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Working in a semiclassical setting, we consider solutions of the Einstein equations that exhibit light
trapping in finite time according to distant observers. In spherical symmetry, we construct near-horizon
quantities from the assumption of regularity of the renormalized expectation value of the energy-
momentum tensor, and derive explicit coordinate transformations in the near-horizon region. We examine
the boundary conditions appropriate for embedding the model into a cosmological background, describe
their evaporation in the linear regime and highlight the observational consequences, while also discussing
the implications for the laws of black hole mechanics.
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I. INTRODUCTION

Dozens of astrophysical black holes (ABHs)—dark,
massive, ultracompact objects—exist in the observable
Universe. They range in appearance from the components
of binary systems with the mass of a few suns, to the
supermassive cores of quasars in the centers of galaxies.
Beginning with the groundbreaking infrared observations
of [1,2], ABH candidates are now routinely identified and
characterized via gravitational wave interferometry (the
LIGO/VirgoCollaboration [3]), and throughelectromagnetic
observations [4], including very long baseline interferometry
in the microwave (the Event Horizon Telescope [5]), x-ray
spectroscopy (using the Kα line of iron [6,7]), and more.
As the existence of ABHs is now established beyond

reasonable doubt, the question of their physical nature
[8–10] becomes relevant. Broadly speaking, there are two
competing views on the nature of ABHs. The first view
identifies them as mathematical black holes (MBHs). Their
defining feature is the event horizon, a null surface that
causally disconnects the black hole interior from the
outside world. For the Schwarzschild black hole solution
it is located at the gravitational radius rg ¼ 2 GM=c2:
MBHs are possibly the most dramatic prediction of general
relativity and embody our traditional notions of black
holes [11–16]. The MBH paradigm explains a staggering
variety of astrophysical phenomena and successfully mod-
els ABH properties across all currently accessible time and
length scales [8,9,17].
Nevertheless, identifying ABHs with MBHs comes with

a conceptual price. The exteriors of Schwarzschild or Kerr

MBHs are regular, but their interiors are not. They contain
Cauchy horizons and singularities, such as the curvature
singularity of the Schwarzschild solution at r ¼ 0. Such
pathologies are expected to be resolved by a presently
unknown quantum theory of gravity, but the known
quantum effects are responsible for a host of technical
difficulties and unresolved paradoxes [14,18–21].
All of the above motivates the second view which

postulates existence of some black hole mimickers that
fit the observed data (and are thus sufficiently close to the
MBH solutions of general relativity), but are pathology
free. Avariety of models [8,9,22] designated as horizonless
exotic compact objects (ECOs) appear to provide an
alternative explanation of the observed ABHs, at the price
of modifying known physics and/or the introduction of
some exotic quantum matter.
This conceptual dichotomy is somewhat blurred [23],

especially if we take into account the following. On the one
hand, Schwarzschild or Kerr geometries are the asymptotic
states of a classical gravitational collapse. According to a
distant observer (who we refer to as Bob) once the stellar
remnant cannot be supported by degeneracy pressure, it
turns into a frozen dark star of radius r ≈ rg within a few
light crossing times t ∼ rg=c. However, the event horizon is
in principle an unobservable teleological entity [24–26],
and quantum effects may prevent it from forming at all
[27,28]. Both numerical and observational studies thus
focus on other characteristics of black holes [16,29]. This is
the rationale behind ECOs—they are designed to closely
mimic a MBH without forming an event horizon [8].
However, the conceptual price of this mimicking is

the violation of one or more of the natural assumptions
entering Buchdahl’s theorem [8,30]. A direct or indirect
result of these violations is the existence of nonclassical
matter, whose energy-momentum tensor (EMT) Tμν vio-
lates at least the null energy condition (NEC), which states
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Tμνkμkν⩾0 for all null vectors k [13,15,31]. On the other
hand, the existence of Hawking radiation leads to a large
but finite lifetime for black holes and itself violates the
NEC in the vicinity of the apparent horizon [14]. This
motivates the introduction of another class of singularity-
free objects, regular black holes (RBHs), which represent
domains of spacetime that enable temporary but prolonged
trapping of light [32–35]. The trapping of light underpins
our notions of what physically constitutes a black hole [36]
and we use it as its defining feature [37,38].
It is useful to introduce a suitable (not uniquely defined)

parameter ϵ that characterizes how close a proposed ultra-
compact object is to its Schwarzschild or Kerr MBH with
the same mass and spin [22]. The behavior of ϵ allows one
to select among three different types of models: (i) Classical
MBHs correspond to the asymptotic scenario inwhich ϵ → 0
as t → ∞, where t is the time measured by Bob; (ii) Various
ECOs correspond to an ϵ > 0 that is reached at finite t or
approached asymptotically; (iii) Finally, an evaporatingRBH
is a particular example of a trapped spacetime region (with
ϵ ¼ 0) that forms in a finite time according to Bob, i.e. ϵ ¼ 0
for some t < ∞. The definition of a physical black hole
(PBH) as a trapped spacetime domain was introduced in
Ref. [37]. We supplement this definition by the additional
operationally motivated requirement that the trapped region
form in finite time according toBob [38]. Such a PBHmay or
may not have an event horizon or singularity [38,39].
As a result there is a need to distinguish between three

classes of models that describe astrophysical black holes—
MBHs, ECOs, and PBHs [10,38]—each with their own
defining features. The event horizon is the most recogniz-
able conceptual characteristic of a (mathematical) black
hole. In numerical relativity black holes are identified via
apparent horizons (part of the definition of a physical black
hole). Exotic compact objects are models that dispense with
the horizon altogether. To uncover the true nature of ABHs it
is therefore necessary to compare the properties of PBHs
with those of conventional semiclassical black holes, and
identify the potential for extracting observational signatures.
This comparison, however, cannot take place in an

asymptotically flat spacetime to which the standard MBH
solutions belong. Current observations indicate that within
sub-percent precision, the Universe is described at cosmo-
logical scales by the perturbed spatially flat Friedmann-
Lemaître-Robertson-Walker (FLRW) metric [40,41]. The
Kerr solution is asymptotically flat and is thus necessarily
provisional, even if the issues surrounding singularities and
event horizons are resolved. Beyond time and length scales
that are small relative to the reciprocalHubble parameterH, it
can only be treated as an approximation to a more general
solution [17]. In a separate but related development, activity
over the last two decades has led to a renewed interest in
mathematical models of inhomogeneities in the cosmologi-
cal background, which straddle the cosmological and black
hole scales [42].

This work represents the first in a three part series of
papers aimed at addressing these issues. In this first part, we
take steps towards developing a complete framework for
modeling astrophysical black holes as PBHs, i.e. objects
with horizons that have already formed according to distant
observers. Building on the previous work we complete the
description of the near-horizon geometry of a spherically-
symmetric PBH. We demonstrate a general procedure for
describing a PBH as inhomogeneities in the FLRW back-
ground, and provide details of their embedding in a
spatially flat asymptotically de Sitter spacetime. Since a
majority of the results on cosmological black holes [15,42]
and concrete results on PBHs [38] are obtained in spherical
symmetry, we work in this simplifying setting.
To this end we review the main aspects of the formalism

used to construct the PBH model in Sec. II. One important
feature of a spherically-symmetric PBH is that its growth is
impossible, and only contraction (usually referred as
evaporation) is allowed. In Sec. II B we derive general
relations between the leading contributions to near-horizon
quantities in the two systems best adapted to evaporating
BH models; ðt; rÞ and ðv; rÞ coordinates. In Sec. II C, we
present exact solutions for the case of linear evaporation,
and show that a linear evaporation law in one coordinate
system necessarily implies linear evaporation in the other.
In Sec. III, we show that the PBHmetric can be consistently
embedded in a FLRW cosmology, and propose a repre-
sentative compactification of the resulting spacetime. We
conclude in Sec. IV with a summary of our results, their
implications, and directions for future work. Throughout,
we work in units where ℏ ¼ c ¼ G ¼ 1.

