On the cutoff time slice η ¼ ηi, the particle horizon is

located at rPHðηiÞ ¼ 0 but the apparent horizon is located at
rAHðηiÞ ≠ 0. Hence, the maximum value of the entropy-to-
area ratio RmaxðηiÞ reduces to RAH

sp ðηiÞ, which should be
Oð1Þ by our criterion to introduce the cutoff time.
The maximum value of the entropy-to-area ratio on a

time slice η ¼ η0 ∈ ðηi;∞Þ normalized by the value on the
initial time slice η ¼ ηi can be evaluated as

Rmaxðη0Þ
RmaxðηiÞ

¼ λ1−2qmaxf1; qð1 − λ−1Þ

× ½3þ 3qð1 − λ−1Þ þ q2ð1 − λ−1Þ2�g; ð66Þ

with λ ≔ η0=ηi ∈ ð1;∞Þ. The function (66) is plotted in
Fig. 4. The plots show that Rmaxðη0Þ=RmaxðηiÞ is bounded
above by 19=8. Thus we obtain

Rmaxðη0Þ <
19

8
RmaxðηiÞ ¼

19

8
RAH

sp ðηiÞ ¼ Oð1Þ: ð67Þ

This relation shows that the universe satisfies the Bousso
bound in the sense Rmaxðη0Þ ≤ Oð1Þ for any time η0 ≥ ηi
once the initial cutoff ηi is introduced.
We would like to emphasize that the result (67) is

nontrivial. The maximum value of the entropy-to-area ratio
for the Bousso bound at any time slice η ¼ η0,Rmaxðη0Þ, is
bounded above in terms of the ratio for the spatial entropy
bound at the initial time η ¼ ηi, RAH

sp ðηiÞ. Comparing the
ratio for the Bousso bound to the ratio for spatial entropy

FIG. 2. Plots of Rmaxðη0Þ=RmaxðηiÞ for −1 ≤ w < −1=3
ðq ≤ −1Þ: the plots in different colors represent different values
of q. Every plot is bounded above by 1 represented by the
dashed line.

FIG. 3. Penrose diagram of the decelerated expanding flat
FLRW universe with −1=3 < w < 1: The gray region is the
region excluded by the initial cutoff ηi. The solid line expresses
the particle horizon rPH. Depending on the value of the parameter
q, the apparent horizon rAH becomes timelike, null, or spacelike,
which are expressed by the dashed curves.

FIG. 4. Plots of Rmaxðη0Þ=RmaxðηiÞ for −1=3 < w < 1 ðq >
1=2Þ :the plots in different colors represent different values of q.
For q≳ 6.79, the maximum value is 1. For 1=2 < q≲ 6.79, the
maximum value is greater than 1 but it is bounded above by 19=8,
which is represented by the bold dashed line.

KANAI, NOMURA, and YOSHIDA PHYS. REV. D 108, 104024 (2023)

104024-10



bound on the same time slice η ¼ η0, we obtain [see
Eq. (49)]

Rmaxðη0Þ ∼ qð3þ 3qþ q2ÞRAH
sp ðη0Þ: ð68Þ

Note that the factor qð3þ 3qþ q2Þ becomes arbitrarily
large when the equation-of-state parameter w is close to
−1=3. In this case, our criterion applied to the η ¼ η0 slice,
that is, the requirement RAH

sp ðη0Þ ≤ Oð1Þ does not guar-
antee the validity of the Bousso bound. Nonetheless, our
analysis shows that the Bousso bound at the η ¼ η0 slice is
guaranteed by our requirement at the initial time slice
η ¼ ηi.

