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General teleparallel theories assume that curvature is vanishing in which case gravity can be solely
represented by torsion and/or nonmetricity. Using differential form language, we express the Riemannian
Gauss-Bonnet invariant concisely in terms of two general teleparallel Gauss-Bonnet invariants, a bulk and a
boundary one. Both terms are boundary terms in four dimensions.We also find that the split is not unique and
present two possible alternatives. In the absence of nonmetricity our expressions coincide with the well-
known metric teleparallel Gauss-Bonnet invariants for one of the splits. Next, we focus on the description
where only nonmetricity is present and show some examples in different spacetimes. We finish our
discussion by formulating novel modified symmetric teleparallel theories constructed with our new scalars.
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I. INTRODUCTION

General relativity (GR) is the flagship theory of gravity
and has been very successful in describing gravitational
physics as well as predicting the existence of gravitational
waves, black holes, and an expanding universe. It is
however not without its limitations, as many aspects remain
unclear, such as the unavoidable appearance of singular-
ities, the nature of dark matter and dark energy, and the lack
of a compelling UV completion. One way to address some
of these is to modify the theory by changing some of its
underlying assumptions. Lovelock’s theorem ensures the
Einstein-Hilbert action to uniquely describe (pure) gravity
in Riemannian geometry with field equations that are at
most second order inD ¼ 4 dimensions. The next invariant
that appears in an expansion in powers of the curvature is
the Gauss-Bonnet invariant [1,2],

G̊ ¼ R̊μνρσR̊
μνρσ − 4R̊μνR̊

μν þ R̊2; ð1Þ

which is a topological invariant in D ¼ 4, therefore not
affecting the dynamics. However, precisely because of its
topological character, it can lead to interesting features in a
theory of gravity. In order to make this quantity relevant in
D ¼ 4 it is necessary instead to let go of some of the other
assumptions of Lovelock’s theorem. For instance, by
allowing for field equations of higher-than-second-order
nature, which generically imply the appearance of new
degrees of freedom (d.o.f.), one can then construct a theory
containing the Gauss-Bonnet invariant in a nontrivial way,
such as fðR̊; G̊Þ gravity [3–8].
Another possibility to modify GR is coupling G̊ directly

to new degrees of freedom. Indeed, in the context of scalar-
tensor theories of gravity in Riemannian geometry, a lot of
attention has been given in recent years to a coupling
between the Gauss-Bonnet invariant and the scalar field ψ of
the form fðψÞG̊, which can be generated for example at low
energies by string theory [9–11], or in general by the
spontaneous breaking of a conformal symmetry, with ψ
related with the corresponding dilaton [12,13]. This type of
operator belongs to the Horndeski class of theories, there-
fore leading to second-order field equations for both the
scalar and the metric [14], and also inheriting nice properties
such as nonrenormalization [15]. Phenomenological impli-
cations in cosmology include for example the existence of
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eternal solutions with zero cosmological constant [16] and
inflationary models where the inflaton is nonminimally
coupled to the Gauss-Bonnet invariant [17–19]. On the
astrophysical side, the main appeal is the fact that the
presence of such operator generically induces scalarization
of black-hole solutions [20,21], which include interesting
scenarios of spontaneous scalarization [22,23] (also spin-
induced [24,25]) when the coupling is nonlinear in ψ .1

In the special case of a linear coupling ψG̊, interestingly
the theory enjoys shift symmetry2 and has been shown to
be the only way of evading known no-hair theorems for
shift-symmetric scalar-tensor (Riemannian) theories and
flat asymptotics [27], even when considering the larger
degenerate higher-order scalar-tensor theories class of
theories [28]. Black holes in this case are always scalarized,
which implies strong constraints from gravitational-wave
observations due to unavoidable scalar-wave emission
during the inspiral phase of binary mergers [29–32],
although they could still lead to potentially observable
effects in the ringdown phase and provide insight about
dark energy scenarios [33]. Strong constraints also follow
from theoretical consistency considerations such as the
requirement of causality [34].
Yet another way of modifying GR is by changing the

underlying geometrical notion used to describe gravity.
It has been shown that it is possible to formulate GR
equivalently either in terms of curvature, torsion, or non-
metricity [35–37]. The scenario in which the general
curvature is switched off and still the theory provides the
Einstein’s field equations is known as the general tele-
parallel equivalent of GR theory [38–40]. Modifications of
that theory are however different depending on which
geometrical formulation is chosen. When not only curvature
is zero but also nonmetricity (torsion) is vanishing, one
restricts the theories to be part of the so-called metric
(symmetric) teleparallel theories or torsional (nonmetricity-
based) teleparallel theories [36,41–46]. For simplicity, we
will use the abbreviation TG for metric (or torsional)
teleparallel gravity, while symmetric TG will refer to
symmetric teleparallel gravity when only nonmetricity is
present. Furthermore, the abbreviation general TG will refer
to the general teleparallel theories with vanishing curvature
and nonzero torsion and nonmetricity.
In particular, any teleparallel theory could allow for

novel ways of including the Gauss-Bonnet invariant in an
action nontrivially. Most of the known results in black
hole physics or cosmology assume Riemannian geometry
and the conclusions no longer apply in this case. It is
interesting to ask whether they would still hold when

considering instead a teleparallel formulation. In order to
pursue these studies it is necessary to have manageable
expressions for the Riemannian Gauss-Bonnet invariant in
terms of teleparallel quantities. For the case of TG this
has been already developed in Ref. [47], where the
Riemannian Gauss-Bonnet invariant is split into two
terms: a bulk term denoted as TðTÞ

G , and a boundary one

as BðTÞ
G . Those terms allow us to construct modified metric

TG theories with nontrivial dynamics for the metric TG
Gauss-Bonnet invariants, see [47–49] as examples. There
are interesting works related to those torsional theories in
the context of cosmology [50–55], and recently, in black
hole physics [56]. It has been found that the metric TG
Gauss-Bonnet invariants provided by torsion generate
scalarized black-hole solutions with spontenous scalariza-
tion, and in general, they have different features as in the
Riemannian case [57].
In this paper we aim to extend the work of Ref. [47] to the

general TG framework, where both torsion and nonmetricity
are present, by formulating a compact and manageable
expression for the Riemannian Gauss-Bonnet invariant G̊.
As a special case, this includes the so-called symmetric TG
where only nonmetricity is different from zero. In this latter
setup, which has been so far the least explored case in the
literature, we then use our results to discuss some novel
formulations of symmetric TG theories that include the
Gauss-Bonnet invariant.
The paper is organized as follows: In Sec. II we introduce

general TG geometries using both differential form lan-
guage and their corresponding tensorial expressions. We
also formulate the general TG equivalent of GR. Then, in
Sec. III we split the Riemannian Gauss-Bonnet invariant
into two general TG scalars which are both boundary terms
in four dimensions. Section IV is devoted to studying the
particular case of symmetric TG where we build their
Gauss-Bonnet invariants, construct different new theories,
and explore some examples for different spacetimes. We
summarize and discuss our main results in Sec. V.
The notation throughout this paper is as follows:

Latin indices a; b;… run over the tangent space of the
D-dimensional spacetime while Greek indices μ; ν;… run
over all coordinates of the D-dimensional spacetime.
Quantities denoted with tildes are referring to a general
connection, whereas quantities with an overcircle denote the
Riemannian ones (computed using the Levi-Civita con-
nection). Further, quantities without any symbol on top are
of purely teleparallel nature.

II. GENERAL TELEPARALLEL GEOMETRIES

In this section we revise the formalism of differential
forms and introduce the relevant geometrical quantities.
For this purpose, we mainly follow the work presented
in [47,58,59] and encourage the reader to see the afore-
mentioned references for more details. We list the defi-
nitions of the geometrical quantities in the language of

1The coupling leading to spontanous scalarization of black
holes has also been shown to trigger instabilities in the context of
inflationary cosmology [26].

2Due to the topological character of G̊ in D ¼ 4, a constant
shift ψ → ψ þ c does not affect the dynamics.
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differential forms needed to construct the general TG
equivalent of GR.

A. Geometrical quantities in differential form

In the early 1920s Cartan presented an alternative
formulation of GR in terms of two new dynamical quan-
tities: the (dual) vielbein ea, also known as3 the basis of the
cotangent space or tetrads, and the connection 1-form ω̃a

b,
also known as spin connection. As opposed to Einstein’s
idea, Cartan’s idea was to distinguish between the metric
and the connection as two different objects (unlike GR in
which the Levi-Civita connection is assumed). The con-
nection then is not written in terms of the metric anymore
but they are independent. The information about the
geometry (i.e. gravitation) which in GR is encoded in the
Ricci scalar R̃ ¼ gμνR̃μν via the metric, will now be given by
the three quantities ðQab; Ta; R̃a

bÞ known as the nonme-
tricity 1-form, the torsion 2-form, and the curvature 2-form,
respectively. They are defined as

Qab ≔ D̃gab ≔ dgab − ω̃ab − ω̃ba; ð2Þ

Ta ≔ D̃ea ≔ dea þ ω̃a
c ∧ ec; ð3Þ

R̃a
b ≔ dω̃a

b þ ω̃a
c ∧ ω̃c

b; ð4Þ

where d is the exterior derivative and the symbol ∧ denotes
the wedge product; gab stands for the metric tensor, with
which we raise and/or lower indices. The above equations
are known as Cartan’s structure equations, and they define
the nonmetricity 1-form Qab, the torsion 2-form Ta, and
the curvature 2-form R̃a

b in terms of the basis ea and the
connection 1-form ω̃a

b. The general covariant exterior
derivative D̃ is defined in the following way: acting on a set
of p forms Φa

b,

D̃Φa
b ¼ dΦa

b þ ω̃a
c ∧ Φc

b − ω̃c
b ∧ Φa

c: ð5Þ

Note that the covariant exterior derivative D̃ acts in the same
way as the exterior derivative d in the sense that when
applied on a p form, it gives a (pþ 1) form. The connection
terms ensure that D̃ (when applied to a p form) transforms
as a tensorial object in the same way as the Levi-Civita

connection Γ̊ a
bc ensures that the covariant derivative ∇̊

behaves like a tensor when applied to a tensor field in GR.
The connection 1-form ω̃a

b defines the parallel transporta-
tion. With the covariant exterior derivative defined, we can
write the Bianchi identities as

