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Static spherically symmetric spacetimes with a vanishing second Ricci invariant constitute an important
class of solutions to Einstein’s equations and more generally as archetypes of regular black holes. When
studying completeness, one is most often presented with the Kruskal-Szekeres procedure. However, this
procedure only works if the spacetime admits a single nondegenerate Killing horizon (a single bifurcation
2-sphere). Here, we generalize the Israel procedure to examine a constructive approach to completeness
based entirely on the static spherically symmetric nature of spacetimes with a vanishing second Ricci
invariant. It is shown by “block gluing” that the Israel procedure can cover two bifurcation 2-spheres but
can fail with three. No coordinate transformations are used in this work.
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I. INTRODUCTION

The metrics [1]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
2; ð1Þ

where dΩ2
2 is the metric of a unit 2-sphere, constitute a very

well-known class of solutions to Einstein’s equations and,
depending on the form of fðrÞ, allow simple models for
regular black holes. Some properties of the metrics (1) have
been studied by Jacobson [2]. More recently, the metrics (1)
have been invariantly characterized by the vanishing of
their second Ricci invariant (R2 defined below) [3].
Moreover, as is well known, the metrics (1) posses the
hypersurface-orthogonal Killing vectors ξα ¼ δαt where
ξαξα ¼ −fðrÞ. We use these invariant properties in the
development which follows [4]. Usually, one is interested
in the complete manifold associated with (1). In the case of
the Penrose-Carter procedure, the solution to this problem
via “block gluing” in a conformally related space has been
available for many years [5]. More general block gluing
constructions are given in [6]. However, when one turns to
complete coordinate representations of (1), the situation is
quite different. Usually, one is introduced to the Kruskal-
Szekeres procedure [7–9]. However, this procedure only
works for a single simple root: there exists a single r0 such
that fðr0Þ ¼ 0 with f0ðr0Þ ≠ 0. The purpose of this
communication is to offer a different construction which
works in a wider class of situations. We show that the Israel
procedure covers more cases than the Kruskal-Szekeres

procedure, but there are cases when the Israel coordinates
remain incomplete. This incompleteness is shown by way
of the block gluing procedure. No coordinate transforma-
tions are used in this work; nor are any field equations used.

II. GENERALIZED ISRAEL COORDINATES

A. General properties

We start with a spherically symmetric spacetime in
coordinates ðu; w; θ;ϕÞ where kα ¼ δαw is a radial null
vector so that the line element takes the form [10]

ds2 ¼ F ðu; wÞdu2 þ 2hðu; wÞdudwþ rðu; wÞ2dΩ2
2: ð2Þ

Further, setting kβ∇βkα ¼ 0 (so that trajectories with
tangents k are radial null geodesics affinely parametrized
by w), it follows that ∂h=∂w ¼ 0. We retain hðuÞ in this
section for possible future convenience. Note that the range
in u is −∞ < u < ∞ and over this range it is assumed that
the associated null geodesics cover all of the spacetime.
The expansion of kα is given by

∇αkα ¼
2

r
rw; ð3Þ

where a coordinate subscript now represents partial
differentiation.
Consider the 4-vector

lα∂α ¼ 2h∂u − F∂w: ð4Þ

We find that lαlα ¼ 0 and that lβ∇βlα ¼ κlα where

κ ¼ 4h0 − Fw; ð5Þ
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and 0 ≡ d=du so that lα is tangent to a nonaffinely para-
metrized radial null geodesic. The apparent horizon is
distinguished by the condition ∇αlα ¼ κ [11], which
requires

2hru ¼ Frw: ð6Þ

B. Second Ricci invariant

Up to a physically irrelevant numerical coefficient, the
second Ricci invariant is given by [3]