C. w > 1

Let us investigate the case of w > 1 (0 < q < 1=2),
where the dominant energy condition is violated. The
conformal time is defined in η∈ ð0;∞Þ, and the Penrose
diagram is given as Fig. 5. Since RAH

sp ðη0Þ diverges at
η0 → ∞, we need to introduce the future cutoff ηf by
RAH

sp ðηfÞ ¼ Oð1Þ. As a result, we have both the event
horizon and the particle horizon:

rEH ¼ −ηþ ηf ;

rPH ¼ η: ð69Þ

We also have the apparent horizon rAH ¼ η=q as usual.
Since there is the initial curvature singularity, it is natural

to introduce an initial cutoff ηi. However, to calculate the
entropy-to-area ratio, the presence of the curvature singu-
larity itself is not an obstacle to completing the analysis. For
this reason, we will assume ηi ¼ 0 in the following.
On the future cutoff slice η ¼ ηf , the apparent horizon

rAH and the particle horizon rPH are finite but the event
horizon vanishes by the definition. Hence we obtain

RmaxðηfÞ ¼ qð3þ 3qþ q2ÞRAH
sp ðηfÞ; ð70Þ

where we used rPH=rAH ¼ q. Since q∈ ð0; 1=2Þ, the factor
is bounded as

0 < qð3þ 3qþ q2Þ < 19

8
: ð71Þ

Thus, it is Oð1Þ.
The expression of Rmaxðη0Þ, i.e., the maximum value of

the entropy-to-area ratio on the η ¼ η0 surface, with
normalizing the value on η ¼ ηf , can be evaluated as

Rmaxðη0Þ
RmaxðηfÞ

¼

8>><
>>:

λ1−2q max
n

1
qð3þ3qþq2Þ ; 1

o
;

�
0 < λ ≤ q

1þq

�
;

λ1−2q max
n
ð−1þλ−1Þ½3−3ð−1þλ−1Þqþð−1þλ−1Þ2q2�

3þ3qþq2 ; 1
o
;

�
q

1þq < λ < 1

�
:

ð72Þ

Here λ is defined by λ ≔ η0=ηf ∈ ð0; 1Þ. The function
(72) is plotted as Fig. 6. One can check that if
q > q� ≃ 0.260, it can be written by a single function:

FIG. 5. Penrose diagram of the decelerated expanding flat
FLRW universe with w > 1: the gray region is the region
excluded by the final cutoff ηf . The solid lines express the
particle horizon rPH and the event horizon rEH. The dashed curve
represents the apparent horizon rAH.

FIG. 6. Plots of Rmaxðη0Þ=RmaxðηfÞ for w > 1 ð1 < q < 1=2Þ:
the plots in different colors represent different values of q. Every
plot is bounded above by 1 represented by the dashed line.
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Rmaxðη0Þ
RmaxðηfÞ

¼ λ1−2q; ð73Þ

which means that the entropy-to-area ratio of the past-
outgoing light sheets is always greater than that of the
future-ingoing light sheets. In any case, the function (72) is
bounded above by 1, and hence we obtain

Rmaxðη0Þ ≤ RmaxðηfÞ ¼ qð3þ 3qþ q2ÞRAH
sp ðηfÞ

<
19

8
RAH

sp ðηfÞ ¼ Oð1Þ; ð74Þ

where the last equality follows from the definition of ηf
based on our criterion. This relation shows that the Bousso
bound is satisfied for any η0 ∈ ð0; ηfÞ in the sense
Rmaxðη0Þ ≤ Oð1Þ once the cutoff ηf is introduced by our
criterion.

D. w= 1

Let us consider the case ofw ¼ 1 ðq ¼ 1=2Þ. In this case,
RAH

sp is constant in time; see Eq. (60). Thus, our criterion
leads to the upper bound of the entropy density itself,

RAH
sp ¼ 1

2
ffiffiffi
3

p
π

s̄=M3
plffiffiffiffiffiffiffiffiffiffiffiffi

ρ̄=M4
pl

q ≤ Oð1Þ; ð75Þ

not the presence of a cutoff time. The Penrose diagram of
this universe is the same as the case −1=3 < w < 1 (Fig. 3)
and w > 1 (Fig. 5), except for the absence of the past/future
cutoff. Then the particle horizon is given by

rPHðηÞ ¼ η; ð76Þ

and there is no event horizon, rEH ¼ ∞. The apparent
horizon is given by

rAHðηÞ ¼ 2η: ð77Þ

An important point here is that the ratio rPH=rAH is
constant:

rPHðηÞ
rAHðηÞ

¼ 1

2
: ð78Þ

Since 2−1ð3þ 3 · 2−1 þ 2−2Þ ¼ 19=8 > 1, from Eq. (49),
we obtain

Rmaxðη0Þ ¼
19

8
RAH

sp ðη0Þ ≤ Oð1Þ; ð79Þ

where the last inequality follows from our criterion (75).
Hence, the Bousso bound is always satisfied in the sense
Rmaxðη0Þ ≤ Oð1Þ if our criterion (75) is satisfied.

