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Black hole spectroscopy is the program to measure the complex gravitational wave frequencies of
merger remnants, and to quantify their agreement with the characteristic frequencies of black holes
computed at linear order in black hole perturbation theory. In a “weaker” (nonagnostic) version of this test,
one assumes that the frequencies depend on the mass and spin of the final Kerr black hole as predicted in
perturbation theory. Linear perturbation theory is expected to be a good approximation only at late times,
when the remnant is close enough to a stationary Kerr black hole. However, it has been claimed that a
superposition of overtones with frequencies fixed at their asymptotic values in linear perturbation theory
can reproduce the waveform strain even at the peak. Is this overfitting, or are the overtones physically
present in the signal? To answer this question, we fit toy models of increasing complexity, waveforms
produced within linear perturbation theory, and full numerical relativity waveforms using both agnostic and
nonagnostic ringdown models. We find that higher overtones are unphysical; their role is mainly to “fit
away” features such as initial data effects, power-law tails, and (when present) nonlinearities. We then
identify physical quasinormal modes by fitting numerical waveforms in the original, agnostic spirit of the
no-hair test. We find that a physically meaningful ringdown model requires the inclusion of higher
multipoles, quasinormal mode frequencies induced by spherical-spheroidal mode mixing, and nonlinear
quasinormal modes. Even in this “infinite signal-to-noise ratio” version of the original spectroscopy test,
there is convincing evidence for the first overtone of the dominant multipole only well after the peak of the
radiation.

DOI: 10.1103/PhysRevD.108.104020

I. INTRODUCTION

A striking aspect of black hole (BH) perturbation theory
is its formal analogy with quantum mechanics. This
analogy follows from the fact that after separation of the
angular variables using tensor spherical harmonics with
angular indices ðl; mÞ, the scattering of gravitational waves
(GWs) off a Schwarzschild BH becomes formally equiv-
alent to a Schrödinger-like equation with a potential barrier.
This is true for both odd-parity [1] and even-parity [2,3]
perturbations, which fully characterize the linear dynamics
of the Schwarzschild spacetime.
Once the boundary conditions for the scattering problem

were understood, Vishveshwara realized that the response
of the BH to an incoming pulse of radiation is characterized

by a superposition of damped exponentials with discrete
frequencies and damping times, now commonly known as
the “ringdown” by analogy with the dying tones of a
vibrating bell [4]. The damping occurs because (unlike
many textbook problems in quantum mechanics) the BH
scattering problem is not self-adjoint; BH spacetimes
absorb gravitational radiation at the horizon and emit
radiation at spatial infinity—hence the name “quasinormal”
modes (QNMs), as opposed to the “normal” modes of self-
adjoint physical systems [5–8].
The correspondence between BH spectra and atomic

spectra was repeatedly used at the formal level in the
development of QNM theory during the 1970s. Press [9]
used the analogy to prove that the BH would not “divest
itself of the unwanted perturbations in a single large belch,”
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but rather radiate initial perturbations with multipole index
l “only gradually, yielding a long and nearly sinusoidal
wave train of gravitational radiation.” The QNMs identified
by Press were shown to play an important role in physical
processes producing gravitational radiation—for example,
when particles fall radially into the BH [10].
Chandrasekhar and Detweiler [11] used again the quan-

tum mechanical analogy to prove the isospectrality of even
and odd perturbations, and to compute the so-called
“overtones” of a Schwarzschild BH. For given angular
indices ðl; mÞ, there is a whole “tower” of QNM frequen-
cies ωlmn that can be sorted by the magnitude of their
imaginary part. Typically n ¼ 0 denotes the fundamental
mode, and increasing values of n correspond to larger
imaginary parts and shorter damping times. Deeper con-
nections between the quantum mechanical scattering prob-
lem and the gravitational scattering problem emerged in the
work by Ferrari et al. [12–15]. After Teukolsky’s break-
through proof of the separability of the perturbation
equations for rotating (Kerr) BHs [16–19], Detweiler
pointed out that the fundamental QNM frequency of a
Kerr BH (the one with the smallest imaginary part and
longest damping time) depends only on its mass and spin
[20], so—at least conceptually—the relation can be
inverted to identify the Kerr BH parameters from a knowl-
edge of the frequency and damping time.
While GW astronomy was a long time coming, the

potential observational implications were clear to the first
theorists studying the gravitational spectrum of Kerr BHs.
Detweiler’s landmark calculation of the Kerr QNM spec-
trum ends with a remarkably prophetic statement; “After
the advent of GWastronomy, the observation of [the BH’s]
resonant frequencies might finally provide direct evidence
of BHs with the same certainty as, say, the 21 cm line
identifies interstellar hydrogen” [21]. An even deeper
analogy between Kerr perturbations and the quantum
mechanical treatment of the H2 ion [22,23] was exploited
by Leaver to compute the Kerr spectrum with high accuracy
using continued fraction techniques [24].
Practical attempts to implement the spectroscopy pro-

gram in GW data analysis started later. Echeverria quanti-
fied the measurability of the frequency and damping time of
the fundamental mode [25] (see also [26]). The merger of
two comparable-mass BHs was identified early on as one of
the most promising LIGO-Virgo sources [27], but predict-
ing which QNMs would be excited as a result of the merger
was essentially a matter of guesswork before the first
numerical BH merger simulations.
In the late 1990s, a conjectured correspondence between

large-n QNMs and BH area quantization [28,29] triggered
several studies of overtones in various BH spacetimes. By
the time Dreyer and collaborators introduced the term “BH
spectroscopy” [30], the idea had been explored by the GW
community for decades (there was also a flourishing
industry of research on “GW asteroseismology,” trying

to infer the properties of ultradense matter from the
analogous problem for compact stars, see e.g. [6,31]).
The fact that overtones should generically contribute to the
GW signal had been proven in many different contexts. For
example, the classic study of Oppenheimer-Snyder collapse
to a Schwarzschild BH by Cunningham, Price, and
Moncrief clearly identified the first overtone (see Fig. 12
of Ref. [32]). Inclusion of one overtone was shown to better
fit the waveforms from infalling particles with finite kinetic
energy in the Schwarzschild case [33], as well as the
waveforms from the first simulations of rotating collapse to
a Kerr BH [34].
The fact that multiple modes contribute to the ringdown

offers the opportunity to characterize the remnant as a Kerr
BH. The idea of BH spectroscopy is quite simple (see
[6,7,35,36] for reviews). In general relativity (GR), the two
GW polarizations hþ;× can be decomposed as

hþ − ih× ≡X
lm

hlmðtÞ−2Ylmðι;ϕÞ; ð1Þ

where the spin-weighted spherical harmonics −2Ylmðι;ϕÞ
depend on two angles that characterize the direction from
the source to the observer.1

Within linearized BH perturbation theory, Leaver [39]
proved that each multipolar component of the waveform at
intermediate times—after the “prompt response,” and
before the onset of power-law tails—is described by a
superposition of QNMs,

hlmðtÞ≡
X
n

Almne−i½ωlmnðt−tstartÞþϕlmn�: ð2Þ

Here, tstart is an arbitrary starting time. In linearized GR, the
complex Kerr QNM frequencies ωlmn depend only on the
remnant BHmassMf and dimensionless spin χf, but not on
the nature of the perturbation, and are known to very high
accuracy [40,41]. On the contrary, the QNM amplitudes
Almn and phases ϕlmn depend on the astrophysical process
causing the perturbation.
Green’s function techniques imply that the QNM ampli-

tudes Almn can be factorized as a product of complex
“excitation factors” Blmn that depend only on the remnant’s
mass and spin and complex-valued, initial data-dependent
integrals Ilmn [39,42–47]. However, the excitation ampli-
tudes of the overtones in a binary merger were unknown
before the first numerical BH merger simulations. Heuristic
arguments suggested that comparable-mass BH mergers
may have ringdown signal-to-noise ratio (SNR) roughly
comparable to the inspiral SNR [48], while other astro-
physical processes would be much less efficient at exciting
QNMs [49]. Early work on BH spectroscopy trying to

1As we discuss below, spin-weighted spheroidal harmonics
−2Slmðι;ϕÞ are more appropriate to study perturbations of Kerr
BHs. This produces spherical-spheroidal mode mixing [37,38].
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quantify the measurability of different multipoles and
different overtones had to rely on educated guesses [40].
Our understanding of ringdown excitation changed

dramatically after the 2005 numerical relativity (NR)
breakthrough [50–52]. Fits of NR simulations revealed
that the radiation from a BBH merger is dominated by the
l ¼ jmj ¼ 2 spherical harmonic multipole, while higher
multipoles are subdominant [53,54]. A superposition of
overtones with frequencies fixed at the values predicted for
the asymptotic Kerr remnant can fit the waveform even
before the peak, but Ref. [53] questioned the physical
meaning of extending these fits to the peak of the radiation:
“The Kerr QNM frequencies and decay constants are
computed assuming that the mass and angular momentum
they carry away constitute a negligible perturbation on the
system. This raises the question as to whether or not the
radiated energy and angular momentum are affecting
the QNM fits. This issue will, of course, become more
significant as the fits are pushed to earlier times.”
As our understanding of QNM excitation has improved

since 2005, so have GW data analysis techniques. The first
detection of GWs from the binary black hole (BBH) merger
GW150914 [55] marked the beginning of a new era in
astronomy. Since then, the LIGO-Virgo-KAGRA (LVK)
Collaboration [56–58] has reported 90 events of probable
astrophysical origin during the first three observing runs
[59–62]. These GW signals, in combination with those
detected by independent groups [63–67], can be used for
various tests of GR in the strong-field regime [68–70].
While in principle a perfect knowledge of the dominant

QNM frequency in a BH binary merger (which we now
know to be the mode with l ¼ m ¼ 2, n ¼ 0) could be
used to infer both the mass and the spin of the remnant, in
practice a single mode is not sufficient to get accurate and
unbiased values for these quantities; mass and spin esti-
mates can and should be improved by combining different
multipolar components [71] and by including overtones
[72]. Since multiple modes will always be excited to some
extent, we must first understand which combination of
modes will dominate the signal [40]. Are we going to
observe a combination of low-n modes for different multi-
poles, or are higher overtones of the l ¼ m ¼ 2 component
dominant? Can we measure the frequencies and damping
times accurately enough to resolve the modes? The answers
to these questions depend on the properties of the merger
remnant progenitors and on the sensitivity of the detectors
[54,72–85].
Initial estimates of the detectability and resolvability of

different modes used a Fisher matrix approximation, which
is only valid for large SNRs [25,26,40]. SNR estimates
based on NR-calibrated amplitudes were instead presented
in [71,73,74]. In the first “modern” Bayesian treatment of
BH spectroscopy [86], the ringdown was parametrized in
terms of mass, spin and a single deviation parameter,
reducing the number of free parameters and related

correlations. A search for beyond-Kerr signatures based
on this model is more sensitive, but less generic than one
where all the modes are measured independently (i.e., the
“classical” formulation of BH spectroscopic tests; see the
discussion in Sec. VII below). The “resolvability” of the
modes was quantified in terms of Bayes factors.
Reference [87] introduced an improved model for ring-
down amplitudes and sources, focusing on the Einstein
Telescope (ET) detector [88]. After the first detections,
updated forecasts of our ability to observe the fundamental
modes with l ¼ m ¼ 3 and l ¼ m ¼ 4 were computed
within a Bayesian framework. Reference [89] concluded
that subdominant fundamental modes with an amplitude of
0.1 (0.3) relative to the fundamental mode with l ¼ m ¼ 2

could be detected with SNR of 30 (15) in the late-time
ringdown without assuming NR constraints on the ampli-
tudes. Relying on a model calibrated to NR [90], these
estimates were revised in Ref. [91]. This work confirmed
previous Fisher-based estimates [92] (see also [83]), con-
cluding that Voyager-class detectors would be necessary to
have “decisive” Bayesian evidence for the presence of two
modes in a single detection.
All of these studies focused on ringdown-only parameter

estimation, ignoring the preringdown signal. The first study
of ringdown signals from complete inspiral-merger-ring-
down simulations windowed the signals at the ringdown
start time to avoid spurious preringdown contributions in
the frequency domain, and showed that percent-level “no-
hair” tests are possible by combining multiple loud sources
detected by the LIGO-Virgo network [93]. The need to tune
specific windowing parameters can be overcome by for-
mulating the test directly in the time domain. The uncorre-
lated case was considered in Ref. [94], while the case
of a nondiagonal autocovariance matrix was tackled in
Ref. [95], applying the time-domain method to search for
multiple (fundamental) modes in GW150914 and con-
straining parametric deviations from the GR spectrum. This
formalism was extended by adopting a truncated likelihood
formulation with a fixed ringdown starting time in
Ref. [96], and applied to the search of the first ringdown
overtone in GW150914 data. These works led to the
construction of a full ringdown pipeline built around
the pyRing package [95,97], which was used by the
LVK Collaboration to produce a catalog of ringdown
observations and to search for beyond-GR signatures
[69,70,98,99]. The searches employed models of increas-
ing complexity, ranging from agnostic superpositions of
damped sinusoids to templates calibrated against BBH
simulations [78]. The pyRing pipeline was later applied to
search for BH charges [100], set bounds on the BH
information emission mechanism [101], investigate heu-
ristic models of “area-quantized” BHs [102], and constrain
modified gravity corrections in a perturbative framework
[103,104]. The truncated formulation has also been imple-
mented in the RINGDOWN package [105].
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In data analysis, the omission of overtones may lead to
biases in the remnant mass and spin estimates [72].
However, QNM tests often relied only on fundamental
modes with different values of ðl; mÞ for two main reasons.
The first reason is practical; overtones are short-lived and
difficult to confidently identify in the data [75]. The second
reason (and the focus of this work) is conceptual; it is
unclear whether multiple overtones have physical meaning,
or they just happen to phenomenologically fit the nonlinear
part of the merger signal [53].
Giesler et al. [106] focused on the l ¼ m ¼ 2 multipole

of the radiation, and showed that including overtones up to
n ¼ 7 in the ringdown model improves the mismatch with
NR simulations for all times t ≥ tpeak. Here the “peak time”
tpeak is defined as the time at which jh2þ þ h2×j has a
maximum. According to Ref. [106], the inclusion of higher
overtones “provides an unbiased estimate of the true
remnant parameters” and the low mismatch “implies that
the spacetime is well-described as a linearly perturbed BH
with a fixed mass and spin as early as the peak.” This
emphasis on linearity prompted a sequence of additional
investigations, both on the modeling and on the observa-
tional side [81–83,107–116]. Some works extended the
idea to counter-rotating modes and higher multipoles [85],
included an even larger numbers of overtones [117], and
proposed possible explanations for the apparent simplicity
of the signal [110,118].
If higher overtones could be measured by starting at the

peak, the larger ringdown SNR would open the door to
more precise tests of GR. This argument (that we will
challenge below) motivated a reanalysis of GW150914 [96]
where the postpeak waveform was fitted with a QNM
superposition including overtones, claiming evidence for
“at least one overtone [...] with 3.6σ confidence.” This
claim is at odds with Ref. [109] and with the subsequent
LVK analysis [69], both reporting weak evidence (with a
log-Bayes factor of ∼0.6) in favor of the model including
two modes relative to the model including only one. A
recent reanalysis of GW150914 found no evidence in favor
of an overtone in data after the peak [119]. Around the
peak, the log-Bayes factor does not indicate the presence of
an overtone, while the support for a nonzero amplitude is
sensitive to changes in the starting time much smaller than
the overtone damping time. GW150914-like injections in
neighboring segments of the real detector noise suggest that
noise can artificially enhance evidence for an overtone. The
matter was further debated in Refs. [120–123], using
different choices for the likelihood, noise estimation,
sampling rate and analysis duration.
In this paper we set aside the controversial issue of

identifying overtones in real data (but we discuss the
implications of our findings on this debate in Sec. VII),
and we carefully reanalyze the main conclusion of
Ref. [106]; can we reliably conclude from an analysis of
NR simulations that the entire postpeak waveform is

described by a superposition of overtones consistent with
linear BH perturbation theory on a fixed Kerr background?
To improve readability, we present our main conclusions in
the following executive summary.

A. Executive summary

The main goal of the paper is to understand which
physical modes can be extracted from GW signals and at
which point in time, with a special (but nonexclusive) focus
on overtones. To this end, we will often compare two broad
classes of models: one in which all complex frequencies
ωlmn are fixed to match theoretical predictions from BH
perturbation theory [40,41], and one in which some (or all)
of these frequencies are left free to vary. The first class leads
to a “weak” version of BH spectroscopy tests (often used in
recent investigations), while the second corresponds to the
original, “agnostic” spectroscopy proposal.
While the nonagnostic method leads to an easier extrac-

tion of the modes, it must be used with great care; by
a priori assuming the presence of short-lived modes, it can
often lead to false evidence for unphysical contributions, as
in the case of higher overtones. Generically, when looking
for overtones, we will show that it is very important to take
into account subdominant contributions to the waveform,
such as tails in linear theory or spherical-spheroidal mode
mixing in full NR simulations. The notation used for our
fitting models is introduced in Sec. II, and it is summarized
in Table I.

1. Extracting overtones in linearized theory

In Sec. III we show that the “original” BH spectroscopy
test, where one agnostically searches for multiple QNMs in
the data, is hard to carry out using overtones even within
linear perturbation theory (and in the absence of noise). To
understand why, we introduce three toy models of increas-
ing complexity, such that linear perturbation theory is valid
by construction: (i) a hypothetical “pure ringdown” (i.e., a
pure superposition of damped exponentials, which is never
expected to describe a real signal)2; (ii) a “pure ringdown”
model to which we add a power-law tail; and (iii) a
numerical waveform constructed by a replica of the original
Vishveshwara scattering experiment [4]. These toy models
illustrate that even within linear perturbation theory, it is not
sensible to fit the waveform with ∼7 overtones starting at
the peak of the radiation.

2In Appendix A we use Green’s function techniques to make
two important conceptual points. First, a “pure ringdown” never
exists: other components (including prompt emission and back-
scattering) will always affect the waveform and cause amplitudes
to change in time. Second, even in the linear regime (and even for
a Minkowski background) the “ringdown starting time” is ill-
defined; it depends on which of the radiation properties (ampli-
tude or energy) that we monitor, and there is no mathematical or
physical basis to claim a well-defined instant as “the” ringdown
starting time.
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We prove this point in two parts. We first ask can we
recover the known frequencies by fitting? As a test of the
fitting algorithm, we show that this is possible in the “pure
ringdown”model by using a “bootstrap” procedure: i.e., we
first identify longer-lived modes in an agnostic way, and
then we fix their complex frequencies when searching for
shorter-lived ones. In the “ringdownþ tail” model, how-
ever, as we increase the number of fitting modes, the
minimum of the mismatch M between the fitting model
and the waveform keeps decreasing as we get closer to the
waveform peak, even when the free mode does not
approach the expected overtone frequency. Adding modes
to the fitting model can reduce the mismatch even if the
mode frequency is unphysical. Therefore, a small mismatch
is not sufficient evidence to claim the presence of an
overtone. The individual modes stop converging towards
their expected values when their mismatch drops below the
mismatch induced by the tail; at that point, the mode is
effectively trying to fit the tail, and the mismatch saturates.
Even if the overtones are physically present in the wave-
form (as in this toy model), fitting with many overtones is
not optimal from a data-analysis point of view, because the
fit is not robust against small contaminations. This is an
important limitation for agnostic tests of GR; tiny con-
taminations can hinder our ability to extract higher-
overtone frequencies, even if the modes are physically
present in the signal. The toy models also allow us to
better understand the behavior of the fitted QNM ampli-
tudes. For the (unrealistic) “pure ringdown” waveforms, all
of the overtone amplitudes converge to constant values at
late times. When we add a tail, there is one remarkable
difference: the fitted amplitudes blow up exponentially at
some critical time—more specifically, when the highest
(fastest-decaying) overtone in the fitting model starts to
pick up the contamination due to the tail.
The conclusion of this exercise is clear; unless additional

physics is taken into account the original, agnostic BH
spectroscopy test is unfeasible for all overtones (including
n ¼ 1), and only possible at late times for the fundamental
mode, even within linear perturbation theory. When we
consider ringdown waveforms resulting from the scattering
of a Gaussian wave packet in linearized gravity, an agnostic

damped-sinusoid fit cannot recover the correct frequencies
for any of the overtones. Even if we fix the frequencies to
their known values, there is no convincing evidence that
overtones with n > 2 are present in the signal. If we insist
to use multiple overtones to test GR, we should start fitting
the waveform at times significantly after the peak. Many of
the lessons learned in linearized theory carry over to the full
GR case.

2. Are postpeak BBH waveforms linear?

Reference [106] claimed that the waveform resulting
from the merger of two comparable-mass BHs can be
(i) adequately described by linear perturbation theory
starting from the peak of the strain, (ii) well-modeled by
a combination of QNM overtones, and (iii) used to test GR
by identifying the overtones in the signal. In Sec. IV we
revisit these claims. We present three different arguments
against the validity of the linear approximation.
First, we show that a constant-amplitude overtone super-

position does not work in the BH merger case, and the
amplitudes of the overtones change significantly when we
change the fitting window. This mode-amplitude evolution
has two important implications: (i) overtone models with
N ≥ 2 are unphysical, because they try to overfit other
features of the waveform; and (ii) models with at most one
overtone (N ≤ 1) are physical, but they can only be used for
meaningful spectroscopy tests at late times.
These conclusions are reinforced in three appendixes. In

Appendix B we demonstrate that using NR waveforms with
different resolutions and different extrapolation orders
makes almost no difference in the amplitude fits, and
therefore NR errors cannot explain the time variation of the
fitted amplitudes. In Appendix C we investigate the effect
of a spurious late-time constant observed in the SXS
simulations. We find that this spurious constant has only
a small impact at very late times, and that it does not affect
our conclusion that it is not possible to extract the first
overtone at the peak. In Appendix D we examine a
complex-exponential toy model for SXS:BBH:0305 which
includes an estimate of the numerical noise, confirming and
strengthening the main conclusions of Sec. III.

TABLE I. Fitting models used in this paper. All models include N overtones (i.e., N þ 1 QNMs when mode
mixing is not included, and N þ 2 QNMs when mode mixing is included). When present, the mode-mixing
contribution has fixed frequency, but free amplitude and phase.

Model Description Mode mixing Number of modes Number of parameters

QNðtÞ All frequencies fixed No N þ 1 2ðN þ 1Þ
QN;Nf

ðtÞ Nf free frequencies No N þ 1 2ðN þ Nf þ 1Þ
QðmÞ

N;Nf
ðtÞ Nf free frequencies Yes N þ 2 2ðN þ Nf þ 2Þ

QðfÞ
N ≡QN;Nþ1

All frequencies free No N þ 1 4N þ 4

Qðf;mÞ
N ≡QðmÞ

N;Nþ1
All frequencies free Yes N þ 2 4N þ 6
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A second issue with a linear perturbation theory inter-
pretation of postpeak ringdown concerns overfitting. How
many overtones are really necessary to minimize the
mismatch between ringdown waveforms and the full
inspiral-merger-ringdown waveform? Which QNMs are
most effective at minimizing the mismatch and reproducing
the correct values of the remnant mass and spin?
Recent studies claim that the inclusion of the funda-

mental mode and seven overtones provides a very accurate
description of the ringdown up to the peak strain amplitude,
and significantly reduces the uncertainty in the extracted
remnant properties [106]. However, we show that the
higher overtones lead to very small mismatches by merely
overfitting the waveforms. Furthermore, we argue that
these higher overtones try to fit other physics (such as
time variation in the QNM amplitudes due to initial data, an
evolving spacetime background, and nonlinearities) close
to the merger. The addition of several overtones allows for
better extraction of the fundamental mode and the first
overtone, which carry most of the information about the
remnant properties, because they effectively “fit away”
poorly understood physics.
In Appendix E we construct an unphysical postpeak

BBH waveform, and show that the overtones can still fit it
with similar accuracy. The fact that using the overtones
allows us to improve the measurement of χf and Mf even
for this unphysical hybrid waveform supports the conclu-
sion that overtones can match any early postpeak waveform
portion, thus allowing the dominant mode to correctly fit
the late postpeak waveform; it is the fundamental mode that
really carries most of the information about the remnant BH
properties.
In Sec. IV C we go beyond mismatches and ask, in the

same vein—which overtones are necessary to correctly
extract the remnant’s properties? We swap individual
modes with random damped exponentials. If the “fake”
random-frequency mode still fits the waveform with similar
or better accuracy, or if it still extracts the remnant
properties accurately, we can conclude that the originally
“swapped” overtone was not really necessary. We use this
argument to show that higher overtones do not play a
significant role in extracting the remnant’s properties either.
Overtones with n ≥ 2 do not significantly contribute to the
extraction of the remnant’s parameters, and therefore there
is no motivation to include them in the modeling.