II. SPHERICALLY-SYMMETRIC PHYSICAL
BLACK HOLES

A. General setup and admissible solutions

The self-consistent approach [38] is based on semiclassical
gravity [43]. The spacetime geometry is described by a metric
gμν, and the notion of test particles’ trajectories, horizons, etc.
are assumed to be well-defined. The metric itself is a solution
of the Einstein equations, which may include higher-order
curvature terms and a cosmological constant. Their source
is the energy-momentum tensor Tμν ≔ hT̂μνiω, which is a
renormalized expectation value of some EMT operator in
some unspecified state of gravity and matter ω. We do not
make any assumption about the nature of matter fields or their
quantum states, and do not separate the background (cosmo-
logical and/or collapsing matter) from the generated quantum
excitations. The goal is to infer as much information as
possible about the EMT and the metric in the vicinity of
the apparent horizon simply from its existence.
Thus in practice we analyze the behavior of solutions to

Rμν −
1

2
gμνR ¼ 8πTμν; ð1Þ
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where Rμν and R are the Ricci tensor and scalar, respec-
tively, and the right-hand side includes some or all of the
described above components.
A general spherically symmetric metric in Schwarzschild

coordinates [12,15] is given by

ds2 ¼ −e2hðt;rÞfðt; rÞdt2 þ fðt; rÞ−1dr2 þ r2dΩ2; ð2Þ

while using the advanced null coordinate v results in
the form

ds2¼−e2hþðv;rÞfþðv;rÞdv2þ2ehþðv;rÞdvdrþr2dΩ2: ð3Þ

The function f is coordinate independent, i.e., fðt; rÞ≡
fþðvðt; rÞ; rÞ and in what follows we omit the subscript.
It is conveniently represented via the Misner-Sharp-
Hernandez (MSH) mass M ≡ C=2 as

f ¼ 1 −
Cðt; rÞ

r
¼ 1 −

Cþðv; rÞ
r

¼ ∂μr∂μr; ð4Þ

where the coordinate r is the areal radius [15]. The
functions h and hþ play the role of integrating factors in
the coordinate transformation

dt ¼ e−hðehþdv − f−1drÞ: ð5Þ

In an asymptotically flat spacetime, h → 0 and f → 1 as
r → 0, and t is the physical time of a stationary observer Bob
at spacelike infinity i0. For example, the Schwarzschild
metric corresponds to h≡ 0, M ≡ C=2 ¼ const, and
v ¼ tþ r�, where r� is the tortoise coordinate [12,13]. A
description in terms of the retarded null coordinate u ¼
t − r� and its properties are described in Appendix B.
A PBH is a trapped region; a domain where both ingoing

and outgoing future-directed null geodesics emanating
from a spacelike two-dimensional surface with spherical
topology have negative expansion [13,15,44]. The apparent
horizon is the boundary of this trapped region. In a
cosmological setting, we assume that a separation of scales
exists between geometric features associated with the black
hole and those of the large-scale universe. In this case, the
apparent horizon is given by the outermost real root of
fðt; rÞ ¼ 0 in the near region, while the cosmological
horizon is the innermost real root in the asymptotic region
(the detailed summary of various definitions can be found
in Refs. [15,38,44]. In an asymptotically flat spacetime the
Schwarzschild radius rg is the largest root of fðt; rÞ ¼ 0.
Invariance of the MSH mass implies that

rgðtÞ ¼ Cðt; rgÞ ¼ rþ
�
vðt; rgðtÞÞ

�
; ð6Þ

where rþðvÞ is the largest root of fþðv; rÞ ¼ 0. It repre-
sents the location of the outer component of the apparent
horizon. Unlike the globally defined event horizon, the

notion of the apparent horizon is foliation dependent.
However, it is invariantly defined in all foliations that
respect spherical symmetry [45].
In addition to requiring that a PBH is formed in a finite

time according to Bob, we demand only the weakest form
of the cosmic censorship conjecture [14,15,46]: all curva-
ture scalars [11,13] are finite up to and on the apparent
horizon. It sufficient to ensure that only two of them, R and
RμνRμν, are finite [47]. Construction of finite invariants
from the divergent quantities that describe a real-valued
solution allows one to describe properties of the near-
horizon geometry. Because the metric in Schwarzschild
coordinates is singular at the apparent horizon, it will often
be convenient to work in null coordinates instead.
Both the analysis of the Einstein equations and the

evaluation of curvature invariants is conveniently per-
formed using the effective EMT components τa, (where
a ¼ t;r;tr) defined as [38]

τt ≔ e−2hTtt; τr ≔ Trr; τrt ≔ e−hTr
t : ð7Þ

The Einstein equations for the componentsGtt,Gr
t , andGrr

are then, respectively

∂rC ¼ 8πr2τt=f; ð8Þ

∂tC ¼ 8πr2ehτrt ; ð9Þ

∂rh ¼ 4πrðτt þ τrÞ=f2: ð10Þ

To ensure finite values of the curvature scalars, it is
sufficient to work with only two invariant quantities

T̄ ≔ Tþ 2Tθ
θ; T̄ ≔ Tþ 2ðTθ

θÞ2; ð11Þ

where

T ≔ Tμ
μ ¼ ðτr − τtÞ=f; ð12Þ

T ≔ TμνTμν ¼ ððτrÞ2 þ ðτtÞ2 − 2ðτrt Þ2Þ=f2; ð13Þ

where the contributions of Tθ
θ ≡ Tϕ

ϕ are disregarded,
as one can verify that they do not introduce further
divergences [38,47].
These considerations restrict the scaling of the effective

EMT components near the apparent horizon, such that
τa ∝ fk, with k ¼ 0, 1. Solutions with k ¼ 0 describe a
PBH after formation (and before a possible disappearance
of the trapped region). Dynamical RBH solutions belong
to this class [48], while the Reissner-Nordström solution or
static RBH solutions correspond to k ¼ 1. In the following
we will almost exclusively work with k ¼ 0 solutions.
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The admissible (i.e., real-valued) k ¼ 0 solutions satisfy

lim
r→rg

τt ¼ lim
r→rg

τr ¼ −ϒ2ðtÞ; lim
r→rg

τrt ¼ �ϒ2ðtÞ; ð14Þ

for some function ϒðtÞ. The leading terms of the metric
functions are given in terms of x ≔ r − rgðtÞ as

C ¼ rg − 4
ffiffiffi
π

p
r3=2g ϒ

ffiffiffi
x

p þOðxÞ; ð15Þ

h ¼ −
1

2
ln
x
ξ
þOð ffiffiffi

x
p Þ: ð16Þ

The function ϒðtÞ determines the energy density, pressure
and flux at the apparent horizon, and ξðtÞ is determined
by choice of the time variable. The higher-order terms
are matched with higher-order terms in the EMT expansion
[38,49].
The Einstein equation (9) serves as a consistency

condition and establishes the relation between the rate of
change of the MSH mass and the leading terms of the
metric functions,

r0g=
ffiffiffi
ξ

p
¼ �4

ffiffiffiffiffiffiffi
πrg

p
ϒ; ð17Þ

where primes indicate derivatives with respect to t and �
sign corresponds to the expansion and contraction of
the Schwarzschild sphere, respectively. For a contracting
Schwarzschild sphere the ðv; rÞ coordinates are regular
across it. Evaluation of the expansion of the geodesic
congruences identifies the solutions with r0g < 0 as black
holes of decreasing mass. Similarly, the case r0g > 0 allows
for a regular description in ðu; rÞ coordinates. Then the
region fðu; rÞ < 0 is antitrapped, and the solution describes
an expanding white hole. In the following we consider
only PBHs.
PBH metrics in Schwarzschild coordinates are more

singular than the Schwarzschild or Reissner-Nordström
solutions. Unlike the special algebraic case [11,42]
gtt ¼ grr ¼ 1, the metric determinant g ≔ det gμν diverges
as x−1 on approach to the apparent horizon. The EMT near
the Schwarzschild sphere is

Ta
b ¼

0
BBB@

ϒ2=f e−hϒ2=f2 0 0

−ehϒ2 −ϒ2=f 0 0

0 0 pk 0

0 0 0 pk

1
CCCA; ð18Þ

where the tangential pressure pk is finite at r ¼ rg, and
for a static observer p ¼ ρ ¼ −ϒ2=f þOðf0Þ as r → rg.
Writing the ðt; rÞ block in an orthonormal frame [38],