R̃a
b ∧ eb ¼ D̃Ta; D̃R̃a

b ¼ 0; ðR̃abþ R̃baÞ ¼−D̃Qab:

ð6Þ

The affine connection 1-form can be decomposed into
Riemannian (i.e. Levi-Civita) and non-Riemannian parts
according to ω̃a

b ¼ ω̊a
b þ Na

b. Here ω̊a
b stands for the

Levi-Civita (or Christoffel) connection 1-form, satisfying
ω̊ab ¼ −ω̊ba, and Na

b is known as the distortion 1-form.
As can be seen, the distortion N quantifies the difference
between the Levi-Civita connection ω̊ and the general
connection ω̃. By replacing the decomposition of the affine
connection 1-form into the definition of the curvature
2-form we can get the split of the latter into, again,
Riemannian and non-Riemannian parts as

R̃a
b ¼ R̊a

b þ D̊Na
b þ Na

c ∧ Nc
b; ð7Þ

where the Riemannian part of the curvature 2-form is
defined, in terms of the Levi-Civita affine connection
1-form, as

R̊a
b ≔ dω̊a

b þ ω̊a
c ∧ ω̊c

b ð8Þ

and the covariant exterior derivative with respect to the
Levi-Civita connection acting on the distortion 1-form is
given by

D̊Na
b ¼ dNa

b þ ω̊a
c ∧ Nc

b − ω̊c
b ∧ Na

c: ð9Þ

The distortion 1-form, moreover, can be decomposed as

Na
b ¼ Ka

b þ La
b: ð10Þ

The first term Ka
b that satisfies Kab ¼ −Kba is known as

the contortion 1-form while the second term is the
disformation 1-form La

b, associated to torsion and non-
metricity respectively.

B. Tensorial notation

When doing computations in differential form language,
it will be useful to be able to recover the known expressions
written in tensorial form. We will focus on the relevant
quantities that are going to appear throughout the work. To
be named, we start by stating the tensorial expression for
the torsion 2-form,

Ta ≔
1

2
Ta

bceb ∧ ec: ð11Þ

In the same way, the expression for the curvature 2-form is
given by

R̃a
b ≔

1

2
R̃a

bcdec ∧ ed; ð12Þ

3The formal definition of the vielbein is with the lower index
ea while the dual vielbein is defined as ea. The implicit notation is
understood depending whether the index is up or low. Both
objects are related via the dual property eaeb ¼ δab where δ

a
b is the

Kronecker delta.
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where R̃a
bcd are the components of the general Riemann

tensor. It will be useful to keep in mind that the exterior
derivative, when acted on an object, can be written as
dð·Þ ¼ ∂dð·Þed. Finally, the distortion 1-form, when written
in its tensorial form, reads

Na
b ≔ Na

bcec: ð13Þ

When moving from the orthonormal to coordinate basis, it
is important to remember the “tetrad postulate”

∇̃μeaν ¼ 0; ð14Þ

which is valid for any connection.
Finally we write down the well-known expressions in the

coordinate basis for the objects defined above. We start by
recalling the expressions for the curvature, torsion, and
nonmetricity, which define Cartan’s structure equations,

R̃σ
ρμν ¼ ∂μΓ̃σ

νρ − ∂νΓ̃σ
μρ þ Γ̃σ

μλΓ̃λ
νρ − Γ̃σ

μλΓ̃λ
νρ; ð15Þ

Tσ
μν ¼ Γ̃σ

μν − Γ̃σ
νμ; ð16Þ

Qρμν ¼ e∇ρgμν ¼ ∂ρgμν − Γ̃λ
ρμgλν − Γ̃λ

ρνgμλ: ð17Þ

In the sameway, the distortion tensorN can be decomposed
into the contortion and disformation tensor as

Nλ
μν ¼ Kλ

μν þ Lλ
μν; ð18Þ

where, expressed in terms of torsion and nonmetricity, they
read [60]

Kλ
μν ¼

1

2

�
Tλ

μν − Tμ
λ
ν − Tν

λ
μ

�
; ð19Þ

Lλ
μν ¼

1

2

�
Qλ

μν −Qμ
λ
ν −Qν

λ
μ

�
: ð20Þ

We now have all the ingredients both in differential form
and in tensorial language that will allow us to formulate GR
in the teleparallel framework.

C. General teleparallel formulation of GR

In GR, i.e. for the Levi-Civita connection, the action is
built from the Riemannian Ricci scalar. In the language of
differential forms this object is obtained from the curvature
2-form in such a way that the Einstein-Hilbert action (in D
dimensions) is written as

SEH ¼ 1

2κ2

Z
dDxL̊GR; ð21Þ

where κ2 ¼ 8πG and

L̊GR¼
1

ðD−2Þ!ϵa1…aDR̊
a1a2 ∧ ea3 ∧…∧ eaD ¼ R̊�1 ð22Þ

is the GR Lagrangian, with � standing for the Hodge dual
operator that defines the orientation of the manifold

�1 ¼ 1

D
ϵa1…aDe

a1 ∧ ea2 ∧ … ∧ eaD: ð23Þ

Here, ϵa1…aD is the totally antisymmetric Levi-Civita
symbol (with ϵ12…D ¼ þ1). It is important to note that
in Einstein’s GR, both torsion and nonmetricity are zero,
Ta ¼ Qa

b ¼ 0, but the curvature it is not, R̊a
b ≠ 0. On the

other hand, one can play with different combinations of the
three quantities to build different classes of spacetimes.
There are three of such a kind that are going to be of
interest for this work: general teleparallel geometries
where Qab ≠ 0, Ta ≠ 0, R̃ab ¼ 0; teleparallel geometries
(torsional) where Tab ¼ 0, Ta ≠ 0, R̃ab ¼ 0; and symmet-
ric teleparallel geometries where Qab ≠ 0, Ta ¼ 0,
R̃ab ¼ 0. Teleparallel geometries are characterized by
satisfying the so-called teleparallel condition:

R̃a
b ¼ 0: ð24Þ

Note that from this expression, and using (7), we can
obtain a relationship between R̃a

b and Na
b, which will be

useful later on in this work. Also, for teleparallel quan-
tities, we drop any symbol on top.
The above results will be relevant when computing the

Gauss-Bonnet invariant in differential forms language,
defined in the following section. If, instead, we want to
recover the tensorial result as in GR, it will be necessary to
keep in mind the expression for the Ricci scalar in the
general teleparallel case [61]:

R̃ ¼ R̊þ 1

4
TλμνTλμν þ 1

2
TλμνTμλν − Tλ

λνTμ
μ
ν þ TλμνQνλμ

þ 1

4
QλμνQλμν −

1

2
QλμνQμλν þ 1

2
Qνλ

λQμ
μν

−
1

4
Qνλ

λQν
μ
μ − Tλ

λνQνμ
μ þ Tλ

λνQμν
μ − 2∇̊μTνμ

ν

þ ∇̊μQμ
ν
ν − ∇̊μQν

ν
μ; ð25Þ

from where we can build an action for the general TG
equivalent of GR (zero curvature) as [46,61,62]

Sgeneral TG-GR ¼ −
1

2κ2

Z
dDx

ffiffiffiffiffiffi
−g

p
G; ð26Þ

with
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G ¼ 1

4
TλμνTλμν þ 1

2
TλμνTμλν − Tλ

λνTμ
μ
ν þ TλμνQνλμ

þ 1

4
QλμνQλμν −

1

2
QλμνQμλν þ 1

2
Qνλ

λQμ
μν

−
1

4
Qνλ

λQν
μ
μ − Tλ

λνQνμ
μ þ Tλ

λνQμν
μ; ð27Þ

which should not be confused with the Gauss-Bonnet
invariant G̊. In such a way the Einstein-Hilbert action
(21) expressed in terms of the Riemannian Ricci scalar

SEH ¼ 1

2κ2

Z
dDx

ffiffiffiffiffiffi
−g

p
R̊ ð28Þ

differs only by a boundary term compared to Eq. (26),
meaning that Einstein’s field equations arise from both
actions. For this reason the theory is labeled as equivalent to
GR. One can then enforce conditions on the geometry such
that one restricts to the torsional or nonmetricity case. If, for
example, we set the torsion to zero, we will get the action
for the symmetric TG case, which will be the dedicated
study in Sec. IV.

III. GAUSS-BONNET INVARIANT IN A GENERAL
TELEPARALLEL GEOMETRY

We now turn our attention to the computation of the
Riemannian Gauss-Bonnet invariant in terms of the dis-
tortion tensor Nλμν in the general TG case. This object is
defined as Eq. (1) which in differential form language in D
dimensions can be obtained as

G̊ � 1 ¼ 1

ðD − 4Þ! ϵa1…aDR̊
a1a2 ∧ R̊a3a4 ∧ ea5 ∧ … ∧ eaD;

ð29Þ

in terms of the Riemannian curvature 2-form R̊a
b, which in

turn can be expressed in terms of the distortion tensor Nλμν

under the teleparallel condition Eq. (24). This would be a
rather straightforward enterprise; however, we are also
interested in identifying within the resulting expression
bulk and boundary contributions. As we will see, this split
is not unique.

