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We report on critical phenomena in the gravitational collapse of the electromagnetic field in
axisymmetry using cylindrical coordinates. We perform detailed numerical simulations of four
families of dipole and quadrupole initial data fine-tuned to the onset of black hole formation. It has
been previously observed that families that bifurcate into two on-axis critical solutions exhibit distinct
growth characteristics from those that collapse at the center of symmetry. In contrast, our results
indicate similar growth characteristics and periodicity across all families of initial data, including
those examined in earlier works. More precisely, for all families investigated, we observe power-law
scaling for the maximum of the electromagnetic field invariant (max jFμνFμνj ∼ jp − p⋆j−2γ) with
γ ≈ 0.149ð9Þ. We find evidence of approximate discrete self-similarity in near-critical time evolutions
with a log-scale echoing period of Δ ≈ 0.62ð8Þ across all families of initial data. Our methodology,
while reproducing the results of prior studies up to a point, provides new insights into the later stages
of critical searches and we propose a mechanism to explain the observed differences between our
work and the previous calculations.
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I. INTRODUCTION

In this paper, we report results from an investigation
of critical collapse in the Einstein-Maxwell (EM) system,
a model where the electromagnetic field is coupled to the
general relativistic gravitational field. We start with a brief
review of black hole critical phenomena in gravitational
collapse and direct those unfamiliar with the subject to the
comprehensive review articles [1,2].
When studying the critical collapse of a gravitational

system, we consider the evolution of a single parameter
family of initial data with the parameter p chosen such that
when p is sufficiently small, the gravitational interaction is
weak. As the magnitude of p is increased, the gravitational
interaction becomes strong and, for sufficiently large p,
the time evolution of the system eventually results in a
spacetime containing a black hole. By carefully tuning p,
we find a critical parameter p⋆ representing the threshold
of black hole formation for that particular family of initial
data. The behavior of solutions arising in the near-critical
regime p → p⋆ is complex and varied; its study comprises
the core of what is referred to as critical phenomena in
gravitational collapse.
Depending on the particulars of the model, we may find

behavior such as the existence of universality in the critical
solutions, the scaling of physical quantities as functions of
jp − p⋆j, or symmetries of the critical solution beyond
those imposed by the initial data or model. Here, we are
exclusively interested in type II critical phenomena, which

was first studied in the context of the collapse of a massless
scalar field in spherical symmetry [3].
Type II critical phenomena are typically seen in systems

with massless or highly relativistic matter fields. For these
systems, the critical point p⋆ partitions the phase space of
solutions in two such that for p < p⋆ we have complete
dispersal, while for p > p⋆ the final state of the system
contains a black hole: the critical solution, which is
transient and represents neither dispersal nor black hole
formation, sits at the interface of these two regions. Most
studies of type II critical phenomena have been performed
in the context of spherical symmetry, and until stated
otherwise we will restrict attention to the spherically
symmetric case.
A fundamental property of all type II critical solutions

that have been determined to date is that they are self-
similar. Depending on the specific matter content of the
system under consideration, the critical solution may be
either continuously self-similar (CSS) or discretely self-
similar (DSS). For a CSS spacetime in coordinates adapted
to the symmetry, the metric coefficients take the form [2]

gabðτ; xiÞ ¼ e−2τ g∼abðxiÞ; ð1Þ

where τ is the negative logarithm of a spacetime scale and
xi are generalized dimensionless angles about the critical
point. For DSS spacetimes in adapted coordinates, we have
instead [2]
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gabðτ; xiÞ ¼ e−2τ g∼abðτ; xiÞ; ð2Þ
g∼abðτ; xiÞ ¼ g∼abðτ þ Δ; xiÞ; ð3Þ

where g∼ab is function of τ and xi which is periodic in τ with
period Δ. Therefore, in the vicinity of p⋆, a DSS critical
solution exhibits periodic scale invariance in length and
time. In almost all cases that have been studied in spherical
symmetry, the critical solutions that have been found (for
both types of self-similarity) are universal, by which we
mean that they do not depend on the specifics of the initial
data families that are used to generate them [2,4–6]. The
echoing period Δ when it exists, is similarly universal.
For systems with a CSS critical solution, invariant

dimensionful quantities, such as the mass of the resulting
black hole in the supercritical regime, scale according to

lnðMÞ ¼ γ ln jp − p⋆j þ cM; ð4Þ

where γ is a universal exponent and cM is some family-
dependent constant. When the critical solution is DSS,
a universal periodic function fM with period Δ is super-
imposed on this basic power law [2]

lnðMÞ ¼ γ ln jp − p⋆j þ fMðγ ln jp − p⋆jÞ þ cM: ð5Þ

Other dimensionful quantities scale in a corresponding
manner. For example, if we were to look at the maximum
energy density ρmax encountered during a given subcritical
simulation (performed in coordinates adapted to the self-
similarity), we would have

lnðρmaxÞ ¼ −2γ ln jp − p⋆j þ fρðγ ln jp − p⋆jÞ þ cρ; ð6Þ

where fρ is another universal periodic function and cρ is
another family-dependent constant. Although type II criti-
cal solutions are generically unstable, they tend to be
minimally so: they typically have a single unstable mode
in perturbation theory and, in the above scaling laws,
γ turns out to be the inverse of the Lyapunov exponent of
this unstable mode.
Since the original spherically symmetric scalar field

work, many other models have been thoroughly inves-
tigated. Going beyond spherical symmetry, among the
most important studies are those of the critical collapse
of axisymmetric vacuum gravitational waves, originally
examined by Abrahams and Evans [7,8]. The study of
vacuum critical collapse provides a means of achieving
arbitrarily large spacetime curvatures outside of a black
hole through purely gravitational processes. In the critical
limit this culminates in the formation of a naked singularity,
which continues to be an object of great theoretical interest.
Fundamentally, although the critical features are not unique
to the vacuum case, the vacuum provides the most natural
gravitational context and is therefore most likely to provide

information relevant to the studies of quantum gravity and
cosmic censorship.
Simulations of vacuum critical collapse have proven

to be difficult and replication (or otherwise) of early
results has been challenging. It has only been in the past
few years that work in this context has seen significant
progress [9–15]. In particular, advances in formalisms
and in the choices of gauge has enabled groups to expand
upon the original work of Abrahams and Evans. In gene-
ral, investigations into the collapse of non-spherically-
symmetric systems have yielded far more complicated
pictures than their spherically symmetric counterparts, with
family-dependent scaling and splitting of the critical
solution into distinct loci of collapse appearing in a number
of models [2,7,8,10,14–18].
Turning now to the EM system, we note that, as in the case

of the pure Einstein vacuum, the model has no dynamical
freedom in spherical symmetry and must therefore exhibit
nonspherical critical behavior. Recently, Mendoza and
Baumgarte [17] and Baumgarte et al. [18] investigated
the critical collapse of the EM model in axisymmetry.
Using a covariant version of the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) formalism in spherical polar
coordinates, they found evidence for family-dependent
critical solutions for dipole and quadrupole initial data.
Specifically, for each type of initial data, distinct values
of γ and Δ were found.
In this paper, we present the results of our own inves-

tigation into the critical collapse of the EM system, also
in axisymmetry, but using cylindrical coordinates. We
incorporate an investigation of the critical behavior in
the well-studied massless scalar field model to test and
calibrate our code, as well as to verify the validity of our
analysis procedures which are then applied to the more
complicated EM system.
We investigate a total of five families of initial data for

the EM model, three of which are new and the other two
which are chosen in an attempt to replicate the experiments
of Baumgarte and co-workers [17,18]. In contrast to the
prior work, which yielded distinct scaling exponents for the
quadrupolar computations relative to the dipolar ones, we
find evidence of universality in γ and Δ across all families.
We do not, however, observe evidence for universality in
the periodic functions fi as defined in (5) and (6).
For dipolar-type initial data we find that the collapse

occurs at the center of symmetry (in this case the coordinate
origin) and that the EM fields maintain a roughly dipolar
character throughout the collapse process. Conversely,
for quadrupolar initial data, we observe that the system
eventually splits into twowell-separated, on-axis, centers of
collapse. That is, after the initial data are evolved for some
period of time, the matter splits into two distributions of
equal magnitude, each centered on the ρ ¼ 0 axis, with one
distribution centered at positive z and the other at a
corresponding location below the z ¼ 0 plane. After this
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bifurcation occurs, the matter continues the process of
collapse. In the limit that p → p⋆, the matter collapses at
the points ðz; ρÞ ¼ ðzc; 0Þ and ðz; ρÞ ¼ ð−zc; 0Þ; these are
the points at which a naked singularity would form in the
critical limit and we refer to them as accumulation points.
Although the evolution of quadrupole initial data prior to
the bifurcation is initially consistent with [17], subsequent
collapse at the mirrored centers appears to become domi-
nated by a critical solution that exhibits similar properties to
the dipole cases.

