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A modification of general relativity that is based on the gravitational standard-model extension and
incorporates nondynamical background fields has recently been studied via the ADM formalism. Our
objective in this paper is to develop a better understanding of the additional contributions that arise on the
spacetime boundary ∂M. An extension of the previously introduced boundary terms, which are relevant in
the context of asymptotically flat spacetimes, follows from the decomposition of ∂M into timelike and
spacelike hypersurfaces. Furthermore, we present an alternative method of deriving the field equations
satisfied by the induced metric on the purely spacelike hypersurfaces of the foliated spacetime. This leads
to the dynamical part of the Einstein equations modified by the background fields. Our results have the
potential to be applicable in various contexts such as modified black holes and cosmology.
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I. INTRODUCTION

The abundance of experimental tests of general relativity
(GR) [1–6] carried out for more than 100 years has
demonstrated that GR provides a description of gravita-
tional phenomena that works astoundingly well. The geo-
metrization of gravity that Einstein envisioned also has a
certain undeniable aesthetics to it and, so far, it has been
impossible to adopt this description to the other funda-
mental interactions of nature. Despite the vast experimental
support as well as the beauty of Einstein’s gravity theory,
even if one has the viewpoint that gravity stays classical at
all length scales, GR exhibits at least some unsatisfactory
properties.
For example, many physicists would agree that the

occurrence of spacetime singularities in some solutions
of GR, e.g., black-hole spacetimes is an issue that cannot
simply be ignored. Both indirect observations of black-hole
mergers via gravitational-wave detection by LIGO [7–10]
and the impressive photographs of black-hole accretion
disks in M87 and the Milky Way made by the EHT [11,12]
undoubtedly demonstrate that black holes are not merely
mathematical vacuum solutions of the Einstein equations,
but part of our reality. Thus, the proper understanding and
treatment of black-hole singularities is paramount.
Cosmology reveals another possible issue of GR.

Cosmological time evolution is largely affected by the
gravitational pull of the matter content of our Universe.
Therefore, GR forms the theoretical foundation of the

current cosmological standard model, ΛCDM. Measure-
ments of the large-scale structure of our Universe [13–15]
and the precise mapping of the cosmological microwave
background radiation [16–21] hint toward the existence of a
completely mysterious entity known as dark energy [22],
which is needed to account for the accelerated expansion of
the Universe. Nothingwhatsoever is known about the nature
of dark energy and its physical properties, e.g., its negative
pressure contradict the characteristics of any form of matter
or energy that can be investigated in the laboratory. So it is
needless to say that its introduction into cosmology is
unsatisfactory. However, it could be the case that dark
energy is only needed to make contact with measurements,
since GR suffers severe alterations at the very large length
scales that dominate cosmological late-time evolution.
These and other arguments suggest a refinement of GR,

let it be at microscopic and/or cosmological scales. While
a large number of modified-gravity theories have been
proposed in the literature [23–26], which are more or less
well motivated, our article will be dedicated to a specific
class of such theories. Our intention is to respect coordinate
invariance as well as the full nonlinear structure of GR.
Moreover, we will be working in a classical setting, i.e., no
attempt is made to quantize gravity. Although extensions
such as Finsler geometry [27–29] could be considered,
in principle, Riemannian geometry is maintained as the
underlying geometrical foundation.
Instead, we give up one of the defining characteristics

of Einstein’s gravity, which is diffeomorphism invariance.
The violation of the latter is parameterized by particular
nondynamical background fields that are contained in
the gravitational sector of the standard-model extension
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(SME) [30–42]. This effective approach is comprehensive
and parameterizes violations of diffeomorphism symmetry
and local Lorentz invariance in gravity in a model-
independent way. The SME is understood as a field theory
framework that enables broad experimental tests of non-
standard gravitational physics such as diffeomorphism
violation. The yearly updated data tables [43] provide an
extensive compilation of experimental constraints on sym-
metry violation in gravity—among the even larger set of
bounds on Lorentz violation in a nongravitational setting.
Recently, the Hamiltonian formulation [44–50] has been