Tâ b̂ ¼ −
ϒ2

f

�
1 1

1 1

�
; ð19Þ

makes violation of the null energy condition particularly
transparent.
For a static r ¼ const observer that we call Eve, the

energy density, pressure, and flux all diverge. Direct
transformations show that in ðv; rÞ coordinates all of the
EMT components are finite [38,47]. In particular, if we
choose the advanced null coordinate in such a way that
ζ0 ¼ 0 [see Eq. (23) below], then Tvvjrþ ¼ −ϒ2. For the
Vaidya metric other EMT components are zero, resulting
in additional relations between the higher-order terms [39]
in ðt; rÞ coordinates. We note that this self-consistent
approach by definition constrains the expectation value
of the total EMT, but by itself does not describe either the
collapsing matter content nor the spectral representation of
the resulting quantum excitations.
The Schwarzschild sphere rgðtÞ is a timelike hypersur-

face [38,47]. Therefore, ingoing null geodesics and some of
the ingoing timelike geodesics can cross the apparent
horizon in a finite time according to Bob. Indeed, ingoing
radial null geodesics satisfy

dr
dt

����
v¼const

¼ −ehf; ð20Þ

so by noting that

lim
r→rg

ehf ¼ jr0gj; ð21Þ

(instead of diverging as 1=f in the case of the
Schwarzschild black hole), we see that the infall into a
PBH takes a finite (even if very large) time according to
Bob [38,47,49].
In ðv; rÞ coordinates the black hole metric is described by

Cþðv; rÞ ¼ rþðvÞ þ w1ðvÞyþOðy2Þ; ð22Þ

hþðv; rÞ ¼ ζ0ðvÞ þ ζ1ðvÞyþOðy2Þ; ð23Þ

where y ≔ r − rþðvÞ. Note that a freedom in the redefi-
nition of the null variable v allows one to set ζ0 ≡ 0.
From the definition of the apparent horizon it follows that
w1⩽1. The inequality is saturated at the formation of the
PBH (more details can be found in [39]). Note that in
the ðv; rÞ coordinates the Schwarzschild solution hþ ≡
0; Cþðv; rÞ≡ rþ is a limiting case of dynamical metrics.
On the other hand in ðu; rÞ coordinates, the metric function
h−ðu; rÞ diverges at the apparent horizon of k ¼ 0 solutions
(see Appendix B).
It is easy to see that the Schwarzschild sphere at r ¼

rgðtÞ ¼ rþðvÞ is timelike. Similarly, if the equation
fðt; rÞ ¼ 0 has more than one solution for r ≪ 1=H, the
innermost surface rin is timelike as well. As a result, these
definitions of the inner and outer horizons coincide with the
invariant definitions [39], and a RBH in an asymptotically
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flat spacetime has the schematic Carter-Penrose diagram
shown in Fig. 1(a).
In spherical symmetry the black hole mass is defined

as the value of the MSH mass at the outer apparent
horizon [15],

2MðtÞ ≔ Cðt; rgðtÞÞ≡ rgðtÞ; ð24Þ

with analogous expressions holding in ðv; rÞ and ðu; rÞ
coordinates. This is consistent with Eq. (15) that also
leads to

dCðt; rgÞ
dt

¼ r0gðtÞ: ð25Þ

Finally, we define the notion of surface gravity, which
plays a crucial role in black hole mechanics and thermo-
dynamics [13–15]. For stationary black holes the various
definitions that appear in the literature are equivalent, but
this degeneracy is lifted in the dynamical case. Among
the possible generalizations, the Hayward-Kodama surface
gravity [15,50]

κK ¼ 1

2

�
Cþðv; rÞ

r2
−
∂rCþðv; rÞ

r

�����
rþ

¼ ð1 − w1Þ
2rþ

ð26Þ

stands out as the most useful candidate [51]. It is based on
the Kodama vector [52], which provides a preferred time
flow in the absence of a timelike Killing vector field. It also
allows for the generalization of the first law of black hole
mechanics to dynamical spacetimes [53], since the Kodama
vector is associated with a conserved current. In fact its
Noether charge is just the MSH mass defined previously,
which in black hole thermodynamics plays the role of the
internal energy of the system. Unlike some alternatives, it is
well-defined for the PBH and shares many of the important
properties of its stationary Killing counterpart, and will be
used throughout this work.

B. Some properties of physical black holes

PBHs can be described in both ðt; rÞ and ðv; rÞ coor-
dinates, as seen from Eqs. (2) and (3). In this section we
examine connections between the metric functions in these
coordinates using the transformation law (5). In ðt; rÞ

FIG. 1. Schematic Carter–Penrose diagram depicting the formation and evaporation of a RBH which is treated as a particular case of a
PBH. Past and future timelike infinity are labeled by i− and iþ, respectively. Spacelike infinity is labeled by i0. Dashed gray lines
correspond to outgoing radial null geodesics. The trajectory of a distant observer, Bob, is indicated in pink and labeled B. The points f
and d represent the two-spheres of formation and disappearance of the trapped region. The equal (Schwarzschild) time hypersurface Σtf
is shown as a dashed light-green line. The outer (blue) and inner (dark red) components of the black hole apparent horizon (timelike
membranes) are indicated according to the invariant definition ([15,38]: (a) The invariantly-defined components of the apparent horizon
correspond the largest and smallest root of f ¼ 0 whether t, v or u is used as the evolution parameter [39]; (b) Embedding into de Sitter
spacetime. The solid black line connecting i− and i0 represents the cosmological event horizon for an observer at r ¼ 0. Static
coordinates cover only the left quadrant, with the dotted diagonal line representing the particle horizon. Components of the black hole
apparent horizon correspond to the largest and smallest roots of f ¼ 0 (not including the cosmological horizon). The orange dashed lines
Σt̄ indicate hypersurfaces of constant comoving time t̄. The trajectory of an asymptotically comoving observer Eve (χ ¼ const) is
marked by the dark green line and labeled by the initial E.
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coordinates the MSH mass is given by the expansion (15),
while in ðv; rÞ coordinates it is given by (22). We examine
the relation (close to the apparent horizon) connecting the
quantities x and y and determine what information can be
extracted from the invariance of the MSH mass.
While the metric in ðt; rÞ coordinates is singular at the

apparent horizon, a freely falling observer Alice reaches the
apparent horizon at rg not only in her finite proper time τ
but in finite t. We thus can consider the change in t from the
value tðv; rþðvÞÞ along an ingoing null geodesic v ¼ const.
Along such a geodesic the time tðv; rÞ varies as

tðv; rþ þ yÞ ¼ tðv; rþÞ þ ∂rtjrþyþ
1

2
∂
2
rtjrþy2 þOðy3Þ:

ð27Þ
Determining the explicit form of the above relation requires
evaluating partial derivatives at the apparent horizon. This
can be done using the transformation law (5), which implies
directly that

∂rt ¼ −e−hðt;rÞfðt; rÞ−1 ¼ 1

r0g
þOð ffiffiffi

x
p Þ: ð28Þ

The time variation δt ≔ tðv; rþ þ yÞ − tðv; rþÞ along an
ingoing null geodesic is thus given by

δt ¼ y
r0g

þ 1

2
ð∂2rtÞ j

y¼0

y2 þOðy3Þ; ð29Þ

where the second partial derivative ð∂2rtÞ is given in
Appendix C 1. The corresponding expansion of the
Schwarzschild radius rgðtÞ is given by

rgðtðv; rþ þ yÞÞ ¼ rgðtðv; rþÞÞ þ r0gδt

þ 1

2
r00gδt2 þOðδt3Þ; ð30Þ

where keeping terms of order δt2 is crucial.
The variable xðt; rÞ ¼ r − rgðtÞ can further be expressed

as a function of the advanced null coordinate v and r,

xðv; rþ þ yÞ ¼ ðrþ þ yÞ − rgðtðv; rþ þ yÞÞ: ð31Þ

Using Eqs. (29) and (30) in (31) along with the invariance
of the MSH mass (6) then results in the quadratic relation-
ship between x and y near the apparent horizon,

x ¼ 1

2
ω2y2; where ω2 ≡ −r0gð∂2rtÞ j

y¼0

−
r00g

ðr0gÞ2
: ð32Þ

Then by using Eqs. (30) and (32) along with (6) we find
that

w1ðvÞ ¼ 1 − 2

ffiffiffiffiffiffiffiffiffiffi
2πr3g

q
ϒω; ð33Þ

which is the quantity entering the Hayward-Kodama sur-
face gravity in Eq. (26). Explicit expressions for ω2 and
w1ðvÞ can be found in Appendixes C 1 and A 2.
We next turn to the evaluation of the unknown metric

functions ϒðtÞ and ξðtÞ. We assume the evaporation law in
ðt; rÞ and ðv; rÞ coordinates can be written as

r0gðtÞ ¼ −ΓðrgÞ; r0þðvÞ ¼ −ΓþðrþÞ ð34Þ

in terms of the undetermined functions Γ and Γþ. The
relation (A16), which is derived from the Einstein equa-
tions in ðv; rÞ coordinates, determines ϒðtÞ,

ϒðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γþð1 − w1Þ

8πr2þ

s
: ð35Þ

Using the consistency condition Eq. (17) along with (35)
determines the other unknown metric function,

ξðtÞ ¼ rgΓ2

2Γþð1 − w1Þ
: ð36Þ

We now make the following assertion. In the quasistatic
limit the first law of black hole dynamics should approach
that of the stationary case, where

dM ¼ κ

8π
dA; ð37Þ

and the inclusion of electric charge or angular momentum
manifests by the appearance of work terms like ΦdQ or
ΩdJ which arise in the Hamiltonian variation. The first
law of black hole mechanics (37) plays a fundamental role
in connecting classical geometry with quantum gravita-
tional degrees of freedom, and is known to hold in any
diffeomorphism-invariant Lagrangian theory of gravity
[13,14,54,55]. If the apparent horizon is taken to be the
relevant surface for which the first law is formulated, then
the area being A ¼ 4πr2g and the MSH mass being M ¼
rg=2 requires that w1 ¼ 0 for the identification of κ with the
Hayward-Kodama surface gravity of Eq. (26). As shown
in [56], the fully dynamical version of the first law contains
a work term with contributions from the trace of the energy-
momentum tensor and variation of the apparent horizon
volume, but this does not alter the constraint imposed on w1

from demanding the surface gravity to have a static limit
of κ → 1=2rg. The physical implications of this constraint
for RBHs have been analyzed in [48]. In the case where
w1 ¼ 0, ϒðtÞ and ξðtÞ then assume the forms

ϒðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
Γþ
8πr2þ

s
; ξðtÞ ¼ rgΓ2

2Γþ
; ð38Þ

and ω as defined in (32) reduces to
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ω ¼ 1

2
ffiffiffiffiffiffiffiffiffiffi
2πr3g

q
ϒ
: ð39Þ

This leads to the following relationship between the near-
horizon expansion parameters x and y:

x ¼ 1

16πr3gϒ2
y2: ð40Þ

The results above follow from the connection between
ðt; rÞ and ðv; rÞ coordinates along a constant-v line.
Analogous relations can be derived by instead considering
the relationship between ðt; rÞ and ðu; rÞ coordinates, as
detailed in Appendix B. However in this case the retarded
null coordinate u exhibits singular behavior on the apparent
horizon in concert with the Schwarzschild coordinate t, and
the metric functions exhibiting similar behavior.
We now demonstrate that these results imply that the

near-horizon metric of the PBH is described by the ingoing
Vaidya metric. Having assumed that w1 ¼ 0, the expansion
of the metric functions (22) and (23) become

Cþðv; rÞ ¼ rþ þOðy2Þ; ð41Þ

hþðv; rÞ ¼ ζ1ðvÞyþOðy2Þ; ð42Þ

where ζ0 is set to zero by a suitable time reparametrization.
Following the semiclassical arguments [20,57] that in the
quasistationary region ∂hþ=∂r ∼ LH=r (where LH is the
Hawking luminosity) we have that ζ1rþ ≪ 1, and thus a
PBH near the Schwarzschild sphere is well-described by a
Vaidya metric,

ds2 ¼ −fðv; rÞdv2 þ 2dvdrþ r2dΩ2; ð43Þ

where

fðv; rÞ ¼ 1 −
rþðvÞ
r

: ð44Þ

A common assumption used in various models [38,58] is
that the mass-loss rate in the long-lasting quasistationary
regime follows Page’s law, that

drg
dt

¼ −
A
r2g
; ð45Þ

for some constant A [14,59]. This has the same form in
ðt; rÞ, ðv; rÞ, and ðu; rÞ coordinates. Identification of the
Hawking temperature with the Kodama-Hayward surface
gravity κK leads to w1 ¼ 0. The above analysis is consistent
with these assumptions. As a result we identify

ϒ2 ¼ A
8πr4g

; ξ ¼ A
2rg

: ð46Þ

For macroscopic black holes the evaporation law
Eq. (45) can be treated as linear for times that are long
compared to the cosmological timescale but are still short
relative to the evaporation time. Moreover, the linear
Vaidya metric has been proposed as the correct description
near the endpoint of the evaporation process [60] and serves
as a basis for model building in the semiclassical setting.
This approximation allows for the explicit expressions for
coordinate transformations that we now describe.

C. Linear mass loss in Vaidya metric:
Coordinate transformations

Different aspects of the black hole geometry are best
captured by different coordinate systems. However, trans-
formations between them are difficult [58], and where exact
coordinate transformations do exist, multiple coordinate
patches are required to cover the entire spacetime [61].
A linear dependence of the MS mass on the null

coordinate v or u allows for an analytic solution to a
number of problems [39,62,63]. Here we complement these
works by providing an explicit analytic expression for the
coordinate transformation from ðv; rÞ to ðt; rÞ coordinates.
For a slowly contracting horizon we have that r0þ ≪ 1,

which holds for the emission of Hawking radiation by a
macroscopic black hole and is a good approximation for a
sufficiently long interval of v. In what follows we assume
a linear evaporation law, such that

rþðvÞ ¼ r0 − αv; with α > 0; ð47Þ

where r0 is the initial areal radius and α is the evaporation
rate. The timelike nature of the Schwarzschild sphere allows
for arbitrary values of α, but the previous considerations
restrict it to α ≪ 1.While the extension of thismetric to large
distances r ≫ rþ is not justified, it provides a setting in
which the exact transformations to ðt; rÞ and ðu; rÞ coor-
dinates are possible. Moreover, its counterpart with decreas-
ing r−ðuÞ provides a good description of an evaporating
black hole at distances r≳ 2rg and its transformation to ðt; rÞ
coordinates can be performed analogously.
The first step in the transformation to Schwarzschild

coordinates is to bring the metric into a form that is
conformally equivalent to the Schwarzschild metric in
ðu; rÞ coordinates. This is effected by defining

v≕
r0
α
ð1 − e−αV=r0Þ; r≕Re−αV=r0 ; ð48Þ

with the explicit form of the metric in ðV; RÞ coordi-
nates given in Appendix A 3. Then, defining a time
coordinate t̃ by
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dt̃ ¼ dV − bðRÞ
�
1 −

r0
R
þ 2αR

r0

�
−1
dR; ð49Þ

allows the metric to take the form

ds2 ¼ gt̃ t̃dt̃2 þ 2gt̃rdt̃drþ grrdr2 þ r2dΩ2; ð50Þ

where expressions for the metric components gμνðt̃; rÞ are
again given in Appendix A 3. The coordinates V and R that
appear therein are treated as functions of t̃ and r. The
function bðRÞ is then chosen such that the off-diagonal
metric component gt̃r vanishes,

bðRÞ ¼
�
1 −

r0
R
þ 2αR

r0

��
1 −

r0
R
þ αR

r0

�
−1
: ð51Þ

As a result, the metric becomes

ds2 ¼ −e−2αV=r0

�
1− r0

R þ αR
r0

	
2

1− r0
R

dt̃2 þ dr2

1− r0
R

þ r2dΩ2: ð52Þ

Comparing (52) with the general spherically symmetric
metric (2) identifies the metric function f as

fðt̃; rÞ ¼ 1 −
Cðt̃; rÞ

r
¼ 1 −

rþðvÞ
r

¼ 1 −
r0
R
; ð53Þ

with h being given by

eh̃ðt̃;rÞ ¼ e−aV=r0
�
1 − r0

R þ αR
r0

1 − r0
R

�
: ð54Þ

From Eqs. (48), (49), and (51), supplemented by the
initial condition t̃ðr ¼ r0; v ¼ 0Þ ¼ 0, we obtain

t̃ðv; rÞ ¼ r0
2α

ln

�
αr20

αr2 − r2þ þ rþr

�

þ r0
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α

p arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α

p ðr − rþÞ
ð1þ 2αÞr − rþ

�
: ð55Þ

Note that it is still possible to apply an arbitrary coordinate
transformation t̃ → t ¼ Tðt̃Þ. The choice can be con-
strained by considering the form of the relations between
v, t, and r in the asymptotic region.
Using Eq. (55), the limit of t̃ as it propagates backwards

along an ingoing null geodesic (i.e., v is constant and
r → ∞) is

t̃ →
r0
α



− ln

�
r
r0

�
þ γ

�
; ð56Þ

where we have defined

γ ≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4α
p arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4α

p

1þ 2α

�
: ð57Þ

Similarly we find that

h̃ → ln

�
αr
r0

�
: ð58Þ

Since we require an asymptotic relation v ≈ tþ r and

r → r0 exp

�
−
αt̃
r0

þ γ

�
ð59Þ

for t̃ → −∞, we define the new time variable as

t ≔ −r0 exp
�
−
αt̃
r0

þ γ

�
þ t: ð60Þ

We choose the constant t so that t ¼ 0 at t̃ ¼ 0, hence

t ¼ r0eγ: ð61Þ

Noting that

T 0ðt̃Þ ¼ −
α

r0
ðt − tÞ; ð62Þ

we see that hðt; rÞ → 0 at constant v and r → ∞, while

drg
dt

¼ rg
t − t

; ð63Þ

resulting in the linear evaporation law

rgðtÞ ¼ r0 − e−γt: ð64Þ

We have thus presented an exactly solvable model for an
evaporating PBH, using a conformal transformation based
on a linear evaporation law.