E. w= − 1=3
Finally, let us consider the case of w ¼ −1=3, where the

universe is expanding with a uniform velocity. The energy
density and the scale factor can be represented as

ρ ¼ ρ̄

a2
; a ¼ eη=η̄; ð80Þ

with a constant η̄ defined by

η̄ ≔

ffiffiffiffiffiffiffiffiffiffiffi
3

8πGρ̄

s
: ð81Þ

Since η is defined in η∈ ð−∞;∞Þ, the spacetime is
conformally isometric to the whole of Minkowski space-
time. The Penrose diagram of this spacetime is shown in
Fig. 7. The Hubble parameter can be evaluated as

H ¼ 1

η̄
e−η=η̄: ð82Þ

Since the Hubble parameter diverges as η → −∞, there
corresponds to a scalar curvature singularity.

FIG. 7. Penrose diagram of the expanding flat FLRW universe
with a uniform velocity w ¼ −1=3: the gray region is the region
excluded by the initial cutoff ηi. The solid line expresses the
particle horizon rPH. The dashed curve represents the apparent
horizon rAH.

KANAI, NOMURA, and YOSHIDA PHYS. REV. D 108, 104024 (2023)

104024-12



Since RAH
sp scales as a−2 from Eq. (60), we need to

introduce an initial cutoff time ηi by RAH
sp ðηiÞ ¼ Oð1Þ

based on our criterion. Then, there is the particle horizon

rPHðηÞ ¼ η − ηi; ð83Þ

whereas there is no event horizon rEH ¼ ∞. The apparent
horizon is given by

rAHðηÞ ¼ η̄: ð84Þ

Since rPHðηiÞ=rAHðηiÞ ¼ 0, we have RmaxðηiÞ ¼ RAH
sp ðηiÞ

on the initial time slice.
By introducing λ ¼ ðη0 − ηiÞ=η̄∈ ð0;∞Þ, we have

Rmaxðη0Þ
RmaxðηiÞ

¼ e−2λ max f1; λð3þ 3λþ λ2Þg; ð85Þ

which is plotted in Fig. 8. This function has the maximum
value 1 at λ ¼ 0. ThusRmaxðη0Þ ≤ RmaxðηiÞ ¼ RAH

sp ðηiÞ ¼
Oð1Þ and the Bousso bound is satisfied for any η0 ∈ ðηi;∞Þ
in the sense Rmaxðη0Þ ≤ Oð1Þ once the initial cutoff ηi is
introduced by our criterion.

V. NONSINGULAR UNIVERSE

In the previous section, we have checked that the Bousso
bound is satisfied in any region for any constant equation-of-
state parameter that follows the null energy condition
w ≥ −1, once the cutoff time is introduced based on our
criterion. Note that the casew ¼ −1 can provide an example
of the geometrically nonsingular flat FLRW universe as
mentioned in Sec. IVA. In this section, we check the validity
of the Bousso bound for another nontrivial example of the
geometrically nonsingular flat FLRW universe.
To obtain the nonsingular expanding flat FLRWuniverse,

we first need to consider the accelerated expanding universe
in the early stage. Otherwise, there must be the big bang
initial singularity. However, by the Borde–Guth–Vilenkin

theorem [28] (see also Ref. [29]), there are geodesics
incomplete in the past in an accelerated expanding universe.
One possible way to obtain the nonsingular universe is that
the endpoints of such past incomplete geodesics are extend-
ible. In other words, the initial “singularity” of the accel-
erated expanding flat FLRW universe must be a coordinate
singularity like the flat de Sitter spacetime. The presence or
absence of the (scalar and nonscalar) curvature singularity is
clarified in Refs. [25–27]. There, it is found that the past
boundary a ¼ 0 is not a curvature singularity when ∂tH=a2

is finite there, though it might be inextendible by a global
topological reason [30].
Here we focus on a simple and analytic example of the