developed for extensions [51–53] of GR that exhibit
diffeomorphism invariance breaking. Analyses of this kind
rest upon the (3þ 1) decomposition, which is often also
referred to as the ADM decomposition (formulation)
according to the names of the physicists [44] that intro-
duced this technique into GR. The latter is a formidable
theoretical toolset being the base of advanced black-hole
physics [54,55] as well as of numerical relativity [56–59]. It
is one of the cornerstones of powerful computer codes such
as the Einstein Toolkit [60] and GRHydro [61] that solve
highly complicated problems in GR numerically.
The ADM formulation has also proven to be a valuable

technique to analyze modified-gravity theories from a
formal perspective. For this reason, it forms the technical
foundation of the papers [51–53]. In our current work,
emphasis will be put on the behavior of the theory on the
spacetime boundary. We intend to avoid integrations by
parts, as these may imply essential contributions on the
spacetime boundary that cannot simply be discarded.
Furthermore, we will carry out a proper treatment of
boundary terms that are of relevance in such an analysis.
One of the principal motivations to implement the

ADM formulation in the context of the SME was to
explore diffeomorphism violation in a strong-gravity
regime complementing the studies within linearized modi-
fied gravity [62–76], in particular, on gravitational-wave
physics. The ADM formulation has also been fruitful to
stimulate a new branch of research, which could be coined
SME cosmology [51,77–79]. Moreover, this formalism
enables the definition of a slew of important physical
quantities such as the ADM mass [80] or the ADM
momentum [56,59], which are useful in, e.g., black-hole
physics. So having the ADM-decomposed gravitational
SME at someone’s disposal, brings them into a position to
study modified black holes. Finally, the canonical formu-
lation of SME gravity could shed light on the possible
issues related to the Bianchi identity of pseudo-Riemannian
geometry in the context of explicit symmetry violation
in gravity [30,38,39,81–86] such as in Hořava-Lifshitz
gravity [87,88] (see also Refs. [51,53,89,90]) and dRGT
massive gravity [91–94].
The modified-gravity theory under consideration in

Ref. [52] was shown to require an extended Gibbons-
Hawking-York (GHY) boundary term [95,96] involving the

nondynamical background fields. The introduction of such
boundary terms [52] prevents higher-order time derivatives
of the metric from occurring and, thus, they are crucial to
ensure a well-defined principle of stationary action.
By doing so, the Hamiltonian of the modified-gravity
theory was constructed and one set of the Hamilton
equations was shown to be equivalent to the modified
Einstein equations in the covariant approach [31], when
these are projected onto spacelike hypersurfaces Σt of the
spacetime foliation [53].
The modern research program on spacetime boundaries

in gravity was established by the pioneering works of
Arnowitt, Deser, and Misner [44] as well as Choquet-
Bruhat [97]. These papers laid the foundations for research
on noncompact and asymptotically flat spacetimes M,
which play a significant role, in particular, in the study of
stars and black holes. Furthermore, the works of Gibbons,
Hawking, and York [95,96] demonstrated the importance
and peculiarities of the variational formulation in gravity,
which brought with it a powerful approach for analyzing
the physics on spacetime boundaries.
Other contexts that provide motivation for understanding

boundary terms in gravity include the dynamics of binary
systems and the gravitational waves they emit [7,98,99],
open inflation [100], and the search for a theory of quantum
gravity [101,102]. Moreover, in the setting of the
AdS=CFT correspondence it is worthwhile to mention
the regularization of the action in AdS spacetimes
[103,104], extended regularization methods [105] for the
physical notion of mass and angular momentum [54,55],
black-hole physics [106], the formal derivation of the ADM
energy in the limit of asymptotically flat spacetimes [107],
and extensions to nonorthogonal boundaries [108]. In
general, a definition of physically meaningful conserved
charges in (asymptotically flat) spacetimes requires an
averaging process over spatial and temporal regions at
infinity [80,109,110]. Hence, these quantities involve sur-
face integrals demonstrating how the properties of the
gravitational system on spacetime boundaries contain
essential information.
In the current paper, we focus on a specific form of the

spacetime boundary ∂M, which allows us to derive the
dynamical field equations and to acquire an even better
knowledge of the true role of the extended GHY boundary
term. We will be obtaining a new set of boundary terms
depending on the extrinsic curvature k of two-dimensional
hypersurfaces that give rise to a foliation of the timelike
part of ∂M. The results are applicable in the context of
black-hole physics modified by the presence of SME
background fields. A substantial amount of research
[111–116] has already been performed in this subarea,
which highlights that our approach and findings have the
potential to be taken up by researchers in the future.
The paper is organized as follows. In Sec. II we introduce