A. Derivation in differential form language

We begin first with an approach to the computation that
follows closely Ref. [47], where the metric TG equivalent of
the Gauss-Bonnet invariant G̊ was first derived. The main
difference here is that we will let nonmetricity to also be
present, in addition to torsion. For this we must work with
the distortion 1-form Nab which has a priori no symmetry
properties under the exchange of a and b, unlike the purely
torsional case where the contortion 1-form Kab is antisym-
metric. This requires some care when going through the

derivation, and expectedly, some new contributions will arise
from the purely symmetric parts of the distortion 1-form,
which are uniquely associated with nonmetricity. Notice
that nonmetricity also contributes to the antisymmetric
part of Nab.
Let us start from the Lagrangian containing the Gauss-

Bonnet invariant constructed with the general curvature

L̃2¼
1

ðD−4Þ!ϵa1…aDR̃
a1a2 ∧ R̃a3a4 ∧ea5 ∧…∧eaD ¼ G̃�1;

ð30Þ

and replace both factors of the general curvature 2-form
R̃a

b by the Riemmanian curvature form R̊a
b and the

distortion 1-form Na
b using (7). One obtains

ðD−4Þ!L̃2¼ðD−4Þ!L̊2þI1þ2I2þ2I3þ2I4þI5; ð31Þ

where

I1 ¼ ϵa1…aDN
a1

c ∧ Nca2 ∧ Na3
d ∧ Nda4 ∧ ea5 ∧… ∧ eaD;

I2 ¼ ϵa1…aDR̊
a1a2 ∧ Na3

d ∧ Nda4 ∧ ea5 ∧… ∧ eaD;

I3 ¼ ϵa1…aDD̊N
a1a2 ∧ Na3

d ∧ Nda4 ∧ ea5 ∧… ∧ eaD;

I4 ¼ ϵa1…aDD̊N
a1a2 ∧ R̊a3a4 ∧ ea5 ∧… ∧ eaD;

I5 ¼ ϵa1…aDD̊N
a1a2 ∧ D̊Na3a4 ∧ ea5 ∧… ∧ eaD; ð32Þ

and

L̊2¼
1

ðD−4Þ!ϵa1…aDR̊
a1a2 ∧ R̊a3a4 ∧ ea5 ∧…∧ eaD ¼ G̊�1;

ð33Þ

which is what we ultimately want to compute. Using
properties (A1), (A3), and (A4), we readily identify the
contributions to what will be the boundary term. In
particular, we can rewrite

I4 ¼ d
�
ϵa1…aDN

a1a2 ∧ R̊a3a4 ∧ ea5 ∧ … ∧ eaD
�
; ð34Þ

and

I5¼ D̊
�
ϵa1…aDN

a1a2 ∧ D̊Na3a4 ∧ea5 ∧…∧eaD
�

þϵa1…aDN
a1a2 ∧ D̊2Na3a4 ∧ea5 ∧…∧eaD

¼d
�
ϵa1…aDN

a1a2 ∧ D̊Na3a4 ∧ea5 ∧…∧eaD
�

þ2ϵa1…aDN
a1a2 ∧ R̊a3

c∧N½ca4�∧ea5 ∧…∧eaD; ð35Þ

where we integrated by parts in the first line and used
property (A6) in the second line of Eq. (35). Hence, the
Lagrangian in Eq. (31) can be further decomposed as
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ðD − 4Þ!L̃2 ¼ ðD − 4Þ!L̊2 þ I1 þ 2ðI3 þ I6Þ þ dB; ð36Þ
where

I6 ¼ ϵa1…aD

�
R̊a1a2 ∧ Na3

d ∧ Nda4 þNa1a2 ∧ R̊a3
c ∧ N½ca4�

�
∧ ea5 ∧… ∧ eaD;

B¼ ϵa1…aD

�
2Na1a2 ∧ R̊a3a4 þNa1a2 ∧ D̊Na3a4

�
ea5 ∧… ∧ eaD: ð37Þ

Therefore, I4 and one part of I5 gave rise to the boundary term B, while I2 and the second part of I5 have been combined
into I6. Next, we realize that

2ðI3 þ I6Þ ¼ 2ϵa1…aD

h�
D̊Na1a2 þ R̊a1a2

�
∧ Na3

d ∧ Nda4 þ Na1a2 ∧ R̊a3
c ∧ N½ca4�

i
∧ ea5 ∧ … ∧ eaD

¼ 2ϵa1…aD

�
R̃a1a2 ∧ Na3

d ∧ Nda4 − Na1
c ∧ Nca2 ∧ Na3

d ∧ Nda4 þ Na1a2 ∧ R̊a3
c ∧ N½ca4�

�
∧ ea5 ∧ … ∧ eaD

¼ 2J0 − 2I1 þ 2J1; ð38Þ

where we used (A5) in the second line of Eq. (38) and defined

J0 ¼ ϵa1…aDR̃
a1a2 ∧ Na3

d ∧ Nda4 ∧ ea5 ∧ … ∧ eaD;

J1 ¼ ϵa1…aDN
a1a2 ∧ R̊a3

c ∧ N½ca4� ∧ ea5 ∧ … ∧ eaD; ð39Þ

such that the Lagrangian in Eq. (36) reads

ðD − 4Þ!L̃2 ¼ ðD − 4Þ!L̊2 − I1 þ 2ðJ0 þ J1Þ þ dB: ð40Þ

Finally, we use Eq. (A12) to replace the remaining factor of the Riemmanian curvature in J1 and obtain

J1 ¼ ϵa1…aDN
a1a2 ∧

�
R̃a3

c þ Na3
d ∧ Nd

c − DNa3
c

�
∧ N½ca4� ∧ ea5 ∧ … ∧ eaD

¼ Ĵ0 þ J2 − J3; ð41Þ
where we defined

Ĵ0 ¼ ϵa1…aDN
a1a2 ∧ R̃a3

c ∧ N½ca4� ∧ ea5 ∧ … ∧ eaD;

J2 ¼ ϵa1…aDN
a1a2 ∧ Na3

d ∧ Nd
c ∧ N½ca4� ∧ ea5 ∧ … ∧ eaD;

J3 ¼ ϵa1…aDN
a1a2 ∧ DNa3

c ∧ N½ca4� ∧ ea5 ∧ … ∧ eaD; ð42Þ
such that we arrive at

ðD − 4Þ!L̃2 ¼ ðD − 4Þ!L̊2 − I1 þ 2ðJ0 þ Ĵ0Þ þ 2J2 − 2J3 þ dB: ð43Þ

Enforcing the teleparallel condition R̃ab ¼ 0≡ Rab leads to L̃2 ¼ 0 on the left-hand side and J0 ¼ 0 ¼ Ĵ0 on the right-hand
side of Eq. (43), yielding

ðD − 4Þ!L̊2 ¼ I1 − 2J2 þ 2J3 − dB; ð44Þ
or, explicitly

G̊ � 1 ¼ 1

ðD − 4Þ! ϵa1…aD

h
−d

�
2Na1a2 ∧ R̊a3a4 ∧ ea5 ∧ … ∧ eaD þ Na1a2 ∧ D̊Na3a4 ∧ ea5 ∧ … ∧ eaD

�
þ
�
2Na1a2 ∧ DNa3

c ∧ N½ca4� − 2Na1a2 ∧ Na3
d ∧ Nd

c ∧ N½ca4�

þ Na1
f ∧ Nfa2 ∧ Na3

h ∧ Nha4
�
∧ ea5 ∧ … ∧ eaD

i
: ð45Þ

This is the main result of this section, expressed in differential form language. In the next subsection we provide an
alternative derivation, while in Sec. III C we translate the result back to tensorial notation, given in Eq. (56).
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B. Alternative split into bulk and boundary terms

We can take a different approach and impose the tele-
parallel condition (24) from the beginning. It is instructive
to do so because it will show that the split between bulk and
boundary terms is not unique, even in D ≠ 4 (in D ¼ 4 the
Gauss-Bonnet invariant is itself a total derivative).
We start by replacing Eq. (7) with R̃a

b ¼ Ra
b ¼ 0 in one

of the factors of R̊ab in Eq. (29),

G̊ � 1 ¼ 1

ðD − 4Þ! ϵa1…aD

�
−D̊Na1a2 ∧ R̊a3a4 − Na1

f

∧ Nfa2 ∧ R̊a3a4

�
∧ ea5 ∧ … ∧ eaD: ð46Þ

Here, again by using properties (A1), (A3), and (A4), we
see that the first term in Eq. (46) is a total derivative

ϵa1…aDD̊N
a1a2 ∧ R̊a3a4 ∧ ea5 ∧ … ∧ eaD

¼ D̊
h
ϵa1…aDN

a1a2 ∧ R̊a3a4 ∧ ea5 ∧ … ∧ eaD
i

¼ d
h
ϵa1…aDN

a1a2 ∧ R̊a3a4 ∧ ea5 ∧ … ∧ eaD
i

¼ ϵa1…aDd
h
Na1a2 ∧ R̊a3a4 ∧ ea5 ∧ … ∧ eaD

i
; ð47Þ

and therefore we have

G̊ � 1 ¼ 1

ðD − 4Þ! ϵa1…aD

h
−d

�
Na1a2 ∧ R̊a3a4 ∧ ea5 ∧ … ∧ eaD

�
− Na1

f ∧ Nfa2 ∧ R̊a3a4 ∧ ea5 ∧ … ∧ eaD
i
: ð48Þ

We now replace R̊a3a4 one more time in the second term,

G̊ � 1 ¼ 1

ðD − 4Þ! ϵa1…aD

h
−d

�
Na1a2 ∧ R̊a3a4 ∧ ea5 ∧ … ∧ eaD

�
þ
�
Na1

f ∧ Nfa2 ∧ D̊Na3a4 þ Na1
f ∧ Nfa2 ∧ Na3

h ∧ Nha4
�
∧ ea5 ∧ … ∧ eaD

i
: ð49Þ

This very short and simple procedure leads to a different
way to split the Gauss-Bonnet invariant into a bulk term
and a boundary term. In Appendix B we show that this
expression is equivalent to Eq. (45), while the correspond-
ing tensorial expressions can be found in Eq. (57).
In general, the presence of mixed terms schematically of

the form N ∧ N ∧ D̊N, with at least one derivative acting
on a specific factor, implies there is no absolute split into
bulk and boundary pieces, as one can always trade the
position of the derivative at the cost of generating a new
boundary contribution. In D ¼ 4 dimensions the Gauss-
Bonnet invariant becomes a topological term, and in
particular, a purely boundary term in the form of the
divergence of a nontensorial quantity [63].