3. Agnostic BH spectroscopy: Extracting complex
frequencies from the waveform

Since the inclusion of several overtones leads to over-
fitting, in Sec. V we adopt a different strategy. Rather than
imposing a priori that the known overtones associated to a
given ðl; mÞ spin-weighted spheroidal harmonic are
present in the ðl; mÞ spin-weighted spherical harmonic
multipole of the NR data, we consider the complex
frequencies as free fitting parameters. This is a much

stronger test (in fact, it is the original BH spectroscopy
proposal at infinite SNR), and therefore it should lead to
more robust conclusions about which modes are truly
present in the data.
We first focus on the l ¼ m ¼ 2 spherical harmonic

multipole and we ask how many QNM frequencies can we
extract without assuming any (no-hair theorem enforced)
relation between them? We show that (i) in general, the
mismatch between the fitting model and the waveform is
lower when we keep the frequencies free; (ii) many of the
fitted damped exponentials robustly converge towards
known QNM frequencies, naturally selecting the physical
modes that contribute to the ringdown signal; and (iii) it is
essential to include spherical-spheroidal mode mixing to
identify the correct modes. In fact, including modes due to
spherical-spheroidal mixing is essential to extract the first
overtone (at late times) from the dominant (2, 2) multipole.
At least three free modes are required to extract the first
overtone, and it is easier to extract the long-lived funda-
mental modes than the fast decaying overtones, even if the
latter have a much larger amplitude.
We then study a variety of different fitting models. In

some of these fitting models we include the dominant
spherical-spheroidal mode at the expected frequency; in
others, we do not. We adopt both a “fully agnostic”
strategy, in which we include more and more free modes,
and a “bootstrap” strategy in which we identify modes, fix
them, and then search for an additional free frequency.
The study of these different fitting models supports an

important conclusion; the only identifiable physical modes
in the l ¼ m ¼ 2 multipole of the radiation are (2, 2, 0),
(2, 2, 1), and (3, 2, 0). Higher overtones (N > 1) cannot be
robustly identified by free-frequency fitting. Furthermore,
once the “physical” ringdown modes (typically the funda-
mental mode, the first overtone, and the mode-mixing
contribution) have been fitted for, additional free modes
have a tendency to simply track the characteristic “GW
frequency chirp” at early times. In fact, this observation has
already been used in the gravitational waveform modeling
community, where “pseudo-QNMs” were introduced in the
context of the effective-one-body framework to model
the rapid transition from the inspiral GW frequency to
the postmerger QNM frequency “plateau” [124–126].
How do the frequencies inferred by fitting free damped

exponentials translate into mass and spin estimates? In
Sec. V C we limit attention to the l ¼ m ¼ 2 spin-
weighted spherical multipole. We show that a free fit with
two modes near the peak would give significantly biased
mass and spin values (whether we include spherical-
spheroidal mode mixing or not), and therefore it cannot
be used for BH spectroscopy test. Even in the infinite-SNR
limit, including the first overtone never allows for percent-
level estimates of the mass and spin: it may allow for ∼10%
estimates of the mass and spin at late times for loud enough
signals, but only if we carefully take into account mode
mixing and higher multipoles.
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In fact, an analysis of thel ¼ m ¼ 4multipole (Sec. V D)
shows that nonlinearites are also important; the nonlinear
(2, 2, 0)(2, 2, 0) QNM is easier to recover than the first linear
overtone (4, 4, 1) in a free-frequency fit. In Appendix F we
study other subdominant multipoles.

4. Can the first overtone be extracted in the presence of
subdominant multipoles?

In real-world data analysis problems, the waveform will
in general be a superposition of several multipoles. In
Sec. VI we ask: how many free modes would be necessary
to extract the first overtone (2, 2, 1) in this more realistic
scenario?
We find that even in the relatively optimistic case of a

face-on binary, when only the (2, 2), (3, 2), and (4, 2)
multipoles significantly contribute to the strain, the extrac-
tion of the first overtone (2, 2, 1) requires four free
frequencies, and it relies on the successful extraction of
the (long-lived) fundamental modes of subdominant multi-
poles. The extraction of overtones becomes significantly
more difficult when the binary is not face-on. Therefore, in
practical data analysis applications it would be hard to
extract the first overtone from GW150914-like signals.
Even when the overtone can be confidently identified, the
fundamental modes of subdominant multipoles generally
yield more reliable BH spectroscopy tests.
In Sec. VII we discuss the observational implications of

our work; the possible role of nonlinearities and pseudo-
spectral instabilities in destabilizing higher overtones; how
parametrizing the QNM amplitudes may facilitate BH
spectroscopy, and the Occam penalties associated with
the inclusion of several modes; the difference between
“weak” and “strong” spectroscopy tests, and the role of
beyond-Kerr parametrizations of the QNM spectrum as
effective detection templates or tools to constrain modified
gravity theories.

II. FITTING MODELS AND NOTATION

Let us begin by introducing some notation for the fitting
models adopted in the rest of this paper. We will often
compare two broad classes of models—one in which the
real and imaginary parts of the complex frequencies ωlmn
are fixed to match theoretical predictions from BH pertur-
bation theory [40,41], and one in which most (or all) of
these frequencies are left free to vary. The first scenario
corresponds to the “weak” version of the no-hair test used
in recent investigations, while the second reflects the
original “stronger,” i.e., more agnostic, proposal.
In the first class of models, we fit the waveform byN þ 1

damped exponentials with complex frequencies fixed to the
QNMs ωlmn of a remnant with known mass and spin,

QNðtÞ≡
XN
n¼0

Almne−i½ωlmnðt−tpeakÞþϕlmn�; ð3Þ

where the only unknowns are Almn and ϕlmn. In this case,
we assume that the complex frequencies ωlmn of all modes
present in the signal are known a priori. In this sum n is the
overtone number. Since Q0ðtÞ corresponds to a model with
only one mode—the fundamental mode (n ¼ 0), or “zeroth
overtone”—the QNðtÞ model contains N overtones, and
N þ 1 modes in total. This model has been employed, for
example, in Refs. [53,106].
In a more general category of models, we will assume

that the complex frequencies of some modes are known
a priori, while the complex frequencies of others are
unknown. In this case we fit the waveform by N þ 1
damped exponentials where the complex frequenciesωnf of
Nf “free”modes are unknown, while the frequencies of the
remaining N − Nf þ 1 modes are fixed to the QNMs ωlmn

of a remnant with known mass and spin,

QN;Nf
ðtÞ≡ XN−Nf

n¼0

Almne−i½ωlmnðt−tpeakÞþϕlmn�

þ
XNf−1

nf¼0

Anfe
−i½ωnf

ðt−tpeakÞþϕnf
�: ð4Þ

This second class of models has 2ðN þ Nf þ 1Þ fitting
parameters; 2ðN − Nf þ 1Þ real amplitudes and phases
Almn;ϕlmn, 2Nf real amplitudes and phases Anf ;ϕnf ,
and the 2Nf complex free frequencies ωnf . The notation
QN;Nf

ðtÞ is a reminder that we are fitting the waveform by
an N-overtone model, where Nf modes are “free” (in the
sense that their frequencies are not fixed).
In order to take into account spherical-spheroidal mix-

ing, we will sometimes need to add another mode to
QN;Nf

ðtÞ,

QðmÞ
N;Nf

ðtÞ ¼
XN−Nf

n¼0

Almne−i½ωlmnðt−tpeakÞþϕlmn�

þ
XNf−1

nf¼0

Anfe
−i½ωnf

ðt−tpeakÞþϕnf
�

þ Al0m0e−i½ωl0m0ðt−tpeakÞþϕl0m0�: ð5Þ

The superscript “(m)” in QðmÞ
N;Nf

ðtÞ is a reminder that
we also include the mode-mixing contribution
Al0m0eiωl0m0ðt−tpeakÞþiϕl0m0 . For simplicity, we will only con-
sider the dominant mode-mixing contribution. This comes
from l0 ¼ lþ 1 when l ¼ m, and from l0 ¼ l − 1 when
l > m and l > 2. The model now has 2ðN þ Nf þ 2Þ
unknowns; besides Almn;ϕlmn, Anf ;ϕnf , and the complex
frequencies ωnf , we also have the amplitude and phase
Al0m0;ϕl0m0 of the mode-mixing contribution on the last

line. The QðmÞ
N;Nf

ðtÞ model contains N þ 2 QNMs.
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Two special subclasses of models will be of special
interest below. In one subclass, all modes have free
complex frequencies, and there are no fixed modes. In
another subclass, we will only fix the complex frequency of
the spherical-spheroidal mixing mode, while the rest of the
complex frequencies are kept free. These cases correspond
to setting Nf ¼ N þ 1 in the QN;Nfþ1ðtÞ and QðmÞ

N;Nfþ1ðtÞ
models, respectively, and we will denote them with the
following shorthand notation:

QðfÞ
N ≡QN;Nþ1; Qðf;mÞ

N ≡QðmÞ
N;Nþ1: ð6Þ

For reference, the fitting models we will consider below
are summarized in Table I.
As a final note, while the postmerger waveforms

computed in numerical relativity that will be the main
focus of this paper are complex, the linear waveform model
Ψnum that we will consider as a warm-up problem below is
real, because we specify real initial conditions for the time
evolution. When the waveform is real, we will simply
consider the real part of the fitting models, but otherwise we
will use the more general complex models.

III. EXTRACTING OVERTONES IN
LINEARIZED THEORY

Before turning to BBH mergers in full nonlinear GR, in
this section we investigate linear perturbations in GR, as
well as toy models built to elucidate the main features
observed in the linear regime. This will allow us to build
some understanding of what to expect in the full GR
nonlinear case while working in a controlled setting, and
highlight the limitations of waveform fits by a super-
position of damped exponentials. In fact, we will show
that even when linear perturbation theory is valid by
construction, it is not sensible to model the ringdown by
fitting the waveform with ∼7 overtones starting at the peak.
More generally, although fitting the waveform at the peak
with more overtones yields smaller fit residues, the model
fails to pass further basic consistency checks.
We will also see that extracting high-overtone frequen-

cies at the peak of the waveform to test GR does not yield
robust results. Even when the waveform is by construction
a combination of QNMs with a small contamination from
other components (such as power-law tails), the high-
overtone frequencies estimated by fitting are easily biased
by these subdominant contributions. Many of the lessons
learned in these simple settings will carry over to the full
GR case.

A. Preliminaries

As we recall in Appendix A, the starting time of the
ringdown regime is an ill-defined quantity even within
linear perturbation theory, because the Green’s function
always contains additional contributions (most notably, a

prompt response, a tail due to backscattering of radiation,
and effects coming from the build-up of initial data). What
we want to understand now—insisting on modeling the
waveform as a superposition of damped exponentials—is
the precision to which one can recover a hypothetical “pure
ringdown” waveform, and the physical grounds for claim-
ing the presence or absence of overtones.
For a linearly perturbed Schwarzschild BH geometry,

after separation of the angular variables and working in the
time domain, the linearized Einstein field equations imply
that odd-parity (or axial) perturbations are governed by the
Regge-Wheeler equation [1]

∂
2Ψnum

∂r2�
−
∂
2Ψnum

∂t2
− VRWΨnum ¼ 0; ð7Þ

where the Regge-Wheeler potential is

VRW ¼
�
1 −

2M
r

��
lðlþ 1Þ

r2
−
6M
r3

�
; ð8Þ

and the tortoise coordinate r� is defined by the relation
dr=dr� ¼ 1 – 2M=r. For the purpose of this discussion we
focus on the dominant, quadrupolar component of the
radiation (l ¼ 2) and we denote the wavefunction as Ψnum
to emphasize that it is computed numerically by solving the
Regge-Wheeler equation within linear BH perturbation
theory. Even-parity (or polar) perturbations, governed by
the Zerilli equation [2,3], are known to be isospectral to
odd-parity perturbations and behave in a qualitatively
similar way [127].
We compute the waveform Ψnumðt; rÞ by imposing the

following initial conditions for Eq. (7):

Ψnumð0; rÞ ¼ 0;
∂Ψnum

∂t
ð0; rÞ ¼ exp

�
−
ðr� − r0Þ2

2σ2

�
;

ð9Þ

where r0 ¼ 4M and σ ¼ M=2. We then perform a time
evolution and extract the time-domain waveformΨnumðtÞ at
future null infinity, following Refs. [128,129]. We evolve
the initial data using a two-step Lax-Wendroff method with
second-order finite differences [130,131], which has been
extensively used in the past in the study of late-time tails in
Kerr [132,133] and extreme-mass ratio inspirals [134,135].
Our goal is to analyzeΨnumðtÞ and see how well it can be

fitted by a QNM model QNðtÞ (here and below we will
adopt the convention that the waveform we fit is denoted in
boldface, while the fitting model is not).
In general, a full time evolution of the linear equation (7)

will contain a “prompt response” component that depends
on the initial data, as well as a late-time power law tail [39].
We will try to quantify the impact of these additional
components below. For now, we just try to fit Ψnumðt; rÞ
using a QNM model comprising a finite number of
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exponentially damped sinusoids. Since for the moment we
focus on l ¼ 2 and on a nonrotating BH background, we
can drop the index l and set m ¼ 0 without loss of
generality. For economy of notation, in this section we
denote the amplitude Almn of a generic mode by An ≡ A20n,
and similarly for the phases ϕn and the complex frequen-
cies ωn. Therefore, our fitting model is

QNðtÞ≡
XN
n¼0

Ane−i½ωnðt−tpeakÞþϕn�; t∈ ðt0; tendÞ: ð10Þ

The range of the fit is chosen to be ðt0; tendÞ. For all fits in
this section we set tend ¼ 200M, but we have verified that
the results would not change significantly if we used a
larger value for tend.
Given a best-fit model ψ to a waveform Ψ, we can

quantify the goodness of fit by computing the mismatch

M≡ 1 −
hΨjψiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihΨjΨihψ jψip ; ð11Þ

where the scalar product is defined as

hfjgi ¼
Z

tend

t0

fðtÞg�ðtÞdt; ð12Þ

and an asterisk denotes complex conjugation. In this
section both Ψ ¼ ΨnumðtÞ and ψ ¼ QNðtÞ are real because
we specified real initial data, but complex conjugation will
be important later on, when we will consider complex
waveforms from binary BH merger simulations in full GR.
In our fits we use a Levenberg-Marquardt nonlinear

least-squares algorithm. We have cross-checked our results
by comparing two different implementations, using either
the Python package SciPy [136] or the NonlinearModelFit

function in Mathematica.

B. Some considerations on overfitting

By fitting Eq. (10) to the solution of Eq. (7), we found
that the linear waveform ΨnumðtÞ can indeed be fitted
“well” by a model with seven overtones Q7 if the fitting
range starts at the peak of jΨnumj, i.e. t0 ¼ tpeak; the
mismatch between the best fit waveform and the data is
small, M ∼ 10−8. This result agrees with Ref. [106].
However, a problem immediately arises. By including

more fitting parameters we can (in principle) decrease M
indefinitely, even if the new parameters are not physically
well-motivated and simply overfit the signal. Specifically,
when adding more overtones to our fit model, we risk
overfitting the early part of the ringdown, “fitting away”
any contamination close to the peak of the waveform (due
e.g., to the prompt response) with the rapidly decaying
overtones. Indeed, as will be clear from the following
discussion, a small M is a necessary but not sufficient

condition to conclude that the fitting model is consistent
with the actual waveform or well-motivated.
To showcase overfitting issues, we consider a toy

waveform Q7 consisting of a fundamental mode and seven
overtones, where the amplitude and phase of each mode is
obtained by fittingΨnum at t0 − tpeak ¼ 0M. In other words,
Q7 is a reconstruction of Ψnum with the Q7 model (recall
that we use bold symbols for the waveforms to be fitted,
and normal symbols for the fitting model; in this case Q7
denotes the waveform and Q7 is the fitting model).
By comparing the black and cyan lines in the left panel

of Fig. 1 we see that the waveform is indeed well-
approximated by the Q7 model as early as the peak. In
the right panel we plot the fitted individual overtone modes
from n ¼ 0 to n ¼ 7 of Q7. The first few overtones (n≲ 3)
consist, as expected, of sinusoidal oscillations modulated
by an exponential decay. However, higher overtones
(3≲ n ≤ 7) have a larger oscillation period and a shorter
exponential decay time. If we focus on the early part of the
waveform, the high-order overtones look like exponentials
rather than damped oscillators because of their low quality
factor.3

When we fit an exponentially decaying waveform with a
ringdown model using a nonlinear least-squares algorithm,
or when we compute the mismatch (12), the squared
residue is dominated by the earlier part of the waveform.
Then the higher overtones act effectively as “bumps,”
removing early-time parts of the waveform that could
not be well-fitted by the lower overtones.
In linear perturbation theory, an important early-time

contribution is the “prompt response” due to the initial
wave packet that propagates directly towards null infinity
without scattering off the light ring. For the BBH merger
waveforms considered in later sections, the early-time
waveform includes the merger phase and any nonlinearities
that may be present close to the peak.
The higher overtone phases can—and often do—(anti)

align to produce destructive interference between modes;
this (not neessarily physical) destructive interference
reduces the mismatch, allowing ringdown models with
many overtones to fit the early part of the waveform.We see
hints of this destructive interference in Fig. 1; note that the
higher overtones can have amplitudes as high as ∼104,
much larger than the peak amplitude of the actual wave-
form (which is ≲1).
The bottom line is that fitting the ringdown with many

overtones requires great care because of their exponentially
decaying nature. A low mismatch with a multiple-overtone
fitting model can easily mislead us into believing that the
overtones are physically present when, in fact, they are just
an unphysical artifact that produces good fits to other

3The quality factor Qlmn ¼ −ReðωlmnÞ=ð2ImðωlmnÞÞ is es-
sentially the ratio between the decay timescale τ and the
oscillation period.
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components of the signal. Therefore, a small mismatch is not
sufficient to argue that the fitting model is a good repre-
sentation of the waveform. At the very least, we should test
whether the complex overtone frequencies assumed in our
fitting model are actually those that best fit the waveform.
Moreover, the fits shouldnot bevery sensitive to the choice of
t0 and tend. The fitted amplitudes and phases should be
consistent within about one period of oscillation of the
corresponding QNMs, to exclude the possibility that over-
tones are just “bumps” fitting nonperiodic components of the
waveform with their first half-a-period.
In fact, even in linear perturbation theory (where we

neglect any possible nonlinearities associated to BBH
mergers), the amplitudes of the QNMs are expected to
vary close to the peak of the signal due to initial data effects
(see Appendix A). The Q7 model (a superposition of
constant-amplitude damped sinusoids) is insufficient to
consistently fit the whole ringdown even in this simple
case, and we will observe amplitude modulations near the
peak as we vary the starting time of the fit.

C. Controlled fitting experiments

Let us perform some controlled experiments to test
whether model Q7 (with fixed frequencies) is a good
representation of the linear ringdown waveform found
by solving Eq. (7). Here we build analytical toy-model
waveforms to mimic the main features of the actual linear
waveform, and to understand what our fitting procedure
would return if the simulated waveform were exactly
described by a combination of damped sinusoids. We
consider three such toy-models: (a) a “pure” ringdown
waveform consisting only of damped sinusoids; (b) a
waveform consisting of damped sinusoids plus a Price

power-law tail [137], as expected in linear perturbation
theory; and (c) the actual linear waveform found by
solving Eq. (7).
The details of the waveforms are as follows:

(a) Q7ðtÞ, pure damped sinusoids. This waveform is a
particular realization of the (real-valued) fitting model
Q7, as specified in Eq. (10), whose mismatch with
ΨnumðtÞ is ∼10−8,

Q7ðtÞ≡ Re
X7
n¼0

Ane−i½ωnðt−tpeakÞþϕn�: ð13Þ

The frequencies ωn are the overtone frequencies of the
l ¼ 2 multipole of a Schwarzschild BH, i.e.,
ωn ≡ ω20n. The amplitudes An and phases ϕn are
fixed by fitting ΨnumðtÞ with the Q7 model at
t − tpeak ¼ 0M, as explained earlier and shown in
the left panel of Fig. 1. The toy waveform is denoted
in bold fonts to distinguish it from the fitting model.

(b) QT
7 ðtÞ, damped sinusoids with contamination from a

power-law tail. The waveform in linear theory must
contain contributions from a Price power-law tail due
to backscattering of GWs, which scales as t−2lþ3 at
late times for perturbing fields of any spin, and for
momentarily static initial data such as those used here
[137]. At late times, the power-law tail dominates the
signal. To understand the dominant (l ¼ 2) mode, we
model the tail of the numerical waveform ΨnumðtÞ by

TðtÞ≡ Atailðt − t0;tailÞ−5: ð14Þ

A fit of ΨnumðtÞ with this model at t − tpeak > 200M
yields Atail ≈ 9.26 × 104 and t0;tail ≈ −96.9.

FIG. 1. Left panel: the three waveforms considered in this section.ΨnumðtÞ is the waveform extracted at future null infinity by solving
the time-domain Regge-Wheeler equation (7) with the initial conditions of Eq. (9).Q7ðtÞ is a “pure ringdown” fit ofΨnumðtÞ starting at
t0 ¼ tpeak, with a fundamental mode and seven overtones fixed at the Schwarzschild frequencies computed in perturbation theory.QT

7 ðtÞ
is the same asQ7ðtÞ, but we also add a power-law tail to mimic the contamination due to backscattering of radiation. The tail amplitude
is obtained by fitting ΨnumðtÞ at times t > 200. The inset shows a zoomed-in view near the peak. Right panel: the individual modes
(including the fundamental mode and 7 overtones) that make up Q7ðtÞ. For reference, the extrapolated tail added to QT

7 ðtÞ (purple
dashed line) is plotted in both panels. Note that in the right panel, the overtones with n ≥ 5 drop below the extrapolated tail before
completing even half of an oscillation cycle.
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This backscattering is expected to affect also the
earlier part of the ringdown, and we approximate its
effects by extrapolating the fitted tail to early times
t∈ ð0M; 200MÞ. Then, we can construct a more
realistic toy model by adding the extrapolated tail to
Q7ðtÞ,

QT
7 ðtÞ ¼ Q7ðtÞ þ TðtÞ: ð15Þ

This toy waveform is shown as the solid purple curve
in the left panel of Fig. 1, while the extrapolated tail is
shown by dashed purple lines in both the left and right
panels. Our approximation of the backscattering ef-
fects is admittedly crude. Nonetheless, this toy wave-
form should be sufficient to understand whether
backscattering can affect the fits. In fact, we have
found qualitatively similar results when we replace the
power-law tail by a constant shift in amplitude, by a
Gaussian noise floor, or by the estimated numerical
noise error intrinsic in ΨnumðtÞ. We decided to show
results for a power-law tail (instead of numerical noise
contributions) because the extrapolated tail has larger
amplitude than the noise in the time range of interest.

(c) ΨnumðtÞ, linear perturbation theory waveform. This is
the waveform found by solving Eq. (7) with the initial
conditions Eq. (9), extracted at null infinity.

D. Recovering QNM frequencies through an agnostic fit

We now test whether we can recover the QNMs in the
above toy waveforms in a frequency-agnostic manner; we
consider a fitting model QN;Nf

in which some of the QNM
frequencies are free parameters to be determined by the fit,
instead of fixing all of the frequencies to the theoretically
predicted overtone frequencies. If the waveform is well
described by a superposition of QNMs with certain over-
tone frequencies, we should be able (at least in principle) to
recover these frequencies with our fitting procedure.