the modified-gravity theory focused on, recapitulate some
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of its properties and define the notation to be used
throughout the remainder of the article. Here, we also
analyze the additional contributions on the spacetime
boundary that emerge due to the presence of the SME
background fields. Section III is dedicated to deriving
the dynamical field equations based on the findings in
Sec. II. A nontrivial shift vector will be included, which
generalizes previous results. Finally, our findings will be
concluded on in Sec. IV. Our metric signature is
ð−;þ;þ;þÞ and we will employ natural units with c ¼ 1
unless otherwise stated. As in our previous articles [52,53],
the MATHEMATICA package xTensor [117] provides sig-
nificant computational support.

II. THE EXTENDED ACTION

Consider the following modified Einstein-Hilbert (EH)
action that involves a subset of coefficients of the minimal
gravitational SME [30,38]:

SG ¼ Sb þ S ext
GHY

; ð1aÞ

with the bulk action

Sb ¼
Z
M

d4x
ffiffiffiffiffiffi−gp
2κ

h
ð1 − uÞð4ÞRþ sμνð4ÞRμν

i
; ð1bÞ

and the boundary action

S ext
GHY

¼
I
∂M

d3y
ε

ffiffiffi
q

p
2κ

�
2ð1 − uÞK − snnK þ Kabsab

�
; ð1cÞ

with κ ¼ 8πGN . We cover the four-dimensional spacetime
manifold M with coordinates xμ carrying Greek indices.
As customary, gμν is the spacetime metric and g ≔ detðgμνÞ
its determinant. Furthermore, ð4ÞRμν denotes the Ricci
tensor and ð4ÞR ≔ ð4ÞRμ

μ the Ricci scalar on M. The EH
action is modified by a scalar background field u and a
tensor-valued one, which is called sμν. The latter are
nondynamical and lead to a breakdown of diffeomorphism
invariance [52,53].
We note in passing that in the literature on the gravi-

tational SME, the Ricci tensor ð4ÞRμν contracted with the
tensor-valued background field in Eq. (1b) is usually
replaced by its trace-free version, which amounts to
assuming that sμν is traceless. This is done to avoid an
ambiguity, as one may choose sμν ¼ ugμν having a non-
vanishing trace, which will give rise to another contribution
in the u sector. However, the latter choice is only reasonable
in the context of dynamical background fields, as the
(inverse) metric is, by definition, dynamical. Since our
setting involves nondynamical background fields, we avoid
such redefinitions, i.e., the u and sμν sectors are taken as
completely independent of each other; see also Ref. [52] for
a more elaborate discussion.

To render Hamilton’s principle well defined, we included
an extended GHY boundary term [52] where q ≔ detðqabÞ
is the determinant of the induced metric qab on the
boundary ∂M of M. Generic coordinates and indices
are employed in Eq. (1c), which will be made more explicit
after decomposing ∂M into substantially different parts
below. The GHY action involves the extrinsic-curvature
tensor Kab and the trace of the latter, K ≔ Ka

a ¼ qabKab.
Moreover, ε ¼ ∓1 depending on whether ∂M is spacelike
(timelike). Lightlike regions on ∂M are sets of measure
zero, which do not contribute to the surface integral in
Eq. (1c). Moreover, setting all SME coefficients to zero,
Eq. (1) reproduces the EH action with the GHY boundary
term, as expected.
Our first objective is to derive an ADM-decomposed

action from Eq. (1), which will be given by Eq. (21) toward
the end of the current section. The machinery and pro-
cedure employed to arrive at the latter are to be developed
as follows. First of all, we focus on a spacetime M whose
boundary ∂M is topologically a 3-cylinder, R × S2, see
Fig. 1. Let us foliateM in terms of spacelike hypersurfaces
Σt such that the boundary is expressed as ∂M ¼ Σt1 ∪
Σt2 ∪ B with purely spacelike caps Σt1 ;Σt2 and a timelike
mantle B, according to Fig. 1. For Σt ⊂ M, which also
includes Σt1 and Σt2 , we consider coordinates y

a with Latin
indices a; b; c;….
The foliation leads to a natural decomposition of the

tensor-valued background field sμν into three independent
components:

sαβ ¼ qαμqβνsμν − ðqανnβ þ qβνnαÞsνn þ nαnβsnn; ð2Þ

where qμν ¼ δμν þ nμnν projects a part of a spacetime
tensor described by a single Lorentz index onto Σt and nμ

is a unit normal vector orthogonal to Σt. To define the

FIG. 1. Foliation of four-dimensional spacetime M in terms of
embedded three-dimensional spacelike hypersurfaces Σt. The
caps are formed by Σt1 and Σt2 , respectively. The mantle B is
foliated in terms of two-dimensional hypersurfaces St. Also, nμ is
normal to the caps and rμ is orthogonal to the mantle.