C. Tensorial expressions

We are now interested in reading off the scalar G̊ from
our results of Eqs. (45) and (49), which are D-forms. In
order to do so, we express both the contortion 1-form
explicitly as in Eq. (13), as well as the curvature 2-form
in terms of the Riemann tensor as given in Eq. (12). From
the resulting explicit expression we are able to collect
as an overall factor proportional to the volume element
D-form, Eq. (23),

ea ∧ eb ∧ ec ∧ ed ∧ ea5 ∧…∧ eaD ¼ ϵabcda5…aD �1; ð50Þ

and extract the desired scalar expression. For our purposes
we will also need to use

1

ðD − 4Þ! ϵa1…aDϵ
abcda5…aD ¼ δabcda1a2a3a4 : ð51Þ

Special care needs to be taken when a term involves the
covariant exterior derivative with respect to the teleparallel
connection; more specifically, DNab which appears in
Eq. (45). When we write the distortion 1-form in terms of
the corresponding tensor, Eq. (13), we need to differ-
entiate also the basis ec. Thus—from its definition in
Eq. (3)—a term involving the torsion will emerge:

DNa
b ¼

�
∇dNa

bc þ
1

2
Na

beTe
dc

�
ed ∧ ec; ð52Þ

where we also used Eq. (11). This can again be expressed
in terms of the antisymmetric part of the distortion tensor
with respect to the last two indices Ta

bc ¼ −2Na½bc�,
where we are using the same convention as Ref. [47].
This is not to be mistaken with other antisymmetrizations
we have used so far involving the first two indices instead.
Then, accounting also for the raising of an index under the
covariant exterior derivative associated to the teleparallel
connection D, Eq. (A9), we obtain
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DNab ¼ −ð∇dNab
c þ Nab

hNh
cdÞec ∧ ed; ð53Þ

where we have dropped the antisymmetrization square
brackets since c and d contract with the antisymmet-
ric ec ∧ ed.
With this we can immediately obtain the bulk term which

we call 1TðT;QÞ
G from Eq. (45),

1TðT;QÞ
G ¼ δμνρσμ1μ2μ3μ4

h
Nμ1

αμNαμ2
νNμ3

βρNβμ4
σ

− 2Nμ1μ2
μNμ3

ανNα
βρN½βμ4�

σ

þ 2gαβNμ1μ2
μN½μ3α�

νNβμ4
γNγ

ρσ

þ 2gαβNμ1μ2
μN½μ3α�

ν∇σNβμ4
ρ

þ 4gαβgγδNμ1μ2
μN½μ3α�

νNμ4γ
ρNðδβÞ

σ

i
; ð54Þ

where we have also switched from the orthonormal basis
back to the coordinate basis, for which it is useful to
remember the “tetrad postulate,” Eq. (14).
Similar manipulations can be applied to the correspond-

ing boundary term of Eq. (45). We first apply Eq. (A5) once
in order to eliminate the explicit appearance of DNab, and
then by also making use of the properties (A4) and (A1)
one arrives at

1BðT;QÞ
G ¼ 1ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi
−g

p
δμνρσμ1μ2μ3μ4N

μ1μ2
ν

×

�
Nμ3

λρNλμ4
σ −

1

2
R̊μ3μ4

ρσ

��
: ð55Þ

The Gauss-Bonnet invariant is the sum of Eqs. (54)
and (55),

G̊ ¼ 1TðT;QÞ
G þ 1BðT;QÞ

G : ð56Þ

As discussed previously, the split into bulk and boundary
terms is not unique, and in fact we provided an alternative
one in the previous subsection, given in Eq. (49). The
corresponding tensorial expressions are

G̊ ¼ 2TðT;QÞ
G þ 2BðT;QÞ

G ; ð57Þ

with

2TðT;QÞ
G ¼ δμνρσμ1μ2μ3μ4

�
Nμ1

αμNαμ2
νNμ3

βρNβμ4
σ

− Nμ1
αμNαμ2

ν∇̊σNμ3μ4
ρ

�
; ð58Þ

2BðT;QÞ
G ¼ −

1

2

1ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi
−g

p
δμνρσμ1μ2μ3μ4N

μ1μ2
νR̊

μ3μ4
ρσ

�
: ð59Þ

Theories constructed by breaking down the Gauss-Bonnet

invariant and coupling TðT;QÞ
G and BðT;QÞ

G independently will
be sensitive to the choice of splitting and will in general
not be equivalent. They may coincide accidentally when
evaluated in spacetimes with enough symmetries. It is clear

that both invariants iTðT;QÞ
G ; iBðT;QÞ

G for each set are inde-
pendently boundary terms in D ¼ 4. This can be easily
seen from Eqs. (55) and (56) [and Eq. (57) with Eq. (59)],
since the left-hand side of the split G̊ is a boundary term in
D ¼ 4 and both Eqs. (55) and (59) are boundary terms as
well. Or in other words,

iTðT;QÞ
G ¼ G̊ − iBðT;QÞ

G ¼ boundary term: ð60Þ

It is worth saying that then, this property will hold for any
version of TG.

D. Remarks about the known metric teleparallel case

It is worth comparing our general results with the purely
metric TG case originally presented in Ref. [47]. Since our
derivation in Sec. III A follows theirs, our first set of scalars
straightforwardly reduces to the known result when replac-
ing Nμνρ → Kμνρ (vanishing nonmetricity) and recalling its
antisymmetry in the first two indices,

G̊ ¼ 1TðTÞ
G þ 1BðTÞ

G ; ð61Þ

with

1TðTÞ
G ¼ δμνρσμ1μ2μ3μ4

h
Kμ1

αμKαμ2
νKμ3

βρKβμ4
σ

þ 2Kμ1μ2
μKμ3

ανKαμ4
γKγ

ρσ þ 2Kμ1μ2
μKμ3

αν∇σKαμ4
ρ

i
;

ð62Þ

1BðTÞ
G ¼ 1ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi
−g

p
δμνρσμ1μ2μ3μ4K

μ1μ2
ν

×

�
Kμ3

λρKλμ4
σ −

1

2
R̊μ3μ4

ρσ

��
: ð63Þ

Notice that some terms of the bulk part have been evaluated
to zero due to the antisymmetry, and that the covariant
derivative is with respect to the teleparallel (torsional)
connection.
Interestingly, we have also derived an alternative split in

Sec. III B which was not considered in the literature before,
but it is as legitimate as any other. When evaluated in the
metric TG case it reads

G̊ ¼ 2TðTÞ
G þ 2BðTÞ

G ; ð64Þ

with
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2TðTÞ
G ¼ δμνρσμ1μ2μ3μ4

h
Kμ1

αμKαμ2
νKμ3

βρKβμ4
σ

− Kμ1
αμKαμ2

ν∇̊σKμ3μ4
ρ

i
; ð65Þ

2BðTÞ
G ¼ −

1

2

1ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi
−g

p
δμνρσμ1μ2μ3μ4K

μ1μ2
νR̊

μ3μ4
ρσ

�
: ð66Þ

This second novel decomposition may lead to significant
differences when compared to known results.

IV. SYMMETRIC TELEPARALLEL
GAUSS-BONNET GRAVITY

In this section, we focus our study in a particular
geometry purely represented by nonmetricity, known as
symmetric TG. Then, we show how the symmetric TG
Gauss-Bonnet invariants behave, and find examples of
different spacetimes as well as possible theories to consider.

A. Symmetric teleparallel gravity
and its Gauss-Bonnet invariant

Symmetric TG is a particular subset of general TG where
torsion is absent, hence gravity being purely represented by
nonmetricity. In this case, by taking Eq. (25), we find that
the Levi-Civita scalar can be split as

R̊ ¼ Qþ BQ; ð67Þ

where Q is the so-called nonmetricity scalar defined as

Q ¼ −
1

4
QλμνQλμν þ 1

2
QλμνQμνλ þ 1

4
QμQμ −

1

2
QμQ̂

μ;

Qμ ≡Qμν
ν; Q̂μ ≡Qνμ

ν; ð68Þ

and BQ a boundary term given by

BQ ¼ ∇̊μðQ̂μ −QμÞ: ð69Þ

Then, the general teleparallel equivalent of GR action
written in Eq. (26) reduces to the symmetric teleparallel
equivalent of GR, whose action reads:

SSTEGR ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Q: ð70Þ

One can also consider modified theories of gravity within
this type of geometries by changing the above action. In
this formalism, since both torsion and curvature are
vanishing, the connection can be always written as

Γα
μν ¼

∂xα

∂ξλ
∂μ∂νξ

λ; ð71Þ

where ξα is associated to diffeomorphisms (as a
Stückelberg field). Then, the connection only has a maxi-
mum of 4 d.o.f. However, it is always possible to find a
gauge, known as the coincident gauge, such that the above
vector trivializes the connection, i.e. Γα

μν ¼ 0. In that
gauge, ∇μ ¼ ∂μ, and all the d.o.f. of any symmetric
teleparallel theory would be encoded in the metric, at
the price of losing diffeomorphism invariance.
Now, let us focus on the Gauss-Bonnet invariant within

symmetric TG. This means replacing Nλ
μν → Lλ

μν in the
expressions obtained in the previous sections. Explicitly,
the first set of symmetric TG Gauss-Bonnet scalar invar-
iants using the expressions (54) and (55) become

G̊ ¼ 1TðQÞ
G þ 1BðQÞ

G ; ð72Þ

where

1TðQÞ
G ¼ δμ ν ρ σμ1μ2μ3μ4

h
Lμ1

αμLαμ2
νLμ3

βρLβμ4
σ

− 2Lμ1μ2
μLμ3

ανLα
βρL½βμ4�

σ

þ 2gαβLμ1μ2
μL½μ3α�

ν∇σLβμ4
ρ

þ 4gαβgγδLμ1μ2
μL½μ3α�

νLμ4γ
ρLðδβÞ

σ

i
; ð73Þ

1BðQÞ
G ¼ 1ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi
−g

p
δμ ν ρ σμ1μ2μ3μ4L

μ1μ2
ν

×

�
Lμ3

λρLλμ4
σ −

1

2
R̊μ3μ4

ρσ

��
: ð74Þ

while using the second split given by (58) and (59) we find

G̊ ¼ 2TðQÞ
G þ 2BðQÞ

G ; ð75Þ

2TðQÞ
G ¼ δμ ν ρ σμ1μ2μ3μ4

�
Lμ1

αμLαμ2
νLμ3

βρLβμ4
σ

− Lμ1
αμLαμ2

ν∇̊σLμ3μ4
ρ

�
; ð76Þ

2BðQÞ
G ¼ −

1

2
ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi
−g

p
δμ ν ρ σμ1μ2μ3μ4L

μ1μ2
νR̊

μ3μ4
ρσ

�

¼ −
1

2
∇̊μ

�
δμ ν ρ σμ1μ2μ3μ4L

μ1μ2
νR̊

μ3μ4
ρσ

�
: ð77Þ

Note that the covariant derivative appearing in Eq. (73) is
computed with the symmetric TG connection. Let us also
stress here that the first term on the second line of Eq. (54)
is identically zero for the symmetric teleparallel case,

which is why now 1TðQÞ
G only contains four terms. In the

next sections, we will study these scalars in more detail.
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B. Spacetimes examples for the symmetric teleparallel Gauss-Bonnet invariant

In this section, we briefly discuss the evaluation of the symmetric TG Gauss-Bonnet invariants in FLRW cosmology and
spherical symmetry.