1. Pure damped sinusoids

Consider first the simplest toy model waveform Q7ðtÞ, a
superposition of damped sinusoids that mimic the full
linear waveformΨnumðtÞ. Recall that the frequencies of the
QNMs used to construct Q7ðtÞ are those of the first seven
overtones of a Schwarzschild BH.
We start by fitting the waveform with a single damped

sinusoid, leaving the real and imaginary parts of the QNM
frequency as two free parameters to be recovered by the fit.
In our notation, then, the fitting model is Q0;1ðtÞ, and the
single free mode should converge to the fundamental mode
when the fit starts at a sufficiently late time. As shown by
the blue curve in the top left panel of Fig. 2, the fitted
frequency converges to the theoretically predicted funda-
mental QNM frequency of Schwarzschild BHs. In the
second row we plot the deviation

δω ¼ Mjωr þ iωi − ωref j; ð16Þ

where ωref denotes the reference value of the complex
QNM frequency that we expect to find (ω200 in this case).
The blue curve in the left panel of the second row shows
that δω ∼ 10−4 when t0 − tpeak ∼ 30M.
We can now add one more QNM to our fitting model.

The least demanding procedure to look for the first over-
tone is to fix the frequency of the fundamental QNM in the
fit. Now our fitting model is Q1;1ðtÞ; a model with one
overtone (plus the fundamental mode, so two modes in
total), in which one complex frequency (the frequency of
the first overtone) is a free fitting parameter. As shown
by the orange curve in Fig. 2, the free mode converges to
the first overtone frequency as expected, this time with
δω ∼ 10−3 when t0 − tpeak ∼ 30M.
We repeat this procedure by adding more modes to our

model. Each time we fix the frequencies of the modes we
have already recovered, leaving only one mode frequency
free. When we use the fitting models Q2;1ðtÞ; Q3;1ðtÞ;…,
we find that we can recover the frequencies to an accuracy
δω≲ 10−2 up to the third overtone, even when the actual
waveform always contains seven overtones. For overtone
numbers N ≥ 4, however, the fitted frequency becomes
noisy and diverges before we reach t0 − tpeak ∼ 30M. The
jδωj curves are truncated at the point where the divergence
occurs.4 For overtone numbers N ≥ 6, the fits become very
computational costly and they do not converge well, so we
do not include the results in the plot.
Each additional mode in the fitting model increases the

number of fitting parameters by two (the amplitude and the
phase of each mode). This makes it difficult to locate
the global minima in nonlinear least-squares fitting when
the waveform is contaminated by unaccounted for higher
overtones (i.e., close to the peak) and when the overtones
have decayed significantly (i.e., at late times). At late times,
the higher-overtone fits only fail once the mismatch
between the fitting model and the actual waveform reaches
machine precision. Even when our toy waveform contains
seven overtones (more than the number of overtones
included in the fitting model), we can still recover the
N ≤ 3 overtones at sufficiently late times.
These results indicate that if the lowest (N ≤ 3) over-

tones are dominant in full GR waveforms, our fitting
procedure should return their correct frequencies. For full
GR BBH waveforms, we will find very weak evidence of
the third overtone even under the most lenient requirement

4Here we are using a particular realization of the waveform
Q7ðtÞ. We could use other realizations by choosing a different set
of amplitudes and phases. For example, if we fit the amplitudes
and phases of ΨnumðtÞ at a time t0 − tpeak ≠ 0, the agnostic
frequency fit could recover the correct frequency up to N ¼ 5 for
some cases, and the “amplitude constancy” test explained later in
this section could also work slightly better.
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(i.e., when we impose the weak “consistency test” that the
mode amplitude should be approximately constant for a
brief period in time ∼2M). Therefore, including N ≳ 4

overtones in the fitting model is not useful anyway. We will
confirm and reinforce these conclusions below.

2. Damped sinusoids with tail

Next, we test whether adding even the simplest sub-
dominant contamination to the waveform would hinder our
ability to recover the QNM frequencies. In the middle
panels of Fig. 2 we repeat the agnostic QNM fitting

FIG. 2. Frequency-agnostic fits of the Q7ðtÞ (left column), QT
7 ðtÞ (middle column), and Ψnum (right column) waveforms with the

Q0;1ðtÞ; Q1;1ðtÞ;…Q5;1ðtÞmodels, each consisting of 0; 1;…5 overtones, with the QNM frequency of the highest overtone in the model
left as a free (complex) parameter for the fit. Top row: Recovered frequency of the free-frequency mode in each model. Each curve
corresponds to a fitting model QN;1ðtÞ with a different number of overtones. Each point on the curve corresponds to a fit starting at a
different t0, where t0 is increased in 0.1M steps. The empty thick cross corresponds to t0 − tpeak ¼ 0M, the two thin crosses correspond
to 10M and 20M, and the solid thick cross corresponds to 30M. The empty black circles are the expected overtone frequencies
ω0;ω1;…ω5 (from bottom to top) of the lm ¼ 20 harmonic for a Schwarzschild BH, used to construct the Q7ðtÞ and QT

7 ðtÞ toy
waveforms. Spurious data points (e.g., points that move away from neighboring points by a disproportionate distance, or points that
“jump” to a location outside of the plotting domain) are removed, hence some curves start later than 0M, terminate prematurely before
30M, or jump discontinuously at intermediate times, especially for the higher overtones. We also remove the same spurious points in the
bottom three rows of this figure. We do not show the N ≥ 4 curves for QT

7 ðtÞ and Ψnum (center and right column) because they do not
approach any of the expected overtone frequencies meaningfully. Second row: Deviation of the free fitted frequency from the expected
overtone frequency, as defined in Eq. (16). Third row: Amplitude of the free-frequency mode. Although the starting time t0 of the fit is
varied, we define the amplitude of the mode to be the amplitude that we would measure by extrapolating back to tpeak. In the left and
central panels, we plot the injected amplitudes of each mode of the toy waveforms by horizontal dotted lines. Bottom row: Mismatch
between the best-fit model and the actual waveform, as defined in Eq. (12). In the central panel, we also plot the mismatch between
Q7ðtÞ and QT

7 ðtÞ (black dashed line), i.e., the mismatch induced by the tail.
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procedure using the same fitting modelQN;Nf
ðtÞ, but on the

toy waveform QT
7 ðtÞ. We find that the recovery of the

fundamental mode and first overtone are almost as good as
for the toy waveform Q7ðtÞ, but the higher overtones
(n ≥ 2) are not recovered.
Perhaps the most instructive outcome of this experiment is

shown in the bottom central panel of Fig. 2. In that panel, the
horizontal black dashed line corresponds to the mismatch
betweenQ7ðtÞ andQT

7 ðtÞ, i.e., the mismatch induced by the
tail. It is clear that the individual modes stop converging
towards their expected values around the time where their
mismatch drops below the mismatch induced by the con-
tamination. At that point, the mode is effectively trying to fit
the contamination, and themismatch saturates. The results are
qualitatively similar when we replace the tail with other types
of injected subdominant contaminations (e.g., Gaussian
noise). Clearly, if we increase the amplitude of the injected
contamination, the recovery of the overtones becomes even
worse. In summary, this toy waveform illustrates that the
presence of an expected subdominant contamination (beyond
the “pure ringdown” signal) can prevent a robust extraction of
the frequencies of the higher overtones.
What is worse, the free-mode frequency for fitting

models with N ≥ 2 does not converge to any particular
value. This is an indication that the fit does not decisively
“pick up” any QNM in the waveform. However, as we
increase N the minimum mismatch M keeps decreasing
and getting closer to the waveform peak, even when the free
mode does not approach the expected overtone frequency.
This shows that adding modes to the fitting model can
reduce the mismatch even if the mode frequency is
unphysical. Therefore a small mismatch is not sufficient
evidence to claim the presence of an overtone. Numerical
waveforms with high accuracy are necessary to confidently
identify overtones in the data, and it is preferable to have a
good model of all the sources of non-QNM contamination
(including tails, noise, and nonlinearities).
On the other hand, the results for this toy waveform seem

to imply that a failure to identify overtones with a
frequency-agnostic search is not a proof that the overtones
are absent, either. The overtones could be physically
present (as they are in this toy model), but the fits could
be failing simply because of small, subdominant contam-
inations. However, even if the overtones were physically
present, including many overtones in our ringdown wave-
form model might not be optimal from a data-analysis point
of view, because the model is not robust against even small
contaminations. This is an important point if we want to test
GR by extracting different frequencies in an agnostic
manner; any small contamination would hinder our ability
to extract higher-overtone frequencies even if the modes are
physically present in the signal.

3. Linear perturbation theory

Finally, in the right panels of Fig. 2 we consider the more
realistic case of fittingΨnumðtÞ, the time-domain solution of

Eq. (7) with initial conditions given by Eq. (9), extracted at
null infinity. The left panel of Fig. 1 shows that ΨnumðtÞ
(black solid line) results from a combination of QNMs,
contamination due to backscattering, and direct propaga-
tion of the initial wave packet. Moreover, for reasons
explained with a toy model in Appendix A, the initial data
contamination means that the “effective” QNM amplitude
should typically increase continuously until it approaches a
constant. In this more realistic model, extracting the over-
tone frequencies should be even harder than in the toy
models examined previously.
This expectation is validated by our fits. While we can

recover the fundamental mode (δω≲ 10−3) with a free-
frequency fit, none of the overtone frequencies converge to
the theoretically expected values at late times. In fact, only
the first overtone (orange line) passes relatively close to the
“correct” theoretical value (δω≲ 10−1) for a short time
interval ∼1M around t0 − tpeak ∼ 16M. This test shows that,
in the presence of unmodeled subdominant contributions,
we can never recover the correct overtone frequencies by an
agnostic fit to test GR.
The original BH spectroscopy test is unfeasible for all

overtones, and only possible at late times for the funda-
mental mode, even within linear perturbation theory.

E. Recovering QNM amplitudes at fixed frequencies

Since the original, agnostic spectroscopy test seems too
ambitious even within linear perturbation theory, let us
consider a more modest goal. In this “weak” version of the
BH spectroscopy test, we assume the frequencies of the
QNMs that should be present in the waveform to be
known. In other words, we fit our waveforms with the
Q7ðtÞ model (see Table I); the complex frequencies in the
model are fixed at the injected values for each QNM, and
only the mode amplitudes and phases are free-fitting
parameters.
Our toy models will illustrate two main points:
(i) If the waveform could really be described by a

superposition of QNMs with the “right” frequencies,
the fitted QNM amplitude should not change sensi-
tively when we choose to fit the waveform at
different starting times.

(ii) The linear waveform ΨnumðtÞ gives inconclusive
results when we consider N ≳ 4 (or arguably even
fewer) overtones in the model. This is further
evidence that we cannot reliably identify overtones
with N ≳ 4, even within linear theory and in a
“weak” formulation of BH spectroscopy tests.

1. Pure damped sinusoids

In Fig. 3 we plot QNM amplitudes fitted to various
models when we change the starting time of the fit t0. As in
Fig. 2, for any t0 we extrapolate the amplitude back to tpeak
to “unfold” its exponential decay, so the plotted quantity is
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really the amplitude at tpeak, as defined in Eq. (3). In other
words: if the plotted curve is a flat horizontal line, the
amplitudes extracted at different values of t0 are consistent
with each other.
For the “pure QNM” toy waveform Q7ðtÞ (long dashed

lines in Fig. 3), we find that if we start the fit late enough,
the recovered amplitudes “flatten out” to their injected
values (shown as faint dotted lines), even when our fitting
model contains fewer QNMs than the “true” pure ringdown
waveform (i.e., when N ≤ 7).
The different panels show a clear trend: as we add more

overtones, the lower overtones converge to a flat line earlier
and earlier. Note that all of the overtone amplitudes (not
only a subset) converge towards a constant at late times.
This behavior is evidence that the model is a complete
representation of the true waveform, and that the fit has
good convergence properties.

2. Damped sinusoids with tail

Next, we apply the same procedure to the toy waveform
QT

7 ðtÞ. The results are shown as solid lines in Fig. 3. The
fitted amplitudes are practically the same found in the pure
damped sinusoid case for early starting times.

However, there is one remarkable difference: the ampli-
tudes fitted to waveforms contaminated by power-law tails
blow up exponentially at some critical time. When the
injected contamination increases in amplitude, this “critical
blow up” occurs at earlier times. In fact, the exponential
blow up occurs when the highest (fastest-decaying) over-
tone in the fitting model starts to pick up the contamination,
and tries to fit the power-law tail with an exponential even
at late starting times t0, instead of following the expected
exponential decay. This results in an exponential blow-up
in the figure, since we always plot the amplitude as defined
at tpeak. Wewill observe an analogous behavior when fitting
NR waveforms in the full, nonlinear theory. Nonetheless,
when the fitting model contains many overtones (e.g.,
N ¼ 5), the lower overtone amplitudes (e.g., those with
n ≤ 3) are still roughly constant at late times. From Fig. 3,
we also conclude that a nonconstant amplitude at early
times cannot be attributed to backscattering or some other
subdominant contamination, because the early variation of
the amplitude is similar with or without the contamination.

3. Linear perturbation theory

In Fig. 4 we consider ΨnumðtÞ, the waveform com-
puted within linear perturbation theory, and we fix the

FIG. 3. The amplitudes of QNMs fitted to the Q7ðtÞ (long dashed lines) and QT
7 ðtÞ (solid lines) toy waveforms, when the frequencies

of all modes are fixed to the “true” frequencies of the corresponding overtones. Each panel corresponds to the fit results from a model
QNðtÞ with a different number of overtones N. Different colors in each panel correspond to the fitted amplitudes of the different
overtones ðn ¼ 0; 1;…; NÞ. While the starting time of the fit t0 is varied, we always plot the value of the amplitudes extrapolated back to
tpeak. The injected values of the amplitude in the toy models Q7ðtÞ and QT

7 ðtÞ are shown as faint, horizontal dotted lines. Note the
different time ranges in different panels.
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frequencies to the standard QNM frequencies of a
Schwarzschild BH. While the amplitudes are flat
within certain time ranges, their consistency is not as
apparent as in the simpler toy models we considered
earlier.
Consider e.g. the model with N ¼ 4. For the toy wave-

formQT
7 ðtÞ in Fig. 3, the amplitude of the n ¼ 2 overtone is

consistent across a range of ∼10M at t0 − tpeak ≳ 7M.
However, the corresponding amplitude when fitting
ΨnumðtÞ is only constant at times t0 − tpeak < 5M, over a
time range shorter than half the period of the fundamental
mode (Pn¼0=2 ∼ 8.4M). When we go to N ¼ 5, none of the
amplitudes is ever constant, except for the n ¼ 0 and n ¼ 1
modes. This is different from the previous toy models,
where all overtone amplitudes with n ≤ 3 are stable at late
times. Also, for the previous toy models, the amplitudes
stabilize earlier for fits with higher N, and across different
N the individual amplitudes all stabilize to the same value
(faint dotted lines). None of these behaviors is observed for
ΨnumðtÞ; compare e.g., the N ¼ 4 and N ¼ 5 panels in
Fig. 4. This implies that for ΨnumðtÞ, the model breaks
down at N ¼ 5, and we should certainly not go further than
that. A cautious reader may even argue that we can only
identify overtones with n ≤ 2, because for n ¼ 3 and

higher the amplitude is flat over times smaller than
Pn¼0=2.

5

In fact, the QT
7 ðtÞ template considered above has been

engineered to mimic ΨnumðtÞ, so the flatness of the
amplitude between these two waveforms should have been
similar. Differences could arise either because the back-
scattering effect has been poorly modeled by extrapolating
the power-law tail to early times in QT

7 ðtÞ, or perhaps
because there are additional contamination in the linear
theory waveform. For example, while the QNMs corre-
spond to poles in the Green’s function for the Regge-
Wheeler potential, the “prompt response” (i.e., the direct
propagation of the initial wave packet towards spatial
infinity; see Appendix A), is expected to contaminate
the waveform. Even without such contamination, the
QNM amplitudes are varying close to the peak of the

FIG. 4. Same as Fig. 3, but for the linear waveform ΨnumðtÞ. The dotted and dash-dot lines show the results for the simulations with
grid spacing dt ¼ dr ¼ 1.25 × 10−2M and 6.25 × 10−3M, while solid lines show the results obtained from Richardson extrapolation.
The three curves are similar, especially at late times, indicating that the variation of the amplitude and the exponential blow up at later
times is not primarily driven by numerical error. When compared to Fig. 3, the duration in which the amplitudes look flat is significantly
shorter for the N ≤ 4 fit models. For N ¼ 5, only the n ¼ 0, 1 overtones show signs of constancy. Note the different time ranges in
different panels.

5Moreover, a constant amplitude is necessary but not sufficient
to infer that QNMs are present in a waveform. If in our fitting
model we were to assume the presence of a QNM whose real
frequency is very similar to a QNM that is actually present in the
waveform, but whose decay time is significantly different, the
fitted amplitudes could also turn out to be approximately flat for a
brief period close to the peak. This is why agnostic frequency fits
represent the most robust method to identify an overtone.
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waveform; they build up continuously according to the
shape of the initial data, so constant-amplitude QNMs
should not be used to model the waveform too close to the
peak (see Appendix A and [47]). Pseudospectral instabil-
ities may also cause alterations to the ringdown waveform,
especially for higher overtones [138–141] (perturbations of
the fundamental mode have been shown to affect the time-
domain ringdown waveform only minimally [141], but
in principle the instability of the overtones could be
observable [139]).
We have estimated the noise in the numerical solution of

the Regge-Wheeler equationΨnumðtÞ, and we have found it
to be subdominant when compared to the extrapolated tail
used for constructingQT

7 ðtÞ. Consistently with this finding,
if we use a lower-resolution calculation of Ψnum, the fitting
results in Fig. 4 do not change significantly. In other words,
the exponential blow-up is likely driven by physical effects
(power-law tails) rather than by numerical noise. This may
not be true for comparable-mass BBH mergers. As far as
we know, a power-law tail has not yet been confidently
identified in BBH simulations in full GR.

F. Take-home messages

The lessons learned from fitting the three toy waveforms
(Fig. 2) can be summarized as follows:
(a) If the waveform consisted of a pure superposition of

damped QNMs, as in model Q7ðtÞ, we should be able
to recover the QNM frequencies by fitting the wave-
form up to at least n ¼ 3, and the amplitude of each
QNM would be consistent across different starting
times of the fit. This applies to both the case where the
frequencies are free, and to the case where they are
fixed to their “exact” values.

(b) Contaminations that are subdominant close to the
waveform peak, such as the power-law tails injected
in QT

7 ðtÞ, limit our ability to agnostically recover the
overtone frequencies as required for testing GR, even
if the overtones exist in the waveform and are
dominant. However, if we assume that overtones are
present and we fix their frequencies in the fitting
model, while the amplitudes will blow up exponen-
tially at a later time, they should be approximately
constant at intermediate times for overtones up to
n ¼ 3. The constancy of the lower overtones should
improve when we add more overtones to the model.

(c) An agnostic damped-sinusoid fit cannot recover the
correct frequencies for any of the overtones when we
consider “true” ringdown waveforms computed within
linearized gravity ΨnumðtÞ. A fit of the linearized
waveform with frequencies fixed to their known values
does not show convincing evidence that overtones
with n ≳ 2 are present in the signal. In fact, the
identification of the overtones is significantly more
problematic than in the toy waveforms Q7ðtÞ
and QT

7 ðtÞ.

The conclusions of this exercise are quite clear.
First and foremost, using a small-mismatch criterion is

not sufficient to conclude that overtones are present in the
waveform. Overtones are prone to overfit the early part of
the waveform, because the rapidly decaying higher over-
tones, combined together, are just fine-tuned “bumps” that
can fit away other sources of contamination.
Even if the ringdown following a BBH merger were

precisely described by linear theory, this would not imply
that a superposition of multiple QNMs is sufficient for
waveform modeling. Even the linearized waveforms are
plagued by physical contamination from the prompt
response and tails, and this makes it hard to conclude
whether higher overtones are present, even if we assume the
overtone frequencies to be known.
Moreover, the Gaussian scattering example implies that

it is difficult to use more than n ¼ 2 overtones to test GR. In
fact, Fig. 2 shows that—even in linear perturbation theory
and for nonrotating BHs—recovering the theoretically
predicted QNM frequencies is difficult even for the first
overtone, unless we fine-tune the starting time t0 of the fit.
A “blind” (percent-level) precision measurement of QNM
frequencies is only feasible for the fundamental mode.
If we insist to use 0 < n ≲ 2 overtones to test GR, we

should start fitting the waveform at times significantly after
the peak (e.g., ≳10M after the peak for a model with one
overtone). This is because the overtone amplitudes are
roughly constant only at late times, whether or not the
waveform is linear starting from the peak.6

While it is true that the fitting model we use for overtone
extraction is incomplete (because a tail is clearly present in
the numerical linear waveform), the key point is that similar
unmodeled linear and nonlinear contributions will certainly
be present in full GR. Hence we can expect overtone
recovery to be affected by similar issues in more realistic
cases, in the absence of extremely accurate analytical
models. (Incidentally, we have also tried to fit Ψnum with
a power-law tail in addition to QNMs, but we could not
confidently identify the portion of the waveform where the
tail starts being dominant.) Additional contributions—
including nonlinear effects [85,142] and nonlinear QNMs
[143–147]—have indeed been found in BBH merger
waveforms in full GR. As a linear superposition of
QNMs cannot fit a linear waveform in a self-consistent
manner, we would expect the model to perform even worse
when fitting the postmerger waveform of two comparable-
mass BHs. The next sections will confirm these expect-
ations. In our analysis of the ringdown of BBH mergers

6The time at which we should start the fit depends on the initial
conditions used when solving for the linear waveform, and on the
error tolerance we are willing to accept when we fit the frequency
and amplitude. Note also that the Regge-Wheeler waveform is
related to ḧ, the second derivative of the GW strain, so the time
delay needed for fitting h in BBH merger waveforms might be
significantly different. We will return to this topic below.
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simulated in full GR, the n ≥ 2 overtones cannot be
confidently identified, and the first overtone can only be
identified at times ≈10M after the waveform peak.
In Appendix D we repeat some of the present analysis on

a complex-valued toy waveform constructed to mimic the
NR postmerger waveform. The conclusions are qualita-
tively similar, if not stronger. When we consider a complex
toy model consisting of seven overtones, the frequency-
agnostic fits work better than those presented here, and the
fitted amplitudes are even more stable. In other words, a
failure of these test for a complex NR waveform is even
stronger indication that the waveform cannot be modeled
by a superposition of overtones.