THE BOUNDARY OF THE GRAVITATIONAL STANDARD-MODEL … PHYS. REV. D 108, 104013 (2023)

104013-3



components of this decomposition in a manner convenient
for us, we introduce the set of vectors eμa, which is given by

eμa ≔
∂xμ

∂ya
; ð3Þ

where the spacetime coordinates are understood to be
parameterized as xμðyaÞ. Note that the objects eμa govern
pullback operations of covariant tensor fields [56,59,118]
that exist due to the embedding of Σt into M. With this in
mind, we define the tensor-valued purely spacelike part sab

of the background field through the relation

qαμqβνsμν≕ eαae
β
bs

ab; ð4aÞ

and the scalar purely timelike contribution by

snn ≔ sμνnμnν: ð4bÞ

Since sμν and sab are contravariant, by construction,
Eq. (4a) cannot simply be solved for sab. Hence, sab is
defined implicitly by Eq. (4a) and the right-hand side of this
relation can be interpreted as the pushforward of sab from
Σt into M; see Eq. (16.10) in Ref. [118]. Then, sab is
understood as sμν suitably restricted to Σt by the application
of two vectors of Eq. (3). It is also helpful to recall that
qαβ ¼ eαae

β
bq

ab, i.e., qab can be lifted to M by a push-
forward operation.
In principle, Eq. (2) also contains a vector-valued mixed

piece given by sμn ≕ eμasaνnν, but the latter can be gauged
away at first order in the coefficients [52], which is why we
will discard sμn in the following. Note also that in Ref. [52]
we did not find any GHY-like boundary term associated
with sμn, cf. Eq. (1c).
Moreover, it is reasonable to distinguish between quan-

tities defined on spacelike and timelike hypersurfaces,
respectively, via different sets of indices. Therefore, let
us introduce the following different submanifolds with
their corresponding coordinates. For the mantle B ⊂ ∂M
we use coordinates zi and Latin indices i; j; k;…. For the
closed two-surface St ⊂ Σt, which is the boundary of Σt,
we employ coordinates θA and capital Latin indi-
ces A;B;C;….
The boundary action of Eq. (1c) is then decomposed as

S ext
GHY

¼ S−Σt1
þ SΣt2

þ SB; ð5aÞ

with the contributions on the two caps and the mantle,

S−Σt1
¼

Z
Σt1

d3y
ffiffiffi
q

p
2κ

�
2ð1 − uÞK − snnK þ Kabsab

�
; ð5bÞ

SΣt2
¼ −

Z
Σt2

d3y
ffiffiffi
q

p
2κ

�
2ð1 − uÞK − snnK þ Kabsab

�
; ð5cÞ

SB ¼
Z
B
d3z

ffiffiffiffiffiffi−γp
2κ

�
2ð1 − uÞKþKijsij

�
; ð5dÞ

where we follow the conventions of Refs. [54,55], i.e., the
normal nμ of Σt1 is chosen as future-directed, by definition,
as is the normal of Σt2 , cf. Fig. 1. Thus, to have an outward-
directed normal for Σt1, which is the generic situation for
the remainder of the boundary, an additional relative sign
must be considered in comparison to Σt2 , which eliminates
the factor ε ¼ −1 from Eq. (1c).
Also, the extrinsic curvature is defined appropriately

on each hypersurface. In particular, on B we define the
induced metric γij ≔ gαβeαi e

β
j with eαi ≔ ∂xα=∂zi. We

choose ra to be the unit normal to St with associated
four-vector rα ¼ raeαa and the set of vectors eαa introduced
previously in Eq. (3). Note that rαnα ¼ 0, as rα is under-
stood to live in Σt; cf. Fig. 1. Furthermore, we define the
extrinsic-curvature tensor on B as Kij ≔ eαi e