II. BACKGROUND

Our investigation is restricted to the case of axial
symmetry. In terms of Cartesian coordinates ðx; y; zÞ we
adopt the usual cylindrical coordinates ðz; ρ;ϕÞ,

z ¼ z; ð7Þ

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
; ð8Þ

ϕ ¼ arctan

�
y
x

�
: ð9Þ

For both the generation of initial data and their eventual
evolution, we limit our investigation to the case of zero
angular momentum and adopt the line element

ds2 ¼ ð−α2 þ ρ2βρβ
ρ þ βzβ

zÞdt2
þ ð2βzdzþ 2ρβρdρÞdt
þ ðGadz2 þGbdρ2 þ ρ2Gcdϕ2 þ 2ρGddzdρÞ;

ð10Þ

with corresponding metric

gμν ¼
�−α2 þ βlβ

l βj

βi γij

�
;

¼

0

BBBBB@

−α2 þ ρ2βρβ
p þ βzβ

z βz ρβρ 0

βz Ga ρGd 0

ρβρ ρGd Gb 0

0 0 0 ρ2Gc

1

CCCCCA
:

ð11Þ

Here and below, all spacetime functions g have coordinate
dependence gðt; z; ρÞ. For convenience in our numerical
calculations and derivations, we have chosen the form of
the metric components in (11) so that all of the basic
dynamic variables satisfy

lim
ρ→0

gðt; z; ρÞ ¼ g0ðt; zÞ þ ρ2g2ðt; zÞ þ…: ð12Þ

Thus, all of the dynamical variables have even character
about ρ ¼ 0. Using standard definitions of the spatial stress
tensor Sij (with spatial trace S), momentum ji, and energy
density ρE, we have

Sij ¼ γαiγ
β
jTαβ; ð13Þ

S ¼ γijSij; ð14Þ
ji ¼ −γijγμjnνTμν; ð15Þ
ρE ¼ nμnνTμν: ð16Þ

We adopt the generalized BSSN (GBSSN) decomposi-
tion of Brown [19–23] and take the so-called Lagrangian
choice for the evolution of the determinant of the conformal
metric,

∂tγ̂ ¼ 0; ð17Þ
such that the equations of motion are given by

Lm ¼ ð∂t − LβÞ; ð18Þ

Lmχ ¼ −
1

6
αK þ 1

6
D̂mβ

m; ð19Þ

LmK¼−D2αþα

�
ÂijÂ

ijþ1

3
K2

�
þ4παðρEþSÞ; ð20Þ

Lmγ̂ij ¼ −2αÂij −
2

3
γ̂ijD̂mβ

m; ð21Þ

LmÂij ¼ e−4χ ½−DiDjαþ αRij − 8παSij�TF

−
2

3
ÂijD̂mβ

m þ α

�
KÂij − 2ÂikÂ

k
j

�
; ð22Þ

LmΛ̂i¼ γ̂mnD̊mD̊nβ
i−2ÂimD̂mα

þ2α

�
6ÂijD̂jχ−

2

3
γ̂ijD̂jK−8πĵi

�

þ1

3

h
D̂i

�
D̂nβ

n
�
þ2Λ̂iD̂nβ

n
i
þ2αÂmnΔ̂i

mn: ð23Þ

These equations introduce two additional metrics: the
conformal metric γ̂ij,

γ̂ij ¼ e−4χγij ¼

0

BB@

ga ρgd 0

ρgd gb 0

0 0 ρ2gc

1

CCA; ð24Þ

and a flat reference metric ̊γij,

̊γij ¼

0

B@

1 0 0

0 1 0

0 0 ρ2

1

CA; ð25Þ

which shares the same divergence characteristics as γ̂ij
and serves to regularize several quantities related to the
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contracted Christoffel symbols. In (19)–(23), hats denote
quantities raised with γ̂ij, while D̂ and D̊ denote covariant
differentiation with respect to the conformal metric and flat
reference metric, respectively.
In (22), the Ricci tensor is split into conformal and scale

components via

Rij ¼ R̂ij þ Rχ
ij; ð26Þ

R̂ij ¼ −
1

2
γ̂mnD̊mD̊nγ̂ij þ γ̂mðiD̊jÞΛ̂m þ Λ̂mΔ̂ðijÞm

þ 2Δ̂mn
ðiΔ̂jÞmn þ Δ̂mn

iΔ̂mnj; ð27Þ

Rχ
ij ¼ −2D̂iD̂jχ − 2γ̂ijD̂

kD̂kχ þ 4D̂iD̂jχ

− 4γ̂ijD̂
kχD̂kχ: ð28Þ

We note that, in an appropriate gauge, the GBSSN
variables have no unstable growing modes associated
with constraint violation [24,25]. The Hamiltonian,
momentum, and contracted Christoffel constraints take
the form

H ¼ 1

2

�
Rþ 2

3
K2 − ÂijÂ

ij

�
− 8πρ; ð29Þ

Mi ¼ e−4χ
�
D̂jÂ

ij −
2

3
γ̂ijD̂jK þ 6ÂijD̂jχ − 8πĵi

�

¼ ðMz; ρMρ; 0Þ; ð30Þ

Zi ¼ Λ̂i − Δ̂i ¼ ðZz; ρZρ; 0Þ: ð31Þ

It is worth noting that in (19)–(23) we have not included
the usual dimensionful constraint damping parameters.
The critical solutions we investigate have no single length
scale and our code must be able to deal with solutions
spanning many orders of magnitude in scale. By choosing
a set of damping parameters that worked well at a given
scale, we might have introduced inconsistent and difficult
to debug behaviors at other scales. These might include
the following:

(i) improved constraint conservation in the long wave-
length regime at the expense of the short wavelength
regime;

(ii) unexpected interactions with Kreiss-Oliger dissipa-
tion [26];

(iii) scale-dependent issues arising at grid boundaries
due to suboptimally chosen adaptive mesh refine-
ment (AMR) parameters.

In order to avoid these possibilities and to ensure our
that code had no preferential length scale, we omitted the
damping parameters in our simulations.
In summary, the complete set of geometric variables is

given by the lapse α, shift βi,

nμ ¼
�
1

α
;−

βi

α

�
; ð32Þ

βi ¼ ðβz; ρβρ; 0Þ; ð33Þ

conformal factor χ, conformal metric γ̂ij,

γ̂ij ¼ e−4χγij ¼

0

B@

ga ρgd 0

ρgd gb 0

0 0 ρ2gc

1

CA; ð34Þ

trace of the extrinsic curvature K, conformal trace-free
extrinsic curvature Âij,

Âij ¼ e−4χ
�
Kij −

1

3
γijK

�
; ð35Þ

¼

0

B@

Aa ρAd 0

ρAd Ab 0

0 0 ρ2Ac

1

CA; ð36Þ

the quantities Δi representing the difference between the
contracted Christoffel symbols of the conformal metric
(Γ̂i

jk) and flat reference metric (Γ̊i
jk),

Δ̂i
ij ¼ Γ̂i

jk − Γ̊i
jk; ð37Þ

Δ̂i ¼ Γ̂i − Γ̊i
jkγ̂

jk; ð38Þ
Δ̂i ¼ ðΔ̂z; ρΔ̂ρ; 0Þ; ð39Þ

and finally, the quantities Λi, representing the quantities Δi

promoted to independent dynamical degrees of freedom
rather than being viewed as functions of γ̂ij and ̊γij,

Λ̂i ¼ ðΛ̂z; ρΛ̂ρ; 0Þ: ð40Þ

Here, as is the case for the spacetime 4-metric, all of the
GBSSN functions are taken to have even character about
ρ ¼ 0. For a more in-depth review of the GBSSN formu-
lation, we refer the reader to the works of Brown [19] and
Alcubierre and Mendez [20].
In our investigations of critical behavior, we consider

both the massless scalar field and the Maxwell field.
In the first instance, we have the Einstein equations and
stress tensor,

Gμν ¼ 8πTS
μν; ð41Þ

TS
αβ ¼ ∇αμ∇βμ −

1

2
gαβ∇γμ∇γμ; ð42Þ

and a matter equation of motion,
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∇α∇αμ ¼ 0: ð43Þ

For the Einstein-Maxwell system, we have

Gμν ¼ 8πTEM
μν ; ð44Þ

TEM
μν ¼ Fμ

αFνα −
1

4
gμνFαβFαβ; ð45Þ

and matter equations of motion,

∇μFνμ ¼ 0; ð46Þ
∇μ

⋆Fνμ ¼ 0: ð47Þ

Here,

⋆Fμν ¼ 1

2
ϵ
∼μνγδFγδ; ð48Þ

with

ϵ
∼αβγδ ¼ ð−1Þs

ffiffiffiffiffijgjp ϵαβγδ; ð49Þ

where s ¼ 1 is the metric signature and ϵαβγδ is the 4D
Levi-Civita symbol.
Rather than use (46) and (47) and a vector potential

decomposition of Fμν, we incorporate the source-free
Maxwell equations into a larger system, similar to how
the GBSSN and fully covariant and conformal Z4 (FCCZ4)
formalisms embed general relativity within variations of
the Z4 system [20,22]. In the case of general relativity, this
embedding enables the Hamiltonian and momentum con-
straints to be expressed through propagating degrees of
freedom. Analogously, for the Maxwell fields, the diver-
gence conditions become tied to propagating degrees of
freedom [27,28],