1. FLRW cosmology

The line element for FLRW can be written in spherical coordinates as

ds2 ¼ −NðtÞ2dt2 þ aðtÞ2dr2
1 − kr2

þ r2ðdθ2 þ sin2θdϕ2Þ; ð78Þ

where k is the spatial curvature and NðtÞ and aðtÞ are the lapse function and scale factor, respectively. In Ref. [64], it was
found that depending on how one solves the curvatureless and torsionless conditions, one can get three different branches in
flat FLRW cosmology having different connections. However, for the nonflat case k ≠ 0, there is a unique branch satisfying
those conditions. The first set of symmetric TG Gauss-Bonnet invariants given by (73) and (74) for that case become

1TðQÞ
G ¼ 6ðK − 2HÞ2Ḣ

N
þ 12HðK −HÞK̇

N
þ 6H2ð−6HK þ 4H2 þ 3K2Þ þ k2

a4

�
6KḢ þ 12ðK −HÞK̇

K3N
−
6HðH − 2KÞ

K2

�

þ k
a2

2
64
�
24H
K − 12

�
Ḣ þ 12

�
1 − H2

K2

�
K̇

N
þ 12Hð−HK þH2 þ K2Þ

K

3
75; ð79Þ

1BðQÞ
G ¼ 6Kð4H − KÞḢ

N
þ 12HðH − KÞK̇

N
þ 18H2Kð2H − KÞ − 6k2

a4K2N

�
Ḣ þ 2K̇

�
þ 12k2HK̇

a4K3N
þ 6k2HðH − 2KÞ

a4K2

þ 12k
a2

�
3Ḣ
N

−HK þ 3H2 −
K̇
N

�
−
12k
a2K

�
2HḢ
N

þH3

�
þ 12kH2K̇

a2K2N
; ð80Þ

where dots are differentiation with respect to t, H ¼ ȧ=ðaNÞ is the Hubble parameter, and K represents an extra d.o.f.
coming from the connection. The above quantities give us the expected value for the Riemannian Gauss-Bonnet invariant in
FLRW cosmology:

1TðQÞ
G þ 1BðQÞ

G ¼ G̊ ¼ 24H2

�
Ḣ
N
þH2

�
þ 24k

a2

�
Ḣ
N
þH2

�
: ð81Þ

Similarly, the second set of symmetric TG Gauss-Bonnet invariants expressed by (76) and (77) for the nonflat FLRW
case gives

2TðQÞ
G ¼ 12HðK −HÞḢ

N
þ 6H2K̇

N
þ 6H3ð3K − 2HÞ þ 6k

a2

2
642

�
1 − H

K

�
Ḣ þ

�
H2

K2 þ 1
�
K̇

N
þH

�
−
H2

K
þ 2H þ K

�375
þ 6k2

a4K

�
H þ K̇

KN

�
; ð82Þ

2BðQÞ
G ¼ 12Hð3H − KÞḢ

N
−
6H2K̇
N

þ 18H3ð2H − KÞ þ 6k
a2

2
64
2ðHþKÞḢ

K −
�
H2

K2 þ 1
�
K̇

N
þH

�
H2

K
þ 2H − K

�375
−

6k2

a4K

�
H þ K̇

KN

�
; ð83Þ
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which also correctly reproduces the Riemannian Gauss-Bonnet invariant (81). Since the scalars are different for each set, in
principle, one could have different dynamics for a given modified symmetric TG theory.
Let us now explore the situation in flat FLRW where we have three different branches. Following the notation for the

branches introduced in Ref. [64], we obtain that the first set of symmetric TG Gauss-Bonnet scalars become

1TðQÞ
G ¼

8>>><
>>>:

24H2
�
Ḣ
N þH2

�
; first branch

6ð2HþKÞ2Ḣ
N þ 12HðHþKÞK̇

N þ 6H2ð6HK þ 4H2 þ 3K2Þ; second branch

6ðK−2HÞ2Ḣ
N þ 12HðK−HÞK̇

N þ 6H2ð−6HK þ 4H2 þ 3K2Þ; third branch

ð84Þ

1BðQÞ
G ¼

8>>><
>>>:

0; first branch

− 6Kð4HþKÞḢ
N − 12HðHþKÞK̇

N − 18H2Kð2H þ KÞ; second branch

6Kð4H−KÞḢ
N þ 12HðH−KÞK̇

N þ 18H2Kð2H − KÞ; third branch

ð85Þ

and for the second set of symmetric TG Gauss-Bonnet scalars, we obtain

2TðQÞ
G ¼

8>>><
>>>:

−12H2
�
Ḣ
N þH2

�
; first branch

− 12HðHþKÞḢ
N − 6H2K̇

N − 6H3ð2H þ 3KÞ; second branch

12HðK−HÞḢ
N þ 6H2K̇

N þ 6H3ð3K − 2HÞ; third branch

ð86Þ

2BðQÞ
G ¼

8>>><
>>>:

36H2
�
Ḣ
N þH2

�
; first branch

12Hð3HþKÞḢ
N þ 6H2K̇

N þ 18H3ð2H þ KÞ; second branch

6Hð6H−2KÞḢ
N − 6H2K̇

N þ 18H3ð2H − KÞ: third branch

ð87Þ

Clearly, for all the branches the combination iTðQÞ
G þ iBðQÞ

G

gives the same value as (81) with k ¼ 0, and, as expected,
K which is related to the new d.o.f. related to the
connection drops out. It is interesting to notice that
the scalars for the first set, first branch coincide with
the metric TG case [48]. Furthermore, it is also known
that in flat FLRW, the first branch, the scalar Q ¼ 6H2

also coincides with the torsional scalar case T ¼ 6H2.
That indicates that the first set, first branch has similar
features in both teleparallel versions. Clearly, for the
second set, also the first branch has a similar feature

since 2BðQÞ
G ¼ −32TðQÞ

G , and then, effectively, the dynamics
of any theory constructed from those terms would be
equivalent to their torsional counterpart at the background
level. Let us emphasize here again that our constructed
scalars will not have any dynamics in cosmology (or any
spacetime) if they appear linearly in an action since they
are boundary terms.

2. Spherical symmetry

As another important spacetime example for displaying
the symmetric TG Gauss-Bonnet scalars, we will choose
the following spherically symmetric metric:

ds2 ¼ −AðrÞdt2 þ 1

BðrÞ dr
2 þMðrÞ2ðdθ2 þ sin2θdϕ2Þ;

ð88Þ
where A, B, andM are arbitrary functions depending on the
radial coordinate. In Ref. [65], it was found that there are
two branches for spherical symmetry satisfying the torsion-
less and flat conditions. In Ref. [66], it was found that in the
second branch, there is a particular case in which there are
exact scalarized solutions for a particular symmetric TG
theory. Let us use that particular situation as an example
to show the symmetric TG Gauss-Bonnet scalars within
spherical symmetry. Choosing the same convention as that
reference, we find that the first set of symmetric TG Gauss-
Bonnet invariants for the c ¼ k ¼ 0 case is
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1TðQÞ
G ¼ −

2BΓr
θθA02M0

A2M3
−
2B2A02M0

A2MΓr
θθ

−
BA02ð2BM02 þ 1Þ

A2M2
−

B2A02

2A2ðΓr
θθÞ2

−
ðΓr

θθÞ2A02

2A2M4

þ Γt
θθðA0ð4BΓt

θθM0 −MðΓt
θθB0 þ 4BΓ0t

θθÞÞ − 2BMΓt
θθA00Þ

2M5
−
2B2A0Γ0r

θθ

AðΓr
θθÞ3

þ B
2AðΓr

θθÞ2
�
2BA00 þ A0ð3MB0 þ 4BM0ð1 − 2Γ0r

θθÞÞ
M

�
−
ðΓr

θθÞ2ð−2MA00 þ MA0B0
B þ 4A0M0Þ

2AM5

þ 2M2A0B0 þ Bð4MðMA00 þ A0M0ð3MB0M0 þ 2Γ0r
θθÞÞ − ðΓt

θθÞ2A02Þ þ 8B2M2M0ðA00M0 þ 2A0M00Þ
2AM4

þ 2Γr
θθðA0ðΓ0r

θθ − 2BM02Þ þMð2BA00M0 þ A0ðB0M0 þ 2BM00ÞÞÞ
AM4

þ 2Bð2BMA0M00 þM0ð2BMA00 þ A0ð3MB0 þ 2BM0ÞÞÞ
AM2Γr

θθ
; ð89Þ

1BðQÞ
G ¼ 2BΓr

θθA02M0

A2M3
þ 2B2A02M0

MA2Γr
θθ

þ 3BA02

A2M2
þ B2A02

2A2ðΓr
θθÞ2

þ ðΓr
θθÞ2A02

2A2M4

þ Γt
θθð2BMΓt

θθA00 þ A0ðMðΓt
θθB0 þ 4BΓ0t

θθÞ − 4BΓt
θθM0ÞÞ

2M5
þ ðΓr

θθÞ2ðA0ðMB0 þ 4BM0Þ − 2BMA00Þ
2BAM5

þ A0ðBððΓt
θθÞ2A0 − 8MM0Γ0r

θθÞ − 6M2B0Þ
2AM4

þ B
2AðΓr

θθÞ2
�
A0ð4BM0ð2Γ0r

θθ − 1Þ − 3MB0Þ
M

− 2BA00
�

−
2Γr

θθðA0ðΓ0r
θθ − 2BM02Þ þMð2BA00M0 þ A0ðB0M0 þ 2BM00ÞÞÞ

AM4

−
6BA00

AM2
þ 2B2A0Γ0r

θθ

AðΓr
θθÞ3

þ −6BMA0B0M0 − 4B2ðMA00M0 þ A0ðMM00 þM02ÞÞ
AM2Γr

θθ
; ð90Þ

where primes are differentiation with respect to r. We can easily see that, as expected

1TðQÞ
G þ 1BðQÞ

G ¼ G̊ ¼ 4BA00ðBM02 − 1Þ þ A0ðB0ð6BM02 − 2Þ þ 8B2M0M00Þ
AM2

−
2BA02ðBM02 − 1Þ

A2M2
: ð91Þ

Similar to the cosmological case, the connection compo-
nents only disappear (in a nontrivialway)when one takes the
combination that creates the Riemannian Gauss-Bonnet
invariant. One can also compute similar expressions for
the second set of scalars, finding that they are also different
than the above expressions. We will refrain from writing
down their form for simplicity. As a possible application of
using those expressions, one can use the minisuperspace
approach to find out the spherically symmetric field equa-
tions of a particular symmetric teleparallel theory of gravity.
This can be done by introducing the vector ξμ to replace the
connection components and then by computing the Euler-
Lagrange equations with respect to fA; B;Mg to obtain the
metric equations and ξμ for the connection equations.