III. PHYSICAL BLACK HOLES IN COSMOLOGY

Models of compact objects with cosmological boun-
dary conditions have been investigated since the intro-
duction of the McVittie metric [64], which generalizes the
Schwarzschild solution to arbitrary FLRW spacetimes. In
isotropic coordinates ðt; r̄Þ the McVitte metric has the form

ds2 ¼ −
ð1 −mðtÞ=2r̄Þ2
ð1þmðtÞ=2r̄Þ2 dt

2

þ a2ðtÞ
�
1þmðtÞ

2r̄

�
4

ðdr̄2 þ r̄2dΩ2Þ; ð65Þ

where the time dependence of the mass function is
governed by the scale factor aðtÞ such that
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mðtÞ≡m0=aðtÞ: ð66Þ

Due to the nonlinearity of the Einstein equations, it is
impossible to split a metric into a homogenous and isotropic
cosmological background and a part describing even a
spherical inhomogeneity. It is possible, however, to loosely
describe the “embedding” of black holes into a cosmological
“background” if the metric reduces to a FLRW metric
when the parameter that describes the inhomogeneity van-
ishes [15]. Despite the existence of numerous models with
quite remarkable properties [15,42], there currently exist no
MBH solutions that satisfy observational constraints at the
horizon scale while approaching an FLRW metric on the
largest scales [17].
We begin the procedure of embedding a PBH into a

spatially flat FLRW background by writing its metric in the
form of Eq. (2) [15]. In comoving coordinates ðt̄; χÞ one has

ds2 ¼ −dt̄2 þ a2ðt̄Þðdχ2 þ χ2dΩ2Þ; ð67Þ

while using the areal radius r as the radial coordinate brings
the metric into Painlevé-Gullstrand form

ds2 ¼ −ð1 −H2r2Þdt̄2 − 2Hrdt̄drþ dr2 þ r2dΩ2; ð68Þ

where H ¼ ȧ=a is the Hubble parameter. The cross term
can be eliminated and the metric can be written in
Schwarzschild form by introducing a new time coordinate
t for which

dt ¼ 1

F
ðdt̄þ βdrÞ; ð69Þ

where Fðt; rÞ is an integration factor satisfying

∂

∂r

�
1

F

�
¼ ∂

∂t̄

�
β

F

�
; ð70Þ

and the function β is chosen so that gtr ¼ 0. This is
accomplished by having

β ¼ Hr
1 −H2r2

; ð71Þ

which results in the line element

ds2 ¼ −ð1 −H2r2ÞF2dt2 þ 1

1 −H2r2
dr2 þ r2dΩ2: ð72Þ

This is the spatially flat FLRW metric in Schwarzschild
coordinates. De Sitter space is the special case where H ≡
const and F≡ 1.
The above result easily follows from Eqs. (8)–(10),

where we set

Tμν ¼ Tmat
μν − Λgμν=8π; ð73Þ

separating the EMT into the matter and the cosmological
vacuum parts, respectively. Then Eqs. (9) and (10) remain
unchanged, apart from τa → τmat

a , while Eq. (8) takes the
form

∂rC ¼ 8πτmat
t =f þ Λr2: ð74Þ

Setting τa ¼ 0 then results in Eq. (72) with F ¼ 1 and
H ¼ ffiffiffiffiffiffiffiffiffi

Λ=3
p

. The cosmological constant does not affect the
structure of the function Cðt; rÞ, but the Schwarzschild
radius is modified as

rg → rgð1þH2r2g=3Þ þOðH4Þ; ð75Þ

while the expansions of the metric functions C and h retain
the same form as before.
In the case of a spatially flat de Sitter space, the advanced

and retarded null coordinates become generalizations of
the Eddington-Finkelsein coordinates. They can be defined
analogously to the Schwarzschild spacetime. For example,
using the advanced null coordinate

v ≔ tþ r�; r� ≔
1

2H
1þ r=H
1 − r=H

; ð76Þ

where r� is the de Sitter analog of the tortoise coordinate,
the de Sitter metric can be written as Eq. (3) with

hþðv; rÞ ¼ 0; fðv; rÞ ¼ 1 −H2r2: ð77Þ

It is natural to consider Vaidya black holes, both using
retarded [65] and advanced [66] null coordinates. The
generalization is most easily obtained from the Einstein
equations in ðv; rÞ or ðu; rÞ [see Appendixes (A 2) and
(B 1)], where the only nonvanishing component of the
matter EMT is the standard Vaidya term Tmat

vv ¼ m0=ð4πr2Þ.
In the ðv; rÞ case this results in

fðv; rÞ ¼ 1 −
2mðvÞ

r
−H2r2; ð78Þ

and hþ ≡ 0 with Λ ¼ 3H2.
In a cosmological setting, m ≪ H−1 and the

Schwarzschild radius is slightly modified by the cos-
mological coupling. Treating the model of Eq. (78) as a
PBH we find

rþðvÞ ¼ 2mð1þ 4m2H2 þOðH4ÞÞ; ð79Þ

similar to the Schwarzschild-de Sitter metric [15]. It is also
interesting to note that

w1 ¼ 3r2þH2 ¼ 12m2H2 þOðH4Þ; ð80Þ

which shows a deviation from a Vaidya-like geometry due
to the presence of the cosmological horizon. This also
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disagrees with the static Schwarzschild limit, consistent
with the modifications to the ordinary first law which are
required when considering asymptotically de Sitter (or
anti–de Sitter) black holes [67,68].
We now consider the embedding of physical black holes

in general cosmological spacetimes, which is most con-
veniently described in Schwarzschild coordinates. The
presence of a trapped region does not impose any additional
conditions, while on approach to the cosmological apparent
horizon the metric takes the form of Eq. (72),

eh → F; C → H2r3; ð81Þ

so in addition to the outer apparent horizon which bounds
the trapped region at r ¼ rgðtÞ, there is a cosmological
apparent horizon at

r ≈
1

H
: ð82Þ

As a result, all the properties of the near-horizon geometry
described above remain valid. In particular, the expansions
of the metric functions remain the same, and a region where
the null energy condition is violated is expected to form
near the outer apparent horizon. A schematic Carter-
Penrose diagram for a RBH in an asymptotically flat de
Sitter spacetime is shown in Fig. 1(b).

IV. DISCUSSION

Our results show that for an uncharged physical
black hole, compliance with the first law of black hole
mechanics results in the coincidence of the Hayward–
Kodama surface gravity with its Schwarzschild black hole
value κK ¼ 1=ð2rgÞ ¼ 1=4M, and implies that the metric
near the outer apparent horizon is approximately Vaidya
(that w1 ¼ 0). For a charged black hole it is possible to
match the surface gravity with that of the Reissner-
Nordström black hole,