−σnνΨE ¼ ∇μðFνμ þ gνμΨEÞ; ð50Þ
−σnνΨB ¼ ∇μð⋆Fνμþ gνμΨBÞ: ð51Þ

Here, σ is a dimensionful damping parameter and ΨE
and ΨB are constraint fields that couple to the violation of
the divergence conditions for the electric and magnetic
fields, respectively. By promoting the constraints to
propagating degrees of freedom, our solutions gain addi-
tional stability and exhibit advection and damping of
constraint violations which would otherwise accumulate.
Finally, we take the following definitions of the electric
fields Eα, magnetic fields Bα, and Maxwell tensors Fαβ

and ⋆Fαβ,

Eα ¼ Fαβnβ; ð52Þ
Bα ¼ ⋆Fβαnβ; ð53Þ

Fαβ ¼ nαEβ − nβEα þ ϵ
∼γδαβnγBδ; ð54Þ

⋆Fαβ ¼ nβBα − nαBβ þ ϵ
∼γδαβnγEδ: ð55Þ

The evolution equations for the electric and magnetic
fields, and the constraint variables, now take the form

LmEi ¼ ϵ
∼ijkDjðαBkÞ þ αKEi þ αγijDjΨE; ð56Þ

LmBi ¼ −ϵ∼ijkDjðαEkÞ þ αKBi − αγijDjΨB; ð57Þ
LmΨE ¼ αDiEi; ð58Þ
LmΨB ¼ −αDiBi; ð59Þ

where we have once again set dimensionful damping
parameters to zero to avoid setting a preferential length
scale. Under the restriction to axisymmetry, the electric,
magnetic, and associated fields simplify as

Ei ¼ ð0; 0; EϕÞ; ð60Þ
Bi ¼ ðBz; ρBρ; 0Þ; ð61Þ
ΨE ¼ 0; ð62Þ

⋆FμνFμν ¼ −FμνFμν: ð63Þ

Similar to the GBSSN functions, all of Bz, Bρ, Eϕ, ΨB,
and FμνFμν are constructed to be even about the ρ ¼ 0 axis.
As is the case for the Hamiltonian, momentum, and
contracted Christoffel constraints of GBSSN, ΨB and ΨE
evolve stably and vanish in the continuum limit provided
the initial data obey the relevant constraints.

III. INITIAL DATA

We assume time symmetry on the initial slice such that
Kij ¼ ji ¼ 0with the momentum constraints automatically
satisfied. Thus, our initial data represent a superposition
of ingoing and outgoing solutions of equal magnitude and
imply the existence of a family of privileged, on-axis,
inertial observers who are likewise stationary at the initial
time. Through careful construction, the geodesics these
observers follow enable us to extract information concern-
ing the evolution of our critical systems in a way that is
completely independent of gauge.
Under the York-Lichnerowicz conformal decomposition

and given time symmetry, the t ¼ 0 Hamiltonian constraint
takes the form

2H ¼ 8D̂iD̂
ieχ − R̂eχ þ 16πe5χρ ¼ 0: ð64Þ

We choose the initial conformal 3-metric to be flat and
isotropic and define the electric and magnetic fields as
Ei ¼ e−9χ=2Ẽi, Bi ¼ e−9χ=2B̃i, with Ẽi and B̃i specified
according to some initial profiles. These choices greatly
simplify (64), and upon defining
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κ ¼ eχ ; ð65Þ

D̊2κ ¼
�
∂ρρκ þ

∂ρκ

ρ
þ ∂zzκ

�
; ð66Þ

the elliptic equation for the Einstein-Maxwell system takes
the form

D̊2κ ¼ −π
�
ρ2B̃ρ2 þ B̃z2 þ ρ2Ẽϕ2

�
; ð67Þ

while the corresponding equation for the scalar field is

D̊2κ ¼ −πκ
�
ð∂zμÞ2 þ ð∂ρμÞ2

�
: ð68Þ

In the case of the massless scalar field or pure electric
field, we are free to simply specify μ or Ẽϕ. For the case of a
pure magnetic field, we must additionally satisfyDiBi ¼ 0.
Under the transform B̄i ¼ e−6χBi ¼ e−3=2·χB̃i, B may be

trivially derived from a vector potential via B̄ ¼ −∇̊ × A.
Taking Az ¼ 0 and Aρ ¼ 0 results in families that satisfy
the relevant constraints. Initially stationary magnetic type
data are then specified via

Ai ¼ ð0; 0; AϕÞ; ð69Þ

B̄z ¼ −∂ρAϕ −
Aϕ

ρ
; ð70Þ

B̄ρ ¼ 1

ρ
∂zAϕ: ð71Þ

The initial data for the collapse of the massless scalar
field are given in Table I. We make use of the function

gðz; ρ; ρ0; λÞ ¼ exp

�
−
z2 þ ðρþ ρ0Þ2

λ2

�
ð72Þ

and present all initial data in a manner that is manifestly
scale invariant with respect to the parameter λ: under a
rescaling λ → λ=λ0 all dimensionless quantities fðt; z; ρÞ
transform as fðt; z; ρÞ → fðt=λ0; z=λ0; ρ=λ0Þ.
For the Einstein-Maxwell system, we investigate the

families of initial data presented in Tables II and III. The

families given in Table II are new to this work, while
those given in Table III correspond to the dipole and
quadrupole families of [17]. The families of Table II were
chosen in the hope that that similarities and differences in
the underlying behaviors of dipole (l ¼ 1) and quadru-
pole (l ¼ 2) solutions would reveal information concern-
ing the universality of the critical solutions. The two
families of dipole initial data (El¼1 and Ml¼1) correspond
to electric and magnetic dipoles, respectively, and are
initially quite dissimilar.
As stated, the families of Table III correspond to

those in [17], where the initial data were presented in
an orthonormal coordinate basis. Here we present it in
terms of the tensor quantities Ēi ¼ e−6χEi. Notably,
we do not find the same critical points for the data
in Table III as were found in [17]. Instead of p⋆

dipole ≈
0.913 and p⋆

quad ≈ 3.53, we find p⋆
dipole ≈ 0.258 and

p⋆
quad ≈ 0.997. In light of the results of Sec. V C and

since the ratios among the two family parameters are
essentially identical, we suspect that either our initial data
or that of [17] were simply scaled by some unaccounted
for factor.

IV. NUMERICS AND VALIDATION

We calculate the initial data using (67) and (68) with a
multigrid method on a spatially compactified grid,

TABLE I. Families of initial data for the massless scalar field.
The form of the initial data is scale invariant with respect to λ and
we adopt λ ¼ 1, ρ0 ¼ 0 for all simulations. We refer to family
Wl¼0 as monopole-type initial data and family Wl¼1 as dipole
type. The final column gives the approximate value of the critical
parameter p⋆ for each family.

Family Initial data p⋆

Wl¼0 μ ¼ p · ðgðz; ρ; ρ0; λÞ þ gðz; ρ;−ρ0; λÞÞ ∼0.152
Wl¼1 μ ¼ p · zλ ðgðz; ρ; ρ0; λÞ þ gðz; ρ;−ρ0; λÞÞ ∼0.297

TABLE II. Families of initial data for the Einstein-Maxwell
system. The form of the initial data is scale invariant with respect
to λ and we refer to family El¼1 as the electric dipole type,
Ml¼1 as the magnetic dipole type, and Ml¼2 as the magnetic
quadrupole type. B̃i is determined from Aϕ via (69)–(71). All
of our investigations adopt λ ¼ 1 and ρ0 ¼ 0. We note that,
although Ẽi and Ai are pure multipoles, the initial spacetime is far
from flat and, in fact, the evolution is initially in the strong field
regime.

Family Initial data p⋆

El¼1 Ẽϕ ¼ p · 1
λ2
ðgðz; ρ; ρ0; λÞ þ gðz; ρ;−ρ0; λÞÞ ∼0.644

Ml¼1 Aϕ ¼ p · ρλ ðgðz; ρ; ρ0; λÞ þ gðz; ρ;−ρ0; λÞÞ ∼0.377
Ml¼2 Aϕ ¼ p · zρ

λ2
ðgðz; ρ; ρ0; λÞ þ gðz; ρ;−ρ0; λÞÞ ∼0.896

TABLE III. Families of initial data specified in [17]. Here,
we have expressed the initial data in standard tensor notation,
rather than in an orthonormal basis as in [17], so that p is a
dimensionless strength parameter.