IV. ARE POSTPEAK BBH WAVEFORMS LINEAR?

Let us now turn to the real problem of interest—fitting
waveforms in full GR. Fitting overtones in ringdown signals
is a notoriously difficult problem even in the absence of
instrumental noise (see, e.g., [53,75,81,85,148,149]).
Besides the physical effects discussed so far, time variations
in the inferredmode amplitudes in full GR can occur because
the mass and spin of the remnant extracted from numerical
simulations vary significantly close to the peak of the
radiation [53,54,72,119,142]. Let us illustrate this point
more concretely.
To facilitate comparison with previous work, we will

follow Ref. [106] and focus on the GW150914-like NR
waveform SXS:BBH:0305 in the Simulating eXtreme
Spacetimes (SXS) catalog [150,151]. The waveform rep-
resents a BH binary with mass ratio of 1.22, primary
dimensionless spin χ1 ¼ 0.33 aligned with the orbital
angular momentum, and secondary dimensionless spin
χ2 ¼ −0.44 antialigned with the orbital angular momen-
tum. The merger remnant in this simulation has final mass
Mf ¼ 0.9520M and dimensionless spin χf ¼ 0.6921.
Reference [106] suggested that the addition of several

overtones is necessary to appropriately model ringdown
and to infer the final mass and spin. When starting to fit at
t ≥ tpeak, where tpeak is defined as the time where the
ðl; mÞ ¼ ð2; 2Þ component of the strain has a maximum,
overtones up to n ¼ 7 were included to obtain an unbiased
estimate. Earlier work had indeed found that using a single
mode can lead to large systematic errors on the inferred
mass and spin of the remnant [53,71,72].
As pointed out in early systematic studies of ringdown

from nonspinning BH merger simulations [53,54], the fact
that a linear superposition of damped exponentials can
reproduce the merger waveform for t ≥ tpeak does not
necessarily imply that the time evolution of the background
and nonlinearities can be ignored. A significant fraction of
the mass and angular momentum is being radiated away
from the system postmerger, while the Kerr QNM frequen-
cies are computed assuming a fixed background.
In Fig. 5 we show the difference between the BH mass

and angular momentum and their asymptotic values,

computed for the SXS:BBH:0305 simulation following
the procedure outlined in Ref. [152]. We find that the
remnant mass and dimensionless spin differ from their
asymptotic value by 2% (1%) and 8% (4%) at t ¼ tpeak
(t ¼ tpeak þ 10M), respectively. Such large variability in
the background spacetime can significantly complicate the
analysis, and there is no reason a priori why the simple
model of a linearly perturbed BH with a fixed mass and
spin should work around the peak. In fact, several authors
pointed out that modeling waveforms close to the peak of
the radiation by a linearly perturbed BH with a fixed mass
and spin leads to conceptual issues [82,108,142,153,154].
As noted in Ref. [53], the large amount of radiation in a

BBH merger “raises the question as to whether or not the
radiated energy and angular momentum are affecting the
QNM fits. This issue will, of course, become more
significant as the fits are pushed to earlier times.”
In this section we ask two questions: (1) is it really

legitimate to describe the whole postpeak waveform as a
linear perturbation of the final, stationary Kerr BH? and
(2) how many overtones can be reliably used to obtain
unbiased estimates of the remnant’s mass and spin?
If we could indeed ignore the time-evolving background

and describe the whole postpeak waveform as a super-
position of QNMs from a fixed Kerr background then the
overtone amplitudes should be constant, by definition. We
have seen that this expectation is questionable even in
linear theory. In Sec. IVAwe confirm, perhaps at this point
unsurprisingly, that a constant-amplitude overtone super-
position does not work in the BH merger case either; the
amplitudes of the overtones change significantly when we
change the fitting window.
The nonconstancy of the amplitudes is not the only issue

with a linear perturbation theory interpretation of postpeak
ringdown. Reference [106] claims that (i) the inclusion of
the fundamental mode and seven overtones provides a very

FIG. 5. Evolution of the remnant mass and dimensionless spin
for the GW150914-compatible simulation SXS:BBH:0305. The
background is rapidly evolving at least until t − tpeak ≃ 20M,
where tpeak is defined as the time at which the strain h has a
maximum.
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accurate description of the ringdown up to the peak strain
amplitude, and (ii) including seven overtones significantly
reduces the uncertainty in the extracted remnant properties.
In Sec. IV B we show that the higher overtones lead to

very small mismatches by merely overfitting the wave-
forms. Furthermore, we argue that these higher overtones
try to fit other physics (such as prompt response effects,
time variations of the background, and nonlinearities) close
to the merger. The addition of several overtones allows for
better extraction of the fundamental mode and the first
overtone, which are mainly responsible for better estimat-
ing remnant properties. This improved extraction arises
because high overtones contributions act as effective terms,
“fitting away” poorly understood physics.
The fact that higher overtones lead to overfitting is

confirmed in Sec. IV C, where we show that these modes
do not play a significant role in extracting the remnant’s
properties, either. To show this, we swap a particular mode
with a random damped exponential. If the “fake”mode still
fits the waveform with similar or better accuracy, or if it still
extracts the remnant properties accurately, we can conclude
that the originally “swapped” overtone was not really
necessary. We use this argument to conclude that overtones
with n ≥ 2 do not significantly contribute to the extraction
of the remnant’s parameters, and therefore there is no
motivation to include them in the modeling.

A. Are overtone amplitudes consistent with the
linear model?

We start by discussing the inconsistency of the ampli-
tudes obtained by fitting a simple overtone model with
fixed frequencies, theQ7 model of Eq. (3), to numerical BH
merger simulations. This inconsistency confirms, from a
different perspective, that the asymptotic values of the
frequencies should only be used at late times.
In linear BH perturbation theory, the ringdown part of the

strain h is given (by definition) by the QN model of
Eq. (10). In this section we focus on the dominant, l ¼
m ¼ 2 component of the radiation. To avoid cluttering, we
simplify the notation by setting An ¼ A22n, ϕn ¼ ϕ22n,
and ωn ¼ ω22n.
Each QNM depends on four real parameters; a real

amplitude An, a real phase ϕn, and a complex QNM
frequency ωn ¼ ωn

r þ iωn
i . The complex frequency is

determined by the remnant Kerr BH’s mass and spin,
while the nature of the perturbations (i.e., the parameters of
the binary progenitor) dictates the amplitudes and phases.
In linear perturbation theory, all of these quantities are time-
independent constants [39,42–46].
In the Q7 model, the entire postpeak waveform is fitted

by this simple model at the cost of including a large number
of overtones (N ¼ 7). Note that in this model, the complex
frequencies are forced to their asymptotic values; only the
amplitudes and phases are free parameters, extracted by
fitting the waveform between t0 and tf ¼ tpeak þ 90M.

We want to explore the behavior of amplitudes and
phases in the Q7 model we vary t0. Time variations of the
amplitudes or phases with t0 imply departures from the
bare-bones ringdown model in linear BH perturbation
theory, which can happen for various reasons—e.g.,
because the mode frequency has not relaxed to its true
value, because the QNM included in the fit is not present in
the waveform, or because damped exponentials are actually
overfitting some other feature (such as power-law tails, the
prompt response, nonlinearities, or numerical noise). We
will mostly focus on the constancy of the amplitudes, but
similar arguments can be made for the phases.
In Fig. 6, we plot the amplitudes of different modes as a

function of the starting time of the fit. Each panel uses aQN
fitting model with a different number of overtones, from
N ¼ 0 (top left) to N ¼ 7 (bottom right). As usual, we
extrapolate the amplitudes to their values at t0 ¼ tpeak. Let
us define (somewhat arbitrarily) the amplitude of a mode to
be “constant” if it varies by less than 10%. Vertical colored
bands in each panel show the time range in which the
amplitude of the highest overtone (n ¼ N) is constant
according to this criterion.
Consider first the simplest case in which we fit the

waveform using only the fundamental mode (n ¼ N ¼ 0,
top left). The amplitude of the mode is not constant at early
times, and it only saturates to a constant value when the
starting time of the fit t0 ≳ tpeak þ 12M. Adding the first
overtone (N ¼ 1) has the effect of further stabilizing the
amplitude A0 of the fundamental mode, which now is
constant as soon as t0 ≳ tpeak þ 1M. This doesn’t mean that
the two-mode model is a good description close to the peak,
because the amplitude of the first overtone is now rapidly
changing in time close to the peak: if we require both mode
amplitudes to be constant, we are again forced to consider
the late-time portion of the waveform, where t0 ≳ tpeak þ
13M for N ¼ 1. This confirms previous findings in
Ref. [108] (see the top panel in their Fig. 3). Note also
that the two-QNM model seems to fail at very late times
(t0 ≳ tpeak þ 28M), where A1 blows up very rapidly. We
interpret this behavior in light of the findings of Sec. III. In
this particular case, the blow-up is due to the free overtone
amplitude latching onto a different QNM; as we will show
in Sec. VA, the late-time fit is dominated by the (3, 2, 0)
QNM due to spherical-spheroidal mode mixing, and not by
the (2, 2, 1) QNM. The exponential blow-up seen here is
quite generic. Since we show the mode amplitude rescaled
to its peak value (thus incorporating an exponential factor)
any term with a time-dependence slower than the expected
exponential (e.g., a different QNM, a power-law tail, or
numerical artifacts) would give rise to this behavior.
We should also try to systematically quantify fitting

errors on the overtone amplitudes. Without error estimates,
one may argue that amplitude variations could be ascribed
to the accuracy of the numerical simulations, rather than
being due to physical effects (such as the prompt response,
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tails, or a time-evolving background). In Appendixes B and
C we exclude this possibility. We show that the finite
resolution of the simulation, the extrapolation procedure
used to extract the radiation, and the presence of a spurious
constant in the signal due to a suboptimal frame choice are
subdominant effects that do not significantly affect the
inferred amplitudes. In addition, we will see below that the
qualitative behavior of the mode amplitudes is unchanged
when we include all known ringdown contributions (such
as those coming from spherical-spheroidal mode mixing).
Therefore we conclude that the blow-up is triggered by
unmodeled postmerger components, including possible
residual nonlinearities from the merger phase.
As we keep adding more and more overtones, we

observe some important trends:
(i) The fundamental mode amplitude A0 stabilizes to

constant values at earlier and earlier times; for
example, in the Q7 model (N ¼ 7) A0 is already
constant at t0 ≈ tpeak − 15M. This was also noted in
Ref. [106]. The fundamental mode having constant
amplitude before the peak does not necessarily mean
that it is excited at times before the peak. In fact,
there is a more economic explanation: since the
fundamental mode is the longest-lived, the ampli-
tude inferred by fitting is largely fixed by the late-
time behavior, where the mode is actually present
and the amplitude constant.

(ii) For N ≥ 2, the highest-overtones amplitudes are
“constant” only close to a local maximum, and never
saturate to a constant value at late times. This suggests
that these modes are not actually contributing to the

signal close to the waveform peak, but they are rather
overfitting other features of the waveform beyond the
simple linear ringdown model (possibly, nonlinear
contributions).

(iii) ForN ¼ 1,A1 is constant (according to our definition)
at times 13≲ ðt0 − tpeakÞ=M ≲ 28. For N ¼ 2, A1 is
constant in the region 7≲ ðt0 − tpeakÞ=M ≲ 25. AsN
increases, two things happen. First of all, the constant-
A1 time band moves to earlier times. Secondly, the
region where the highest overtone has approximately
constant amplitude keeps shrinking, so that higher-
overtone amplitudes are roughly constant in smaller
and smaller regions. Thismakes sense, becausehigher
overtones are very short-lived. Consider for example
the Q7 model (N ¼ 7): the width of the time range
over which A2, A3, A4, A5, A6, A7 are constant is 5.1,
2.8, 1.8, 1.6, 0.9, 0.3, respectively.Once the amplitude
and phase of the fundamental mode are fixed by the
late-time behavior of the waveform, the amplitudes
and phases of the higher overtones can be adjusted to
fit the rest of the waveform close to the merger.

In our opinion the mode-amplitude evolution shown in
Fig. 6 is among the main results of this paper. It has two
important implications:

(i) Overtone models withN ≥ 2 are unphysical, because
they try to overfit other features of the waveform.

(ii) Models with at most one overtone (N ≤ 1) are
physical, but they can only be used for meaningful
spectroscopy tests at late times.

Below, we show that the constancy of the amplitude
is not the only issue. Higher-overtone models do not

FIG. 6. Amplitude AN
n ðt0Þ=AN

n ðt0 ¼ tpeakÞ of QNMs as a function of the starting time t0 for the SXS:BBH:0305 simulation.
The shaded regions show the largest time range such that the amplitude of the highest overtone (n ¼ N) is constant within 10%.
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necessarily yield the smallest mismatch with numerical
relativity waveforms (Sec. IV B), nor the best estimate of
the remnant’s mass and spin (Sec. IV C).
Finally, we remark that most investigations so far have

been devoted to the “detection problem”—if overtones are
present, can we extract them from the waveform? In
Appendix E we look at the problem of “false positives,”
i.e., can a linear-overtone model find spurious evidence for
the overtones even when they are not present? Somewhat
concerningly, we find that the answer is affirmative.
The consistency checks performed here and below are

necessary, because ill-posed models can lead us to
extracting wrong physics from the numerical simulations.

B. Which overtones are necessary to correctly
fit the waveform?

In the absence of an analytical description of the
postmerger phase it is important to avoid overfitting issues
when we try to assess the physical contribution of different
overtones. For example, we can check that the contribution
of overtones cannot be replaced, or even be improved upon,
by possibly unphysical low-frequency contributions which
are effective at fitting the data. Indeed, here we show that
the mismatch achieved by a superposition of overtones as
predicted in GR can be matched, or even surpassed, by
adding “unphysical” low-frequency damped exponentials
with frequency and damping time that do not appear in the
spectrum predicted in GR for the final BH [108,111]. It
should be noted that similar “pseudo-QNMs” were intro-
duced in the context of the effective-one-body framework
precisely to model the rapid transition from the inspiral GW
frequency to the postmerger QNM frequency “plateau”
[124–126].
To understand the contribution of each overtone, we fit

the waveform using a modified version of the Q7 model,

Qnrnd
7 ¼ Anrnde

−i½ωnrnd
ðt−tpeakÞþϕnrnd

�

þ
X7
n¼0

n≠nrnd

Ane−i½ωnðt−tpeakÞþϕn�: ð17Þ

This is similar to the Q7 model, except that the complex
frequency of the n ¼ nrnd overtone is set to random (and, in
general, incorrect) values uniformly sampled in the range
½0; 2Reðω22nÞ� þ i½0; 2Imðω22nÞ�. The aim of this exercise is
to estimate which overtones are overfitting the waveform, if
any. If a random damped exponentials can fit the waveform
better than theQ7 model, we can conclude that the overtone
being randomized is not “special,” and it is merely over-
fitting the waveform.
In each panel of Fig. 7 we randomly draw 103 complex

frequencies for the randomized overtone, and we show the
90% confidence level of the corresponding mismatches
using dark-shaded bands. The thick black line shows the

mismatches in the (unrandomized) Q7 model. We also
show the 90% confidence level of mismatches computed by
randomizing all overtones with n > nrnd—as opposed to
Eq. (17), where only n ¼ nrnd is randomized—using
lighter-shaded bands. The top-left panel shows that the
fundamental mode plays a key role in fitting the ringdown;
the fit becomes very poor if we substitute it with a damped
exponential with random frequency. The first overtone is
also crucial in fitting the early part of the waveform,
confirming the findings of Ref. [72]. However, as we
randomize the frequencies of the higher overtones, we
observe that the gap between the colored bands and the
black line (the Q7 model) decreases, and the two start
overlapping. The inset below each panel shows the fraction
of random samples that outperform the Q7 model. For
example, at t0 ¼ tpeak þ 6M, more than 90% of randomly
drawn damped sinusoids that replace n ¼ 2 yield smaller
mismatches than the Q7 model. If all overtones with n ≥
nrnd ¼ 2 were replaced by random frequencies, 2–20% of
the samples would still yield better fits than the Q7 model
for t0 − tpeak ¼ 0–5M. The performance of higher over-
tones is even worse. If n ¼ 3 is replaced, as many as 75%
of random samples fit better than the Q7 model at
t0 ≈ tpeak þ 3M. Similarly, for nrnd ¼ 4–7, 15% to 66%
of the random samples perform better than the Q7 model
for t0 − tpeak ¼ 0–5M.
In conclusion, random frequencies often yield better

results than higher overtones for N ≥ 2. This is further
evidence that higher overtones play the role of unphysical
low-frequency components, which are nonetheless effec-
tive at fitting the early-time signal. Recall that the real part
of the frequency of the nth overtone, ωn

r , decreases with n
and that, at the end of the inspiral, the l ¼ m ¼ 2
component of the signal has frequency ωpeak ≃ 0.65ω220,
increasing monotonically towards ω220 postmerger. This is
why overtones naturally latch onto lower-frequency com-
ponents of the signal (see Sec. V B for a discussion).

C. Which overtones are necessary to correctly
extract the remnant’s properties?

It has been claimed that the inclusion of higher overtones
not only fits the waveform better, but also yields a more
accurate estimation of the remnant (dimensionless) spin χf
and mass Mf. What is the reason for this improvement in
mass and spin estimation? Do higher overtones really
contribute to the mass and spin measurement, as often
claimed in the literature? One less explored alternative is
the possibility that higher overtones are instead just “fitting
out” nonlinear effects, thus allowing for more accurate
extraction of the fundamental mode and of the first over-
tone. This would also lead to a better estimation of the
remnant’s mass and spin.
To address this question, we perform a gedanken experi-

ment similar to the one in Sec. IV B. We fit the waveform
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assuming that the complex frequencies of each overtone
depend on the remnant’s mass and spin as predicted by
linear perturbation theory within GR. Once again, we select
one specific overtone nrnd and replace it by (incorrect)
complex frequencies drawn randomly in the range
½0; 2Reðω22nÞ� þ i½0; 2Imðω22nÞ�,

Qnrnd
7 ðχf;MfÞ ¼ Anrnde

−i½ωnrnd
ðt−tpeakÞþϕnrnd

�

þ
X7
n¼0

n≠nrnd

Ane−i½ωnðχf;MfÞðt−tpeakÞþϕn�: ð18Þ

In this model the mode with index n ¼ nrnd is not used
in the estimation of χf and Mf. To quantify the accuracy
in extracting the remnant’s spin and mass, following
Ref. [106], we compute the quantity

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδχfÞ2 þ

�
δMf

M

�
2

s
; ð19Þ

where δχf and δMf are the differences between the inferred
value of these quantities and their asymptotic, “exact” Kerr
values.
In Fig. 8 we show the median and 90% confidence

interval of ϵ as a function of the starting time of the fit t0.
The solid black line uses all N ¼ 7 overtones to estimate
the remnant’s properties. In each panel, solid lines and
darker colors refer to randomly varying the n ¼ nrnd

overtone frequency from a uniform distribution and ignor-
ing the corresponding overtone in the estimation of χf and
Mf. Dashed lines and lighter colors were computed by
randomizing all overtones with n ≥ nrnd.
The conclusions of this exercise are completely consis-

tent with the ones drawn from Fig. 7. In fact, the top-left
panel shows that the fundamental mode carries most of the
information. The second top panel from the left confirms
that the first overtone (n ¼ 1) is crucial to get a good
estimate of χf and Mf close to the peak, again confirming
the findings of Ref. [72]. At later times the first overtone
does not matter as much, and we observe more overlap
between the orange bands and the black line. The role of
higher overtones in parameter estimation is much more
marginal. For example, at t0 ¼ tpeak þ 2M, 15% of the
random complex frequencies that replace n ¼ 2 yield better
results than the second overtone. As we randomize higher
overtones (nrnd ¼ 3–7), the number of samples that do
better than the Q7 model ranges between 55% and 70%.
Note also that the value of ϵ fromQ7 model has a maximum
when t0 − tpeak ≈ 7 − 8M; at those times, the Q7 model is
worse than most random samples. If all overtones n ≥
nrnd ¼ 2 are randomized, nearly 35% of the random
samples do better than the Q7 model at t0 ¼ tpeak þ 5M;
this fraction rises to 66% at t0 ¼ tpeak þ 8.4M. The fact that
random frequencies often do better than high-overtone
models is further evidence that most of those overtones are
unlikely to be physical.

FIG. 7. Median and 90% confidence interval of the mismatch M between ringdown models and the SXS:BBH:0305 waveform as a
function of the starting time of the fit t0. Solid lines and darker shaded areas are found by randomly varying the frequency of a single
overtone with n ¼ nrnd from a uniform distribution, as described in the main text. Dashed lines and lighter shaded areas correspond to
random variations of all overtones with n ≥ nrnd. The solid black line shows the mismatch for the Q7 model. In the insets below each
panel we show the fraction of random samples that outperform the N ¼ 7 model.
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The results above can be understood considering that
each overtone introduces two additional fitting parameters,
and that ωn

r decreases with n. These properties allow to
easily “fit away” the earlier nonlinear and low-frequency
part of the postmerger signal, making the fundamental
mode and the first overtone more easily resolvable. This, in
turn, improves the estimation of the remnant mass and spin,
which are still constrained to the correct Kerr value by the
late-time behavior of the signal. It is not a surprise that
models with several parameters are prone to overfitting7 (in
fact, this concern was also raised by Ref. [106]). However,
Ref. [106] concluded that all overtones are physical by
varying all of them while keeping the fundamental mode
fixed. This approach does not estimate the significance of
each individual overtone. Our analysis shows that as we
increase the overtone number, the relevance of each over-
tone in estimating the remnant’s mass and spin decreases.
Another difference between our results and those of
Ref. [106] is that they varied the complex frequencies by
less than 20% in one dimension; they set ωrnd ¼ ωð1þ δÞ
with δ∈R. Our experiment is more conservative and
general, because the real and imaginary parts of the

complex QNM frequencies are sampled independently
and allowed to vary by 100%.
To further our understanding of which overtones are

physical, we perform one more test. We first compute the
mismatch at t0 ¼ tpeak for the Q7 model. Then we vary the
frequency of a single QNM by assuming that it depends on
ðMf; χfÞ as predicted in GR and changing ðMf; χfÞ, while
we keep all other modes fixed to their “correct” asymptotic
values.
In Fig. 9 we show the mismatch at the peak as a function

of Mf and χf. Each panel was computed by varying the
corresponding overtone. For n ¼ 0 the mismatch has a
sharp minimum at the true value of the remnant’s mass and
spin (top left panel), as expected. As n increases, the
minimum of the mismatch extends over a much larger
region in the ðMf; χfÞ plane. More remarkably, the mis-
match for higher overtones has a minimum at values of
ðMf; χfÞ that do not coincide with the true remnant
quantities. For n ¼ 0, 1 the true ðMf; χfÞ coincide with
the minimum in the figure with an accuracy of ϵ≲ 0.01.
For n ¼ 2, the remnant mass and spin at the minimum
mismatch deviate from the true values by ϵ ≈ 0.05, and the
error is dominated by the inaccuracy in Mf. The minimum
mismatches for n > 2 occur for values of ðMf; χfÞ which
differ by ϵ > 0.1 from the true values, and these minima
tend to cluster at near-extremal values of the spin (χf → 1).
Furthermore, as expected, the variations of the mismatch

FIG. 8. Median and 90% confidence interval of the combined error on the remnant mass and spin ϵ [see Eq. (19)] as a function of the
starting time of the fit t0. Solid lines and darker shaded areas are found by randomly varying the frequency of a single overtone with
n ¼ nrnd from a uniform distribution, and ignoring the corresponding overtone in the estimation of χf andMf . Dashed lines and lighter
shaded areas correspond to doing the same for all overtones with n ≥ nrnd. The solid black line shows the value of ϵ found when all
N ¼ 7 overtones are used for the estimation of the remnant’s properties, as in the Q7 model. In the insets below each panel we show the
fraction of random samples that outperform the Q7 model.

7As Enrico Fermi told Freeman Dyson in a famous encounter
[155]: “I remember my friend Johnny von Neumann used to say,
with four parameters I can fit an elephant, and with five I can
make him wiggle his trunk.”
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with ðMf; χfÞ are much milder as we move to higher
overtones. This is consistent with Fig. 7, where the
90% confidence levels in the mismatch are very narrow
for higher overtones, even though their complex frequen-
cies are allowed to vary by as much as 100%.
Reference [106] used a similar test to claim support for

the Q7 model, because the minimum mismatch for N ¼ 7
occurs at the true remnant spin and mass. However, Fig. 9
implies that the minimization of the mismatch is almost
entirely due to the modes with n ¼ 0 and n ¼ 1. When
considered individually, the higher overtones play a neg-
ligible role. Even worse, they minimize the mismatch at the
wrong values of the remnant’s parameters.
In this section we have used the Q7 fitting model to

facilitate comparison with Ref. [106]. This model does not
take into account spherical-spheroidal mode mixing. As we
will see below, this is a substantial effect. By repeating the
experiments discussed in this section with mode mixing
taken into account, we have verified that the extraction of
the first overtone can significantly improve at late times; for
example, the amplitude A221 would not diverge at late times
(as it does in Fig. 6 of Sec. IVA), but remain constant.
Similarly, the mismatch M (Sec. IV B) and the mass/spin
measurement error ϵ (Sec. IV C) associated with n ¼ 1
would improve at late times. However, including the
spherical-spheroidal mixing does not yield visible improve-
ments for overtones with n > 1.
Although we have demonstrated the presence of several

pathologies in the linear model with N ¼ 7 overtones, and

therefore shown that it is unphysical, this does not imply
that overtones are absent altogether. Lack of evidence is not
evidence of absence—the overtones may still be present in
the signal, but they may be hard to extract because
additional physics (including prompt response, tails, and
nonlinear effects) is present in the waveform. By account-
ing for these effects, and in particular for postmerger
nonlinearities, it may still be possible to extract the over-
tones. In Appendix D we show that, indeed, the overtones
can be correctly extracted from a pure linear model with
seven overtones, at least when numerical errors are neg-
ligible. Numerical errors increase the minimum mismatch
to Oð10−9Þ, and compromise our ability to extract the
overtones. Thus, it may still be possible to successfully
extract the overtones with improved NR waveforms and a
better understanding of nonlinearities.