β
j∇βrα where

K ≔ Ki
i ¼ γijKij is its corresponding trace. The covariant

derivative ∇μ is compatible with the metric gμν of M.
Note also that, in principle, Eq. (5d) would contain a

term proportional to srrK with srr ≔ sμνrμrν. However,
since snn provides a nonvanishing contribution for a
timelike normal vector nμ by its definition via Eq. (4b),
it must hold that srr ¼ 0 for a spacelike normal vector rμ

due to rμnμ ¼ 0. The purely spacelike components of sμν

are already contained in the termKijsij in Eq. (5d), which is
an implication of the way how sμν is decomposed in the
foliation according to Eq. (2).
The key part of the forthcoming analysis is to focus on

contributions providing total derivatives compatible with
gμν and qab, respectively. We will find that the latter only
occur for sab, which makes sense, as these coefficients
result from restricting sμν to the purely spacelike hyper-
surfaces Σt.
Let us now consider the decompositions (see, e.g.,

Refs. [56,59])

ð4ÞR ¼ Rþ K2 − KabKab − 2Rnn; ð6aÞ
Rnn ¼ K2 − KabKab þ∇μζ

μ; ð6bÞ

qβνqδσð4ÞRβδ ¼ Rνσ þ∇μψ
μ
νσ − aβnνKβσ

− aδnσKνδ − aνaσ −Dνaσ; ð6cÞ

where R ≔ Ra
a ¼ qabRab is the Ricci scalar obtained from

the trace of the Ricci tensor Rab on Σt. Moreover, Dμ is
the covariant derivative compatible with the induced metric
qμν and aα ≔ nμ∇μnα denotes the ADM acceleration. In
Eq. (6c) these quantities have been lifted to M, but a
pullback onto Σt can be performed via Davb ¼ eαae

β
bDαvβ

and ac ¼ eαcaα with the vectors of Eq. (3). We also defined
the vector
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ζμ ≔ nν∇νnμ − Knμ; ð7aÞ

convenient to be used in Eq. (6b), as well as the third-rank
tensor

ψμ
νσ ≔ nμKνσ; ð7bÞ

which occurs in Eq. (6c). We emphasize that four-
divergences of the latter quantities with gμν-compatible
derivatives can be found in Eq. (6). These will play an
important role below.
By applying the (3þ 1) decomposition of the

intrinsic curvature encoded in Eq. (6) as well as the
decomposition of sμν in Eq. (2)—with the mixed coeffi-
cients omitted—to Eq. (1b) the bulk action can be ADM-
decomposed as

Sb ¼
Z
M

d4x
ffiffiffiffiffiffi−gp
2κ

h
ð1 − uÞðR − K2 þ KabKab − 2∇μζ

μÞ

þ snnnμnνð4ÞRμν þ sμνqβμqδνð4ÞRβδ

i
: ð8Þ

Hence, the ADM decomposition of the EH action is scaled
by the factor of 1 − u. Furthermore, the decomposition of
sμν into purely timelike and spacelike parts, respectively, is

evident. To rewrite the last two terms, we benefit from
Eqs. (4), (6b), and (6c) leading to

Sb ¼
Z
M
d4x

ffiffiffiffiffiffi−gp
2κ

h
ð1−uÞðR−K2þKabKab−2∇μζ

μÞ

þ snnðK2−KabKabþ∇μζ
μÞþ sabðRabþeνaeσb∇μψ

μ
νσ

−aaab−DaabÞ
i
; ð9Þ

which has now been expressed completely in terms of the
components of sμν defined in Eqs. (4a), (4b). Then, the key
terms giving rise to total derivatives in the bulk action (9)
are given by

Sb ⊃
Z
M

d4x
ffiffiffiffiffiffi−gp
2κ

n
½−2ð1 − uÞ þ snn�∇μζ

μ

þ sνσ∇μψ
μ
νσ − sabDaab

o
: ð10Þ

Note that the last term even contains a qab-compatible
covariant derivative, which is a property not to be encoun-
tered in the EH action. Expressing these contributions as
total covariant derivatives plus suitable correction terms
amounts to