Family Initial data p⋆

Edipole Ēϕ ¼ p · 8
λ2
expð− z2þρ2

λ2
Þ ∼0.258

Equad Ēϕ ¼ p · 16z
3λ3

expð− z2þρ2

λ2
Þ ∼0.997
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z ¼ tan

�
Zπ
2

�
; −1 ≤ Z ≤ 1; ð73Þ

ρ ¼ tan

�
Rπ
2

�
; 0 ≤ R ≤ 1; ð74Þ

which renders the outer boundary conditions trivial.
A consequence of this transform is that the eigenvalues
of the finite difference approximations of (67) and (68)
become highly anisotropic: for a number of grid points that
provide adequate accuracy, the characteristic magnitude
of the action of the differential operator on the grid function
κ may be as much as 1 × 107 times larger near the edge of
the grid as it is at the origin. To account for the resulting
large eigenvalue anisotropy, line relaxation is employed to
increase convergence rates.
An unfortunate side effect of using a global line

relaxation technique is that, at our chosen resolution,
and for a tuning precision jp⋆ − pj=p⋆ ≲ 1 × 10−9,
we lose the ability to discriminate between sets of initial
data. That is, the price we pay for global relaxation of the
highly anisotropic problem is a loss of precision. We
resolve this issue by calculating three reference solutions
corresponding to parameters p1, p2, and p3 near the
critical point p⋆, such that jp⋆ − pij=p⋆ ≈ 1 × 10−6 and
jpj − pij=p⋆ ≈ 1 × 10−6 for i ≠ j. For simulations with
jp⋆ − pj=p⋆ ≲ 1 × 10−6, initial data are then calculated via
third order pointwise spatial interpolation of grid functions
using the three reference solutions. The error thereby
introduced is orders of magnitude below that of the
numerical truncation error in the subsequent evolution
and may be safely ignored.
Our evolution code is built on a slightly modified version

of PAMR [29] and AMRD [30]. We use a second order in
space and time integrator with Kreiss-Oliger dissipation
terms to damp high-frequency solution components.
Additional resolution is allocated as required through the
use of AMR based on local truncation error estimates.
Close to criticality, these simulations made heavy use of

AMR. A run for family Ml¼1, for example, would have a
base resolution of [129, 129] with four levels of 2∶1
refinement at t ¼ 0. At the closest approach to criticality
(jp⋆ − pj=p⋆ ≈ 1 × 10−13), the simulation would have
∼20 levels of refinement representing an increase in
resolution on order of 10,000.
The code was originally based on a fourth order in space

and time method. During the course of our investigations
we found that, without great care, spatial differentiation
in the vicinity of grid boundaries could easily become
pathological for higher order integration schemes and this
was particularly true when we used explicit time integra-
tion. Without careful consideration, these sometimes subtle
effects could completely negate any advantages gained
from the use of a higher order scheme. As a result, the
decision was made to employ a much easier to debug

second order accurate method. Specifically, we opted to use
a second order Runge-Kutta integrator with second order
accurate centered spatial differencing and fourth order
Kreiss-Oliger dissipation [26]. In order to reduce the effect
of spurious reflection from AMR boundaries, we employ a
technique very similar to that of Mongwane [31].

A. Choice of gauge

Our evolution code accommodates a wide variety of
hyperbolic gauges with most of our investigations focu-
sing on versions of the standard Delta driver and 1þ log fa-
milies of shift and slicing conditions [32–35]. We found
that there were no significant issues associated with using
various Delta driver shifts for evolutions moderately
close to criticality (jp − p⋆j=p⋆ < 1 × 10−3), but that their
use tended to significantly increase the grid resolution,
and therefore computational cost, required to resolve the
solutions. As such, the results presented in Secs. IV D
and V are based on the following choice of gauge:

Lmα ¼ −2αK; ð75Þ
βr ¼ 0; ð76Þ
βz ¼ 0: ð77Þ

B. Classification of spacetimes

We characterize spacetimes as either subcritical or
supercritical based on two primary indicators: the dispersal
of fields and the collapse of the lapse. While the more
definitive approach to flagging a spacetime containing a
black hole would be to identify an apparent horizon, we opt
for monitoring the lapse collapse due to its simplicity and
practicality. One drawback of this approach is the potential
ambiguity in the final stages of the last echo in each family.
Specifically, it is unclear whether the behavior that is
observed for putatively marginally supercritical collapse
represents a genuine physical singularity or merely a
coordinate artifact. However, by closely observing the
growth trends of invariant quantities and confirming the
dispersion of subcritical solutions, we are confident that
our results, up to the final portion of the last echo, depict
the genuine approach to criticality. Given the inherent
challenges in precisely determining p⋆, we have chosen to
exclude the simulations closest to criticality when comput-
ing values for γ and Δ across all families of initial data.

C. GBSSN considerations

Aside from the standard convergence and independent
residual convergence tests (Sec. IV D), it is important to
quantify the behavior we expect from a code based on the
GBSSN formalism when in the critical regime. First
and foremost, in their most general forms (without enforc-
ing elliptic constraints) GBSSN evolution schemes are
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unconstrained. We should therefore expect constraint
violations to grow with time while remaining bounded
and convergent for well-resolved initial data sufficiently far
from criticality.
Another potentially overlooked factor concerning the

GBSSN formulation is that GBSSN is not only overdeter-
mined (e.g., the evolution equations for Λ̂i are implicit in the
evolution of the other variables and the maintenance of the
constraints), but GBSSN is effectively an embedding of
general relativity within a larger Z4-type system under the
assumption that the Hamiltonian constraint holds [20,22].
In practice, this means that a well-resolved and convergent
solution in GBSSN may cease being a valid solution within
the context of general relativity at some point during the
evolution. This is perhaps best illustrated by considering
the near-critical evolution of the Einstein-Maxwell system
depicted in Fig. 3. Although the Hamiltonian and momen-
tum constraints are well maintained throughout the evolu-
tions, the final “dispersal” state is not a valid solution in the
context of general relativity. In this case, the constraint
violations of the overdetermined system have made it so that
the geometry that remains as the electromagnetic pulse
disperses to infinity is a constraint-violating remnant rather
than flat spacetime.
The overall effect is that our solutions cannot be trusted

for particularly long periods of time after they make their
closest approach to criticality. This in turn presents obvious
difficulties in determining the mass of any black holes
in the supercritical regime, where it may take significant
coordinate time for the size of the apparent horizon to
approach that of the event horizon. For this reason, we
restrict our analysis to the subcritical regime.
To verify that we remain “close” to a physically mean-

ingful general relativistic solution, we monitor the magni-
tude of the constraint violations relative to quantities with the
same dimension. We also monitor independent residuals for
the fundamental dynamical variables. We consider a solution
using AMR to be reasonably accurately resolved when

(i) the independent residuals and constraints violations
of an AMR solution in the strong field (nonlinear)
regime are maintained at levels comparable to
those determined from convergence tests using
uniform grids;

(ii) the independent residuals are kept at acceptable
levels relative to the magnitude of the fields;

(iii) the constraint violations are kept small relative to the
magnitude of their constituent fields (e.g., jHj ≪ jRj).

For a dispersal solution close to the critical point, the
second and third of these conditions are guaranteed to fail
some period of time after the solution makes its closest
approach to criticality. Thankfully, in practice we have found
that with adequately strict truncation error requirements
(relative truncation errors below 1 × 10−3 seem sufficient
and we maintain 5 × 10−5 for all simulations), the conditions
remain satisfied throughout the collapse process.

D. Convergence

The parameters for our convergence test simulations
are given in Table IV. Note that these simulations and
those given in Sec. V are performed on semicompactified
grids with

z ¼ sinhZ0; 0 ≤ Z0 ≤ 12; ð78Þ
ρ ¼ sinhP0; 0 ≤ P0 ≤ 12: ð79Þ

For all of the calculations discussed in this paper,
appropriate boundary conditions are set at z ¼ 0 to mirror
or reflect the GBSSN and matter variables, depending on
whether the given field has even or odd character about
the z ¼ 0 plane. This simplification allows us to reduce the
required computation time by a factor of 2 and alleviates
issues that occasionally arise from asymmetric placement
of AMR boundaries. For these and all subsequent results,
initial data were calculated on a fully compactified grid as
described in the introduction to this section.
Figures 1 and 2 demonstrate the convergence of the

constraints for strong field dispersal solutions of the EM
system. These figures additionally plot constraint violations
for AMR simulations with a relative error tolerance of
5 × 10−5, demonstrating that the AMR simulations remain
well within the convergent regime. The AMR simulations
had an associated compute cost approximately 4 times
larger than the lowest resolution unigrid simulations.
Beyond monitoring the various constraints, we com-

puted independent residuals of the various GBSSN quan-
tities. The independent residuals were based on a second
order in time and space stencil with three time levels and
spatial derivatives evaluated at only the most advanced
time. These residuals converged at second order as
expected for all our tests.
Figure 3 demonstrates the magnitude of various error

metrics relative to the magnitude of the underlying fields.
Throughout the collapse process, the solution is well
resolved, but during dispersal (t > 6), the solution becomes
dominated by a nonpropagating Hamiltonian constraint
violation. Again, this is the expected behavior for GBSSN-
type simulations where the Hamiltonian constraint is not
tied to a dynamical variable or explicitly damped. In the

TABLE IV. Parameters for magnetic dipole (family Ml¼1) con-
vergence tests. These simulations are well within the nonlinear
regime with the critical point given by p⋆ ≈ 0.377. Similar con-
vergence tests were performed for all families listed in Tables I–III.