V. EXTRACTING COMPLEX FREQUENCIES
FROM THE WAVEFORM

One approach to look for the presence of a QNM is to fix
the mode’s complex frequency (or assume that it depends
on mass and spin as predicted in GR), and then check if
adding that mode improves the mismatch with the numeri-
cal waveform (Sec. IV B) or leads to better accuracy in the
remnant parameters (Sec. IV C). As we discussed, this
approach can lead to overfitting.
In this section we take a more agnostic route in the spirit

of the original BH spectroscopy proposal. To prevent

FIG. 9. Logarithm of the mismatch, log M, evaluated at t0 ¼ tpeak in the ðMf; χfÞ plane. Starting from the Q7 model, we vary the
mass and spin of overtone n, while all other overtones are set to their “true” asymptotic values. The cross-hair identifies the true value of
the remnant’s mass and spin. Note that the color maps in each panel correspond to very different ranges. The cross marks the ðMf; χfÞ
values minimizing the mismatch.
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overfitting, we do not impose a priori that modes are
present in the numerical data. Instead of fixing the complex
frequencies of the damped exponentials, we keep them free
(see the analogous treatment of the linearized case in
Sec. III). This is a much stronger test (it is effectively
the original BH spectroscopy proposal at infinite SNR), and
therefore it should lead to more robust conclusions about
which modes are truly present in the data.
We will show that many of the fitted damped exponen-

tials robustly converge towards known QNM frequencies,
naturally selecting the physical modes contributing to the
ringdown signal; that is essential to include spherical-
spheroidal mode mixing to identify the correct modes; and
that the agnostic fits occasionally lead to some surprises. To
improve readability, in this section we focus on the
dominant (2, 2) multipole. We defer a discussion of higher
multipoles to Appendix F.

A. An agnostic fit

We start off by asking the question how many QNM
frequencies can we extract without assuming any (no-hair
theorem enforced) relation between them?
We fit the complex frequencies and amplitudes using a

standard Levenberg-Marquardt algorithm. The large num-
ber of fitting parameters implies the possibility of multiple
local minima for the parameter values resulting from the fit,
and therefore different initial values may result in different
solutions. To address this issue, we employ an iterative
approach.
(1) In the initial iteration, we perform the fit using

1000 different random initial parameter values for
every value of t0. The initial values of the
amplitudes are drawn from a log-uniform distri-
bution in the range ½10−5; 103�, while phases are
drawn uniformly in ½0; 2π�, Mωr is drawn uni-
formly in ½0; 5ReðMωl;m;0Þ�, and Mωi is drawn
uniformly in ½0; 5ImðMωl;m;0Þ�. This yields 1000
solutions, out of which we select those that exhibit
the smallest mismatch with the NR waveform, for
each t0.

(2) In the subsequent iteration, we perform the fitting
process again for each value of t0, just like in the
initial iteration. However, this time, instead of
starting with random initial parameter values, we
use the initial conditions that correspond to all
solutions obtained in the previous iteration. To
clarify this step, suppose the previous iteration
resulted in unique solutions for 300 different values
of t0. Now, for the current iteration, we fit the
parameters again for each specific t0, using initial
guesses that equal the solutions obtained in the
previous step. In other words, those 300 distinct
solutions are employed as initial guesses for every
single t0. Consequently, we will often encounter
different solutions for each of these values of t0.

Once more, we select the solutions that have the
smallest mismatches with the NR waveform.

(3) We repeat this procedure in the same range of t0 until
the mismatch for all points is within 1% of their
values from the previous iteration. The number of
iterations necessary to achieve convergence is
typically less than three for small values of Nf;
when Nf is large (e.g., Nf > 5), as many as eight
iterations might be required.

In the top row of Fig. 10 we fit the waveform with model

QðfÞ
N (see Table I), i.e., we extract the complex frequencies of

all modes from the fit. We plot the complex frequencies ωnf

(where the subscript “f” stands for “free”) extracted from the
numerical waveforms forN ¼ 0 (left panel),N ¼ 1 (middle
panel), and N ¼ 2 (right panel). In the second row we use

model Qðf;mÞ
N instead: in addition to the N free-frequency

modes, we also include onemodewith frequency fixed at the
value of the fundamental mode with ðl ¼ 3; m ¼ 2Þ, that
could (and indeed does) contaminate the l ¼ m ¼ 2 mode
because of spherical-spheroidal mode mixing.
In each of the six panels of the top two rows, we show for

reference: (i) the known ð2; 2; nÞ overtone frequencies as
black, hollow circles; (ii) the “mirror modes” correspond-
ing to the known ð2;−2; nÞ overtone frequencies as gray,
hollow triangles; and (iii) the known ð3; 2; nÞ overtone
frequencies as gray, hollow squares. When the fundamental

mode with ðl ¼ 3; m ¼ 2Þ is fixed (i.e., in model Qðf;mÞ
N )

the (3, 2, 0) is shown as a gray, filled square, as a reminder
that it is already included in the waveform and we are not
fitting for its complex frequency.
In the panels below we plot various diagnostic quantities;

namely, the “frequency error” δω relative to the expected
QNM frequency ωref, as defined in Eq. (16) (third row), the
mode amplitudes Anf (fourth row), and the mismatches M
of the fits (fifth and bottom row).
Let us analyze these results starting from the left column. If

we fit the waveform with only one damped exponential
(N ¼ 0), we see that the extracted mode saturates to the
fundamental mode n ¼ 0. At the peak (t0 − tpeak ¼ 0) the
free mode nf ¼ 0 deviates by δω < 0.1 from ωref ¼ ω220.
The disagreement improves as theBH relaxes to its stationary
end state, crossing δω ¼ 10−2 at t0 − tpeak ≃ 15M, and
reaching δω < 10−3 at t0 − tpeak ¼ 30M.
If we add one more free mode (model QðfÞ

1 , central
panels) we observe that the fundamental mode is extracted
much more accurately; the solid blue lines in the third
row show that at t0 − tpeak ¼ 5M it deviates from the
expected value by δω < 0.01, with δω ≃ 3 × 10−4 at
t0 − tpeak ¼ 17M. The first overtone (solid orange lines)
is extracted much more poorly, with δω ¼ 0.2 at t0 ¼ tpeak
and δω < 0.1 after ≈6M. Interestingly, there is a minimum
(δω ≈ 0.003) at about t0 − tpeak ¼ 18M, after which the
free mode starts deviating again from the “true” n ¼ 1
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overtone. After 27M the deviation is δω > 0.1. This seems
to indicate that some other component is spoiling the
recovery of the n ¼ 1 overtone.
To confirm this conjecture, we add one more free mode

(model QðfÞ
2 , right panels). Now the fundamental mode is

always extracted extremely well, with δω < 0.01, and even
δω < 10−5 at late times. Both of the remaining free frequen-
cies (nf ¼ 1, 2) start off in the vicinity of n ¼ 1 at t0 ¼ tpeak.
At later times, nf ¼ 1 (solid orange line) moves towards
n ¼ 1, with aminimumof δω ¼ 6 × 10−4 at 26M. However,

nf ¼ 2 (solid green line) behaves very differently, and at late
times it converges towards the (3, 2, 0) mode, with a relative
deviation of δω ¼ 0.01 at 27M. This contamination,
expected because of spherical-spheroidal mode mixing

[37,38,53,156], explains why the QðfÞ
1 model failed to

converge to the n ¼ 1 overtone. Since the n ¼ 1 is dominant
at early times, the free mode nf ¼ 1 latches onto it. The
(3, 2, 0)mode, despite havingOð103Þ smaller amplitude than
the (2, 2, 1) mode, decays more slowly and becomes
dominant at later times.

FIG. 10. Fits of the SXS:BBH:0305 waveform with the QðfÞ
N and Qðf;mÞ

N models. First panel: the extracted frequencies ðωr;−ωiÞ for
N ¼ 0 (left), N ¼ 1 (middle) and N ¼ 2 (right), with t0 ranging from tpeak (empty cross) to tpeak þ 30M (filled cross). We also mark
tpeak þ 10M and tpeak þ 20M by crosses. Second panel: same as first panel, but when adding a mode with complex frequency fixed to
ω320, indicated by a filled gray square. Third, fourth, and fifth panels show, respectively, δω, A andM as a function of t0. For nf ¼ 0, 1,

δω is determined compared to ωref ¼ ω22nf , while for nf ¼ 2, ωref ¼ ω320. Solid lines represent the QðfÞ
N model while dotted lines

represent the Qðf;mÞ
N model. With the green dot-dot-dashed line, we also plot δω with ωref ¼ ω221 when fitted by the Qðf;mÞ

N model. We
also plot the A320 with a dashed gray line.
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In the second row of Fig. 10 we “subtract” mode mixing
by fixing one damped exponential to the frequency of the
(3, 2, 0) mode. Dashed lines in the bottom three rows show
the results of fitting the waveform with this “fixed mode
mixing,” Qðf;mÞ

N model.
The left column shows that the addition of the (3, 2, 0)

mode has a negligible effect on Qðf;mÞ
0 . For Qðf;mÞ

1 (central
column), including mode mixing further improves the
extraction of the fundamental mode at late times, with
δω ¼ 10−5 at t0 − tpeak ¼ 25M. More importantly, the free
mode with nf ¼ 1 now robustly converges towards ω221,
crossing the predicted value around 24M, with
δω∈ ½10−3; 10−2� for t0 − tpeak ∈ ½24; 30�M. With the

Qðf;mÞ
2 model (right column), we still observe that nf ¼ 1

saturates toward ω221 at late times, with δω < 0.01 between
22–27M. At early times, somewhat surprisingly, the
ω221 overtone is “picked up” by the second free mode
(nf ¼ 2), which at later times drifts off towards the right of
the complex plane, passing by the ω321 mode and even
showing nonconclusive hints of a possible presence of
the nonlinear mode sourced by the square of the ω2;1;0

mode. The presence of these two modes in the simulations
is plausible, but none of them has amplitude large enough to
be confidently identified.
The fixed-frequency component of Qðf;mÞ

1 has a consis-
tent amplitude A320 ∼ 4 × 10−3 for t0 − tpeak ≥ 16M. A

similar value is recovered with Qðf;mÞ
2 at even earlier times.

This is indication that the additional free component is
fitting away some contamination that pollutes the recovery
of A320 at earlier times.
Another noteworthy feature of Fig. 10 is that mismatches

improve significantly when we keep the frequencies free.

For example, at t0 ¼ tpeak, Q
ðfÞ
1 (QðfÞ

2 ) shows an improve-
ment by one (two) orders of magnitude in the mismatch

compared to Q1 (Q2). In fact, the QðfÞ
1 (QðfÞ

2 ) models even
have better mismatches than the fixed-frequency models

Q2 (Q4). As we discuss in Appendix C, Q
ðfÞ
3 (a model with

three free frequencies) yields smaller mismatches than the
Q7. The inclusion of mode mixing has a dramatic effect on

mismatches at late times. With the QðfÞ
1 model (two free

modes), the mismatch saturates at Oð10−7Þ; when we also

include mode mixing in model Qðf;mÞ
1 , the mismatches are

as low as Oð10−9Þ. A similar improvement occurs going

from QðfÞ
1 to QðfÞ

2 , when the second free mode (nf ¼ 2)
saturates to the (3, 2, 0) mode frequency.
So far we have used two classes of fitting models (QðfÞ

N or

Qðf;mÞ
N ) in which all complex frequencies are free, except

for the (3, 2, 0) mode-mixing component in Qðf;mÞ
N . The

results in Fig. 10 show that the free frequencies capture the
modes (2, 2, 0), (2, 2, 1), and (3, 2, 0), but there is no
evidence for higher overtones (n > 1).
Could the absence of “detectable” higher overtones be an

artifact of the use of free-frequency models? To exclude this
hypothesis, we now fit the (2, 2) mode by the QN;1 model.
As a reminder, this means that one mode frequency is free
(Nf ¼ 1), but N mode frequencies (n ¼ 0;…; N − 1) are
fixed to the predicted overtone values. For N ¼ 0, model
Q0;1 consists (trivially) of a single, free-frequency damped
exponential.
In Fig. 11 (which can be compared to the toy-model

investigations of Fig. 2) we plot the frequencies, ampli-
tudes, and mismatches extracted in this way. For model
Q0;1, the free mode (nf ¼ 0) converges to n ¼ 0 at late

FIG. 11. Fits of the SXS:BBH:0305 waveform with the QN;1 models, with n ¼ 0;…; N − 1 fixed-frequency modes, plus one free-
frequency mode. Left panel: extracted frequencies ðMωr;−MωiÞ for N ¼ 0 – 7, with t0 ranging from tpeak (empty cross) to tpeak þ 30M
(filled cross). We also mark tpeak þ 10M and tpeak þ 20M by crosses. We mark the QNMs ð2; 2; nÞ (black circles), ð2;−2; nÞ (gray
triangles), ð3; 2; nÞ (gray squares), ð4; 2; nÞ (gray pentagon) and (2, 1, 0)(2, 1, 0) (black cross). Right panels plotMωr, −Mωi, A, andM
as a function of t0. We also plot Mω320 as a gray dot-dot-dashed line and gray triangle marker.
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times (blue lines). This late-time convergence is lost when
N > 0. For example, model Q1;1 is reminiscent of Fig. 10:
the free mode frequency “flies by” the (2, 2, 1) overtone at
times t0 − tpeak ∈ ½10 − 20�M, but then it drifts to higher
frequencies (orange lines).
Interestingly, when N > 1 the free frequency always

tends to the (3, 2, 0) mode-mixing QNM, with δω as low as
Oð10−3Þ at some point after 20M. The free mode gets close
to the expected overtone frequency at intermediate times
only for N ¼ 2 (green line) and N ¼ 3 (red line). As N
increases, the free mode latches onto ω320 at earlier and
earlier times: the free frequency gets within δω < 0.1 of the
(3, 2, 0) mode after 17M, 11M, and 7M for N ¼ 2, N ¼ 3
and N ¼ 4, respectively.
Finally, in Fig. 12 we repeat the same experiment, but

this time we also fix the (3, 2, 0) mode, i.e., we fit the (2, 2)
mode by the QðmÞ

N;1 model. The results are qualitatively
similar to Fig. 11; only the fundamental mode and the first
overtone saturate to the expected QNM frequencies. By
including mode mixing, we manage to get theN ¼ 2 fitting
model relatively closer to the expected n ¼ 2 overtone at
t0 − tpeak ∼ 13M. However this mode does not asymptote to
the n ¼ 2 overtone at late time, and instead it keeps drifting
to large values of Mωr. In the next section, we give a
physical interpretation to the observed low-frequency
behavior of the free modes.
We have studied three different “agnostic” fitting models

(Figs. 10–12). All three models support an important
conclusion; the only identifiable physical modes in the l ¼
m ¼ 2 mode of the radiation are (2, 2, 0), (2, 2, 1), and
(3, 2, 0). Higher overtones (N > 1) cannot be robustly
identified by free-frequency fitting.

B. Are we fitting the low-frequency merger signal?

In Figs. 10–12, we observe a clear pattern (that becomes
progressively clearer as we remove “undesired” physics,
such as spherical-spheroidal mode mixing); at least one free
mode starts from low Mωr and evolves to higher Mωr,
often (but not always) saturating to one of the expected
QNM frequencies. For example, in Fig. 11 the free mode in
QN;1 for N ¼ 1, 2, 3 always starts at Mωr ≃ 0.47 and
evolves in time (at least initially) to higher Mωr. This
behavior is reminiscent of the well-known “chirping” that
characterizes the binary’s inspiral. To make the comparison
more quantitative, we can compute the instantaneous GW
frequency [53,54],

ωGW ¼ ḣ22ðtÞ
h22ðtÞ

: ð20Þ

The black solid line in the right panels of Fig. 12 shows
how MωGW evolves in time. We also plot, for comparison,

the values of Mωr extracted using the QðmÞ
N;1 models. Note

that the time axes are different; MωGW is the instantaneous
frequency at time t, while Mωr is plotted as a function of
the starting time t0 of the fitting window (the ending point
is tf ¼ tpeak þ 90M). This is why MωGW < Mωr; Mωr

contains information about physics in the range ½t0; tf�, and
as such it includes late-time contributions to MωGW.
At late times, the real frequencies Mωr extracted using

the QðmÞ
0;1 model (top right panel) and the QðmÞ

1;1 model
(middle right panel) approach the real frequency of the
n ¼ 0 and n ¼ 1 overtones, respectively. As we remarked

earlier, this is not true for model QðmÞ
2;1 ;Mωr keeps growing

after t0 − tpeak ≳ 13M, instead of saturating to the n ¼ 2

FIG. 12. Fits performed using theQðmÞ
N;1 model withN ¼ 0, 1, 2. Left panel: same as Fig. 11. We also show howMωGW evolves (x-axis)

as a function of time (see color bar). White dashed lines indicate t ¼ tpeak þ 10M and t ¼ tpeak þ 20M in the instantaneous frequency
evolution. The panels on the right show Mωr extracted with N ¼ 0, 1, 2 (top, middle and bottom, respectively) as a function of the
starting time t0 in solid colored lines). For comparison, we also plot MωGWðtÞ (black line) and the real part of the expected QNM
frequencies (colored horizontal dotted lines).
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overtone. In Appendix C, we argue that this large-Mωr

evolution of the QðmÞ
2;1 model is not physical.

These findings are consistent with other results in the
literature. By adding even lower frequency contributions
(specifically, modes corresponding to counter-rotating
perturbations, which should not be excited unless the
binary has large spins antialigned with the orbital angular
momentum [84,157,158]), Ref. [112] found that a linear
QNM model with a large number of overtones yields low
mismatches even before the waveform peak, where a
linearized description should not be valid.
These results suggest that once the “physical” ringdown

modes (typically the fundamental mode, the first overtone,
and the mode-mixing contribution) have been fitted for,
additional free modes have a tendency to simply track the
GW frequency chirp at early times. Higher overtones have
low frequencies, and this observation is consistent with the
empirical fact that overtones do such a good job at
effectively reducing the mismatch close to the peak.
It is important to emphasize again that lack of evidence is

not evidence of absence; while we are unable to extract
higher overtones even when including a large number of
free modes, this does not imply the absence of overtones
altogether. The extraction of overtones is challenging due to
the presence of additional physics and nonlinear effects. It
may still be possible to achieve it by incorporating a more
comprehensive understanding of all postmerger nonlinear-
ities, and allowing for the dynamical character of the time-
varying background.

C. Extracting BH properties in the
presence of nonlinearities

The comprehensive fitting experiments performed so far
show that higher overtones are hard to extract from
numerical waveforms, and they are often unlikely to be
physical. In the infinite SNR limit, how do frequencies
inferred by fitting free damped exponentials translate into
mass and spin values? This is the important question to ask
in the spirit of the original, agnostic BH spectroscopy
proposal. The answer depends on the starting time of the fit,
and it is affected by the inclusion of mode-mixing con-
tributions from the (3, 2, 0) mode.
Consider first model QðfÞ

1 , with two free complex
frequencies. We will identify the nf ¼ 0 component with
the (2, 2, 0) mode and the nf ¼ 1 component with the
(2, 2, 1) mode. A posteriori, we now assume that these
damped exponentials correspond to the GR QNMs. Then
we can invert the (complex) functional relationships
ωlmnðMf; χfÞ provided in Ref. [40] separately for the (2,
2, 0) and (2, 2, 1) modes, as follows:

χinff ¼ Q−1
lmn

�
−

ωr

2ωi

�
;

Minf
f ¼ Mωr

Re½ωlmnðχinff ;MÞ� : ð21Þ

HereQ−1
lmn is the inverse of the monotonic function relating

the quality factor and the spin,QlmnðχfÞ [40]. If the modes
can be robustly inferred from the data, the mass and spin
inferred from each of these two inversions should coincide.
In fact, performing this exercise with three or more
“measured” parameters is a null test of GR.
We already know from Fig. 10 that in a fit with two

free modes, neither of the extracted frequencies at
t0 ¼ tpeak coincides with the first overtone: the difference
between the “recovered first overtone” and the true
(2, 2, 1) mode is δω > 0.1. These recovered frequencies
will inevitably give wrong estimates for the mass and
spin of the remnant.
Let us assume that the frequencies extracted at the peak

with model QðfÞ
1 are physical QNMs.8 In Fig. 13 we

compute the remnant mass and spin inferred from each
overtone under this assumption. The ðMf; χfÞ values
inferred by assuming that the free mode nf ¼ 0

FIG. 13. Remnant mass and spin ðMinf
f ; χinff Þ inferred usingQðfÞ

1

[solid lines] and Qðf;mÞ
1 [dashed lines] for t0 ranging from tpeak

(hollow crosses) to tpeak þ 30M (filled crosses). We also mark
tpeak þ 10M and tpeak þ 20M by crosses. Mass and spin are
calculated directly from ωnf , without assuming any no-hair
theorem enforced relation between the modes. The gray vertical
(horizontal) lines mark the true χf (Mf). The dashed ellipse
corresponds to ϵ ¼ 0.1.

8This assumption is implicit in the discussion of Ref. [96].
However, the low SNR of GW150914 implies that the measure-
ment is dominated by statistical errors, and therefore the inferred
mass and spin can be compatible with GR. Our discussion here
focuses on systematic errors, that will dominate at large SNR.
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corresponds to the (2, 2, 0) mode converge monotonically
towards the remnant BH value as t0 increases, with ϵ < 0.01
after t0 ≳ 11M (solid blue line in the bottom panel). The
addition of modemixing improves the recovered values only
after t0 ≳ 11M (dashed blue line).
On the other hand, the values obtained through the nf ¼ 1

mode assuming that it corresponds to the (2, 2, 1) mode are
significantly biased (ϵ > 0.1) until t0 ∼ 15M. Around
t0 ∼ 18M, and for a short interval Δt ∼ 1M around it,
ϵ < 0.01, but the accuracy in the inferred mass and spin
decreases at later times. The late-time inference of mass and
spin with this second mode can be marginally improved by

including mode mixing (model Qðf;mÞ
1 ); this keeps ϵ≲ 0.1

even at late times. In any case, this experiment clarifies that
even in the infinite SNR limit, it is not easy to get percent-
level estimates of the remnant parameters with the first
overtone in an agnostic search.
The hollow crosses in the top panel of Fig. 13 show that

when the fit starts at the peak, both the mass and the spin
are significantly overestimated. Note also that in this
exercise we find mass and spin by inverting each of the
two modes independently. This is different from Ref. [96],
where both frequencies were assumed to correspond to
their GR values for a given ðMf; χfÞ.
This exercise has an interesting implication for data

analysis. At the relatively low SNR of GW150914, the
errors on the recovered parameters are so large that theQðfÞ

1

model gives complex frequency estimates compatible with
the true quasinormal frequencies [96,121]. However our
slightly generalized version of the test, where we relax the
assumption that all modes are related to mass and spin as in

GR, reveals that the QðfÞ
1 model is effective at reducing the

mismatch at the peak, but it does not reproduce the physical
QNM content of signal.
Reference [96] claimed evidence for the first overtone, in

part, because the QðfÞ
1 model yields better estimates of the

remnant mass and spin than the QðfÞ
0 model at the peak. As

we have shown in Fig. 10, the complex frequency extracted

with the QðfÞ
0 model at the peak is indeed biased because of

the low-frequency merger signal. It is true, as claimed in

Ref. [96], that the QðfÞ
1 model yields better estimates of the

remnant’s parameters. However this is not because the
additional exponential gives a good estimate of the first
overtone frequency, but simply because it fits away the low-
frequency merger. This allows the fundamental mode to be
extracted more accurately, improving the remnant mass and
spin estimate.
While the QðfÞ

1 model does not allow us to extract the
first overtone at t0 ¼ tpeak, leading to large deviations in
the inferred values of ðMf; χfÞ, one might argue that the
addition of more free modes could improve the sit-
uation. However, this is not the case. The agnostic
models we explored do not lead to an unbiased
extraction of the first overtone at the peak. This is

illustrated, for example, by Fig. 25 in Appendix C,
where we fit the (2, 2) multipole with as many as five
damped sinusoids while also including mode mixing.
Even with such a large number of modes, and despite
the mismatch M ∼Oð10−9Þ being so small that one
runs into the risk of fitting numerical noise, we cannot
extract the first overtone at t0 ¼ tpeak.
It is by now common practice to fit GW data with the

fundamental mode plus one or two overtones, treating the
remnant mass and spin (along with the mode amplitude and
phase) as free parameters. Many studies claim evidence for
an overtone when (i) fits with either one or two overtones
lead to values of ðMf; χfÞ which are in better agreement
with the values extracted from the full waveform than fits
using only the fundamental mode; and (ii) the amplitude of
the additional overtone (or overtones) is nonzero
[96,105,115,120–123]. As we argued in Sec. IV, the fact
that adding QNMs leads to a better extraction of mass and
spin does not imply that these additional QNMs are
physical. This is confirmed, e.g., by the plots in the central
column (N ¼ 1) of Fig. 10. By adding an extra mode
(orange line) we can better fit the low-frequency merger
signal at early times, which leads to a more accurate
extraction of the fundamental mode and improves the
estimate of ðMf; χfÞ—but not because of any physical
contribution from the first overtone. It should also be clear
that a nonzero amplitude of the overtone at the peak is not
sufficient to claim detection of the overtone, as the addi-
tional QNM is simply (over)fitting the low-frequency
merger signal. To make any credible detection claims,
overtones should be extracted in an agnostic fashion.
There is another important caveat. In this whole

analysis we focused on the dominant (2, 2) mode, but
real data will also contain multipoles such as (4, 4), which
are usually dominant over the (3, 2, 0) mode (with
amplitude A320 ∼ 4 × 10−3). This will inevitably compli-
cate the problem in ways that should be addressed in
future work.
The main goal of this section is to point out two

important limitations of BH spectroscopy using only
overtones: (1) at early times, we do not observe the
excitation of the first overtone; instead, the second mode
in a free-frequency fit tries to pick up the low-frequency
merger signal. (2) while the fundamental mode gives
reliable estimates of the remnant mass and spin at late
times, the first overtone never allows for percent-level
estimates of the mass and spin; it may allow for ∼10%
estimates of the mass and spin at late time for loud enough
signals, but only if we carefully take into account mode
mixing and higher multipoles.