geometrically nonsingular flat FLRW universe following
the null energy condition investigated in Ref. [8], that has
topologically S3 Cauchy surfaces after the maximal exten-
sion beyond the initial coordinate singularity at a ¼ 0. The
scale factor of this universe, defined only in the flat chart, is
given by

aðtÞ ¼ eH̄tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2H̄t

p ; ð86Þ

where H̄ is a positive constant. The Penrose diagram of this
universe is shown in Fig. 9.
The first remark is that, based on our criterion (52), we

need to introduce the past cutoff on the flat chart because
RAH

sp diverges at a → 0. This is because a ¼ 0 is geomet-
rically nonsingular and hence ρ is finite there, but the
adiabatic entropy current diverges there, s → ∞. This is a
common property of geometrically nonsingular flat FLRW
universes that follow the null energy condition. Note that,
regarding the spacetime region after introducing the initial
cutoff on the flat chart as the whole spacetime, it has
Cauchy surfaces with the topology R3, not S3.
In addition, with our specific choice of the scale factor

(86), the dominant energy condition is violated in a
sufficient future. Actually, RAH

sp diverges in the infinite
future and we also need to introduce the future cutoff ηf .
Let us calculate the maximum value of the entropy-to-

area ratio Rmax. Since our scale factor a∈ ð0; 1Þ is a
monotonically increasing function in time, let us use a as
the time. The Hubble parameter can be expressed as

HðaÞ ¼ ð1 − a2ÞH̄: ð87Þ

Then, we get the expression of RAH
sp as a function of a,

RAH
sp ðaÞ ¼ s̄

6πH̄M2
pl

1

a3ð1 − a2Þ : ð88Þ

From our criterion, the cutoff times are introduced by
RAH

sp ðaiÞ ¼ Oð1Þ and RAH
sp ðafÞ ¼ Oð1Þ. Assuming ai ≪ 1

and 1 − af ≪ 1, we obtain

FIG. 8. Plot of Rmaxðη0Þ=RmaxðηiÞ for w ¼ −1=3: the maxi-
mum value is bounded above by 1.
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ai ∼Oð1Þ ·
�

s̄
6πH̄M2

pl

�
1=3

; ð89Þ

af ∼ 1 −Oð1Þ · 1
2

s̄
6πH̄M2

pl

: ð90Þ

From the expression of H, we can write the apparent
horizon as

rAHðaÞ ¼
1

að1 − a2ÞH̄ : ð91Þ

By the definition of the conformal time, we can express the
conformal time as a function of a as

ηðaÞ ¼ −
1

aH̄
þ 1

H̄
ArctanhðaÞ: ð92Þ

Then, the event horizon and the particle horizon can be
expressed as functions of a,

rEHðaÞ ¼
1

H̄

�
1

a
−

1

af
−ArctanhðaÞþArctanhðafÞ

�
; ð93Þ

rPHðaÞ¼−
1

H̄

�
1

a
−
1

ai
−ArctanhðaÞþArctanhðaiÞ

�
: ð94Þ

Since rPHðaiÞ ¼ 0 and rAHðaiÞ ≠ 0, we obtain RmaxðaiÞ ¼
RAH

sp ðaiÞ, and hence the Bousso bound is satisfied at the
initial cutoff slice.
Then the plots of RmaxðaÞ=RmaxðaiÞ are given in

Fig. 10. Here the cutoffs are chosen as

ai ¼ 10−n=3; af ¼ 1 −
1

2
× 10−n; ð95Þ

which corresponds to the choice

s̄
6πH̄M2

pl

¼ 10−n; ð96Þ

and theOð1Þ coefficients inEqs. (89) and (90) are set to unity.
The plots show thatRmaxðaÞ ≤ RmaxðaiÞ for anya∈ ðai; afÞ
and any choice of the cutoff parameter n in Eq. (95). Hence,
the Bousso bound is always satisfied in a∈ ðai; afÞ in the
senseRmaxðaÞ ≤ Oð1Þ once the initial cutoffai is introduced
based on our criterion RAH

sp ðaiÞ ¼ Oð1Þ.