Family Level p Pmin Pmax NP Zmin Zmax NZ

Ml¼1 1 0.33 0 12 513 0 12 513
Ml¼1 2 0.33 0 12 1025 0 12 1025
Ml¼1 3 0.33 0 12 2049 0 12 2049
Ml¼1 4 0.33 0 12 4097 0 12 4097

GRAY D. REID and MATTHEW W. CHOPTUIK PHYS. REV. D 108, 104021 (2023)

104021-8



limit of infinite resolution, we expect Rðt; 0; 0Þ and
Hðt; 0; 0Þ to approach 0 at late times.
We also note that, in addition to the GBSSN approach,

we experimented with implementations of formulations
derived from the Z4 formalism. In practice, we found

that the use of Z4 formulations (without damping)
resulted in significantly better constraint conservation
postdispersal, while exhibiting degraded Hamiltonian
constraint conservation during collapse. As we were
predominantly interested in maintaining high accuracy
during collapse, we opted to use GBSSN rather than, for
example, FCCZ4.
Results similar to Figs. 1–3 hold for all constraints and

independent residual evaluators for each of the families
El¼1, Ml¼1, Ml¼2, Wl¼1, and Wl¼2. In all cases, conver-
gence was second order as expected.

V. RESULTS

A. Massless scalar field

We choose to include simulations of massless scalar field
collapse in order to test the accuracy of our simulations
and to verify the utility of our analysis methods. Extremely
high accuracy numerical analysis of Δ has determined that,
for the case of spherically symmetric critical collapse,
Δ ≈ 3.4454524022278213500 [4,36], while γ ≈ 0.37 is
known from simulations [3]. In this section, we verify that
our simulations and analysis are of sufficient accuracy to
reproduce these results.
As specified in Table I, familyWl¼0 is given by initially

spherically symmetric initial data, while family Wl¼1 is
initially a dipole. With family Wl¼0, we demonstrate that
our code is capable of resolving the spherically symmetric
critical solution. By following the evolution of family
Wl¼1 we show that our code is capable of resolving

FIG. 1. Convergence of l2 norms of ΨB and Hamiltonian
constraint violations for strong field initial data given by Table IV.
The plotted norms of the residuals for each run are evaluated by
interpolating the results to a uniform grid that has sufficient
resolution to resolve the details of the simulation. This enables us
to directly compare the convergence properties at the various
resolutions. Each of the dashed lines represent a successive
refinement (by a factor of 2) of the initial data, while the solid line
represents an AMR run with a relative error tolerance of 5 × 10−5.
The grid parameters for the various unigrid runs are given in
Table IV.

FIG. 2. As Fig. 1 but for the convergence of the momentum
constraints. Each of the dashed lines represent a successive
refinement of the initial data, while the solid line represents an
AMR run with a relative error tolerance of 5 × 10−5.

FIG. 3. Magnitude of the 3D Ricci scalar R evaluated at (0,0)
and the l∞ norms of the Hamiltonian and momentum constraint
violations for the AMR runs shown in Figs. 1 and 2. Postdispersal,
the solution becomes dominated by a nondispersing Hamiltonian
constraint violation. Our critical search AMR simulations main-
tain constraint violations to about 1 part in 500 relative to the
magnitude of the relevant fields throughout collapse.
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situations where the initial data bifurcate into multiple
on-axis centers of collapse. Since the results of Mendoza
and Baumgarte demonstrated that quadrupole initial data
were subject to such a bifurcation, we felt that it was
important to validate our code in a similar regime. We
have tuned these simulations to near the limits of double
precision with jp⋆ − pj=p⋆ ≈ 1 × 10−15 for family Wl¼0

and jp⋆ − pj=p⋆ ≈ 1 × 10−14 for family Wl¼1.
Consider the proper time τ of an inertial observer located

at the accumulation point such that the observer would see
the formation of a naked singularity at τ ¼ τ⋆. The echoing
period Δ is then calculated using three somewhat inde-
pendent methods. First, Δ1 is computed by taking the mean
and standard deviation of the period between successive
echoes at the center of collapse when viewed as a function
of − ln ðτ⋆ − τÞ. Second, Δ2 comes from Fourier analysis
of the dominant mode at the center of collapse in a similar
frame. Third, Δ3 is calculated via the scaling relation (5),
which results in an observer independent method given by

Δ3 ≈
γ

N
ðln jp1 − p⋆j − ln jp2 − p⋆jÞ: ð80Þ

Here, N is the number of echoing periods observed between
simulations with family parameters p1 and p2, respectively.
Table V summarizes the results using all three methods.
Plots of the lapse α and the scalar field μ as a function

of logarithmic proper time evaluated at the approximate
accumulation points are shown in Figs. 4 and 5 for families
Wl¼0 and Wl¼1, respectively. Here, approximate accumu-
lation points are defined as coordinate locations ðz; ρÞ of
maximal scalar curvature encountered during the course of a
subcritical simulation. These plots enable both direct and
indirect calculation of Δ via the DSS time scaling relation-
ship (3) and (80), respectively.
Unlike the Wl¼0 case, we find that for the family Wl¼1,

the solution bifurcates into two centers of collapse. This in
turn makes the determination of the world line of the
privileged observer nontrivial. As we are starting from time
symmetric initial data, the ideal solution would be to
integrate the world lines of a family of initially stationary
observers and choose the one that was nearest the accu-
mulation point at the closest approach to criticality.

Unfortunately, our code is not currently set up to perform
such an integration.
As a quick and potentially poor approximation, we

choose the world line of an observer who remains at the

TABLE V. Estimated scaling exponents for axisymmetric scalar
field collapse. The results summarized here agree with previous
investigations to within the estimated error of our calculations.
Although Δ3 is far less precisely determined than Δ1, it can be
found in the absence of knowledge concerning a privileged
inertial observer.

Family Δ1 Δ2 Δ3 γ

Wl¼0 3.43(3) 3.5(4) 3.6(4) 0.373(4)
Wl¼1 3.44(4) 3.4(3) 3.2(4) 0.373(5)

FIG. 4. Lapse α and value of the scalar field μ as a function of
− ln ðτ⋆ − τÞ at the center of collapse (in this case the origin). Here,
family Wl¼0 data are used and both marginally subcritical (solid
line) and supercritical (dashed line) solutions with jp⋆ − pj=p⋆ ≈
1 × 10−15 are shown. Since the scalar field quickly approaches the
critical solution with an associated strong field scale that signifi-
cantly decreases with each echo, we are able to accurately
determine τ⋆ to ≈1 × 10−6. Direct measurement of Δ from μ
gives Δ1 ¼ 3.43ð3Þ, Δ2 ¼ 3.5ð4Þ, and Δ3 ¼ 3.6ð4Þ.

FIG. 5. Lapse α and value of the scalar field μ as a function of
− ln ðτ⋆ − τÞ at the center of collapse (in this case z ≈ 0.594). In
this case, familyWl¼1 data are used and the marginally subcritical
(solid line) and supercritical (dashed line) solutions have been
determined to an overall accuracy of jp⋆ − pj=p⋆ ≈ 1 × 10−14.
Here, τ⋆ is computed to ≈1 × 10−5. Direct measurement of Δ
from μ gives Δ1 ¼ 3.44ð4Þ, Δ2 ¼ 3.4ð3Þ, and Δ3 ¼ 3.2ð4Þ.
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approximate accumulation point throughout the evolution.
This approximation is potentially error prone because of
its gauge dependence and the fact that the observer is
generically noninertial. However, for the case of the Wl¼1

simulations, the solutions very quickly approach two
on-axis copies of the monopole solution so relatively little
error appears to have been introduced by this choice.
The inverse Lyapunov exponent γ is calculated by fitting

scaling laws of the form (6) for the maximal energy density
ρmax and 3D Ricci scalar Rmax encountered during the
course of a subcritical simulation. In these fits, we make
the assumption that the dominant contribution to the
putative universal periodic function is sinusoidal. As the
specific region in parameter space where the scaling
relationship is expected to hold is unknown (the uncertainty
in p⋆ contaminates the values close to criticality, while
radiation of dispersal modes contaminates the data far from
criticality), we average a number of fits to reasonable
subsets of the available data.
Ideally, we would calculate γ via the maximal scale

of some invariant quantity such as the 4D Ricci scalar
(equivalently ∇λμ∇λμ) or the Weyl scalar. However,
calculations using frame-dependent proxies such as the
energy density ρE seem to be common in the literature and
we have adopted this approach. In the case of collapse at the
center of symmetry, we note that ρE is linearly related to the
invariant T. Figures 6 and 7 demonstrate the determination
of γ from ρE and R for familiesWl¼0 andWl¼1. Again, our
results for γ along with those for Δ1, Δ2, and Δ3 in the case
of the scalar field are presented in Table V.

The excellent agreement between our computed values
for the scaling exponents and previously established results
for the massless scalar field demonstrate the accuracy of
our simulations and the validity of our analysis. For AMR
simulations, where it is impossible or impractical to
establish the existence of convergence close to criticality,
this process serves as an important verification and vali-
dation stage before the presentation of new results. It is
worth noting that some previous studies [2,16,37] have
presented evidence for a nonspherical unstable mode near
criticality in scalar field collapse. We see no evidence for
such a mode for either our Wl¼0 or Wl¼1 calculations, but
have not examined this point in much detail.