D. Higher multipoles: Overtones or nonlinearities?
The example of ðl;mÞ= ð4; 4Þ

It is instructive to apply the techniques we deployed
for the (2, 2) multipole to higher multipoles of the
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radiation. To improve readability, we discuss the full
waveform including higher multipoles in Appendix F.
There we observe that: (1) BH spectroscopy with
overtones at early times (assuming they are excited)
requires good modeling of the low-frequency merger
signal; and (2) BH spectroscopy with overtones at late
times should be done after accounting for other multi-
poles, which can often be more robustly extracted from
the waveform.
Here we single out a particularly interesting example: the

(4, 4) multipole, which is known to contain a quadratic
mode (2, 2, 0)(2, 2, 0) sourced by the square of the (2, 2, 0)
mode [143–145]. We fit this multipole with the QðfÞ

2 model
(Nf ¼ 3 free modes). In Fig. 14 we plot the three extracted
frequencies, their amplitudes, and the corresponding
mismatches.
The fundamental mode (4, 4, 0) can be extracted with

δω < 0.01 after t0 − tpeak > 5M, and an average δω ∼
Oð10−3Þ in the time range shown. The quadratic mode
(2, 2, 0)(2, 2, 0) can be identified with δω ∼ 10−2–10−1

[144,145]. Its frequency is fairly well recovered, while the
damping time tends to be overestimated compared to the
predicted value. The third free mode starts off at lower
Mωr, evolving towards the (5, 4, 0) mode in the time range
t0 − tpeak ¼ 15–25M, and moving to lower frequencies
again at later times. We do not find any evidence of
excitation of the first overtone. This conclusion holds even
if we fix the lowest modes, (4, 4, 0) or (5, 4, 0), to their
values as predicted in GR.
The main message of this analysis is clear—the non-

linear mode is easier to recover in a free-frequency fit than
the first linear overtone.

VI. CAN THE FIRST OVERTONE BE EXTRACTED
IN THE PRESENCE OF SUBDOMINANT

MULTIPOLES?

In Sec. VA we discussed how spherical-spheroidal
mixing of the (3, 2) multipole affects the extraction of
the first overtone from the dominant (2, 2) multipole. We
concluded that at least Nf ¼ 3 free modes are required to
extract the first overtone and that it is easier to extract (long-
lived) fundamental modes than fast-decaying overtones,
even if the latter have a much larger amplitude. In real-
world data analysis problems, the waveform will in general
be a superposition of several multipoles. We now ask how
many free modes would be necessary to extract the first
overtone (2, 2, 1) when the actual waveform is a super-
position of several multipoles?
We fit the waveform

hðt; θ;ϕÞ ¼
X
lm

hlmðtÞ−2Ylmðθ;ϕÞ ð22Þ

using theQðfÞ
N model. For simplicity we focus on l ≤ 4. We

quantify the relative contribution of subdominant multi-
poles through the ratio

Rlm ¼ maxtðhlmðtÞ−2Ylmðθ;ϕÞÞ
maxtðh22ðtÞ−2Y22ðθ;ϕÞÞ

: ð23Þ

We consider two scenarios: ðθ;ϕÞ ¼ ð0; π=4Þ
(“GW150914-like scenario”) and ðθ;ϕÞ ¼ ðπ=9; π=4Þ
(higher-multipole scenario).

FIG. 14. Fits of the (4, 4) multipole using theQðfÞ
2 model. Left panel: the extracted frequencies ðMωr;−MωiÞ for nf ¼ 0, 1, 2, with t0

ranging from tpeak (empty cross) to tpeak þ 30M (filled cross); other crosses correspond to times tpeak þ 10M and tpeak þ 20M. We mark
the QNMs ð4; 4; nÞ (black circles), ð5; 4; nÞ (gray squares), and the quadratic mode (2, 2, 0)(2, 2, 0) (black diamond). Right panels:
Mωr, −Mωi, A and M as functions of t0. The horizontal orange (green) dot-dot-dashed lines and triangle markers correspond to the
expected frequencies for Mω220×220 (Mω540).
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A. Face-on, GW150914-like scenario

If for simplicity we assume ðθ;ϕÞ ¼ ð0; π=4Þ, a face-on
configuration compatible with the orientation measured for
GW150914 [159], we find that the only observable
spherical multipoles are (2, 2), (3, 2), and (4, 2), with R32 ¼
0.08 and R42 ¼ 0.006.
In Fig. 15 we show the extracted frequencies, along with

their amplitudes and the mismatch, obtained by fitting

hðt; 0; π=4Þ with the QðfÞ
2 model (i.e., Nf ¼ 3 free modes).

While we recover the (3, 2, 0) mode, the first overtone
(2, 2, 1) cannot be reliably extracted. This is somewhat

surprising, because the QðfÞ
2 model was sufficient to extract

the first overtone from the l ¼ m ¼ 2 multipole (compare
the central row of Fig. 10).
In Fig. 16 we make the obvious next step, and we try

again to fit hðt; 0; π=4Þ, but this time with the QðfÞ
3 model.

We now find that the first overtone (orange line) can be
identified with sufficient accuracy at ∼tpeak þ 12M.
However, the (3, 2, 0) mode (green line) can be extracted
more accurately and at earlier times, and therefore this may
be amore natural “secondmode” to choosewhen performing
tests ofGR. Besides (as expected) the recovery of the (3, 2, 0)
mode improves as we include more free modes in the fit,

moving from QðfÞ
2 to QðfÞ

3 . As usual, this is because the
additional freemode fits other early-time contributions which,
if not accounted for, can harm the recovery of the (3, 2, 0)

mode. In fact, the fourth free mode in theQðfÞ
3 model recovers

the (4, 2, 0) spherical-spheroidal mixing mode frequency (red
line) at about the same t0 at which the (2, 2, 1) mode is found,
and with comparable accuracy. The (4, 2) multipole—despite
having a small relative amplitude, R42 ¼ Oð10−3Þ—can
affect the extraction of the (2, 2, 1) overtone.

FIG. 15. Fitting hðt; θ;ϕÞ at ðθ;ϕÞ ¼ ð0; π=4Þ using the QðfÞ
2 model (Nf ¼ 3). Left panel: the extracted frequencies ðMωr;−MωiÞ for

nf ¼ 0, 1, 2, with t0 ranging from tpeak (empty cross) to tpeak þ 30M (filled cross). We also mark tpeak þ 10M and tpeak þ 20M by
crosses. Right panels: Mωr, −Mωi, A, and M as a function of t0. We show Mω220, Mω221, Mω320 as blue, orange, and green dot-dot-
dashed horizontal lines and triangle markers.

FIG. 16. Fitting hðt; θ;ϕÞ at ðθ;ϕÞ ¼ ð0; π=4Þ using the QðfÞ
3 model (Nf ¼ 4). Left panel: the extracted frequencies ðMωr;−MωiÞ for

nf ¼ 0, 1, 2, 3, with t0 ranging from tpeak (empty cross) to tpeak þ 30M (filled cross). We also mark tpeak þ 10M and tpeak þ 20M by
crosses. Right panels: Mωr, −Mωi, A, and M as a function of t0. We show Mω220, Mω221, Mω320, Mω420 as blue, orange, green, and
red dot-dot-dashed horizontal lines and triangle markers.
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Even in the relatively optimistic case of a face-on binary,
when only the (3, 2) and (4, 2) multipoles significantly
contribute to the strain, the extraction of the first overtone
(2, 2, 1) relies on the successful extraction of the (long-
lived) fundamental modes of subdominant multipoles.

B. A nonface-on binary

The face-on scenario considered above is idealized and
somewhat optimistic, since the assumption that θ ¼ 0
artificially removes many multipolar components. For more
generic binary orientations we would expect more multi-
poles to contribute to the strain, and therefore the recovery
of the first overtone should be more difficult.
We now consider a more realistic case where the inclina-

tion is not exactly face-on; ðθ;ϕÞ ¼ ðπ=9; π=4Þ. Now the
dominant multipoles have R32 ¼ 0.06, R33 ¼ 0.03,
R44 ¼ 0.01, R21 ¼ 0.01, and in addition there are five
multipoles with 10−3 < Rlm < 10−2.
In Fig. 17 we show the extracted frequencies, amplitudes

and mismatches when we fit hðt; π=9; π=4Þ with the QðfÞ
5

model. Now the first overtone cannot be extracted evenwhen
we include Nf ¼ 6 free modes; the only modes that can be
cleanly extracted are (2, 2, 0), (3, 3, 0), (3, 2, 0), and (4, 4, 0).
The free mode labeled by nf ¼ 1 (orange line) approaches
the (2, 1, 0) mode, but the model fails to extract this mode at
times t0 − tpeak < 30M. The nf ¼ 5 free mode (brown line)
tries to fit a “retrograde” mode, that we label by ð2; 2; 0ÞR.
Here, following Ref. [85], we call “retrograde” those
QNMs that have frequency Mωlmn;R ¼ −Mω�

l−mn. In
Appendixes C and F 3 we show that retrograde modes are
present also in the (2, 2) and (2, 1) multipoles, respectively.
The case we studied in this section is still an optimistic

scenario for overtone detection for two main reasons.
First of all, GW150914-like signals have nearly equal

masses, so that the subdominant multipoles have relatively

small amplitudes. Even in this “optimal” case, the extrac-
tion of the (2, 2, 1) overtone is severely affected by higher
multipoles. The extraction of the (2, 2, 1) overtone will be
more difficult (while the extraction of subdominant multi-
poles will become easier) for binary configurations with
asymmetric masses and large spins, where higher multi-
poles are more excited. For this reason, asymmetric
systems are better targets for BH spectroscopy.
Secondly, if we assume random orientations, more than

94% of the sources have θ > π=9. As we increase θ, the
contribution of subdominant multipoles increases, and
isolating the (2, 2, 1) overtone gets harder. In fact, we
have experimented and found that the (2, 2, 1) overtone
cannot be extracted with good accuracy at even smaller
inclinations, such as θ ¼ 5°ð¼ π=36Þ.
We conclude that in practical scenarios, it would be

hard to extract the first overtone from GW150914-like
signals. This is because at the times t0 ≳ tpeak þ 12M
when the (2, 2, 1) mode is recovered by the fits, the
fundamental modes of subdominant multipoles are usually
dominant. Even when the overtone can be confidently
identified, the fundamental modes of subdominant multi-
poles are probably more reliable for performing BH
spectroscopy tests.
These considerations ignore detector noise. Depending

on the mass and spin of the remnant, noise could further
reduce the “effective” amplitude of subdominant mutipoles,
impeding their extraction from the data. Our inability to
extract these subdominant multipoles can significantly
affect the extraction of the (2, 2, 1) overtone.

VII. CONCLUSIONS AND DISCUSSION

The examples discussed so far show that the inclusion of
a large number of overtones in BH spectroscopy has no
physical justification. Claims that one or more overtones

FIG. 17. Fitting hðt; θ;ϕÞ at ðθ;ϕÞ ¼ ðπ=9; π=4Þ using the QðfÞ
5 model (Nf ¼ 6). Left panel: the extracted frequencies ðMωr;−MωiÞ

for nf ¼ ½0;…; 5�, with t0 ranging from tpeak (empty cross) to tpeak þ 30M (filled cross). We also mark tpeak þ 10M and tpeak þ 20M by
crosses. Right panels:Mωr, −Mωi, A, andM as a function of t0. We also plotMω220,Mω221,Mω320,Mω330,Mω440, and the retrograde
mode Mω220;R ¼ −Mω�

2–20 as blue, orange, green, purple, red, and brown dot-dot-dashed lines and triangle markers.
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can be observed at the peak of the waveform are theoreti-
cally inconsistent with the analysis of NR waveforms. In
fact, the analysis of the previous section leads to an
unavoidable conclusion; BH spectroscopy using overtones
is either unfeasible or suboptimal compared to spectros-
copy using additional multipoles.

A. Observational implications

Independently of the current debate on the statistical
significance of high-overtone fits to the GW150914 data
[96,105,119–123], our results demonstrate that fits with
multiple modes starting at tpeak do not correspond to the
physical excitation of the QNMs of the remnant, but are
simply effective at overfitting the low-frequency compo-
nents of the waveform near merger. As shown in
Appendix E, these models would give rise to false evidence
in favor of overtones even when the postpeak signal is
unphysical and overtones should not be present. Any
interpretation of overtone measurements close to the peak
(i.e., outside the regime of validity of linear perturbation
theory) is devoid of physical meaning and leads to
unreliable BH spectroscopy tests.
Tests based on early-time overtone models are concep-

tually equivalent to parametrized tests where low-frequency
effective components are used to model the near-merger
signal. Such tests have already been performed by the
LIGO-Virgo Collaboration at the time of the discovery of
GW150914 [160], and they have been extended to the GW
catalogs in subsequent analyses [68–70]. More recently,
modifications to merger quantities were considered within
an effective-one-body model [161]. These are certainly
valuable investigations, but they cannot be regarded as BH
spectroscopy tests as they do not probe directly the
excitation of the QNMs of the remnant BH, but rather
the nonlinear portion of the signal, whose structure is not
analytically understood.
These arguments also apply to tests of the Hawking area

lawbased onovertonemeasurements [162]. ForGW150914-
like binaries, these tests are a time-domain reformulation of
the inspiral-merger-ringdown consistency tests and they are
equivalent to frequency-domain tests, since frequency leak-
age between pre and postmerger is negligible (as shown in
Ref. [163]).

B. Pseudospectral instabilities and nonlinearities

Our analysis raises some interesting questions. Why are
we unable to extract higher overtones even in linear
perturbation theory? Why are the overtone frequencies
that we infer by fitting time-domain signals different from
the expected values?
Some answers to these questions could come from recent

work on the pseudospectrum. Nollert demonstrated a long
time ago that small changes in the potential can destabilize
the whole QNM spectrum [164] (see also [165]). Recent
calculations of the so-called “pseudospectrum” in the

context of BH physics put these ideas on a more solid
mathematical foundation, showing that the overtones are
more easily destabilized than the fundamental mode
(while claiming that the fundamental mode is, in fact,
stable under certain classes of perturbations) [138]. Later
work showed that even the fundamental mode is not
immune from spectral instabilities [140]. In practice, this
is unlikely to affect our ability to do BH spectroscopy
with the fundamental mode in observationally relevant
scenarios [141].
What is still unclear is whether spectral instabilities

affect overtones, and to what extent. The intrinsic non-
linearity of GR implies that the linear wave equations are
always affected by second-order terms that can be treated as
perturbations [166–173]. There has been some encouraging
progress in our understanding of nonlinearities in BH
physics [47,142,174,175]. However several open questions
remain. Are the perturbations induced by nonlinear effects
sufficient to destabilize most overtones in the context of
comparable-mass BH mergers? Can the spectral instability
of the overtones explain our failure to find them in time-
domain waveforms? Do these spectral instabilities explain
why overtones are so hard to identify?

C. Amplitude parametrizations and Occam penalties

Besides being physically inconsistent for reasons we
have already discussed, multiple overtone models with free
amplitudes are problematic from the point of view of data
analysis. Depending on the SNR of the signal, it may be
necessary to include several overtones to obtain unbiased
inference. However, each QNM comes with two additional
free parameters—an amplitude and a phase. As pointed out
in Ref. [109], a large number of parameters generally
decreases the model evidence due to the associated Occam
penalty. Reference [109] concluded that even for extremely
loud signals, the Occam penalty would not allow us to use
overtones to test the “no-hair” hypothesis. It also reported a
significant increase in the Bayesian evidence if one uses
phenomenological templates rather than an agnostic super-
position of damped sinusoids.
In principle, this problem can be alleviated by para-

metrizing the overtone amplitudes as function of the
parameters of the progenitors. For example, Ref. [75]
presented a fit of the first overtone amplitude as a function
of binary parameters for nonspinning progenitors valid at
times t0 > 10Mf (see also Ref. [78]). However, later work
found that when we try to push such “global” fits to earlier
times, the result is not robust under variations of t0 (see e.g.,
Figs. 3 and 4 of Ref. [82]). Even if we can model the
overtone amplitudes as functions of the properties of the
remnant progenitors, measuring several overtone frequen-
cies in real data may be impractical. Fisher matrix estimates
suggest that it is easier to obtain evidence for multiple
modes using higher-angular multipoles rather than over-
tones [82]. These conclusions are in disagreement with
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Ref. [105], which however assumed the overtone model to
be valid at the peak and employed a different detection
criterion.
In future work we will systematically rank the most

important QNMs in the spectrum as functions of the
progenitor parameters, investigate strategies for a robust
modeling and measurement of multiple modes, and revisit
previous BH spectroscopy horizon estimates [83,92].

D. Weak and strong “no-hair” tests

Recent observational implementations of BH spectros-
copy tests are quite different in nature [69,70,95,96,105,119–
121,176]. Since the work of Ref. [86], it has been customary
to perform “no-hair” tests not by directly measuringmultiple
QNM frequencies—as envisioned in the original BH spec-
troscopy proposals [21,30,40]—but rather by measuring the
mass and the spin of theBH (the impact of charge is currently
negligible [100]) together with a single parametric deviation,
e.g., δω221.
This parametrization is sensible. The use of physical

degrees of freedom reduces degeneracies, decreases the
number of parameters in the test to three (as opposed to the
four real parameters that correspond to measuring two
complex frequencies), and consequently decreases the SNR
required for the test. However, the parametrization only
allows for a “weak” BH spectroscopy test, because we must
assume a priori which modes are present in the data. As
such, it must be applied with great care. This “weak”
version of the test could be consistent with GR just because
it enforces the presence of (spurious) low-frequency modes,
which are effective at fitting nonlinearities or other physical
artifacts near the peak.
Conversely, the original BH spectroscopy proposal relies

on a “strong,” more conservative version of the test: we
should perform an agnostic search for multiple damped
exponentials, and only a posteriori identify them with a
given set of modes, provided that the results of the agnostic
frequency search are robust enough. This strong version
was used in most of the fitting experiments reported in this
manuscript, it does not impose the presence of a given
mode in the data, and (while harder to implement) it leads
to more robust conclusions.
The key take-away message for the purpose of this

discussion is that if the mode is actually present in the data,
in the large-SNR limit it must be possible to replace the
weak form of the test by its strong version. As we have
shown in Sec. V C above, if we carry out BH spectroscopy
tests with one overtone close to tpeak, this does not happen
even in the infinite SNR limit, i.e., when we fit state-of-the-
art NR simulations. The opposite is true for tests that use
the fundamental modes corresponding to different multi-
poles at later times. In either form of the test, using the
fundamental modes has an additional observational advan-
tage: at times t0 significantly larger than tpeak, the statistical
uncertainty on the starting time has a much smaller impact.

For sufficiently large SNR, fundamental modes with differ-
ent values of ðl; mÞ can be robustly identified over multiple
cycles, and errorsΔt0 ∼Oð1ÞMf have negligible impact on
their recovery. On the contrary, the starting time uncertainty
has a large impact on overtones-based tests near the peak
[119,121].

E. Beyond-Kerr parametrizations: Effective detection
templates versus physical parametrizations

Any BH spectroscopy tests relying on templates with a
single parametric deviation, such as those in Ref. [69],
are unphysical. This is because virtually all modified-
gravity theories are expected to change all of the QNM
frequencies, not just one [177–183] (this discussion
applies also to parametrized tests in the inspiral: see
e.g., Sec. II of Ref. [104]). However, it is important to
make a distinction between two different goals; the
detection of beyond-GR effects, and the identification
of their origin.
We can safely use unphysical models as effective

detection templates with the minimal number of parameters
required to detect hypothetical deviations from GR. While
using multiple parameters may become beneficial in the
context of next-generation detectors [184,185], adding too
many parameters can introduce correlations, increase the
SNR required for a detection of beyond-GR effects, and
decrease the sensitivity of the search. In addition, single-
parameter templates have been shown to be effective at
recovering deviations which affect multiple parameters
[186]. If future observations using these simple parametric
tests show any hints of deviations from GR, they should be
followed up with better-motivated templates to identify
their origin.
One proposal to bypass this problem in ringdown tests

is to use parametrized frameworks such as ParSpec

[103,104]. The idea is to perform a perturbative expansion
around GR, in which corrections to the individual QNM
frequencies are proportional to the (small) couplings that
appear in the action of beyond-GR theories. This is a
sensible parametrization that introduces additional infor-
mation, and increases the sensitivity of searches for new
physics at fixed SNR [104]. The sensitivity can be further
increased for specific beyond-GR theories [187], which
can be easily embedded within a ParSpec-like framework in
the small-coupling limit. A valid objection to this
approach is that ParSpec-like frameworks, being intrinsi-
cally perturbative, could miss nonperturbative deviations
from the GR spectrum. This is true but perhaps unlikely,
given mounting evidence that the observed GW signals
must be quite close to the predictions of GR. It may be
advisable to run two parallel searches: a more sensitive,
ParSpec-like search for perturbative deviations, and a less
sensitive (but more general) search for nonperturbative
signatures.
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Note added.—Soon after this manuscript appeared on the
arXiv, a preprint by Nee et al. [188] studied the excitation
of overtones by comparing Regge-Wheeler and Pöschl-
Teller potentials. Their findings are similar to those
presented in Sec. III, i.e., “… large overtone numbers
may [...] remove nonquasinormal mode contributions that
are relevant at early times of a ringdown, but do not
necessarily correspond to the physical excitation of modes
of the system” [188].
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APPENDIX A: AMBIGUITIES IN THE
DEFINITION OF RINGDOWN STARTING
TIME AND RINGDOWN EXCITATION

A ringdown waveform is formally defined as the super-
position of damped exponential given in Eq. (2). One of the
main issues we address in this paper is the following: Is this
definition ever a good approximation of a given waveform,
and to what level of approximation?
In this appendix we use a simple toy model and some

examples from linear BH perturbation theory to clear up
possible misunderstandings about (i) the very possibility to
define a ringdown “starting time,” and (ii) the meaning of
“ringdown excitation.”