κ ¼ rþ − r−
2r2þ

; ð83Þ

where rþ and r− are the areal radii of the outer and the inner
horizons, respectively, by having w1 ≠ 0 [48]. While it is
obvious that Page’s law can be maintained in both ðt; rÞ and
ðv; rÞ coordinate systems in identical form, it is unclear if
this is compatible with the redefinition of the null coor-
dinate v required to have ζ0 ¼ 0.
We also have seen that a simple and pathology-free PBH

model in asymptotically de Sitter space does not adhere to
the ordinary form of the first law. This can be seen as a
natural consequence of the inclusion of backreaction in our
model. In asymptotically de Sitter black hole spacetimes,
it is known that a first law can be formulated separately
for the event and cosmological horizons [69]. However, if

back-reaction from the Hawking flux of each horizon is not
ignored, the heat flux between the two horizons places the
system out of equilibrium and the first law no longer
suffices to capture variations between nearby equilibrium
states for the entire spacetime. This backreaction issue
(along with ambiguities in the definition of mass in de Sitter
spacetimes [70]) makes formulating the laws of black hole
mechanics in de Sitter technically and conceptually chal-
lenging, though a number of solutions have been exten-
sively pursued [71–73]. While it may be superfluous, we
stress that thermodynamic considerations for nonequili-
brium systems without backing from microscopic calcu-
lations or a nonequilibrium framework should be treated
with care.
Modeling black holes as PBHs results in a number of

important peculiarities. The NEC violation (and existence
of a macroscopic domain with negative energy density) is a
necessary consequence of the formation of a trapped region
in finite time according to a distant observer. This property
is shared with many ECO models. However, spherically-
symmetric PBHs that purport to model zero angular
momentum ABHs do not allow growth; only a solution
with decreasing rgðtÞ is possible. Thus we conclude with
the following chain of conditional statements; spherically-
symmetric ABHs do not grow, or if they do then either they
are horizonless objects or semiclassical gravity breaks
down at the horizon scale.
It remains to be understood how the near-horizon EMT is

compatible with current cosmological observations, such as
those reported in Ref. [17], and if/how this EMT can be
generated by relatively weak (at macroscopic scales)
quantum effects [14,18]. Moreover, it is unclear how the
presence of regions with negative energy density and/or
pressure is compatible with absorption of the cosmic
microwave background radiation.
While dealing with axially symmetric PBHs is much

more difficult [74], the investigation of their embedding in
a cosmological background is very important. In forth-
coming work, we will detail the embedding of Kerr-Vaidya
metrics in asymptotically de Sitter spacetimes. These
models will serve as a basis for developing even more
sophisticated descriptions of dynamical physical black
holes, and provide a framework for extracting observational
features of their astrophysical manifestations. These issues
will be addressed in parts II and III of this series.
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APPENDIX A: SUMMARY OF USEFUL
RELATIONS

1. Effective EMT components in ðt;rÞ coordinates
We give a detailed summary of the relations used in this

paper in ðt; rÞ coordinates. By explicitly including higher-
order terms in the expansions of the MSH mass Cðt; rÞ
and metric function hðt; rÞ, the Einstein equations (8), (9),
and (10) give the form of various EMT components to
comparative order. The expansion of Cðt; rÞ is given by

Cðt; rÞ ¼ rgðtÞ þ c12ðtÞ
ffiffiffi
x

p þ c1ðtÞxþOðx3=2Þ; ðA1Þ
with x ¼ r − rgðtÞ and coefficients given by

c12ðtÞ ¼ −4
ffiffiffiffiffiffiffi
πr3g

q
ϒ; c1ðtÞ ¼

1

3
þ
4

ffiffiffiffiffiffiffi
πr3g

q
e12

3ϒ
: ðA2Þ

The expansion of hðt; rÞ is likewise given by

hðt; rÞ ¼ −
1

2
ln

x
ξðtÞ þ h12ðtÞ

ffiffiffi
x

p þOðxÞ; ðA3Þ

where

h12ðtÞ ¼
1

2
ffiffiffi
π

p
r3=2g ϒ

−
e12 − 3p12

6ϒ2
: ðA4Þ

The effective EMT components defined in Sec. II then have
the following series expansions

τt ¼ −ϒ2 þ e12ðtÞ
ffiffiffi
x

p þ e1ðtÞxþOðx3=2Þ; ðA5Þ
τrt ¼ −ϒ2 þ ϕ12ðtÞ

ffiffiffi
x

p þ ϕ1ðtÞxþOðx3=2Þ; ðA6Þ
τr ¼ −ϒ2 þ p12ðtÞ

ffiffiffi
x

p þ p1ðtÞxþOðx3=2Þ; ðA7Þ

where

ϕ12 ¼
1

2
ðe12 þ p12Þ: ðA8Þ

2. Einstein equations and effective EMT components
in ðv;rÞ coordinates

In ðv; rÞ coordinates, the EMT is represented as Θμν and
the effective EMT components are

θv ¼ e−2hþΘvv; θvr ¼ e−hþΘvr; θr ¼ Θrr: ðA9Þ

The Einstein equations then take the following form

∂vCþ ¼ 8πr2ehþðθv þ fθvrÞ; ðA10Þ

∂rCþ ¼ −8πr2θvr; ðA11Þ

∂rhþ ¼ 4πrθr: ðA12Þ

Using the coordinate transformation (5) one can find
relations between the effective EMT components in ðv; rÞ
with those in ðt; rÞ. They are related through

θv ¼ τt; θvr ¼
τrt − τt

f
; θr ¼

τt þ τr − 2τrt
f2

: ðA13Þ

Expanding the lhs of Eq. (A11) in a series around rþ and
the rhs around rg, after making use of Eq. (A13), and
comparing order-by-order, one arrives at the following
relation for w1ðvÞ:

w1ðvÞ ¼
e12 − p12

ϒ

ffiffiffi
π

p
r3=2g : ðA14Þ

The condition e12ðtÞ ¼ p12ðtÞ is therefore equivalent to
w1ðvÞ ¼ 0. From Eq. (A10) in the near horizon limit, we
get a relation for the evaporation rate

e−ζ0r0þðvÞ ¼
8πr2þθþv
1 − w1

; ðA15Þ

where θþv ≔ limr→rg θv ¼ −ϒ2. In the final equality we
used relation (A13). With appropriate redefinition of the
advanced coordinate v one can eliminate the exponential
term eζ0 and arrive at

r0þðvÞ ¼ −
8πr2þϒ2

1 − w1

; ðA16Þ

where we have used the same variable v for the redefined
coordinate.

3. Details of the coordinate transformation

The linearly evaporating Vaidya metric is given by
Eq. (43). We will perform a coordinate transformation
from ðv; rÞ to ðV; RÞ coordinates, where these coordinates
are defined in Eq. (48). The transformed metric is given by

ds2¼e−2αV=r0
�
−
�
1−

r0
R
þ2αR

r0

�
dV2þ2dVdRþR2dΩ2

�
:

ðA17Þ

We then define a timelike coordinate t̃ by

dt̃ ¼ dV − bðRÞ
�
1 −

r0
R
þ 2αR

r0

�
−1
dR; ðA18Þ

that allows one to rewrite the metric as

ds2 ¼ gt̃ t̃dt̃2 þ 2gt̃rdt̃drþ grrdr2 þ r2dΩð2Þ; ðA19Þ

where explicit values for the metric components gμνðt̃; rÞ
are given below, and the coordinates V and R that appear
are treated as functions of t̃ and r. The function bðRÞ is

BLACK HOLES AS SPHERICALLY-SYMMETRIC HORIZON-… PHYS. REV. D 108, 104014 (2023)

104014-11



chosen by requiring that the off-diagonal metric component
gt̃r vanishes. Furthermore, by using (48) and (49) the
differential dR can be written as follows:

dR ¼ AðrÞ
1 − r0

r þ ð2−bðRÞÞαR
r0

�
eαV=r0drþ αR

r0
dt̃

�
; ðA20Þ

where for simplicity we have defined

AðrÞ ¼ 1 −
r0
R
þ 2αR

r0
: ðA21Þ

The metric becomes

ds2 ¼ e−
2αV
r0

2
64
0
B@−AðrÞ þ 2ð1− bðRÞÞAðrÞ

1− r0
R þ ð2−bðRÞÞαR

r0

αR
r0

þ ð2bðRÞ− bðRÞ2ÞAðrÞ�
1− r0

R þ ð2−bðRÞÞαR
r0

	
2

a2R2

r20

1
CAdt̃2

þ 2e
aV
r0

0
B@ ð1− bðRÞÞAðrÞ
1− r0

R þ ð2−bðRÞÞaR
r0

þ ð2bðRÞ− bðRÞ2ÞAðrÞ�
1− r0

R þ ð2−bðRÞÞαR
r0

	
2

aR
r0

1
CAdt̃drþ e2αV=r0

ð2bðRÞ− bðRÞ2ÞAðrÞ�
1− r0

R þ ð2−bðRÞÞαR
r0

	
2
dr2 þR2dΩ2

3
75: ðA22Þ

Requiring the coefficient of the dt̃dr term to vanish gives
the form of the function bðRÞ as in Eq. (51). As a result, the
metric simplifies to Eq. (52) and the evaporation rate
becomes

drg
dt̃

¼ −
αrg
r0

; ðA23Þ

while from the relation (38), assuming a linear evaporation
law Γþ ¼ α, we have that

ϒ ¼
ffiffiffi
α

p

2
ffiffiffiffiffiffi
2π

p
rg
: ðA24Þ

Additionally, using Eq. (17) one can show that

ξ̃ðt̃Þ ¼ α2rg
16πr20ϒ

2
: ðA25Þ

As a consistency check, we can rewrite the expression
for h̃ in the vicinity of the apparent horizon,

h̃ðt̃; rÞ≈ ln
αr2þ

r0ðr− rþÞ
¼ ln

αC2

r0rf
→ ln

α
ffiffiffiffirgp

4
ffiffiffi
π

p
r0ϒ

ffiffiffi
x

p ; ðA26Þ

and confirm the validity of the expression for ξ̄. A direct
evaluation gives that Eq. (16) holds identically.