C. New theories constructed with the symmetric
teleparallel Gauss-Bonnet invariants

One of the simplest modifications of the symmetric
teleparallel equivalent of GR that has been studied in the

last years relies on promoting Q from appearing linearly as
in Eq. (70) to an arbitrary function thereof, explicitly

SfðQÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
fðQÞ: ð92Þ

This theory has some similar features to its analogous
torsional teleparallel version called fðTÞ gravity [46,67,68]
since it has second-order field equations of motions which
are dynamically quite different from the Riemannian
extension fðR̊Þ which is a fourth-order theory in the metric.
Moreover, fðQÞ theory has been analyzed in cosmology
finding that it is compatible with certain cosmological
observations [69–71]. However, it has been found that
the first cosmological branch may potentially suffer from
strong-coupling problems [72]. Further, since Q is related
to R̊ as (67), other more general theories such as fðQ;BQÞ
have been considered in order to include fðR̊Þ gravity as a
subcase of it [73–75].
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One can then generalize the above theory by considering
the symmetric TG Gauss-Bonnet invariant derived in the
previous section. Obviously, a linear combination of either

TðQÞ
G or BðQÞ

G would not change the dynamics of the above
theory since they are boundary terms in four dimensions.4

Therefore, if one is interested in constructing modified
theories of gravity with them, one could for example
consider a nonlinear action as with the four mentioned
scalars:

S
fðQ;BQ;T

ðQÞ
G ;BðQÞ

G Þ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
fðQ;BQ; T

ðQÞ
G ; BðQÞ

G Þ; ð93Þ

which as a subcase contains the Riemannian modified

Gauss-Bonnet theory by setting fðQ;BQ; T
ðQÞ
G ; BðQÞ

G Þ ¼
fðQþ BQ; T

ðQÞ
G þ BðQÞ

G Þ ¼ fðR̊; G̊Þ that has been widely
studied (see for example [3–6]). The theory proposed
above, which, in general, is a fourth-order theory in the

metric, is also similar to the torsional fðT; B; BðTÞ
G ; TðTÞ

G Þ
introduced in Refs. [47,48]. As mentioned in the previous
section, the first branch of cosmology in flat FLRW has the
same scalars as its torsional counterpart. That means that at

least at the background level, the theory fðT; B; TðTÞ
G ; BðTÞ

G Þ
is equivalent to the first branch of fðQ;BQ; T

ðQÞ
G ; BðQÞ

G Þ for
flat FLRW cosmology (they have the same flat FLRW
cosmological equations). The reason for that is the fact that

for the first branch of flat FLRW, fðT;B;TðTÞ
G ;BðTÞ

G Þ ¼
fðT;B;TðTÞ

G Þ ¼ fðQ;BQ;T
ðQÞ
G ;BðQÞ

G Þ ¼ fðQ;BQ;T
ðQÞ
G Þ (see

the scalars and discussion in Sec. IV B 1). However, this
equivalence might be broken at the level of cosmological
perturbations. Actually, fðT; BÞ only has 3 d.o.f. around
flat FLRW [76] while fðQ;BQÞ has at least 4 d.o.f. for the
first branch [72].
Another route to construct a modified symmetric TG

with a nontrivial contribution from the symmetric TG
Gauss-Bonnet invariants is by introducing a scalar field
and couple it nonminimally as

SSTsGB ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
Q −

1

2
β∂μψ∂

μψ

þ α1G1ðψÞTðQÞ
G þ α2G2ðψÞBðQÞ

G

�
: ð94Þ

The above-proposed theory leads to second-order field
equations for all the fields (see Appendix C), and contains
the so-called scalar Gauss-Bonnet gravity theory in the
Riemannian sector by taking the limit α1G1ðψÞ ¼ α2G2ðψÞ
which would introduce a coupling of the form fðψÞG̊.

The latter has been widely studied in the context of black
hole physics since it predicts the existence of scalarized
black holes with a spontaneous scalarization process
[21,22,77–80]. Further, two recent studies found the
existence of similar solutions in the torsional teleparallel
case [56,57] and then, the above symmetric TG theory
could be also potentially interesting to study within that
direction. Note that the theory of Eq. (94) is part of the
so-called symmetric TG Horndeski theory proposed in

Ref. [81], only when one takes the second set 2TðQÞ
G ; 2BðQÞ

G
given by Eqs. (76) and (77). Although, as mentioned
above, both sets satisfy the requirement of second-order
field equations, in that study the authors also made the
simplifying assumption that there are only terms with up to
quadratic contractions of nonmetricity, which includes

G2ðψÞ2BðQÞ
G as part of the theory.5 Furthermore, since the

couplings, Eq. (94), can be always recast as α1G1ðφÞG̊þ
αGðφÞ2BðQÞ

G and the symmetric TG Horndeski theory
contains the standard Levi-Civita Horndeski part [which
contains α1G1ðφÞG̊], then, the above theory is part of it
with the second set. On the other hand, since the two

scalars in the first set 1TðQÞ
G ; 1BðQÞ

G given by Eqs. (73)
and (74), always contain cubic or quartic contractions of
nonmetricity, they are not included in the symmetric TG
Horndeski construction of Ref. [81].
It is, of course, trivial to extend such symmetric TG

theories to the general TG case just by replacing the
symmetric TG Gauss-Bonnet invariants by the general

ones from Sec. III, i.e., TðQÞ
G ; BðQÞ

G → TðT;QÞ
G ; BðT;QÞ

G . Those
theories will contain both the metric Gauss-Bonnet theories
introduced in Refs. [47,48,56] and also the above proposed
symmetric TG ones.

V. SUMMARY OF RESULTS

In this paper, we have found how the Riemannian
Gauss-Bonnet invariant is related to torsion and non-
metricity in the general TG framework. We found that it
is possible to define newly constructed teleparallel Gauss-
Bonnet invariants that are always boundary terms inD ¼ 4
dimensions from which the Riemannian Gauss-Bonnet
emerges. Our result coincides with the result found in
Ref. [47] when nonmetricity is vanishing, which is related
to torsional Gauss-Bonnet gravity. We then focus on the
new terms that are only related to nonmetricity and express
all our quantities in symmetric TG.
We found that the way of splitting the Riemannian

Gauss-Bonnet invariant in terms of teleparallel quantities
is not unique. We present two different ways of splitting
it with different bulk and boundary terms. After this, we

4For simplicity in the notation, in this section we removed the
numbers in the scalars since the discussion does not change for
any set of scalars considered.

5Doing one integration by parts, it is easy to see that the
resulting operator falls into the classification of Ref. [81] as
NQ ¼ 1, n ¼ r ¼ 1, and m ¼ l ¼ 0, with arbitrary Nϕ.
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focused on the symmetric TG case and we analyzed how
these scalars behave in nonflat FLRW cosmology and also
in spherical symmetry. Since those terms are boundary
terms in four dimensions, if we want them to acquire
dynamics, one would need to consider them in an action
nonlinearly. We did this by formulating two new sym-
metric TG theories constructed with the Gauss-Bonnet
invariants where we allowed more general modifications of
the STEGR action (70). One of those theories contains as a
special case, the so-called modified Gauss-Bonnet gravity
theory constructed in the Riemannian sector and where the
action is constructed as fðR̊; G̊Þ. The second proposed
theory contains the so-called scalar-Gauss-Bonnet theory
where the Gauss-Bonnet acquires dynamics by coupling it
with a scalar field.
In future studies, it would be interesting to analyze

further the proposed theories with the symmetric TG
invariants. They might serve as a starting point to study
cosmology in symmetric TG and also to explore new routes
in the process of understanding the difference between the
torsional and nonmetricity versions of teleparallel gravity.
Furthermore, scalarized black holes with spontaneous
scalarization process should exist in (94), but potentially,
they might have different features from their Riemannian or
torsional counterparts due to the fact that now, there are
more possible ways of solving the teleparallel condition
in spherical symmetry which introduces richer dynamics.
Furthermore, the connection components are still dynami-
cal in this formalism, and one could have different black
hole configurations while having different symmetric tele-
parallel connections. It would be interesting to analyze how
the connection affects the dynamics of such black holes and
also their thermodynamics.
Another route that might lead to interesting applications

is to follow a similar approach as [82] and construct a
nontrivial D ¼ 4 linear teleparallel Gauss-Bonnet gravity
theory. This can be done by following the construction
of [83,84] which is to take the teleparallel GB invariants
and use a dimensional reduction method.
Recently, an interesting and related work appeared [85].