R2 ≡ SαβS
γ
αS

β
γ ; ð7Þ

where the trace-free Ricci tensor Sαβ is given by

Sαβ ¼ Rα
β −

R
4
δαβ; ð8Þ

where Rα
β is the Ricci tensor, R is the Ricci scalar, and

δαβ is the Kronecker delta. It is adequate for our purposes
here to set h to a constant. (A preferred value of this
constant is given in the next section.) Then, with the aid of
GRTensorIII [12], we find

R2 ∝
R2aR2bR2c

r4
; ð9Þ

where

R2a ≡ rww; ð10Þ

R2b ≡ Fwwr2 − 2Fr2w þ 4rurwh − 2h2; ð11Þ

and

R2c ≡ rwwF 2 − 4hruwF − 2F urwhþ 2Fwruhþ 4ruuh2:

ð12Þ

Clearly,

R2a ¼ 0 ⇒ rðu; wÞ ¼ f1ðuÞwþ f2ðuÞ: ð13Þ

It is easy to obtain misinformation on the relations R2b ¼ 0
and R2c ¼ 0 [13]. However, to proceed, it is essential that
we first seek Killing vectors since nonstatic cases are
known with R2 ¼ 0 [3]. As explained in the next section,
we conclude, without loss in generality, that [14]

rðu; wÞ ¼ f1wþ f2; ð14Þ

f1 ≠ 0 [15].

C. Killing vectors

We now seek hypersurface-orthogonal Killing vectors.
Specifically, we seek radial 4-vectors ξμ such that

∇μξν þ∇νξμ ≡ Ξμν ¼ 0 ð15Þ

and

ξ½α∇μξν� ¼ 0: ð16Þ

We do not impose Eq. (14) a priori but retain the f1 f2
notation for convenience.
Writing

ξα∂α ¼ Aðu; wÞ∂u þ Bðu; wÞ∂w; ð17Þ

it follows that (16) is satisfied for all smooth A and B. Next,
setting Ξww ¼ 0, we find that

Aðu; wÞ ¼ f1ðuÞ ð18Þ

and with (18) that Ξuw ¼ 0 for

Bðu; wÞ ¼ −f01ðuÞw − f02ðuÞ ð19Þ

and with (19) that Ξθθ ¼ 0 for

rðu; wÞ ¼ Jðf1wþ f2Þ; ð20Þ

where J is any suitably smooth function, not necessarily the
identity function. Combining (18) and (19), we find that
Ξuu ¼ 0 for

F ¼ 2h
f01wþ f02

f1
−
Fðf1wþ f2Þ

f21
; ð21Þ

where F is any suitably smooth function, in general distinct
from J. Whereas the solution (14) corresponds to the
identity function for J, this does not change (21).
With the aide of (20) and (21), it follows from (11) with

R2b ¼ 0 that the two functions J and F are related by the
differential relation

−
d2F
dx2

J2 þ 2

�
dJ
dx

�
2

F ¼ 2h2: ð22Þ

To proceed, F or J or a relationship between them must be
given [16]. No such information is available. Further, with
the aide of (20) and (21), it follows from (12) with R2c ¼ 0
that the two functions J and F are related by the differential
relation

d2J
dx2

F2 ¼ 0: ð23Þ
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In this case, if J is chosen as the identity function, Eq. (23)
gives 0 ¼ 0 for all F. If J is not the identity function,
then F ¼ 0, which is clearly unacceptable. We conclude
that (10) and (12) give (14) but no useful information
comes from (11). At this point, FðrÞ is an arbitrary but
smooth function.
Further information about F can be obtained by con-

sidering the (invariant) Hernandez-Misner mass [17]

M≡ r
2
Rθϕ

θϕ; ð24Þ

where R is the Riemann tensor. From (1) and (2) with (21)
and the invariance, we find that [18]

F ¼ f ð25Þ

for h2 ¼ 1, a convenience which sets our choice for h2.
In summary, the 4-vector

ξα∂α ¼ Cð−rw∂u þ ru∂wÞ; ð26Þ

given (14) and (21), satisfies (15) and (16). It follows that

ξαξα ¼ −C2F; ð27Þ

a well-known fact in (1) [given (25)] now transposed to (2)
without coordinate transformation. Of course, “static”
refers to timelike ξα, regions for which F > 0.