APPENDIX B: USEFUL RELATIONS IN
RETARDED COORDINATES

1. Series expansion of the metric functions
in ðu;rÞ coordinates

The line element of the metric in ðu; rÞ coordinates is
given by

ds2 ¼ −e2h−ðu;rÞfðu; rÞdu2 − eh−ðu;rÞdudrþ r2dΩ2; ðB1Þ

where

fðu; rÞ ¼ 1 −
C−ðu; rÞ

r
; ðB2Þ

with C−ðu; rÞ representing the invariant MSH mass. The
transformation laws from ðt; rÞ to ðu; rÞ coordinates are
given by

dt ¼ e−hðt;rÞ
�
eh−ðu;rÞdu2 þ dr

f

�
: ðB3Þ

The transformation law between ðv; rÞ and ðu; rÞ coordi-
nates is obtained by combining Eqs. (5) and (B3), giving

du ¼ e−h−ðu;rÞ
�
ehþðv;rÞdv −

2

f

�
: ðB4Þ

The Einstein equations in ðu; rÞ coordinates are

−e−h−∂uC− þ f∂rC− ¼ 8πr2θ̄u; ðB5Þ

∂rC− ¼ 8πr2θ̄ur; ðB6Þ

∂rh− ¼ 4πrθ̄r; ðB7Þ

where the effective EMT components are defined as

θ̄u ¼ e−2h−Θ̄uu; θ̄ur ¼ e−h−Θ̄ur; θ̄r ¼ Θ̄rr: ðB8Þ

Before proceeding with solving Einstein’s equations, it is
useful to write down the equations relating the effective
EMT components in ðu; rÞ with the other coordinate
systems. This can be done by transformation of the
EMT components according to the laws (B3) and (B4).
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The relations are

θ̄u ¼ τt; θ̄ur ¼
τt þ τrt

f
; θ̄r ¼

τt þ τr þ 2τrt
f2

; ðB9Þ

and

θ̄u ¼ θv; θ̄ur ¼ θvr þ
2θv
f

; θ̄r ¼
4θv þ 4fθvr þ f2θr

f2
:

ðB10Þ

Solving the Einstein equations begins with the use of
Eq. (B6). We seek a solution of the form

C−ðu; rÞ ¼ r−ðuÞ þW−ðu; rÞ; ðB11Þ

with W−ðu; r−Þ ¼ 0, so that r− represents the apparent
horizon radius in ðu; rÞ coordinates. We also define the
variable z ≔ r − r−, so that near the apparent horizon we
have the following partial differential equation

∂zW− ¼ −16πr3−ϒ2

z −W−
; ðB12Þ

which admits the following series solution

W−ðu; rÞ ¼ −4ϒ
ffiffiffiffiffiffiffiffiffiffi
2πr3−

q ffiffiffi
z

p þOðzÞ: ðB13Þ

The expansion of the MSH mass will be written in a similar
form as Cðt; rÞ,

C−ðu; rÞ ¼ r−ðuÞ þ c̄12ðuÞ
ffiffiffi
z

p þ c̄1ðuÞzþOðz3=2Þ; ðB14Þ

with

c̄12ðuÞ ¼ −4ϒ
ffiffiffiffiffiffiffiffiffiffi
2πr3−

q
: ðB15Þ

We continue with the solution of Eq. (B7), which near the
horizon (in terms of the variable z) becomes

∂zh− ¼ −
1

2z
þO

�
1ffiffiffi
z

p
�
: ðB16Þ

We thus obtain the solution

h−ðz; rÞ ¼ −
1

2
ln

z
ξ̄ðuÞ þ h̄12ðuÞ

ffiffiffi
z

p þ h̄1ðuÞzþOðz3=2Þ:

ðB17Þ

The functions hðt; rÞ and h−ðu; rÞ exhibit the same loga-
rithmically divergent behavior at the horizon, leading to the
aforementioned issues with ðt; rÞ and ðu; rÞ coordinates.
We now proceed with the final Einstein equation (B5),

which plays the role of a consistency condition sinceC− and
h− have alreadybeen determined. This consistency condition
is used to extract information about the evaporation rate in
ðu; rÞ coordinates. Using the solutions forC− and h− in (B5),
and taking the near-horizon limit, we have that

r0−ðuÞ ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πr−ξ̄ðuÞ

q
ϒ: ðB18Þ

2. Coordinate transformations

To derive the transformation between ðt; rÞ and ðu; rÞ
coordinates, we proceed in a fashion similar to the ðv; rÞ
case, expressing the variable z ¼ r − r− in terms of y and x.
The computations should be done along an ingoing null
geodesic due to the nonsingular behavior of the advanced
coordinate v. We start by first considering the relation
between z and y, which requires determining the variation
of u along the ingoing null geodesic. u can be written as a
function of v and r using the transformation (B4),

uðv; rÞ ¼ uðv; rþÞ þ ð∂ruÞ j
y¼0

yþ 1

2
ð∂2ruÞ j

y¼0

y2 þOðy3Þ;

ðB19Þ

or in a simpler form

δu ¼ ð∂ruÞ j
y¼0

yþ 1

2
ð∂2ruÞ j

y¼0

y2 þOðy3Þ: ðB20Þ

From the transformation law (B4) and the expansions (B14)
and (B17) we have that

∂ru j
y¼0

¼ ð−e−h−f−1Þ j
y¼0

¼ 1

r0−ðuÞ
: ðB21Þ

The variation of u can thus be written as

δu ¼ y
r0−

þ 1

2
ð∂2ruÞ j

y¼0

y2 þOðy3Þ: ðB22Þ

Now we can proceed with the calculation of the relation
between z and y. We define z as a function of v and r as

zðv; rþ þ yÞ ¼ ðrþ þ yÞ − r−ðuðv; rþ þ yÞÞ: ðB23Þ

The term r−ðuðv; rþ þ yÞÞ is expanded as

r−ðuðv; rþ þ yÞÞ ¼ r−ðuðv; rþÞÞ þ r0−ðuÞδuþ 1

2
r00−ðuÞδu2:

ðB24Þ

Identifying r−ðuðv; rþÞÞ ¼ rþðvÞ and using the above
equation in (B23) we find that near the apparent horizon
z and y are related through
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z ¼ 1

2
ω̃2y2; ðB25Þ

with

ω̃2 ¼ −r0−ðuÞð∂2ruÞ j
y¼0

−
r00−ðuÞ

ðr0−ðuÞÞ2
: ðB26Þ

The derivative ð∂2ruÞjy¼0 is finite and its determination is given
in Appendix C 2. To determine the relationship between x
and z we use the relations (32) and (B25), which gives the
following linear relationship between these coordinates:

z ¼ ω̃2

ω2
x: ðB27Þ

We can find ω̄ in the same manner as for ðt; rÞ coordinates by
using the invariance of the MSH mass

C−ðuðv; rÞ; rÞ ¼ Cþðv; rÞ: ðB28Þ

Using both expansions of theMSHmass respectivelywe have

r−ðuðv; rÞÞ þ c̄12ðuÞ
ffiffiffi
z

p ¼ rþðvÞ þ w1ðvÞyþ; ðB29Þ

with subleading terms of orderþOðzÞ andOðy2Þ. In order to
compare the left- and right-hand sides we need to first expand
r−ðuðv; rÞÞ and then use the relation (B25). This expansion is
given by

r−ðuðv; rÞÞ ¼ r−ðuðv; rþÞÞ þ r0−ðuÞδuþOðδu2Þ: ðB30Þ

We identify r−ðuðv; rþÞÞ ¼ rþðvÞ and make use of the
relation (B22), wherein Eq. (B29) implies

ω̃ ¼ 1 − w1

4
ffiffiffi
π

p
r3=2− ϒ

: ðB31Þ

Finally, using the above equation and (33), (B27) becomes

x ¼ 2z: ðB32Þ

3. Condition for w1 = 0

The effective EMT component θ̄u is defined by Eq. (B8).
The Einstein equations imply that