B. Einstein-Maxwell system

With our methodology established and verified via
investigation of the massless scalar field, the analysis
of the critical collapse of the Einstein-Maxwell system
proceeds in parallel fashion. We first consider the pre-
viously unstudied families El¼1,Ml¼1, andMl¼2 defined in
Table II. Once the behavior of these solutions has
been described, we turn our attention to the families of
Table III, which were originally studied by Baumgarte
and co-workers [17,18]. In what follows, we define the
approximate accumulation points as the coordinate loca-
tions of maximal jFμνFμνj encountered during a subcriti-
cal run.
No bifurcations about the origin were observed for

the dipole familiesMl¼1 and El¼1: both families underwent
collapse at the center of symmetry. Unfortunately, a gauge

FIG. 6. Inverse Lyapunov exponent γ determined via the
scaling of the energy density ρE. Plotted here are the maximum
values of ρE obtained in each subcritical run as a function of
jp⋆ − pj=p⋆. The energy density has dimensions M−2 and
therefore scales according to jp⋆ − pj−2γ . Superior accuracy
would be obtained by fitting to the maximum value of the 4D
Ricci scalar or another invariant quantity. The lines represent an
averaged fit to the underlying data.

FIG. 7. Inverse Lyapunov exponent γ determined via the
scaling of the 3D Ricci scalar R. Plotted here are the maximum
values of R obtained in each subcritical run as a function of
jp⋆ − pj=p⋆. The Ricci scalar density has dimensions of M−2

and therefore scales according to jp⋆ − pj−2γ . As in Fig. 6, the
lines represent an averaged fit to the underlying data.
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pathology prevented family El¼1 from being investigated
beyond jp⋆ − pj=p⋆ ≈ 5 × 10−9. This shortcoming seems
to bear some resemblance to the sort of gauge problems
encountered in evolving Brill waves toward criticality [10]
and may be able to be resolved through the use of the
shock avoiding gauge suggested by Alcubierre in [38] and
successfully employed in [14,15]. Fortunately, the pathol-
ogy occurs sufficiently late in the evolution to enable the
extraction of meaningful information concerning Δ and γ
for the family.
Figures 8 and 9 plot α and jFμνFμνj at the accumulation

point (in this case the origin) versus − ln ðτ⋆ − τÞ for near-
critical evolutions of families Ml¼1 and El¼1. Since the
collapse occurs at the center of symmetry, there is only a
single accumulation point and the observers at the origin
are privileged and inertial. As mentioned previously, this
enables Δ to be accurately determined via statistical and
Fourier analysis.
The analysis of family Ml¼2 is both more interesting

and more involved than that of families Ml¼1 and El¼1.
In this case, and similar to what is observed in the case of
the massless scalar dipole, as the critical parameter is
approached, the solution bifurcates into two on-axis centers
of collapse. After this bifurcation, the character of the
critical solution changes markedly. Specifically, following
this transition period, the growth and echoing period of
the separated collapsing regions come to resemble those of

two separated copies of the Ml¼1 or El¼1 critical solutions.
This change in character is somewhat obscured in time
series plots by the fact that we use the proper time of an
accelerated observer at the accumulation point rather than
that of a privileged inertial observer. Despite this, the
change is evident in the growth rate γ when calculated via
the scaling relationship

lnðjFμνFμνjmaxÞ¼−2γ lnjp−p⋆jþfFðγ ln jp−p⋆jÞþcF;

ð81Þ

as well as when Δ is calculated via (80). Overall, the two
distinct phases of collapse can be seen in Figs. 10 and 11.
Figure 11 shows the results of calculating γ via the

scalar invariant FμνFμν, which should scale as jp⋆ − pj−2γ
as in (81). Again, family Ml¼2 appears to exhibit two
distinct growth rates separated by a transition region in
ln jp⋆ − pj. The early behavior may be due to a slower
growing quadrupole mode or perhaps simple radiation of
initial data before the critical solution is approached. In
total, the behavior we observe appears to be consistent with
the interpretation that, after the bifurcation occurs, the
critical solution becomes dominated by the same mode as
for families Ml¼1 and El¼1. A summary of our estimated
values of Δ and γ for the families defined in Table II is
compiled in Table VI.

FIG. 8. Lapse α and invariant scalar jFμνFμνj at the center of
collapse for family Ml¼1 as a function of − ln ðτ⋆ − τÞ for
marginally subcritical (solid line) and supercritical (dashed line)
solutions with jp⋆ − pj=p⋆ ≈ 1 × 10−13. Unlike the case of the
scalar field, the strong field scale of the critical solution only
slowly decreases (i.e., Δ is small compared to the scalar case) and
τ⋆ can only be determined to a relative tolerance of about 10−4.
Direct measurement of Δ from FμνFμν gives Δ1 ¼ 0.64ð2Þ via
statistical analysis, Δ2 ¼ 0.63ð3Þ via Fourier analysis, and
Δ3 ¼ 0.59ð6Þ from (80).

FIG. 9. Lapse α and invariant scalar jFμνFμνj at the center of
collapse for family El¼1 as a function of − ln ðτ⋆ − τÞ for
marginally subcritical (solid line) and supercritical (dashed line)
solutions with jp⋆ − pj=p⋆ ≈ 1 × 10−9. As with familyMl¼1, the
strong field scale of the critical solution slowly decreases and τ⋆

can only be determined to a relative tolerance of about 10−3.
Direct measurement of Δ from FμνFμν gives Δ1 ¼ 0.65ð3Þ via
statistical analysis, Δ2 ¼ 0.65ð4Þ via Fourier analysis, and
Δ3 ¼ 0.67ð8Þ from (80).
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C. Direct comparison to previous work

When we compare our dipole and quadrupole results to
those of Baumgarte and co-workers [17,18], the results
are broadly consistent but do not fully agree to within our
approximately determined errors. Although our work and
the previous studies both indicate a single unstable mode
with γl¼1 ≈ 0.15 and Δl¼1 ≈ 0.6 for dipole-type initial data,
our investigation into an alternative family of quadrupole-
type initial data is consistent with a universal (rather than
family-dependent) growth rate and echoing period. In order
to more conclusively determine the consistency of our work
with that of [17,18], we attempt to replicate the previous
computations by performing critical searches for the
families listed in Table III.
We perform evolutions of Equad to a tolerance of

≲4 × 10−15 so as to resolve the critical solution as
accurately as possible. Previously, this family was resolved
to a relative tolerance of approximately 1 × 10−12 [17]. The
evolutions for Edipole were performed to a relative tolerance
of only ≈1 × 10−4 and for the sole purpose of verifying that
we had initial data consistent with [17].

Figure 12 directly compares our simulations to those
of [17] using both our data and data provided by
Baumgarte [39]. This figure plots the minimum value of
α on each spatial slice for family Equad for marginally
subcritical simulations. Comparing our data, we observe a
significant divergence at τ ≈ 18; earlier than would be
expected based on the relative precision of our searches.
Similarly, the scaling of Figs. 13 and 14 agree with Figs. 2
and 7 of Mendoza and Baumgarte [17] until −lnðτ⋆−τÞ≈0

and jp−p⋆j=p⋆≈1×10−10, respectively.
Assuming that family Equad, like family El¼2, is best

described by dividing the near-critical evolution into early
and late time behavior, a naive measurement of Δ under the

FIG. 10. Lapse α and invariant scalar jFμνFμνj at the center
of collapse for family Ml¼2 as a function of − ln ðτ⋆ − τÞ with
jp⋆ − pj=p⋆ ≈ 5 × 10−13. We use the proper time of a gauge-
dependent accelerated observer located at z ≈ 0.440 as our
independent variable τ, making the interpretation of length and
timescales potentially problematic. It appears that the critical
solution is divided into two separate regions (transition region
shown in gray) with differing Δ and γ. A naive measurement of Δ
under the assumption that our observer is approximately inertial
gives Δ1 ¼ 0.30ð2Þ and Δ2 ¼ 0.31ð3Þ for the first region and
Δ1 ¼ 0.56ð3Þ, Δ2 ¼ 0.63ð6Þ for the second region. Application
of (80) (which is valid irrespective of the status of the observer)
gives Δ3 ¼ 0.19ð4Þ for the first region and Δ3 ¼ 0.64ð9Þ for the
second The values of Δ2 and Δ3 measured in the second region as
p → p⋆ appear to be consistent with those found for families
El¼1 and Ml¼1.

FIG. 11. Inverse Lyapunov exponent γ determined via the
scaling of the invariant scalar jFμνFμνj, which should scale as
jp⋆ − pj−2γ . Plotted here are the maximum values of the invariant
obtained in each subcritical run as a function of jp⋆ − pj=p⋆.
The lines shown are averaged fits of the underlying data and the
quoted values of γ are the slopes of those fits. As described in the
text, fits to two distinct regions of family Ml¼2 have been made.