Although the authors study the Gauss-Bonnet invariant in
general TG theories of gravity, which is also this work’s
primary goal, here we focus on and exploit the power of
differential form language to obtain a compact expression
for our scalars. Moreover, our formalism relies on always
rewriting the invariants as boundary terms (or topological
invariants6), while in Ref. [85], the authors explore a
different split of the Riemannian Gauss-Bonnet invariant
into pieces that are not independently boundary terms. For
example, Eq. (14) in that reference provides an expression
for the torsional case in terms of three scalars. Considering

the Lagrangian L¼ ffiffiffiffiffiffi−gp ðc1GTþc2GDT þc3GDDT Þ, the only
way of having boundary terms without dynamics is taking
the combination c3 ¼ c2 ¼ c1, which reconstructs the
Riemannian Gauss-Bonnet invariant. A similar situation
occurs for the nonmetricity Gauss-Bonnet invariant [given
by Eq. (21) in [85]]. Thus, none of the scalars are boundary
terms (or topological invariants) on their own, but only the
unique combination reconstructing the Riemannian Gauss-
Bonnet term is. In that sense, our approach alsodiffers from the
one of those authors’ since our split always keeps a structure
such that the teleparallel scalars are divided into a bulk and a
boundary term; and in four dimensions, our teleparallelGauss-
Bonnet terms always correspond to boundary terms inde-
pendently when they appear linearly in an action.
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APPENDIX A: USEFUL PROPERTIES
OF DIFFERENTIAL FORMS

This is an incomplete list of properties that are used
in the main text and Appendix B to work on the expressions
in the differential form language. First, consider the Levi-
Civita convariant exterior derivative D̊, then it follows

D̊ea ¼ 0; ðA1Þ
D̊ηab ¼ 0: ðA2Þ

We also have the Riemannian differential Bianchi identity

D̊R̊a
b ¼ 0: ðA3Þ

In an orthonormal frame we also have the property

D̊ϵa1…aD ¼ dϵa1…aD ¼ 0; ðA4Þ
where d is the usual exterior derivative. Notice that with
Eq. (A2) we can raise the index in Eq. (7)

6Note that we are not showing that our scalars are topological
invariants separately, but they are always boundary terms in four
dimensions.
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Rab ¼ R̊ab þ D̊Nab þ Na
c ∧ Ncb: ðA5Þ

Acting twice with D̊ gives the usual relation with the
Riemannian curvature 2-form

D̊2Na
b ¼ R̊a

c ∧ Nc
b − R̊c

b ∧ Na
c: ðA6Þ

Consider now the exterior covariant derivative for the
teleparallel connection D,

Dηab ¼ −2ωðabÞ ¼ −2NðabÞ; ðA7Þ

Dηab ¼ 2NðabÞ: ðA8Þ

Raising an index under D is now nontrivial when the
distortion 1-form has a symmetric part, i.e. nonmetricity,

DNab ¼ ηbcDNa
c − 2Na

c ∧ NðcbÞ: ðA9Þ

We can trade D for the Levi-Civita one D̊ plus an extra term

DNa
b ¼ dNa

b þ ωa
c ∧ Nc

b − ωc
b ∧ Na

c

¼ D̊Na
b þ 2Na

c ∧ Nc
b; ðA10Þ

or, equivalently

DNab ¼ D̊Nab þ 2Na
c ∧ N½cb�: ðA11Þ

This allows us to reexpress Eq. (7) in terms of D,

Ra
b ¼ R̊a

b þ DNa
b − Na

c ∧ Nc
b: ðA12Þ

APPENDIX B: EQUIVALENCE
OF ALTERNATIVE DECOMPOSITIONS

The purpose of this appendix is to prove the equivalence
of Eqs. (45) and (49). We work our way starting from
Eq. (49) and integrating by parts the first term of the second
line, effectively altering the split between bulk and boundary,

ϵa1…aDN
a1

f ∧ Nfa2 ∧ D̊Na3a4 ∧ ea5 ∧ … ∧ eaD ¼ ϵa1…aDD̊N
a1a2 ∧ Na3

f ∧ Nfa4 ∧ ea5 ∧ … ∧ eaD

¼ ϵa1…aDdðNa1a2 ∧ Na3
f ∧ Nfa4 ∧ ea5 ∧ … ∧ eaDÞ

þ ϵa1…aDN
a1a2 ∧ D̊ðNa3

f ∧ Nfa4Þ ∧ ea5 ∧ … ∧ eaD; ðB1Þ
which, when plugged back in leads to

G̊ � 1 ¼ 1

ðD − 4Þ! ϵa1…aD

h
−d

�
2Na1a2 ∧ R̊a3a4 ∧ ea5 ∧ … ∧ eaD þ Na1a2 ∧ D̊Na3a4 ∧ ea5 ∧ … ∧ eaD

�
þ Na1a2 ∧ D̊ðNa3

f ∧ Nfa4Þ ∧ ea5 ∧ … ∧ eaD þ Na1
f ∧ Nfa2 ∧ Na3

h ∧ Nha4 ∧ ea5 ∧ … ∧ eaD
i
; ðB2Þ

where we also usedNa3
f ∧ Nfa4 ¼ −R̊a3a4 − D̊Na3a4 . The boundary term here already looks the same as in Eq. (45), but we

still need to massage the bulk part, in particular the second line above,

ϵa1…aDN
a1a2 ∧ D̊ðNa3

f ∧ Nfa4Þ ∧ ea5 ∧ … ∧ eaD

¼ ϵa1…aDηcdN
a1a2 ∧

�
D̊Na3c ∧ Nda4 − Na3c ∧ D̊Nda4

�
∧ ea5 ∧ … ∧ eaD

¼ ϵa1…aDηcdN
a1a2 ∧

�
D̊Na3c ∧ Nda4 þ D̊Nca3 ∧ Na4d

�
∧ ea5 ∧ … ∧ eaD

¼ ϵa1…aDηcdN
a1a2 ∧ 2

�
D̊Nða3cÞ ∧ Nðda4Þ þ D̊N½a3c� ∧ N½da4�

�
∧ ea5 ∧ … ∧ eaD; ðB3Þ

where in the last equality we used Nab ¼ NðabÞ þ N½ab�. From property (A11), we have

ðB4Þ

D̊N½a3c� ¼ DN½a3c� −
�
Na3

f ∧ N½fc� − Nc
f ∧ N½fa3�

�
; ðB5Þ

where we used the third Bianchi identity of Eq. (6) in the teleparallel case, which reads DNðabÞ ¼ 0 (recallingNðabÞ ¼ Qab).
Then, we have
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D̊Nða3cÞ ∧ Nðda4Þ þ D̊N½a3c� ∧ N½da4� ¼ −ηfhNa3f ∧ N½hc� ∧ Nðda4Þ − ηfhNcf ∧ N½ha3� ∧ Nðda4Þ þ DN½a3c� ∧ N½da4�

− ηfhNa3f ∧ N½hc� ∧ N½da4� þ ηfhNcf ∧ N½ha3� ∧ N½da4�; ðB6Þ

and therefore, replacing back and reordering we get

ϵa1…aDN
a1a2 ∧ D̊ðNa3

f ∧ Nfa4Þ ∧ ea5 ∧ … ∧ eaD ¼ 2ϵa1…aDηcdN
a1a2 ∧ DN½a3c� ∧ N½da4� ∧ ea5 ∧ … ∧ eaD

− 2ϵa1…aDηcdηfhN
a1a2 ∧ Na3f ∧ N½hc� ∧ Nðda4Þ ∧ ea5 ∧ … ∧ eaD

− 2ϵa1…aDηcdηfhN
a1a2 ∧ Na3f ∧ N½hc� ∧ N½da4� ∧ ea5 ∧ … ∧ eaD

− 2ϵa1…aDηcdηfhN
a1a2 ∧ Ncf ∧ N½ha3� ∧ Nðda4Þ ∧ ea5 ∧ … ∧ eaD

þ 2ϵa1…aDηcdηfhN
a1a2 ∧ Ncf ∧ N½ha3� ∧ N½da4� ∧ ea5 ∧ … ∧ eaD:

ðB7Þ

Now here notice that the last four terms (those without D) contain three factors of N contracted to each other directly, of
the form

ϵ…a3a4…ηcdηfhNa3c ∧ Ndf ∧ Nha4 : ðB8Þ

Due to the presence of the totally antisymmetric tensor ϵ…a3a4…, only the antisymmetric part with respect to a3 and a4 of the
above triple N survives. By splitting each N into symmetric and antisymmetric parts we can see which combinations
survive. In particular, we find

ϵa1…aDηcdηfhN
ða3fÞ ∧ N½hc� ∧ Nðda4Þ ¼ 0; ðB9Þ

ϵa1…aDηcdηfhN
½a3f� ∧ N½hc� ∧ N½da4� ¼ 0; ðB10Þ

ϵa1…aDηcdηfhN
½cf� ∧ N½ha3� ∧ N½da4� ¼ 0; ðB11Þ

which leads to

ϵa1…aDN
a1a2 ∧ D̊ðNa3

f ∧ Nfa4Þ ∧ ea5 ∧ … ∧ eaD ¼ 2ϵa1…aDηcdN
a1a2 ∧ DN½a3c� ∧ N½da4� ∧ ea5 ∧ … ∧ eaD

− 2ϵa1…aDηcdηfhN
a1a2 ∧ N½a3f� ∧ N½hc� ∧ Nðda4Þ ∧ ea5 ∧ … ∧ eaD

− 2ϵa1…aDηcdηfhN
a1a2 ∧ Nða3fÞ ∧ N½hc� ∧ N½da4� ∧ ea5 ∧ … ∧ eaD

− 2ϵa1…aDηcdηfhN
a1a2 ∧ NðcfÞ ∧ N½ha3� ∧ Nðda4Þ ∧ ea5 ∧ … ∧ eaD

− 2ϵa1…aDηcdηfhN
a1a2 ∧ N½cf� ∧ N½ha3� ∧ Nðda4Þ ∧ ea5 ∧ … ∧ eaD

þ 2ϵa1…aDηcdηfhN
a1a2 ∧ NðcfÞ ∧ N½ha3� ∧ N½da4� ∧ ea5 ∧ … ∧ eaD:

ðB12Þ

Here it is immediate to see that the second and fifth lines cancel each other out. Then, after some reordering and relabeling
we get

ϵa1…aDN
a1a2 ∧ D̊ðNa3

f ∧ Nfa4Þ ∧ ea5 ∧ … ∧ eaD ¼ 2ϵa1…aDηfhN
a1a2 ∧ DN½a3f� ∧ N½ha4� ∧ ea5 ∧ … ∧ eaD

− 2ϵa1…aDηcdηfhN
a1a2 ∧ Nða3fÞ ∧ N½hc� ∧ N½da4� ∧ ea5 ∧ … ∧ eaD

þ 2ϵa1…aDηcdηfhN
a1a2 ∧ N½a3f� ∧ NðhcÞ ∧ N½da4� ∧ ea5 ∧ … ∧ eaD

þ 2ϵa1…aDηcdηfhN
a1a2 ∧ Nða3fÞ ∧ NðhcÞ ∧ N½da4� ∧ ea5 ∧ … ∧ eaD:

ðB13Þ

Using Eq. (A9) it simplifies to

ARMALEO, BAHAMONDE, TRENKLER, and TROMBETTA PHYS. REV. D 108, 104019 (2023)

104019-16



ϵa1…aDN
a1a2 ∧ D̊ðNa3

f ∧ Nfa4Þ ∧ ea5 ∧ … ∧ eaD ¼ 2ϵa1…aDN
a1a2 ∧ DNa3

c ∧ N½ca4� ∧ ea5 ∧ … ∧ eaD

− 2ϵa1…aDηcdηfhN
a1a2 ∧ Na3f ∧ NðhcÞ ∧ N½da4� ∧ ea5 ∧ … ∧ eaD

− 2ϵa1…aDηcdηfhN
a1a2 ∧ Nða3fÞ ∧ N½hc� ∧ N½da4� ∧ ea5 ∧ … ∧ eaD;

ðB14Þ

while using Eq. (B10) allows us to combine the last two terms

ϵa1…aDηcdηfh
�
Na3f ∧ NðhcÞ ∧ N½da4� þ Nða3fÞ ∧ N½hc� ∧ N½da4�

�
¼ ϵa1…aDηcdηfh

�
Na3f ∧ NðhcÞ ∧ N½da4� þ Na3f ∧ N½hc� ∧ N½da4�

�
¼ ϵa1…aDηcdηfh

�
Na3f ∧ Nhc ∧ N½da4�

�
: ðB15Þ

Finally, we arrived at the following identity

ϵa1…aDN
a1a2 ∧ D̊ðNa3

f ∧ Nfa4Þ ∧ ea5 ∧ … ∧ eaD ¼ 2ϵa1…aDN
a1a2 ∧ DNa3

c ∧ N½ca4� ∧ ea5 ∧ … ∧ eaD

− 2ϵa1…aDN
a1a2 ∧ Na3

d ∧ Nd
c ∧ N½ca4� ∧ ea5 ∧ … ∧ eaD; ðB16Þ

which, when plugged back into Eq. (B2), leads precisely
to Eq. (45).

APPENDIX C: SECOND-ORDER NATURE
OF SCALAR-ST-GAUSS-BONNET

Here we want to prove that the field equations associated
to the theory Eq. (94) are second order in derivatives of all
fields ðψ ; gμν;Γα

μνÞ, for the two splits of G̊ proposed in
Sec. III and evaluated in the symmetric TG case in Eqs. (72)
and (75). In the following it is useful to recall that, from its
definition in Eqs. (17) and (20), the disformation tensor
contains up to first derivatives of the metric and no
derivatives of the teleparallel connection, schematically

L ∼ ∂g − Γ: ðC1Þ

As explained in the main text, we can always recast the

last two terms in Eq. (94) as α1G1ðψÞG̊þ αGðψÞBðQÞ
G ,

where we have absorbed TðQÞ
G into G̊ and redefined the

coupling of BðQÞ
G . Since α1G1ðψÞG̊ belongs to Riemannian

Horndeski [14], it is already guaranteed to lead to second-
order field equations, and therefore it suffices to prove that

it is also true for αGðψÞBðQÞ
G for each split. Moreover, the

difference between the two boundary terms associated with
each split trivially leads to second-order field equationsZ

d4x
ffiffiffiffiffiffi
−g

p
GðψÞ

h
2BðQÞ

G − 1BðQÞ
G

i
¼

Z
d4x

ffiffiffiffiffiffi
−g

p
G0ðψÞ∂μψδμνρσμ1μ2μ3μ4L

μ1μ2
νLμ3

λρLλμ4
σ; ðC2Þ

where we integrated by parts once, as it contains at most
first derivatives of any given field. Therefore, it only
remains to be shown that any of the two possible boundary
terms leads to second-order field equations. We focus

on GðψÞ2BðQÞ
G .

1. Scalar field equation

First notice that the bulk terms iTðQÞ
G of both splits,

Eqs. (73) and (76) respectively, contain at most second
derivatives of the fields. Then, given that the Riemannian
Gauss-Bonnet invariant G̊ itself also has this property, it

follows that the corresponding boundary terms iBðQÞ
G , given

by Eqs. (74) and (77), also have at most second derivatives.
Therefore, variations with respect to the scalar filed ψ are
automatically second order in this theory for both splits,

and in particular, for GðψÞ2BðQÞ
G .

2. Teleparallel connection equation

We continue by integrating GðψÞ2BðQÞ
G by parts

Z
d4x

ffiffiffiffiffiffi
−g

p
GðψÞ2BðQÞ

G

¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
G0ðψÞ∂μψδμ ν ρ σμ1μ2μ3μ4L

μ1μ2
νR̊

μ3μ4
ρσ; ðC3Þ

which is a second-order expression. Given that the tele-
parallel connection Γα

μν appears here only linearly and
without any derivatives acting on it, as per Eq. (C1), it
follows then that variations with respect to it are automati-
cally second order too.
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3. Metric field equations

Finally, let us consider variations with respect to the
metric, which are the less trivial ones. Indeed, by counting
derivatives in Eq. (C3), we get schematically ∂ψ∂g∂2g,
which could potentially lead to higher-than-second order
field equations. Let us work on the variation explicitly in
order to show that those higher-order terms actually cancel,

δg

Z
d4x

ffiffiffiffiffiffi
−g

p
GðψÞ2BðQÞ

G ⊃
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
∂μψδ

μνρσ
μ1μ2μ3μ4

×δg
h
Lμ1μ2

νR̊
μ3μ4

ρσ

i
≡Eg; ðC4Þ

where we are not tracking terms which lead automatically
to second-order field equations. It is useful to recall that
under the teleparallel condition, Eq. (24), from Eq. (25) it is
possible to write

R̊σ
ρμν ¼ ∇̊νLσ

μρ − ∇̊μLσ
νρ þ � � � ¼ 2∇̊½νLσ

μ�ρ þ � � � ; ðC5Þ

where we also dropped terms with less than two derivatives
acting on the metric, which are safe. The above implies

δgR̊
σ
ρμν ¼ 2∇̊½νδLσ

μ�ρ; ðC6Þ

and therefore

Eg ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
∂μψδ

μ ν ρ σ
μ1μ2μ3μ4

�
δgLμ1μ2

ν∇̊σLμ3μ4
ρ

þ Lμ1μ2
ν∇̊σδgLμ3μ4

ρ

�
; ðC7Þ

where we used the antisymmetry of ρ and σ to drop the
antisymmetrization brackets, and we also used the sym-
metry of L in the last two indices. Let us work on the
second term to show that contributes the same as the first.
We first integrate by parts the second term

Eg ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
∂μψδ

μνρσ
μ1μ2μ3μ4

�
δgLμ1μ2

ν∇̊σLμ3μ4
ρ

− δgLμ3μ4
ρ∇̊σLμ1μ2

ν

�

−
Z

d4x
ffiffiffiffiffiffi
−g

p ∇̊σ∇̊μψδ
μ ν ρ σ
μ1μ2μ3μ4L

μ1μ2
νδgLμ3μ4

ρ: ðC8Þ

Notice that the second term with two derivatives acting on
ψ is zero due to antisymmetry of μ and σ. We then do an
exchange and relabel of ρ and ν (one minus sign) and a
cyclic permutation of μ1μ2μ3μ4 (no sign change),

Eg ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
δμ ν ρ σμ1μ2μ3μ4

�
δgLμ1μ2

ν∇̊σLμ3μ4
ρ

þ δgLμ1μ2
ν∇̊σLμ3μ4

ρ

�

¼ 2

Z
d4x

ffiffiffiffiffiffi
−g

p
δμνρσμ1μ2μ3μ4δgL

μ1μ2
ν∇̊σLμ3μ4

ρ

¼ 2

Z
d4x

ffiffiffiffiffiffi
−g

p
δμ ν ρ σμ1μ2μ3μ4δgL

μ1μ2
νR̊

μ3μ4
ρσ; ðC9Þ

where in the last step we again have the Levi-Civita
Riemann tensor, up to terms that do not have more that
second derivatives of the metric.
We finally now express δgLμ1μ2

ν in terms of δgμν,

δgL½μ1μ2�
ν ¼ 2gα½μ1gμ2�β∇̊αδgβν; ðC10Þ

which allows us to pull out another derivative and actually
see the dangerous term:

Eg ¼ 4

Z
d4x

ffiffiffiffiffiffi
−g

p
δμ ν ρ σμ1μ2μ3μ4R̊

μ3μ4
ρσgαμ1gμ2β∇̊αδgβν

¼ −4
Z

d4x
ffiffiffiffiffiffi
−g

p
δμ ν ρ σμ1μ2μ3μ4g

μ2βδgβν∇̊μ1R̊μ3μ4
ρσ: ðC11Þ

The last factor contains the potentially dangerous third
derivatives of g. However, because of total antisymmetri-
zation of μ1μ3μ4, it is proportional to

∇̊½μ1R̊μ3μ4�
ρσ ¼ 0; ðC12Þ

which vanishes due to the second Bianchi identity, proving
the absence of higher-than-second order terms in the field
equations.
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[61] J. Beltrán Jiménez, L. Heisenberg, D. Iosifidis, A. Jiménez-
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[84] R. A. Hennigar, D. Kubizňák, R. B. Mann, and C. Pollack,
On taking the D → 4 limit of Gauss-Bonnet gravity:
Theory and solutions, J. High Energy Phys. 07 (2020)
027.

[85] F. Bajardi, D. Blixt, and S. Capozziello, The Gauss-Bonnet
topological scalar in the geometric trinity of gravity,
arXiv:2308.03632.

SYMMETRIC TELEPARALLEL GAUSS-BONNET GRAVITY AND … PHYS. REV. D 108, 104019 (2023)

104019-21

https://doi.org/10.1103/PhysRevD.107.104024
https://doi.org/10.1103/PhysRevLett.124.081301
https://doi.org/10.1016/j.physletb.2020.135717
https://doi.org/10.1007/JHEP07(2020)027
https://doi.org/10.1007/JHEP07(2020)027
https://arXiv.org/abs/2308.03632