θ̄u ¼
1

8π
e−2h−Ḡuu: ðB33Þ

Expanding the rhs of the above equation near the apparent
horizon using the expansions (B14) and (B17) gives

θ̄u ¼ −ϒ2ðtÞ þ
�
c̄1ðuÞϒðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi

2πr3=2−
p − h̄12ðuÞϒ2ðtÞ

� ffiffiffi
z

p þOðzÞ:

ðB34Þ

However, Eqs. (B9) and (A5) hold identically, so we
can compare the expansions and use the relation (B32)
to find that

e12ðtÞ ¼
1ffiffiffi
2

p
�
c̄1ðuÞϒðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi

2πr3=2−
p − h̄12ðuÞϒ2ðtÞ

�
: ðB35Þ

The same procedure using τr instead gives a relation for
p12ðtÞ. Combining equations (B9) implies that

τr ¼ f2θ̄r þ θ̄u − 2fθ̄ur: ðB36Þ
The rhs of the above equation can be expanded about the
apparent horizon in the same manner as was done for θ̄u, by
using the definition of the effective EMT components (B8)
and the Eqs. (B14) and (B17). The expansion for the lhs is
given by (A7). Using the transformation law (B32) and
comparing the expansions then gives

p12ðtÞ ¼
1ffiffiffi
2

p
�
−

ϒ2ðtÞffiffiffiffiffiffiffiffiffiffi
2πr3−

p þ 3h̄12ðuÞϒ2ðtÞ
�
: ðB37Þ

The condition (A14), assuming w1ðvÞ ¼ 0, is then equiv-
alent to the condition that e12 ¼ p12 which immediately
yields

c̄1ðuÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffi
2πr3−

q
h̄12ðuÞϒðtÞ − 1; ðB38Þ

when w1 ¼ 0.

4. Evaporation relations

It is useful to derive relations that connect the evaporation
law in ðu; rÞ coordinates with the other coordinate systems
used in this paper.We begin bywriting the evaporation law in
ðu; rÞ, assuming it has the following form:

r0−ðuÞ ¼ −Γ−ðr−Þ ðB39Þ
This implies that

r0−ðuÞ
r0gðtÞ

¼ Γ−

Γ
ðB40Þ

leads to a relation between ξðtÞ and ξ̄ðuÞ,

ξ̄ðuÞ ¼ 2Γ2
−

Γ2
ξðtÞ: ðB41Þ

This relation represents a constraint between ξðtÞ and ξ̄ðuÞ,
which must be satisfied in order to have the same func-
tional form of the evaporation law in both ðt; rÞ and ðu; rÞ
coordinates. A relation between the evaporation rate in ðu; rÞ
and ðv; rÞ can also be found, by using Eqs. (B18) and (35),
giving

Γ2
− ¼ ð1 − w1Þξ̄ðuÞ

rþ
Γþ: ðB42Þ
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APPENDIX C: SECOND DERIVATIVES
OF TIME ALONG A NULL GEODESIC

1. Second partial derivative in ðt;rÞ
For the calculation of the second derivative which

appears in ω, it is necessary to use an ingoing null geo-
desic due to the singular nature of the coordinate t at the
apparent horizon. For the metric (2), ingoing null rays are
described by

dt
dr

¼ −e−hf−1: ðC1Þ

The second partial derivative can be written as

∂
2t

∂r2

����
v
¼ d

dr

�
dt
dr

�����
v
¼ d

dr
ð−e−hf−1Þ; ðC2Þ

where (C1) is used in the final equality. Explicit calcula-
tion of the above equation along an ingoing null geodesic
leads to

∂
2t

∂r2

����
v
¼ e−hð−ð∂thÞe−hf−2 þ ð∂rhÞf−1

− ð∂tfÞe−hf−3 þ f−2∂rfÞ: ðC3Þ
Using the expansion of

e−hf−1 ¼ 1

−r0g
þ σ

ffiffiffi
x

p þOðxÞ; ðC4Þ

where

σ ¼
ffiffiffi
π

p ðe12 − p12Þr3=2g −ϒ
8πr2gξϒ3

; ðC5Þ

we can write the second partial derivative in the following
form:

∂
2
rt ¼

�
σðe12 − p12Þ

ffiffiffi
π

p
r3=2g − σϒ

4
ffiffiffi
π

p
r3=2g ϒ2

�
−

�
r0g
rg
þ ξ0

ξ þ 2ϒ0
ϒ

	
2ðr0gÞ2

þOð ffiffiffi
x

p Þ; ðC6Þ

and substitution in Eq. (32) leads to

ω2 ¼


−

1

2ðr0gÞ2
�
r0g
rg

þ ξ0

ξ
þ 2ϒ0

ϒ

�
−

r00g
ðr0gÞ2

�

− r0g

�
σðe12 − p12Þ

4ϒ2
−

σ

4
ffiffiffi
π

p
r3=2g ϒ

�
þOð ffiffiffi

x
p Þ: ðC7Þ

The term in the square brackets will vanish if we
substitute the expressions for r0g given by Eq. (17) and
r00g which is derived by differentiating with respect to t the
expression of r0g. So we have that

ω2 ¼ −r0g
�
σðe12 − p12Þ

4ϒ2
−

σ

4
ffiffiffi
π

p
r3=2g ϒ

�
: ðC8Þ

Substitution of σ leads to the following simple relation

ω2 ¼ ð ffiffiffi
π

p ð−e12 þ p12Þr3=2g þϒÞ2
8πr3gϒ4

þOð ffiffiffi
x

p Þ: ðC9Þ

We are interested in the specific case where w1 ¼ 0, a
condition which was shown in Appendix A 2 to be
equivalent to e12 ¼ p12. Using this condition in Eq. (C9)
simplifies the result as follows:

ω2 ¼ 1

8πr3gϒ2
; ðC10Þ

in accordance with Eq. (39).

2. Second partial derivative in ðu;rÞ
Determining the second partial derivative entering into ω̃

for ðu; rÞ coordinates proceeds in the same manner as in the
previous subsection. The calculation is again performed
along on an ingoing null geodesic, where the first derivative
is given by

du
dr

¼ −2e−h−f−1: ðC11Þ

The second partial derivative is then

∂
2u
∂r2

����
v
¼ d

dr

�
du
dr

�����
v
¼ d

dr
ð−2e−h−f−1Þ: ðC12Þ

Evaluating this derivative along an ingoing null geodesic
leads to

∂
2u
∂r2

����
v
¼ e−2h−f−3ð−4∂ufþ 2fðeh−ð∂rfþf∂rhÞ− 2∂uh−ÞÞ:

ðC13Þ

Using the expansion

e−h−f−1 ¼ −1
2r0−

þ σ̄
ffiffiffi
z

p þOðzÞ; ðC14Þ

where

σ ¼ −1þ c̄1 − 4
ffiffiffiffiffiffi
2π

p
h̄12r3=2− ϒ

32πr2−ϒ2
ffiffiffī
ξ

p ; ðC15Þ

we have that
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∂
2
ru ¼ −

�
2σh̄12ðr0−Þ2 − σ

ffiffi
2
π

q
ð−1þc̄1Þ
4r3=2− ϒ

ðr0−Þ2 þ r0−
r−
þ ξ0

ξ

	
2ðr0−Þ2

þOð ffiffiffi
z

p Þ: ðC16Þ

Substituting this in Eq. (B26) we have

ω̃2 ¼


1

2r0−

�
r0−
r−

þ ξ0

ξ

�
−

r00−
ðr0−Þ2

�

þ 1

2r0−

�
2ch̄12ðr0−Þ2 − c

ffiffiffi
2

π

r
ð−1þ c̄1Þ
4r3=2− ϒ

ðr0−Þ2
�
: ðC17Þ

The term in the brackets will vanish, after substi-
tuting the expressions for r0− given by Eq. (B18) and r00−

which is derived by differentiating r0− with respect to u, so
we have

ω̃2 ¼ h̄212
2

þ ð−1þ c̄1Þ2
64πr3−ϒ2

−
ð−1þ c̄1Þh̄12
4

ffiffiffiffiffiffi
2π

p
r3=2− ϒ

: ðC18Þ

Substitution of the condition for w1 ¼ 0 which is given by
Eq. (B38) leads to

ω̃2 ¼ 1

16πr3−ϒ2
: ðC19Þ

This expression for ω̃2 in the near-Vaidya limit is in
agreement with Eq. (B31) for w1 ¼ 0.
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