TABLE VI. Summary of computed scaling exponents in critical
collapse of the EM field for the families presented in Tables II
and III. The analysis of Equad is presented in Sec. V C. Here, the
two separate rows for Ml¼2 and Equad denote fits to the distinct
behavioral regions of the quadrupole solutions; the first row is for
p fairly distant from p⋆ while the second is for p → p⋆. Results
in bold indicate that the measurements were made using the world
line of an accelerated observer and are unlikely to be accurate.

Family Δ1 Δ2 Δ3 γ

El¼1 0.65(3) 0.65(4) 0.67(8) 0.147(5)
Ml¼1 0.64(2) 0.63(3) 0.59(6) 0.152(3)
Ml¼2 0.30ð2Þ 0.31ð3Þ 0.19(4) 0.073(10)
Ml¼2 0.56ð3Þ 0.63ð6Þ 0.64(9) 0.145(6)
Equad 0.30ð5Þ 0.33ð2Þ 0.61(11) 0.164(19)
Equad 0.59ð4Þ 0.57ð4Þ 0.59(10) 0.152(20)
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assumption that our observer at fixed coordinate location is
approximately inertial, gives Δ1 ¼ 0.30ð5Þ, Δ2 ¼ 0.33ð2Þ
for the first region and Δ1 ¼ 0.59ð4Þ, Δ2 ¼ 0.57ð4Þ for the
second region. Application of (80) gives Δ3 ¼ 0.61ð11Þ for
the first region andΔ3 ¼ 0.59ð10Þ for the second. The large
discrepancy between the values of Δ computed in the first
region likely indicates that the solution does not show DSS
behavior far from criticality.
Figure 14 plots jFμνFμνj as a function of jp⋆ − pj=p⋆

and is used to determine γquad ¼ 0.152ð20Þ. This in turn is
consistent with the values of γ determined for all other
families. It is clear that the early behavior of family Equad

is very different from that of family Ml¼2, which indicates
that the early scaling behavior observed for both families
may simply be the result of radiation of features of the
initial data on the path to criticality. Again, we note that
we list the complete set of Δ and γ for family Equad as well
as for the families defined in Table II in Table VI of the
previous section.
It is apparent that, close to criticality, the growth rates

and echoing periods we observe for family Equad differ
markedly from those observed in [17]. Assuming that our
results are correct, we hypothesize that the use of spherical
polar coordinates with limited resolution in θ [17] may
have had the inadvertent effect of leaving insufficient
resolution to resolve dipole collapse away from the center
of symmetry. If this is the case, then it is plausible that the
growth of the dipole mode was suppressed in a manner
similar to what is apparently observed.

FIG. 12. Minimum value of α on each spatial slice for family
Equad versus the proper time at the origin τ0. The data plotted here
represent the subcritical simulations closest to criticality for both
our investigation (solid black line) and that of Mendoza and
Baumgarte [17,39] (dashed red line). The lower plot highlights
the difference in behavior at late times. Note that we have scaled
τ0 for the data of Mendoza and Baumgarte by a factor of ≈1.003
to better align the early minima and maxima of α0 with our own
data. This degree of rescaling should be understood within the
context of our simulations being only second order accurate and
is performed to eliminate the dominant source of variation in our
results far from the critical point. The simulations begin to differ
markedly at τ ≈ 18, earlier than would be expected based on the
relative precision of our searches.

FIG. 13. Lapse α and invariant scalar jFμνFμνj at the center
of collapse for family Equad as a function of − ln ðτ⋆ − τÞ for
marginally subcritical (solid black line) and supercritical (dashed
black line) solutions with jp⋆ − pj=p⋆ ≈ 4 × 10−15. Here, the
black lines show the extremal values obtained on a spatial slice,
while the colored lines show the values at the center of collapse as
determined by the coordinate location with largest value of
jFμνFμνj in the subcritical simulation closest to criticality.

FIG. 14. γ determined via the scaling of the invariant scalar
jFμνFμνj, which should scale as jp⋆ − pj−2γ . Plotted here are the
maximum values of jFμνFμνj obtained in each subcritical run as a
function of jp⋆ − pj=p⋆. It is apparent that, although both
quadrupole solutions exhibit scaling with similar γ close to
criticality, the initial behavior is highly family dependent.
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VI. SUMMARY AND CONCLUSIONS

We have investigated the critical collapse of both the
massless scalar field and the Maxwell field in axisym-
metry using the GBSSN formulation of general relativity.
Our study of the scalar field was largely motivated by
the need to calibrate our numerical methods—including
AMR—and to develop analysis procedures. Nonetheless,
we are able to reproduce previous results on massless
scalar collapse to the estimated accuracy of our calcu-
lations. Moreover, in contrast to some other earlier
work [2,16,37], we find no evidence of nonspherical
unstable modes at criticality. However, as we have not
examined this issue very closely, we feel that it is well
worth further study.
With regard to the Einstein-Maxwell system, we observe

that for generic initial data a dipole mode with γl¼1 ≈
0.149ð9Þ andΔl¼1 ≈ 0.62ð8Þ seems to be dominant. If there
is an unstable quadrupolar mode, variations between the
familiesMl¼2 and Equad of Tables II and III suggest that it is
not universal.
We observe significant differences in the behavior of

family Equad close to criticality relative to the results

reported in [17], although our findings appear largely
similar until jp⋆ − pj=p⋆ ≈ 1 × 10−10. We hypothesize
that these differences may be due to the inability of
spherical coordinates to fully resolve off-center collapse
when limited angular resolution is employed.
The observed consistency between γ and Δ for each of

the families in conjunction with the observed variance
in the form of fðxÞ (seen in Figs. 11 and 14) and absence of
perfect DSS (seen in Figs. 8–10 and 13) is puzzling and
requires additional study. Conservatively, it could be that
given the slow growth rate of the dipolar critical solution,
our simulations have simply not radiated away all traces of
their initial data and this manifests in the apparent incon-
sistency of fðxÞ.

ACKNOWLEDGMENTS

We would like to thank Maria Perez Mendoza and
Thomas Baumgarte for generously providing their data,
which were instrumental in our comparative analysis (see
Sec. V C and Fig. 12). This research was supported by the
Natural Sciences and Engineering Research Council of
Canada (NSERC).

[1] C. Gundlach, Critical phenomena in gravitational collapse,
Living Rev. Relativity 2 (1999).

[2] C. Gundlach and J.M. Martin-Garcia, Critical phenomena in
gravitational collapse, Living Rev. Relativity 10, 1 (2007).

[3] M.W. Choptuik, Universality and Scaling in Gravitational
Collapse of a Massless Scalar Field, Phys. Rev. Lett. 70, 9
(1993).

[4] J. M. Martin-Garcia and C. Gundlach, Global structure of
Choptuik’s critical solution in scalar field collapse, Phys.
Rev. D 68, 024011 (2003).

[5] T. Koike, T. Hara, and S. Adachi, Critical Behavior in
Gravitational Collapse of Radiation Fluid: A Renormaliza-
tion Group (Linear Perturbation) Analysis, Phys. Rev. Lett.
74, 5170 (1995).

[6] C. Gundlach, Understanding critical collapse of a scalar
field, Phys. Rev. D 55, 695 (1997).

[7] A. M. Abrahams and C. R. Evans, Critical Behavior and
Scaling in Vacuum Axisymmetric Gravitational Collapse,
Phys. Rev. Lett. 70, 2980 (1993).

[8] A. M. Abrahams and C. R. Evans, Universality in axi-
symmetric vacuum collapse, Phys. Rev. D 49, 3998 (1994).

[9] A. Khirnov and T. Ledvinka, Slicing conditions for axi-
symmetric gravitational collapse of Brill waves, Classical
Quantum Gravity 35, 215003 (2018).

[10] T. Ledvinka and A. Khirnov, Universality of Curvature
Invariants in Critical Vacuum Gravitational Collapse, Phys.
Rev. Lett. 127, 011104 (2021).

[11] D. Hilditch, T. W. Baumgarte, A. Weyhausen, T. Dietrich,
B. Brügmann, P. J. Montero, and E. Müller, Collapse of

nonlinear gravitational waves in moving-puncture coordi-
nates, Phys. Rev. D 88, 103009 (2013).

[12] D. Hilditch, A. Weyhausen, and B. Brügmann, Evolutions
of centered Brill waves with a pseudospectral method,
Phys. Rev. D 96, 104051 (2017).

[13] I. S. Fernández, S. Renkhoff, D. C. Agulló, B. Brügmann,
and D. Hilditch, Evolution of Brill waves with an
adaptive pseudospectral method, Phys. Rev. D 106,
024036 (2022).

[14] T. W. Baumgarte, B. Brügmann, D. Cors, C. Gundlach, D.
Hilditch, A. Khirnov, T. Ledvinka, S. Renkhoff, and I. S.
Fernández, Critical phenomena in the collapse of gravita-
tional waves, arXiv:2305.17171.

[15] T. W. Baumgarte, C. Gundlach, and D. Hilditch, Critical
phenomena in the collapse of quadrupolar and hexadeca-
polar gravitational waves, Phys. Rev. D 107, 084012
(2023).