Sb ⊃
Z
M

d4x
ffiffiffiffiffiffi−gp
2κ

n
∇μ½−2ð1 − uÞζμ þ snnζμ� − ζμ∇μð2uþ snnÞ þ∇μðsabψμ

abÞ − ψμ
νσ∇μsνσ

o

þ
Z
M

dtd3y
ffiffiffi
q

p
2κ

�
−DaðNsababÞ þ abDaðNsabÞ�; ð11Þ

where the lapse function N≕ 1=
ffiffiffiffiffiffiffiffiffiffi
−g00

p
occurs in the second line. Here, we have used that sνσKνσ ¼ sabKab, which can be

proven from Eq. (4a). The first and third terms of Eq. (11) now involve gμν-compatible total derivatives, whereas the second
line contains a qab-compatible total derivative. These are complemented by correction terms such that Eq. (10) can be
reproduced neatly. Furthermore, the integral measure of the second line has been ADM-decomposed, since the integrand
only depends on properly ADM-decomposed quantities.
Gauss’ theorem transforms the total derivatives in the first and third terms of Eq. (11) into boundary terms:

Z
M

d4x
ffiffiffiffiffiffi−gp
2κ

∇μ

n
½−2ð1 − uÞ þ snn�ζμ þ sabψμ

ab

o
¼

Z
ð−Σt1

Þ∪Σt2

d3y
ffiffiffi
q

p
2κ

ð−nμÞ
n
½−2ð1 − uÞ þ snn�ζμ þ sabψμ

ab

o

þ
Z
B
d3z

ffiffiffiffiffiffi−γp
2κ

rμ½−2ð1 − uÞζμ þ sabψμ
ab�

¼
Z
ð−Σt1

Þ∪Σt2

d3y
ffiffiffi
q

p
2κ

n
½2ð1 − uÞ − snn�K þ sabKab

o

þ
Z
B
d3z

ffiffiffiffiffiffi−γp
2κ

½−2ð1 − uÞrμnν∇νnμ�; ð12Þ

where we employed the definitions of Eq. (7). We also benefited from the basic properties n2 ¼ −1, aμnμ ¼ 0, and
rμnμ ¼ 0 as well as srr ¼ 0 on B. Note that the general directed volume element on ∂M reads dΣμ ¼ εnμdΣwhere dΣ is the
volume element of the hypersurface, see Eq. (3.16) in Refs. [54,55]. Therefore, as nμ is a future-directed vector according to
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the conventions, cf. Fig. 1, proper care has to be taken to
compensate the additional sign for Σt1 that we introduced
in Eq. (5b). Since Eq. (7a) depends on aμ and rμaμ ≠ 0,
the contribution on B stated in the last line of Eq. (12)
survives.
Now, the parts of Eq. (12) given by the two terms on the

spacelike caps Σt1 and Σt2 cancel Eqs. (5b) and (5c),
respectively, whereas the contributions on the mantle Bwill
be treated later. As the term DaðNsababÞ involves a qab-
compatible total derivative, it provides a boundary term on
B, which is already foliated in terms of two-dimensional
hypersurfaces St as follows:

Z
M

dtd3y
ffiffiffi
q

p
2κ

½−DaðNsababÞ�

¼
Z

t2

t1

dt
I
St

d2θ
N

ffiffiffi
σ

p
2κ

ð−risijajÞ: ð13Þ

Note that via a coordinate transformation, the indices a, b
are replaced by i, j to represent coordinates on the foliated
hypersurface B. Here,

ffiffiffi
σ

p
is the integration measure on St

that depends on the induced metric σAB on St. The latter
will be considered in more detail below.
The total action is then of the form

SG ¼
Z
M

dtd3y
N

ffiffiffi
q

p
2κ

h
ð1 − uÞðR − K2 þ KabKabÞ þ snnðK2 − KabKabÞ þ sabRab − sabaaab − ζμ∇μð2uþ snnÞ

− ψμ
νσ∇μsνσ þ

1

N
abDaðNsabÞ

i
þ
Z
B
d3z

ffiffiffiffiffiffi−γp
2κ

h
−2ð1 − uÞrμnν∇νnμ

i
−
Z

t2

t1

dt
I
St

d2θ
N

ffiffiffi
σ

p
2κ

riajsij

þ
Z
B
d3z

ffiffiffiffiffiffi−γp
2κ

�
2ð1 − uÞKþKijsij

�
; ð14Þ

where the second and third to last integrals contain the
terms on the mantle B that remain after applying Gauss’
theorem to each of the total derivatives in Eq. (11). As
mentioned before, the penultimate contribution is already
foliated properly in terms of St, which will be helpful in the
following. Note that the terms on B do not simply cancel
with the original boundary action SB of Eq. (5d), which has
been reinstated explicitly as the last term of Eq. (14). A
more sophisticated treatment of these contributions is
indispensable, though.
Moreover, the bulk of Eq. (14) now depends on