VI. SUMMARY AND DISCUSSION

In this paper, we proposed a criterion for introducing a
cutoff time for the flat homogeneous and isotropic universe
so that Bousso’s entropy bound is satisfied over the entire
resultant spacetime region. Our criterion is expressed by
Eq. (52), RAH

sp ðηcutÞ ¼ Oð1Þ. This implies that the spatial
entropy bound with respect to the apparent horizon must be
satisfied, RAH

sp ðηÞ ≤ Oð1Þ, for a physically reasonable
spacetime region. We have explicitly checked that, after

FIG. 9. Penrose diagram of the geometrically nonsingular
universe with the scale factor (86): The gray region is the region
excluded by the initial cutoff ηi. The solid lines express the
particle horizon rPH and the event horizon rEH. The dashed curve
represents the apparent horizon rAH. The long dashed line is the
extendible boundary. There, the scale factor vanishes a ¼ 0 but it
is the coordinate singularity. The original coordinate system only
covers the triangle region above the extendible boundary. Below
the boundary, there is a contracting universe that can be obtained
by flipping the time from the original metric. Now the entire
contracting region is excluded by our cutoff.

FIG. 10. Plots of Rmaxðη0Þ=RmaxðηiÞ for the geometrically
nonsingular universe: the plots in different colors represent differ-
ent choices of the cutoff. In any case, the maximum value is 1.
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introducing the cutoff based on our criterion, the Bousso
bound is always satisfied in the universe with a fluid with a
constant equation-of-state parameter consistent with the
null energy condition. In addition, we have investigated
the validity of the Bousso bound in an example of the
geometrically nonsingular universe and found that our
criterion works well even in this case. While the criterion
used in the previous works [18,22] is applicable only near a
curvature singularity, our criterion works even for the
geometrically nonsingular universe. Our result suggests
that the incompleteness predicted by the singularity theo-
rem based on the entropy bounds means the presence of a
geometrical singularity or a too large amount of entropy as
our criterion (52), at least for the examples of the flat
FLRW universe investigated in this paper. This result is
reasonable because the geometrically nonsingular, spatially
flat, homogeneous, and isotropic universe that follows the
null energy condition is possible only when a ¼ 0 is the
coordinate singularity [25]. However, with the assumption
of the nonzero adiabatic entropy current, a ¼ 0 becomes a
kind of singularity of the entropy density sðtÞ → ∞, even
though it is geometrically regular (coordinate singularity).
Though the spatial entropy bound and the Bousso bound

are nonlocal properties of the system, our criterion itself is
expressed by local quantities: entropy density and the
energy density, thanks to the homogeneity and isotropy
of the spacetime. Thus it might be able to understand the
necessity of the cutoff from the viewpoint of local physics,
like a cutoff based on a curvature singularity. If one applies
the Bekenstein bound (1) for a Planck volume, S ∼ sM−3

pl ,
E ∼ ρM−3

pl and R ∼M−1
pl , we obtain sM−3

pl < # · ρM−4
pl with

a numerical factor #. In addition, assuming the energy

density is below the Planck scale cutoff, ρM−4
pl < 1, our

criterion is automatically satisfied:

ðsM−3
pl Þ2 < # · ðρM−4

pl Þ2 < # · ρM−4
pl : ð97Þ

Thus the Bekenstein bound for a Planck volume below the
Planck energy scale is a sufficient condition for the
Bousso bound.
In this paper, we just checked our criterion with a few

examples of the expanding universe consistent with the null
energy condition. It is interesting to check whether our
criterion works well for more general universes and give
proof of the Bousso bound from our criterion. One possible
hint might be the proof of the Bousso bound based on the
entropy current given in Ref. [23]. One of the sets of
assumptions are

ðsμkμÞ2 ≤ α1Tμνkμkν; ð98Þ
jkμkν∇μsνj ≤ α2Tμνkμkν; ð99Þ

for any null vector kμ∂μ, where the positive constants α1 and
α2 are assumed to satisfy ðπα1Þ1=4 þ ðα2=πÞ1=2 ¼ 1. If the
null vector kμ∂μ is replaced with a timelike vector, the
above requirement would reduce to the inequality that
states the square of the entropy density should be smaller
than energy. That is basically nothing but our criterion.
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