[16] M.W. Choptuik, E. W. Hirschmann, S. L. Liebling, and F.
Pretorius, Critical collapse of the massless scalar field in
axisymmetry, Phys. Rev. D 68, 044007 (2003).

[17] M. F. P. Mendoza and T.W. Baumgarte, Critical phenomena
in the gravitational collapse of electromagnetic dipole and
quadrupole waves, Phys. Rev. D 103, 124048 (2021).

[18] T. W. Baumgarte, C. Gundlach, and D. Hilditch, Critical
Phenomena in the Gravitational Collapse of Electromag-
netic Waves, Phys. Rev. Lett. 123, 171103 (2019).

[19] J. D. Brown, Covariant formulations of Baumgarte, Shapiro,
Shibata, and Nakamura and the standard gauge, Phys. Rev.
D 79, 104029 (2009).

UNIVERSALITY IN THE CRITICAL COLLAPSE OF THE … PHYS. REV. D 108, 104021 (2023)

104021-15

https://doi.org/10.12942/lrr-1999-4
https://doi.org/10.12942/lrr-2007-5
https://doi.org/10.1103/PhysRevLett.70.9
https://doi.org/10.1103/PhysRevLett.70.9
https://doi.org/10.1103/PhysRevD.68.024011
https://doi.org/10.1103/PhysRevD.68.024011
https://doi.org/10.1103/PhysRevLett.74.5170
https://doi.org/10.1103/PhysRevLett.74.5170
https://doi.org/10.1103/PhysRevD.55.695
https://doi.org/10.1103/PhysRevLett.70.2980
https://doi.org/10.1103/PhysRevD.49.3998
https://doi.org/10.1088/1361-6382/aae1bc
https://doi.org/10.1088/1361-6382/aae1bc
https://doi.org/10.1103/PhysRevLett.127.011104
https://doi.org/10.1103/PhysRevLett.127.011104
https://doi.org/10.1103/PhysRevD.88.103009
https://doi.org/10.1103/PhysRevD.96.104051
https://doi.org/10.1103/PhysRevD.106.024036
https://doi.org/10.1103/PhysRevD.106.024036
https://arXiv.org/abs/2305.17171
https://doi.org/10.1103/PhysRevD.107.084012
https://doi.org/10.1103/PhysRevD.107.084012
https://doi.org/10.1103/PhysRevD.68.044007
https://doi.org/10.1103/PhysRevD.103.124048
https://doi.org/10.1103/PhysRevLett.123.171103
https://doi.org/10.1103/PhysRevD.79.104029
https://doi.org/10.1103/PhysRevD.79.104029


[20] M. Alcubierre and M. D. Mendez, Formulations of the 3þ 1
evolution equations in curvilinear coordinates, Gen. Relativ.
Gravit. 43, 2769 (2011).

[21] N. Sanchis-Gual, P. J. Montero, J. A. Font, E. Müller, and
T.W. Baumgarte, Fully covariant and conformal formu-
lation of the Z4 system in a reference-metric approach:
Comparison with the BSSN formulation in spherical sym-
metry, Phys. Rev. D 89, 104033 (2014).

[22] D. Daverio, Y. Dirian, and E. Mitsou, Apples with
apples comparison of 3þ 1 conformal numerical relativity
schemes, arXiv:1810.12346.

[23] T. W. Baumgarte, P. J. Montero, I. Cordero-Carrión, and E.
Müller, Numerical relativity in spherical polar coordinates:
Evolution calculations with the BSSN formulation, Phys.
Rev. D 87, 044026 (2013).

[24] B. Mongwane, On the hyperbolicity and stability of 3þ 1
formulations of metric f(R) gravity, Gen. Relativ. Gravit. 48,
152 (2016).

[25] L.-M. Cao and L.-B. Wu, Note on the strong hyperbolicity
of f(R) gravity with dynamical shifts, Phys. Rev. D 105,
124062 (2022).

[26] H. Kreiss and J. Oliger, Methods for the Approximate
Solution of Time Dependent Problems, GARP Publications
Series (International Council of Scientific Unions, World
Meteorological Organization, Geneva, 1973).

[27] C. Palenzuela, L. Lehner, and S. Yoshida, Understanding
possible electromagnetic counterparts to loud gravitational
wave events: Binary black hole effects on electromagnetic
fields, Phys. Rev. D 81, 084007 (2010).

[28] S. S. Komissarov, Multidimensional numerical scheme for
resistive relativistic magnetohydrodynamics, Mon. Not. R.
Astron. Soc. 382, 995 (2007).

[29] F. Pretorius, PAMR Reference Manual (Princeton University
Press, Princeton, NJ, 2002), http://laplace.physics.ubc.ca/
Doc/pamr/PAMR_ref.pdf.

[30] F. Pretorius, AMRD V2 Reference Manual (Princeton
University Press, Princeton, NJ, 2002), http://laplace
.physics.ubc.ca/Doc/pamr/AMRD_ref.pdf.

[31] B. Mongwane, Toward a consistent framework for high
order mesh refinement schemes in numerical relativity,
Gen. Relativ. Gravit. 47, 60 (2015).

[32] T. W. Baumgarte and S. L. Shapiro, Numerical integration
of Einstein’s field equations, Phys. Rev. D 59, 024007
(1998).

[33] M. Alcubierre, B. Brügmann, T. Dramlitsch, J. A. Font, P.
Papadopoulos, E. Seidel, N. Stergioulas, and R. Takahashi,
Towards a stable numerical evolution of strongly gravitating
systems in general relativity: The conformal treatments,
Phys. Rev. D 62, 044034 (2000).

[34] M.Campanelli,C. O.Lousto, P.Marronetti, andY.Zlochower,
Accurate Evolutions ofOrbiting Black-Hole BinariesWithout
Excision, Phys. Rev. Lett. 96, 111101 (2006).

[35] M. Alcubierre, B. Brügmann, P. Diener, M. Koppitz, D.
Pollney, E. Seidel, and R. Takahashi, Gauge conditions for
long-term numerical black hole evolutions without excision,
Phys. Rev. D 67, 084023 (2003).

[36] M. Reiterer and E. Trubowitz, Choptuik’s critical spacetime
exists, Commun. Math. Phys. 368, 143 (2019).

[37] T. W. Baumgarte, Aspherical deformations of the Choptuik
spacetime, Phys. Rev. D 98, 084012 (2018).

[38] M. Alcubierre, Appearance of coordinate shocks in hyper-
bolic formalisms of general relativity, Phys. Rev. D 55, 5981
(1997).

[39] T. Baumgarte (private communication).

GRAY D. REID and MATTHEW W. CHOPTUIK PHYS. REV. D 108, 104021 (2023)

104021-16

https://doi.org/10.1007/s10714-011-1202-x
https://doi.org/10.1007/s10714-011-1202-x
https://doi.org/10.1103/PhysRevD.89.104033
https://arXiv.org/abs/1810.12346
https://doi.org/10.1103/PhysRevD.87.044026
https://doi.org/10.1103/PhysRevD.87.044026
https://doi.org/10.1007/s10714-016-2147-x
https://doi.org/10.1007/s10714-016-2147-x
https://doi.org/10.1103/PhysRevD.105.124062
https://doi.org/10.1103/PhysRevD.105.124062
https://doi.org/10.1103/PhysRevD.81.084007
https://doi.org/10.1111/j.1365-2966.2007.12448.x
https://doi.org/10.1111/j.1365-2966.2007.12448.x
http://laplace.physics.ubc.ca/Doc/pamr/PAMR_ref.pdf
http://laplace.physics.ubc.ca/Doc/pamr/PAMR_ref.pdf
http://laplace.physics.ubc.ca/Doc/pamr/PAMR_ref.pdf
http://laplace.physics.ubc.ca/Doc/pamr/PAMR_ref.pdf
http://laplace.physics.ubc.ca/Doc/pamr/PAMR_ref.pdf
http://laplace.physics.ubc.ca/Doc/pamr/PAMR_ref.pdf
http://laplace.physics.ubc.ca/Doc/pamr/AMRD_ref.pdf
http://laplace.physics.ubc.ca/Doc/pamr/AMRD_ref.pdf
http://laplace.physics.ubc.ca/Doc/pamr/AMRD_ref.pdf
http://laplace.physics.ubc.ca/Doc/pamr/AMRD_ref.pdf
http://laplace.physics.ubc.ca/Doc/pamr/AMRD_ref.pdf
https://doi.org/10.1007/s10714-015-1903-7
https://doi.org/10.1103/PhysRevD.59.024007
https://doi.org/10.1103/PhysRevD.59.024007
https://doi.org/10.1103/PhysRevD.62.044034
https://doi.org/10.1103/PhysRevLett.96.111101
https://doi.org/10.1103/PhysRevD.67.084023
https://doi.org/10.1007/s00220-019-03413-8
https://doi.org/10.1103/PhysRevD.98.084012
https://doi.org/10.1103/PhysRevD.55.5981
https://doi.org/10.1103/PhysRevD.55.5981