1. A Green’s function toy model

The first observation is that conservative systems
described by linear wave equations can always be described
in terms of their eigenmodes. However, it is well known
that a simple description in terms of constant-amplitude
eigenmodes may not be adequate even in such systems.
Consider for illustration the following wave equation in one
spatial dimension, explored already in Refs. [47,189]:

∂
2Ψ
∂x2

−
∂
2Ψ
∂t2

− 2V0δðxÞΨ ¼ 0: ðA1Þ

Through a Laplace transform, ψðs; xÞ ¼ R∞
0 e−stΨðt; xÞdt,

we can transform the partial differential equation into the
ordinary nonhomogeneous equation

d2ψ
dx2

þ ½ω2 − 2V0δðxÞ�ψ ¼ −
∂Ψ
∂t

����
t¼0

þ iωΨjt¼0 ≡ S;

ðA2Þ

where we have defined the frequency ω ¼ is and a source
term S. Define the “left” homogeneous solution as that
satisfying outgoing boundary conditions at large negative
values of x,

ψL ¼
�
e−iωx; x → −∞
Aine−iωx þ Aouteiωx; x → þ∞

ðA3Þ

and the “right” homogeneous solution as

ψR ¼ eiωx; x → þ∞: ðA4Þ
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The (constant) Wronskian W of these two solutions is
W ≡ ψLψ

0
R − ψ 0

LψR ¼ 2iωAin. By demanding continuity
of ψL and a discontinuity in its derivative consistent with a
δ function, we find

Ain þ Aout ¼ 1; ðA5Þ

Aout − Ain þ 1 ¼ 2V0

iω
; ðA6Þ

which is equivalent to

Aout ¼ −i
V0

ω
; Ain ¼ 1þ i

V0

ω
: ðA7Þ

The Wronskian vanishes at the single zero ω ¼ −iV0,
which is therefore a QNM frequency, and the only one
supported by this potential.
The solution of Eq. (A2) satisfying outgoing boundary

conditions as x → ∞ is

ψ ¼ eiωx
Z

dx
ψLS
W

: ðA8Þ

Consider for simplicity an initial pulse S ¼ δðx − x0Þ.
The integral then yields

ψ ¼ eiωðx−x0Þ

2
þ eiωðxþx0Þ Aout

2Ain
: ðA9Þ

This is the full solution in the Fourier plane. To get the
time-domain solution, we calculate the inverse,

2πΨ¼
Z

dωe−iωtψ ¼
Z

dω
e−iωðx−x0−tÞ

2

þ
Z

dωe−iωðxþx0−tÞ Aout

2Ain
; ðA10Þ

but 2πδðx − aÞ ¼ R
dωeiωðx−aÞ, thus we have

Ψ ¼ 1

2
δðx − x0 − tÞ þ 1

4π

Z
dωe−iωðxþx0−tÞ −iV0

ωþ iV0

:

The remaining integral is performed in the complex plane,
by closing the contour of integration as shown in Fig. 18.
There are no branch cuts. For t < x0 þ x, we can close the
contour in the upper half of the complex plane. Since there
are no poles in the upper-half plane, the integral vanishes
and we get

Ψ ¼ 1

2
δðx − x0 − tÞ; t < x0 þ x: ðA11Þ

This is the prompt response: in flat space, signals travel at
the speed of light (here c ¼ 1) on the light cone. Thus, the

contribution above corresponds to a signal emitted from the
source at x0 and reaching the observer at t ¼ x − x0.
For t > x0 þ x, we must close the contour in the lower

half of the complex plane. Taking the residue at the pole,
we find

Ψ ¼ 1

2
δðx − x0 − tÞ þ V0

2
e−V0½t−ðxþx0Þ�; t > x0 þ x:

ðA12Þ

Note that the second term peaks at t ¼ x0 þ x. It corre-
sponds to the initial burst traveling to the potential barrier
(which takes a time x0) and then back to the observer at x,
emerging after interaction with the potential barrier. The
signal is exponentially suppressed afterwards at a rate
determined by the single, purely damped QNM frequency.
In the simple scenario above we assumed sharp, local-

ized initial data. The effect of a broadened pulse can be
understood by adding an extra Dirac delta, so that the
source S ¼ δðx − x0Þ þ δðx − x1Þ with x1 > x0. It is now
easy to see that

Ψ ¼ 1

2
δðx − x0 − tÞ þ 1

2
δðx − x1 − tÞ; t < x0 þ x

ðA13Þ

Ψ ¼ 1

2
δðx − x0 − tÞ þ 1

2
δðx − x1 − tÞ þ V0

2
e−V0ðt−ðxþx0ÞÞ;

x1 þ x > t > x0 þ x ðA14Þ

Ψ ¼ 1

2
δðx − x0 − tÞ þ 1

2
δðx − x1 − tÞ

þ V0

2
e−V0ðt−xÞðeV0x0 þ eV0x1Þ; t > x1 þ x ðA15Þ

We see then two “ringdown” stages of different amplitudes,
driven of course by the “extended” initial data. The
implication is clear—a constant-in-time QNM amplitude

FIG. 18. Integration contour to get the time response in the
presence of a δ-function potential and localized initial data.
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description is not valid for generic initial data, even when
we consider conservative systems.
In curved spacetimes, this picture is further complicated by

the absence of propagation on the light cone; backscattering
off the spacetime curvature produces tails, beyond the effects
already described. A depiction of what happens when a
source is emitting close to a BH is shown in Fig. 19. There is
direct, prompt emission from the source to the observer, the
analog of propagation on the light cone in Minkowski.
Concurrent with this process, waves are continuously back-
scattered off the spacetime curvature, a low-frequency effect
that is also present for massive fields or for spacetimes of odd
dimensionality (see e.g. [190,191]). In addition, light is
trapped close to the potential barrier (i.e., close to the BH

light ring) and continuously reemitted. The sum of all these
effects produces the signal seen by an observer. Once the
source crosses the BH event horizon, direct emission ceases
to exist, but reemission by the light ring and backscattering
can still occur.
There are two important lessons to be learned from this

simple toy model: (1) the signal is never expected to be
described by a pure ringdown waveform because other
components (including prompt emission and backscatter-
ing) will always be present; and (2) even in a Minkowski
background and in the linear regime, the “ringdown starting
time” is not a well-defined quantity.
We further clarify this point below by considering a

curved background. The relative importance of the different
emission components, and their effect in searching for
damped sinusoids, is explored in more detail in Sec. III of
the main text with a toy model.

2. When is ringdown excited?

In a BH spacetime the situation becomes even murkier.
To stress how nontrivial it is to define the ringdown starting
time (or the “ringdown stage,” more in general), we repeat
the classic Gedankenexperiment first performed by
Vishveshwara [4].
We let a Gaussian wave packet scatter off a nonrotating

BH, and we compare the location of the peaks of the signal
with the respective position of the center of the Gaussian
at the emission of the direct signal, i.e., at time
tpeak ¼ tþ rext� − rp�. Here rext� is the extraction location

FIG. 19. Schematic representation of the radiation emitted by
sources moving around BHs and their path towards faraway
observers. The yellow circle represents the light ring.

FIG. 20. Left panel: Time evolution of the l ¼ 2mode for the Zerilli function Ψ (and its first and second time derivatives) extracted at

null infinity, for initial data given by Eqs. (A16) and (A17) with rð0Þ� ¼ 50M and σ ¼ 5.0M. Here, tLR corresponds to the instant when
the Gaussian crosses the light ring, located at rLR ¼ 3M. The first burst occurs slightly before tLR, when part of the front of the wave
packet reaches the peak of the gravitational potential (which is close to the light ring), leading to the direct emission of radiation. The
following peaks of Ψ occur at time intervals close to half of the light-ring period TLR=2 ∼ 16M and correspond to the ringdown phase,
where trapped waves at the light ring leak out both to infinity and into the BH. Note that the peaks in the time derivatives of the Zerilli

function occur later. Right panel: same, but for rð0Þ� ¼ 50M and σ ¼ 0.5M. Now the first burst of radiation appears later, since the
Gaussian is narrower. The ringdown is more excited, i.e., the relative magnitude of the second peak ofΨwith respect to the first is larger.
Thus, wide Gaussians suppress the ringdown.
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on the numerical grid (in terms of the Schwarzschild

tortoise coordinate), rð0Þ� is the initial (tortoise) radius of

the Gaussian center, and rp� ¼ rð0Þ� − t is the radius of the
center of the Gaussian at time t. This can be achieved by
evolving the Zerilli equation [2] with initial data

Ψðt ¼ 0; rÞ ¼ 0; ðA16Þ

∂tΨðt ¼ 0; rÞ ¼ exp ½−ðr − rð0Þ� Þ2=ð2σ2Þ�: ðA17Þ

The resulting time evolution of the Zerilli function and of
its first two time derivatives are shown in Fig. 20 for a
quadrupolar (l ¼ 2) perturbation. The two panels refer to
Gaussian wave packets with different widths (σ ¼ 5.0M on
the left, and σ ¼ 0.5M on the right). It is apparent that
different physical quantities have different peak times. The
first peak in Ψ (as extracted at null infinity) occurs slightly
before the Gaussian crosses the light ring, and it corre-
sponds to direct radiation excited from the peak of the
gravitational potential. The broader Gaussian excites the
burst first, because the “leading edge” of the wave packet
reaches the peak first when compared to the narrower
Gaussian. However, the zero of Ψ̈, which roughly corre-
sponds to the peak of energy emission because Ė ∝ jΨ̇j2,
occurs shortly after the Gaussian has crossed the light ring.
This can be interpreted in terms of the leakage of waves that
are quasitrapped at the light ring on unstable circular orbits,
i.e., as “the beginning of the ringdown.”. This interpretation
is supported by the time difference between the peaks
of Ψ, which is comparable to half the light-ring period
TLR=2 ∼ 16M. Note also that for the larger Gaussian, the
ringdown phase is suppressed and the second peak ofΨ has
smaller relative magnitude with respect to the first peak of
direct radiation, due to the interaction of the infalling wave
packet with radiation escaping to infinity.
In Fig. 21 we show that the results are similar when we

consider the radial infall of a point particle from rest at
infinity, rather than the scattering of a Gaussian wave
packet.
However, it would be wrong to read too much into these

data. The light ring is constantly being hit with forward-
beamed radiation, thus GWs from the light ring are in
principle present as soon as the radiation has time to
interact with it. The intensity of these waves becomes larger
when the particle gets closer, but there is some inherent
delay time, since the waves are trapped in quasicircular
motion. Therefore there is a large uncertainty in trying to
associate the peak of the waveform, or of the energy flux, to
a particular particle position. For example, in the point-
particle case, it is far fetched to claim that the flux peak
occurs when the particle is close to the horizon
(rp� ¼ 2.07M) because of the particle being close to the
horizon: the peak is at that location because the particle has
traveled some distance before the GWs it emitted close to

the light ring start leaking out. For much more detailed
studies of ringdown excitation in the point-particle limit,
see e.g., Refs. [192–203].
The punchline of this discussion is that even for linear

perturbations of a Schwarzschild spacetime, the ringdown
starting time is not a well-defined quantity. It depends on
which quantity we monitor (differing e.g., for the wave
amplitude and energy flux), and there is no mathematical or
physical basis to claim a well-defined instant as “the”
ringdown starting time.

APPENDIX B: IMPACT OF NUMERICAL
RELATIVITY ERRORS ON RINGDOWN

AMPLITUDE FITS

Two important sources of error in the SXS NR wave-
forms analyzed here are the finite numerical resolution of
the simulations (henceforth resolution error) and the GW
extraction procedure, which involves extrapolation to
infinity of the waveforms computed at finite radii (hence-
forth extrapolation error). Our goal in this appendix is to
understand to what extent these errors affect our ringdown
amplitude fits (see Ref. [151] for a more detailed discussion
of numerical errors).
The resolution in the SpEC code depends on the number

of points and subdomains in the discrete spacetime grid.
These are controlled by a tolerance parameter in the
adaptive mesh refinement (AMR) algorithm, which modi-
fies the number of points and subdomains when the local
measurement of the error is larger than the tolerance. In
converged NR simulations the discretization error
decreases when lowering the AMR tolerance parameter,
which corresponds to increasing the resolution level.
Hence, a common way to gauge the impact of the

FIG. 21. Same as Fig. 20, but instead of a Gaussian wave packet
we let a point particle fall radially onto the BH from rest at
infinity. The waveforms are scaled by the ratio between the
particle mass mp and the BH mass M. Results are qualitatively
similar to the Gaussian case.
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resolution error in NR simulations is to compare the two
highest-resolution levels of the same simulation.
The extrapolation error is caused by the fact that the NR

waveforms are not computed directly at future null infinity
Iþ.9 Hence they have to be extrapolated to Iþ using a
polynomial fit of the strain, produced using its value
computed at different extrapolation radii. Since polyno-
mials of different order Next will give slightly different
extrapolations of the waveform at Iþ, it is common to
estimate the impact of the extrapolation error by comparing
the waveform extrapolated using polynomials with differ-
ent values of Next. The reference extrapolation order for the
merger and ringdown part of the waveform is Next ¼ 2 (see
Sec. 2.4.1 of Ref. [151]). This waveform is typically
compared with the same waveform extrapolated using an
Next ¼ 3 polynomial to estimate the extrapolation error.
We want to assess the effect of these two sources of error

on the fits of the postmerger NR waveform performed in
Secs. IV and V. In particular, we are interested in under-
standing whether the variation of the amplitude of the
modes when fitting the waveform starting at different initial
times t0 could be due to this error.
In Fig. 6 of the main text we use the reference NR

waveform at the highest-resolution level (Lev ¼ 6) with
Next ¼ 2. In Fig. 22 we perform again the same fit of the

postmerger NR waveform using a model with N ¼ 7
overtones, but this time we compare with (i) the NR
waveform with the second highest-resolution level
(Lev ¼ 5) and Next ¼ 2, as well as (ii) the NR waveform
with Lev ¼ 6, but Next ¼ 3. We find that using NR
waveforms with different resolution levels and different
extrapolation orders makes almost no visible difference in
the fits. These sources of error in the NR simulations cannot
explain the variation of the fitted amplitudes of the modes
when varying t0.

APPENDIX C: EFFECT OF A
SPURIOUS CONSTANT

In Sec. V we pointed out that in the QðmÞ
3;1 model, the free

mode is merely fitting the late-merger GW frequency
at early times t0 − tpeak < 15M, while at late times
(t0 − tpeak > 15M) it is unphysical, and it is likely fitting
noise. Here we justify the second statement.
The waveform SXS:BBH:0305 used in this study

contains a spurious constant (see also Ref. [207]). To
determine this constant we subtract the fundamental mode
A220e−iðω220tþϕ220Þ, which can be very accurately deter-
mined, from the late-time ringdown, with the result

cn ¼ −ð0.8þ 1.8 iÞ × 10−5: ðC1Þ

In this section we gauge the impact of this term on our
fits, using waveforms where the constant has not been
perfectly subtracted,

hλ ¼ hSXS22 − λcn: ðC2Þ

Here, hSXS22 is the original extrapolated waveform provided
by the SXS collaboration, and we have introduced a
continuous parameter λ such that λ ¼ 0 gives the waveform
from which the spurious constant cn has not been sub-
tracted, while λ ¼ 1 corresponds to perfect subtraction.
In Fig. 23, we plot the waveform amplitude for

different values of λ. The original waveform (λ ¼ 0,

FIG. 22. Same as the bottom-right panel with N ¼ 7 in Fig. 6,
but using the NR waveform with (i) the second-highest resolution
level Lev ¼ 5 and Next ¼ 2 (dotted lines), and (ii) the highest
resolution level Lev ¼ 6 but with Next ¼ 3 (dash-dotted lines).
Solid lines correspond to the fits in Fig. 6, which use the reference
NR simulation with resolution level Lev ¼ 6 and Next ¼ 2.

FIG. 23. rjhλj=M: Amplitudes of SXS:BBH:0305 when the
spurious constant is not subtracted perfectly [see Eq. (C2)].

9NR waveforms can be extracted at Iþ using Cauchy
characteristic extraction [204–206]. Unfortunately, at the moment
the availability of these NR simulations is limited.
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blue line) does not show an exponential decay at late
times, when cn dominates over the fundamental mode.
Once we extract cn perfectly (λ ¼ 1, purple line), we
recover the “pure” exponential decay due to the
(2, 2, 0) mode.
Next, we fit hλ with the QðmÞ

2;1 model. Recall this means
one free mode in addition to the (2, 2, 0), (2, 2, 1), (3, 2, 0)
fixed modes. In Fig. 24 we plot the extracted complex
frequency, the amplitude of the free mode and the

mismatch, as usual. The early-time behavior is the same
for all waveforms, being controlled by the late-merger GW
frequency. However the late-time behavior is very sensitive
to λ. For t0 − tpeak ¼ 15M–20M, the imaginary part of the
free mode increases for all λ, but the trajectory of the real
part of the frequency in the complex plane depends on λ.
Whenever λ ≠ 1 we find that Mωr drops to zero for
t0 − tpeak ≳ 20M: the free mode is fitting a spurious
constant with value ð1 − λÞcn. This is a consistency check

FIG. 24. Fitting hλ with the QðmÞ
2;1 model: one free mode in addition to (2, 2, 0), (2, 2, 1), (3, 2, 0) (which are all marked by filled

symbols in the left panel). Left panel: extracted frequencies ðMωr;−MωiÞ for nf ¼ 0, with t0 ranging from tpeak (empty cross) to
tpeak þ 30M (filled cross). We also mark tpeak þ 10M and tpeak þ 20M by crosses. We denote known QNMs as follows: ð2; 2; nÞ (black
circles), ð2;−2; nÞ (gray left-pointing triangles), ð2; 2; nÞR (gray right-pointing triangles), ð3; 2; nÞ (gray squares). Right panels:
evolution of Mωr, −Mωi, A, and M as functions t0.

FIG. 25. Fits with theQðf;mÞ
3 model, i.e., four free modes (Nf ¼ 4) in addition to (3, 2, 0) (marked by a filled symbol in the left panel).

Left panel: extracted frequencies ðMωr;−MωiÞ for nf ¼ 0, 1, 2, 3, with t0 ranging from tpeak (empty cross) to tpeak þ 30M (filled cross).
We also mark tpeak þ 10M and tpeak þ 20M by crosses. We denote known QNMs as follows: ð2; 2; nÞ (black circles), ð2;−2; nÞ (gray
left-pointing triangles), ð2; 2; nÞR (gray right-pointing triangles), ð3; 2; nÞ (gray squares), ð4; 2; nÞ (gray pentagons). Right panels:
evolution of Mωr, −Mωi, A, and M as functions of t0. We also plot Mω220, Mω221, Mω222, Mω22n;R ¼ −Mω�

2–22 using blue, orange,
green and red dot-dashed horizontal lines, and triangle markers in the same colors.
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of our fitting procedure, and shows that we can extract even
very small spurious noise components (∼Oð10−6Þ).
The situation is different for λ ¼ 1, when the spurious

noise has been subtracted and the free mode now finds
evidence for a retrograde mode with Mωr < 0.
The impact of the spurious constant and the presence of

retrograde modes can be better understood by adding
multiple free modes. In Fig. 25 we fit the λ ¼ 1 waveform

with model Qðf;mÞ
3 ; Nf ¼ 4 free modes in addition to the

fixed (3, 2, 0) mode. We observe that the fundamental mode
can be extracted nearly perfectly δω ∼Oð10−5Þ and the
nf ¼ 1 mode converges to the first overtone, with
δω ∼Oð10−2Þ. However the behavior of the nf ¼ 2, 3

modes is very sensitive to numerical noise. The mismatch

when fitting with Qðf;mÞ
3 is M ∼Oð10−9Þ, which is much

smaller than differences between waveforms computed at
different resolutions, further indicating the possibility than
one or two free modes could be simply fitting numerical
noise. However, the real frequency Mωr of the nf ¼ 3

mode is negative and indicates the presence of a retrograde
mode (shown by a down-pointing triangle) around
t0 − tpeak ¼ 10M, with an amplitude of Oð10−4Þ. We also
see that none of the free modes coincide with higher
overtones (n > 1). Once again, it is not possible to extract
the first overtone at t0 ¼ tpeak. We conclude that the
presence of the spurious constant has only a small impact

FIG. 26. Fits of the Q7ðtÞ (left column) and Qe
7ðtÞ (right column) toy waveforms with model QN;1. First row: evolution of the best-fit

frequency of the highest overtone with t0. Second row: difference between the fitted free frequency and the predicted value for the
corresponding overtone, as defined in Eq. (16). Third row: amplitude of the free overtone in each fit. The injected amplitudes of the toy
waveforms are indicated by horizontal dotted lines. Bottom row: mismatch between the best-fit waveform and the actual waveform for
each fit. In the bottom-right panel we also show with a black dashed line the mismatch between Q7ðtÞ and Qe

7ðtÞ, i.e., the approximate
mismatch induced by the injected noise floor. As in Fig. 2 we remove spurious data points. This is why some of the curves end
prematurely.
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at very late times, and it does not affect the extraction of
overtones near the peak.

APPENDIX D: A TOY MODEL FOR
SXS:BBH:0305

In Sec. III we examined toy model waveforms to argue
that the overtone model may not be a good description of
the ringdown as early as the peak even in linear theory.
While we expect the same conclusions to hold for NR
waveforms, the results in Sec. III should not be carelessly
used as a benchmark, because there are some important
(and not obvious) differences between the linear and NR
waveforms. Firstly, the linear model we explored refers to
the Zerilli and Regge-Wheeler functions. A linear combi-
nation of these functions yields the Newman-Penrose scalar
Ψ, while the NR waveforms refer to the strain h. The two
quantities are connected by a second derivative in time,
Ψ ∼ ḧ, meaning that the peak of Ψ and h may differ by a
few M (see e.g., the discussion in Appendix A). Secondly,
the linear models we considered are strictly real, because
the real and imaginary parts of the Regge-Wheeler equation
[Eq. (7)] decouple and we specified real initial conditions,
while the complex NR waveforms must be found as a linear
superposition of complex damped exponentials as in
Eq. (10). This technical difference could affect the quality

of the fits. In fact, in this section we will see that fits for the
NR waveforms often give smoother results than the linear
waveforms across different starting times. This is because
the full phase evolution of the waveform is encoded in the
complex waveform, and this typically improves the
quality of fits in terms of complex exponentials which
are essentially spinning phasors (with an exponentially
decaying amplitude) in the complex plane. Thirdly, while
the Price power-law tail is apparent in the linear waveform,
to our knowledge there is no conclusive evidence of its
presence in the NR waveforms. While we could demon-
strate that the exponential blow up of the QNM amplitudes
at late times for the linear waveforms is not driven by
numerical noise, it is uncertain whether the same con-
clusion applies to NR waveforms.
To explore the effect of these differences, in the spirit of

Sec. III we construct two toy waveforms,

Q7ðtÞ≡
X7
n¼0

Ane−i½ωnðt−tpeakþϕn�; ðD1Þ

Qe
7ðtÞ≡Q7ðtÞ þ eðtÞ; ðD2Þ

where Q7ðtÞ is a clean combination of seven overtones,
and Qe

7ðtÞ contains in addition the estimated numerical

FIG. 27. The amplitude of the overtones for the Q7ðtÞ (dashed) and Qe
7ðtÞ (solid) toy waveforms, similar to Fig. 4. Each panel

correspond to a fit with a different number of overtones in the fitting model. All mode frequencies are fixed to their predicted values.
Faint, dotted horizontal lines are the injected values of the amplitude for each mode. Note that the time range of the plots is different
across different panels.
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error eðtÞ. These toy waveforms are constructed to mimic
the l ¼ m ¼ 2 multipole ringdown waveform of the SXS:
BBH:0305 simulation (resolution Lev ¼ 6, extrapolation
order N ¼ 2: see Appendix B), so we use the first seven
overtone frequencies of its remnant BH, and the injected
values of An and ϕn are chosen to be equal to those obtained
by fitting the SXS:BBH:0305 waveform starting at the peak
with 7 overtones. The curly symbol Q7ðtÞ is a reminder
that, contrary to the real waveforms in Sec. III, these
waveforms are complex. The error is approximated as the
difference between the Lev ¼ 6 and Lev ¼ 5 waveforms
minimized over a relative time and phase difference.
We fit these toy waveforms by a linear combination of

complex QNMs. We first repeat the free-frequency search
of Sec. III by adding more overtones to our fitting model
while leaving only the highest overtone frequency free. As
shown in Fig. 26, the free mode converges to the expected
overtone frequencies of the clean toy waveform Q7ðtÞ at
least for N ≤ 5. Once we add noise in Qe

7ðtÞ, the fit fails to
converge unless N ≤ 1. This proves that even if there were
no nonlinearities near the peak and the amplitudes of the
overtones were constant starting at the peak, a subdominant
contamination to the waveform could affect our ability to
extract the correct overtone frequencies. However, we
should be able to recover the first overtone at late enough
starting time, contrary to the linear waveform case, where
we cannot extract any overtone unless we use a very
specific starting time. In fact, this is just what we observe in
Fig. 11 for the SXS:BBH:0305 waveform.
Next, we repeat the fits with fixed frequencies, also as in

Sec. III. Figure 27 shows the amplitude of the overtones as
a function of t0 for both Q7ðtÞ (dashed lines) and Qe

7ðtÞ
(solid lines). Adding more overtones stabilizes the lower
overtone amplitudes. For N ¼ 7 there is a brief period of
time where all overtone amplitudes are constant even near
the peak, even for the Qe

7ðtÞ toy waveform. While the
agnostic (free-frequency) mode search would fail for
N ≥ 3, if the waveform could be modeled as QNMs
modulo small contamination, we should expect the ampli-
tudes of the overtones to be flat for a brief moment. For
example, with an N ¼ 7 fit model (bottom right panel of
Fig. 27), the amplitudes of the n ¼ 2 and 3 overtones are
approximately constant over a time range ∼10M and ∼5M,
respectively. The corresponding range of flatness (if any) in
Fig. 6 is significantly shorter. Therefore the numerical error
alone cannot explain why we fail to consistently model
SXS:BBH:0305 as a combination of overtones starting at
the peak.