III. FAMILIAR EXAMPLES

A. Generalized Eddington-Finkelstein coordinates

Take

f1 ¼ 1; f2 ¼ 0: ð28Þ

Then, Eq. (2) takes the form

ds2 ¼ −
�
1 −

2MðrÞ
r

�
du2 � 2dudrþ r2dΩ2

2 ð29Þ

with r ¼ w. This is the generalized Eddington-Finkelstein
form. The coordinates are well known to be incomplete.

B. Original Israel coordinates

Take

f1 ¼
hu
4m

; f2 ¼ 2m; ð30Þ

where m is a constant, so that r ¼ huw
4m þ 2m. Then, Eq. (2)

takes the form

ds2 ¼
�

w2

2mr

�
du2 þ 2hdudwþ r2dΩ2

2: ð31Þ

This is the Israel form of the Schwarzschild metric [19] (he
chose h ¼ þ1). The coordinates are known to be complete.
See also [20] and [21]. Note that in the context of this work
there is no relation between the u used in (29) and the u
used in (31) as, once again, no coordinate transformations
have been used.

IV. MORE GENERAL SITUATIONS

We now turn to invariants. For the spacetimes under
consideration here, given the requirement R2 ¼ 0, it is
known that there remain only three independent scalar
invariants derivable from the Riemann tensor without
differentiation. These are the Ricci scalar R, the first
Ricci invariant R1, and the first Weyl invariant W1R
(see [4]). For all choices of f1 and f2, where now
0 ≡ d=dr, these are given, up to irrelevant numerical
factors, by

W1R ∝
1

r4
ðF00r2 − 2F0rþ 2F − 2Þ2; ð32Þ

R ¼ 1

r2
ð−F00r2 − 4F0r − 2F þ 2Þ; ð33Þ

and

R1 ∝
1

r4
ðF00r2 − 2F þ 2Þ2: ð34Þ

There are two obvious ways to proceed: (i) we can
impose conditions on the invariants and solve for F, or (ii)
we can impose restrictions on F which, for example, render
the invariants regular. As an example of the first case,
setting R ¼ 4Λ, where Λ is a constant, the resultant
differential equation can be solved to give

F ¼ 1þ c1
r
þ c2

r2
−
Λr2

3
; ð35Þ

where c1 and c2 are constants. In Einstein’s theory, these
are the Reissner-Nordström-de Sitter solutions (for Λ > 0),
though we have no reason to associate c2 with charge
here. The cases c2 ¼ 0 have been studied in detail
previously [10]. For the case c2 ≠ 0 (but Λ ¼ 0), see [21].
Unlike the Kruskal-Szekeres procedure, the generalized
Israel coordinates can handle two distinct roots to
F ¼ 0 [22]. However, Eq. (35) shows that the Israel
coordinates can fail. If none of c1, c2, and Λ is zero, then
there can be three distinct Killing horizons, and the
associated conformal block diagram (see [6]) shows that
the coordinate u, even over the range−∞ < u < ∞, fails to
access the entire spacetime.
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As regards regularity of the invariants, we first observe
that for r ≥ 0 andF∈C2 the invariants can possibly diverge
only at r ¼ 0. From the forms given, it follows immediately
that the spacetimes are regular for Fð0Þ ¼ 1 and F0ð0Þ ¼ 0.
These are a special case of regularity conditions known for
many years [23]. Regularity of the invariants brings us to
the somewhat murky area of “regular” black holes. We say
murky because more often than not the invariants to be
considered are either not known or not explained though the
problemwas completely solved in the spherically symmetric

case in [4]. Further, one sometimes sees statements like
“curvature invariants do not have a real physical meaning”
(e.g., Ref. [24]). As explained in [3], this is incorrect. Simply
use Einstein’s equations in the Ricci invariants.
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