APPENDIX E: AN UNPHYSICAL
HYBRID WAVEFORM

In Sec. IV we show that the overtones found when fitting
the early postpeak BBH waveforms are unphysical. In this
appendix, we confirm this finding by producing an

unphysical postpeak BBH waveform, and showing that
the overtones can still fit it with similar accuracy.
We produce the unphysical postpeak BBH waveform by

hybridizing the l ¼ m ¼ 2 mode of our prototypical NR
waveform SXS:BBH:0305 (henceforth h2) with another
waveform in the catalog, SXS:BBH:0220 (henceforth h1).
The latter represents an equal-mass BH binary with
dimensionless spins χ1 ¼ −0.4 and χ2 ¼ −0.8 antialigned
with the orbital angular momentum. We first align the two
waveforms such that t ¼ 0M correspond to the peak of
their l ¼ m ¼ 2 mode. Then we construct the hybrid
waveform by smoothly blending their amplitudes A1 and
A2 and their frequencies ω1 and ω2 as follows:

AhybðtÞ ¼ A1ðtÞWðtÞ þ A2ðtÞð1 −WðtÞÞ;
ωhybðtÞ ¼ ω1ðtÞWðtÞ þ ω2ðtÞð1 −WðtÞÞ; ðE1Þ

where WðtÞ is a window function defined as

WðtÞ ¼

8>><
>>:

1 t ≤ t1

S
	
t2−t1
t−t1

þ t2−t1
t−t2



t1 < t < t2

0 t ≥ t2;

ðE2Þ

where SðtÞ is the logistic function, t1 ¼ tpeak and
t2 ¼ tpeak þ 20M. With this definition, the hybrid waveform
exactlymatchesh1 (h2) for t ≤ tpeak (t ≥ tpeak þ 20M), and it
is an unphysical combination of the two in the region
t1 < t < t2.
We fit the hybrid waveform by theQN model, with QNM

frequencies set to those of the BH remnant of the SXS:
BBH:0305 waveform. In the upper panel of Fig. 28, we
show the mismatch Mh between the fits and the hybrid
waveform as a function of t0 − tpeak, where tpeak is the peak
of the hybrid waveform. For comparison, we also show the
mismatch M between SXS:BBH:0305 and the QN model
fits. Using more and more overtones improves the fit of the
hybrid waveform in the unphysical region ðtpeak < t0 <
tpeak þ 20MÞ as much as it does it for the SXS:BBH:0305
waveform. In fact, in some ranges of t0 the fit of the hybrid
waveform in the unphysical region has an even smaller
mismatch than the fit of the SXS:BBH:0305 waveform.
This is clear from the second panel of the figure, where we
show the ratio M=Mh.
We find that the overtones typically add in counterphase

in the fit of the hybrid waveform, just as they do when
fitting SXS:BBH:0305. The extension of the overtone
model up to the peak requires very large, presumably
unphysical amplitudes, which however can be fine-tuned to
cancel out. Modes in counterphase are very effective at
(pathologically) canceling each other. This is precisely
what is required to overfit the early postmerger signal.
Interestingly, including overtones in the fit of the

postpeak hybrid waveform also improves the measurement
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of the remnant spin χf and mass Mf. We prove this by
repeating the fit of this waveform with modelsQN with free
χf andMf (in addition to the free amplitudes and phases of
the modes). We determine the deviation of the fitted χf and
Mf from their asymptotic values using the quantity ϵh,
defined in analogy with Eq. (19). Smaller values of ϵh
indicate a better measurement of χf and Mf.
In the third panel of Fig. 28, we show ϵh as a function

of t0 − tpeak. For comparison we also plot the value of ϵ
obtained when fitting the QN models against the SXS:
BBH:0305 waveform. The results confirm what we
found by computing the mismatch i.e., ϵh gets smaller
when adding a larger number of overtones, even when we
start the fit at values of t0 for which the hybrid waveform
is unphysical. The bottom panel of Fig. 28 shows that ϵh
is even smaller than ϵ in some ranges of t0. The fact that
using the overtones allows us to improve the measure-
ment of χf and Mf even for the unphysical hybrid
waveform is clear evidence that their role is to match
whichever early postpeak waveform, allowing the dom-
inant mode to correctly fit the late postpeak waveform,
which really carries information about the remnant BH
properties.

APPENDIX F: HIGHER MULTIPOLES

In Sec. V D we focused on the (4, 4) subdominant
multipole, noting that (quite remarkably) the nonlinear
mode is easier to extract than the first linear overtone.
In this section we further analyze the (3, 3), (3, 2), and

(2, 1) subdominant multipoles to understand which modes

FIG. 28. Mismatch and mass/spin errors (first and third panel
from the top, respectively) for the hybrid waveform (solid line)
and SXS:BBH:0305 (dashed line). We also plot the ratio of the
corresponding quantities for the hybrid waveform (solid line) and
SXS:BBH:0305 (dashed line), shading the region where the
overtones fit the hybrid waveform better.

FIG. 29. Fits of the (3, 3) multipole with the QðfÞ
2 model. Left panel: the extracted frequencies ðMωr;−MωiÞ for nf ¼ 0, 1, 2, with t0

ranging from tpeak (empty cross) to tpeak þ 30M (filled cross); other crosses correspond to times tpeak þ 10M and tpeak þ 20M. We also
mark the QNMs ð3; 3; nÞ (black circles), ð3;−3; nÞ (gray diamonds) and ð4; 3; nÞ (gray squares), for reference. Right panels:Mωr,Mωi,
A andM as functions of t0. Horizontal gray (orange) dot-dot-dashed lines and triangle markers correspond to the expected frequencies
for Mω430 (Mω331).

VISHAL BAIBHAV et al. PHYS. REV. D 108, 104020 (2023)

104020-44



can be extracted from the numerical waveforms, and
whether observations that apply to the (2, 2) mode general-
ize to other multipoles of the radiation.

1. ðl;mÞ= ð3; 3Þ
We fit the (3, 3) multipole with theQðfÞ

2 model. In Fig. 29
we plot the extracted frequencies, amplitudes, and mis-
matches. The fundamental mode (3, 3, 0) (blue lines) can be
extracted with δω < 0.01 as long as t0 − tpeak ≳ 10M. The
second free mode (nf ¼ 1, orange line) shows a tendency
to approach the (4, 3, 0) mode-mixing QNM, and it still

seems to be changing in frequency and amplitude after
t0 − tpeak > 30M. The third free mode (nf ¼ 2, green line)
moves between two QNM frequencies: one (at early times)
with large jMωij and large amplitude, and one at late times
with small jMωij and small amplitude.
As shown in Fig. 30, this mode is present evenwhenwe fit

with theQðf;mÞ
2 model, i.e., we addNf ¼ 2 free modes along

with two fixed frequencies corresponding to the modes
(3, 3, 0) and (4, 3, 0). This model also finds a mode moving
between two QNM frequencies; one with A ≃ 0.053 and
Mω ≃ 0.65 − 0.20i at early times (t0 − tpeak < 5M), and one

FIG. 30. Fits of the (3, 3) multipole using the QðmÞ
2;2 model, i.e., two free modes (Nf ¼ 2) in addition to two additional modes with

frequencies fixed to the (3, 3, 0) and (4, 3, 0) values. Left panel: the extracted frequencies ðMωr;−MωiÞ for nf ¼ 0, 1 andNf ¼ 2, for t0
ranging from tpeak (empty cross) to tpeak þ 30M (filled cross); other crosses correspond to times tpeak þ 10M and tpeak þ 20M. We mark
the QNMs ð3; 3; nÞ (black circles) and ð3;−3; nÞ (gray diamonds). Right panels:Mωr,Mωi, A andM as functions of t0. The horizontal
red dot-dot-dashed line and triangle marker corresponds to the expected frequency for Mω331.

FIG. 31. Fits of the (3, 2) multipole with the QðfÞ
2 model. Left panel: the extracted frequencies ðMωr;−MωiÞ for nf ¼ 0, 1, 2 for t0

ranging from tpeak (empty cross) to tpeak þ 30M (filled cross); other crosses correspond to times tpeak þ 10M and tpeak þ 20M. We mark
the QNMs ð3; 2; nÞ (black circles), ð3;−2; nÞ (gray triangle), and ð2; 2; nÞ (gray squares). Note that the marker for the (2, 2, 0) mode
almost exactly overlaps with that of the ð3;−2; 0Þ mode. Right panels:Mωr, −Mωi, A andM as functions of t0. The horizontal orange
(green) dot-dot-dashed lines and triangle markers correspond to the expected frequencies for Mω220 (Mω221).
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with A ≃ 0.0012 and Mω ≃ 0.56 − 0.063i at late times
(t0 − tpeak > 15M). The free mode with nf ¼ 0 in Fig. 30
finds a frequency close to the (3, 3, 1) mode, with “closest
approach” happening at t0 − tpeak ≈ 25M.

2. ðl;mÞ= ð3; 2Þ
We start by fitting the (3, 2) multipole with the free-

frequency QðfÞ
2 model. We plot the three extracted

frequencies, amplitudes and mismatches in Fig. 31.
The fundamental mode (3, 2, 0) can be extracted with

δω < 0.01 when t0 − tpeak ≳ 12M (blue line). The spheri-
cal-spheroidal mixing contamination from the (2, 2, 0)
mode can also be accurately identified, with δω≲ 10−2 in
the time range we consider [note that in Fig. 31 the
(2, 2, 0) mode almost exactly overlaps with the ð3;−2; 0Þ
mode, although no evidence is found for this additional
mode]. The third free mode circles around the (2, 2, 1)
overtone, but never converges to any known QNM
frequency value.
In Fig. 32 we try better extract some of the modes

by repeating the fit with the QðmÞ
2;2 template, i.e., two

FIG. 32. Fits of the (3, 2) multipole using theQðmÞ
2;2 model: two free modes (Nf ¼ 2) in addition to (2, 2, 0) and (3, 2, 0). Left panel: the

extracted frequencies ðMωr;−MωiÞ for nf ¼ 0, 1 andNf ¼ 2, for t0 ranging from tpeak (empty cross) to tpeak þ 30M (filled cross); other
crosses correspond to times tpeak þ 10M and tpeak þ 20M. We mark the QNMs ð3; 2; nÞ (black circles), ð3;−2; nÞ (gray triangles),
ð2; 2; nÞ (gray squares), and ð4; 2; nÞ (gray pentagons). Right panels: Mωr, −Mωi, A, and M as functions of t0. The horizontal gray,
purple, and red dot-dot-dashed lines and gray triangle markers correspond to the expected frequencies for Mω420, Mω221, and Mω321,
respectively.

FIG. 33. Fits of the (2, 1) multipole using the QðfÞ
1 model. Left panel: the extracted frequencies ðMωr;−MωiÞ for nf ¼ 0, 1 with t0

ranging from tpeak (empty cross) to tpeak þ 30M (filled cross); other crosses are at tpeak þ 10M and tpeak þ 20M. We mark the known
QNM frequencies as follows: ð2; 1; nÞ (black circles), ð2;−1; nÞ (gray left-pointing triangles), ð2; 1; nÞR (gray right-pointing triangles).
Right panels: Mωr, Mωi, A, and M as functions of t0. Horizontal red, purple and brown dot-dot-dashed lines and triangle markers are
the expected frequencies for the modes Mω210, Mω211, and −Mω�

2−11, respectively.
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fixed modes [(3, 2, 0) and (2, 2, 0)] and two
free modes. The nf ¼ 0 mode (red line) moves towards
the (3, 2, 1) overtone, but then drifts towards the
(4, 2, 0) QNM due to mode-mixing contamination
after t0 − tpeak > 25M. The nf ¼ 1 mode hovers around
to the (2, 2, 1) overtone, but never gets really close
to it.
In conclusion, mode mixing contamination seems

to prevent an accurate recovery of the first overtone with
any of the free-frequency fits that we attempted.

3. ðl;mÞ= ð2; 1Þ
In Fig. 33 we plot the two extracted frequencies, ampli-

tudes and mismatches found by fitting the (2, 1) multipole
with theQðfÞ

1 model.As usual, the fundamentalmode (2, 1, 0)
can be extracted with δω < 0.01 after t0 − tpeak > 5M. We
also find some evidence of the retrograde mode ð2; 1; 0ÞR. If
we repeat the fit with the QðfÞ

2 model the fits are generally
very noisy, and there is no robust evidence for the first
overtone or for spherical-spheroidal mixing modes.
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[22] G. Jaffé, Z. Phys. 87, 535 (1934).
[23] W. G. Baber and H. R. Hassé, Proc. Cambridge Philos.

Soc. 31, 564 (1935).
[24] E.W. Leaver, Proc. R. Soc. A 402, 285 (1985).
[25] F. Echeverria, Phys. Rev. D 40, 3194 (1989).
[26] L. S. Finn, Phys. Rev. D 46, 5236 (1992).
[27] K. S. Thorne, in Three Hundred Years of Gravitation

(Cambridge University Press, New York, 1987),
pp. 330–458.

[28] S. Hod, Phys. Rev. Lett. 81, 4293 (1998).
[29] O. Dreyer, Phys. Rev. Lett. 90, 081301 (2003).

[30] O. Dreyer, B. J. Kelly, B. Krishnan, L. S. Finn, D.
Garrison, and R. Lopez-Aleman, Classical Quantum
Gravity 21, 787 (2004).

[31] K. D. Kokkotas, T. A. Apostolatos, and N. Andersson,
Mon. Not. R. Astron. Soc. 320, 307 (2001).

[32] C. T. Cunningham, R. H. Price, and V. Moncrief,
Astrophys. J. 224, 643 (1978).

[33] V. Ferrari and R. Ruffini, Phys. Lett. 98B, 381 (1981).
[34] R. F. Stark and T. Piran, Phys. Rev. Lett. 55, 891 (1985);

56, 97(E) (1986).
[35] E. Berti, K. Yagi, H. Yang, and N. Yunes, Gen. Relativ.

Gravit. 50, 49 (2018).
[36] V. Cardoso and P. Pani, Living Rev. Relativity 22, 4

(2019).
[37] E. Berti, V. Cardoso, and M. Casals, Phys. Rev. D 73,

024013 (2006); 73, 109902(E) (2006).
[38] E. Berti and A. Klein, Phys. Rev. D 90, 064012 (2014).
[39] E. W. Leaver, Phys. Rev. D 34, 384 (1986).
[40] E. Berti, V. Cardoso, and C. M. Will, Phys. Rev. D 73,

064030 (2006).
[41] Webpages with Mathematica notebooks and numerical

quasinormal mode tables: https://pages.jh.edu/eberti2/
ringdown/; https://centra.tecnico.ulisboa.pt/network/grit/
files/; https://paolopani.weebly.com/notebooks.html.

[42] N. Andersson, Phys. Rev. D 51, 353 (1995).
[43] N. Andersson, Phys. Rev. D 55, 468 (1997).
[44] E. Berti and V. Cardoso, Phys. Rev. D 74, 104020 (2006).
[45] Z. Zhang, E. Berti, and V. Cardoso, Phys. Rev. D 88,

044018 (2013).
[46] N. Oshita, Phys. Rev. D 104, 124032 (2021).
[47] M. Lagos and L. Hui, Phys. Rev. D 107, 044040 (2023).
[48] E. E. Flanagan and S. A. Hughes, Phys. Rev. D 57, 4535

(1998).
[49] E. Berti, V. Cardoso, and C. M. Will, AIP Conf. Proc. 848,

687 (2006).
[50] F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005).
[51] M. Campanelli, C. O. Lousto, P. Marronetti, and Y.

Zlochower, Phys. Rev. Lett. 96, 111101 (2006).
[52] J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van

Meter, Phys. Rev. Lett. 96, 111102 (2006).
[53] A. Buonanno, G. B. Cook, and F. Pretorius, Phys. Rev. D

75, 124018 (2007).

AGNOSTIC BLACK HOLE SPECTROSCOPY: QUASINORMAL … PHYS. REV. D 108, 104020 (2023)

104020-47

https://doi.org/10.1103/PhysRev.108.1063
https://doi.org/10.1103/PhysRevLett.24.737
https://doi.org/10.1103/PhysRevD.2.2141
https://doi.org/10.1038/227936a0
https://doi.org/10.1088/0264-9381/16/12/201
https://doi.org/10.1088/0264-9381/16/12/201
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.1086/180849
https://doi.org/10.1103/PhysRevLett.27.1466
https://doi.org/10.1103/PhysRevLett.27.1466
https://doi.org/10.1098/rspa.1975.0112
https://doi.org/10.1098/rspa.1975.0112
https://doi.org/10.1103/PhysRevD.30.295
https://doi.org/10.1103/PhysRevD.31.290
https://doi.org/10.1016/0375-9601(84)90769-2
https://doi.org/10.1016/0375-9601(84)90769-2
https://doi.org/10.1086/184453
https://doi.org/10.1086/184453
https://doi.org/10.1103/PhysRevLett.29.1114
https://doi.org/10.1086/152444
https://doi.org/10.1086/152445
https://doi.org/10.1086/152445
https://doi.org/10.1086/153180
https://doi.org/10.1086/153180
https://doi.org/10.1098/rspa.1977.0005
https://doi.org/10.1086/158109
https://doi.org/10.1007/BF01333263
https://doi.org/10.1017/S0305004100013566
https://doi.org/10.1017/S0305004100013566
https://doi.org/10.1098/rspa.1985.0119
https://doi.org/10.1103/PhysRevD.40.3194
https://doi.org/10.1103/PhysRevD.46.5236
https://doi.org/10.1103/PhysRevLett.81.4293
https://doi.org/10.1103/PhysRevLett.90.081301
https://doi.org/10.1088/0264-9381/21/4/003
https://doi.org/10.1088/0264-9381/21/4/003
https://doi.org/10.1046/j.1365-8711.2001.03945.x
https://doi.org/10.1086/156413
https://doi.org/10.1016/0370-2693(81)90930-8
https://doi.org/10.1103/PhysRevLett.55.891
https://doi.org/10.1103/PhysRevLett.56.97
https://doi.org/10.1007/s10714-018-2372-6
https://doi.org/10.1007/s10714-018-2372-6
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1103/PhysRevD.73.024013
https://doi.org/10.1103/PhysRevD.73.024013
https://doi.org/10.1103/PhysRevD.73.109902
https://doi.org/10.1103/PhysRevD.90.064012
https://doi.org/10.1103/PhysRevD.34.384
https://doi.org/10.1103/PhysRevD.73.064030
https://doi.org/10.1103/PhysRevD.73.064030
https://pages.jh.edu/eberti2/ringdown/
https://pages.jh.edu/eberti2/ringdown/
https://pages.jh.edu/eberti2/ringdown/
https://pages.jh.edu/eberti2/ringdown/
https://centra.tecnico.ulisboa.pt/network/grit/files/
https://centra.tecnico.ulisboa.pt/network/grit/files/
https://paolopani.weebly.com/notebooks.html
https://doi.org/10.1103/PhysRevD.51.353
https://doi.org/10.1103/PhysRevD.55.468
https://doi.org/10.1103/PhysRevD.74.104020
https://doi.org/10.1103/PhysRevD.88.044018
https://doi.org/10.1103/PhysRevD.88.044018
https://doi.org/10.1103/PhysRevD.104.124032
https://doi.org/10.1103/PhysRevD.107.044040
https://doi.org/10.1103/PhysRevD.57.4535
https://doi.org/10.1103/PhysRevD.57.4535
https://doi.org/10.1063/1.2348047
https://doi.org/10.1063/1.2348047
https://doi.org/10.1103/PhysRevLett.95.121101
https://doi.org/10.1103/PhysRevLett.96.111101
https://doi.org/10.1103/PhysRevLett.96.111102
https://doi.org/10.1103/PhysRevD.75.124018
https://doi.org/10.1103/PhysRevD.75.124018


[54] E. Berti, V. Cardoso, J. A. Gonzalez, U. Sperhake, M.
Hannam, S. Husa, and B. Bruegmann, Phys. Rev. D 76,
064034 (2007).

[55] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016).

[56] J. Aasi et al. (LIGO Scientific Collaboration), Classical
Quantum Gravity 32, 074001 (2015).

[57] F. Acernese et al. (Virgo Collaboration), Classical
Quantum Gravity 32, 024001 (2015).

[58] T. Akutsu et al. (KAGRA Collaboration), Prog. Theor.
Exp. Phys. 2021, 05A101 (2021).

[59] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. X 9, 031040 (2019).

[60] R. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. X 11, 021053 (2021).

[61] R. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), arXiv:2108.01045.

[62] R. Abbott et al. (LIGO Scientific, Virgo, and KAGRA
Collaborations), arXiv:2111.03606 [Phys. Rev. X (to be
published)].

[63] A. H. Nitz, C. Capano, A. B. Nielsen, S. Reyes, R. White,
D. A. Brown, and B. Krishnan, Astrophys. J. 872, 195
(2019).

[64] A. H. Nitz, T. Dent, G. S. Davies, S. Kumar, C. D. Capano,
I. Harry, S. Mozzon, L. Nuttall, A. Lundgren, and M.
Tápai, Astrophys. J. 891, 123 (2020).

[65] A. H. Nitz, C. D. Capano, S. Kumar, Y.-F. Wang, S.
Kastha, M. Schäfer, R. Dhurkunde, and M. Cabero,
Astrophys. J. 922, 76 (2021).

[66] T. Venumadhav, B. Zackay, J. Roulet, L. Dai, and M.
Zaldarriaga, Phys. Rev. D 101, 083030 (2020).

[67] B. Zackay, L. Dai, T. Venumadhav, J. Roulet, and M.
Zaldarriaga, Phys. Rev. D 104, 063030 (2021).

[68] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. D 100, 104036 (2019).

[69] R. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. D 103, 122002 (2021).

[70] R. Abbott et al. (LIGO Scientific, Virgo, and KAGRA
Collaborations), arXiv:2112.06861 [Phys. Rev. D (to be
published)].

[71] E. Berti, J. Cardoso, V. Cardoso, and M. Cavaglia, Phys.
Rev. D 76, 104044 (2007).

[72] V. Baibhav, E. Berti, V. Cardoso, and G. Khanna, Phys.
Rev. D 97, 044048 (2018).

[73] I. Kamaretsos, M. Hannam, S. Husa, and B. S.
Sathyaprakash, Phys. Rev. D 85, 024018 (2012).

[74] I. Kamaretsos, M. Hannam, and B. Sathyaprakash, Phys.
Rev. Lett. 109, 141102 (2012).

[75] L. London, D. Shoemaker, and J. Healy, Phys. Rev. D 90,
124032 (2014); 94, 069902(E) (2016).

[76] S. Bhagwat, D. A. Brown, and S.W. Ballmer, Phys. Rev. D
94, 084024 (2016); 95, 069906(E) (2017).

[77] E. Thrane, P. D. Lasky, and Y. Levin, Phys. Rev. D 96,
102004 (2017).

[78] L. T. London, Phys. Rev. D 102, 084052 (2020).
[79] V. Baibhav and E. Berti, Phys. Rev. D 99, 024005

(2019).
[80] V. Baibhav, E. Berti, and V. Cardoso, Phys. Rev. D 101,

084053 (2020).
[81] G. B. Cook, Phys. Rev. D 102, 024027 (2020).
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