gμν-compatible directional derivatives of the SME coeffi-
cients. It is beneficial to express these in terms of the ADM
acceleration ac defined on Σt and Lie derivatives [119] with
respect to the vector mμ ≔ Nnμ:

ζμ∇μu ¼ acDcu −
K
N
Lmu; ð15aÞ

ζμ∇μsnn ¼ acDcsnn −
K
N
Lmsnn; ð15bÞ

ψμ
νσ∇μsνσ ¼

1

N
KabLmsab þ 2KabKa

cscb: ð15cÞ

The occurrence of Lie derivatives Lm of the background
fields is characteristic when the ADM formalism is applied
to sectors of the gravitational SME [52,53]. For Eq. (15c) it
is important to take into account that the Lie derivative
along mμ of a quantity living in Σt remains in Σt.
The next step is to investigate the contributions on B.

We intend to combine the second and third to last terms

of Eq. (14) with the last one. To accomplish this endeavor,
we introduce the quantity ϒ ≔ K − rμnν∇νnμ that is to
be suitably reformulated by the following chain of
reasoning [54,55]:

ϒ ¼ Kþ ð∇νrμÞnμnν
¼ ∇νrμðgμν − rμrν þ nμnνÞ: ð16Þ

To arrive at this result, several ingredients are valuable.
First, we benefit from the identity rμ∇νnμ ¼ −nμ∇νrμ,
which follows from rμnμ ¼ 0. Second, the trace K of the
extrinsic curvature on B is expressed in terms of the metric
on M and rμ, which is the unit normal of B. This is
possible, as B is a timelike hypersurface embedded intoM:

K ¼ γijKij ¼ γijð∇νrμe
μ
i e

ν
jÞ ¼ ð∇νrμÞγijeμi eνj

¼ ∇νrμðgμν − rμrνÞ: ð17Þ

We continue by interpreting St as being embedded intoM,
which implies the induced metric σAB ¼ gαβeαAe

β
B on St

with the set of vectors eαA ≔ ∂xα=∂θA. Then,

ϒ ¼ ∇νrμðσABeμAeνBÞ ¼ σABð∇νrμe
μ
Ae

ν
BÞ: ð18Þ

Last but not least, due to their embedding intoM, the two-
dimensional hypersurfaces St also have an extrinsic curva-
ture associated with them as do Σt and B. The latter is
frequently denoted as kAB in the literature [54,55] where
k ≔ kABσAB is its corresponding trace. Making use of that,
we finally obtain
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ϒ ¼ σABkAB ¼ k: ð19Þ

To handle the terms in Eq. (14) on B containing sij,
consider kAB ≔ eiAe

j
Bkij with eiA ≔ ∂zi=∂θA based on the

embedding of St into B. So,

kij ¼ D̃irj ¼ σkiσ
l
jDkrl ¼ σkiDkrj

¼ ðδki − rirkÞDkrj ¼ Kij − riaj; ð20Þ

where D̃i is the covariant derivative compatible with σij and
σki ¼ δki − rkri projects a part of a tensor living in Σt onto
St. This object is analogous to the projector qμν introduced
in Eq. (2) that is responsible for projections from M onto
Σt. Note the sign difference in the second terms on the
right-hand sides of the definitions of qμν and σki, which is
due to nμ being timelike and rμ being spacelike. Moreover,
rlDkrl ¼ 0 is employed in the first line of Eq. (20). So
the latter equation means that the extrinsic curvature kAB of
St lifted to B is expressed through the extrinsic curvature
Kij of B.
Finally, we foliate B in terms of St and recast the

corresponding integral measure into the following form:
d3z

ffiffiffiffiffiffi−γp ¼ dtd2θN
ffiffiffi
σ

p
. Now it makes sense to define the

tensor field sAB, which can be interpreted as sij restricted to
St. The former exists because of the embedding of St into
B. We introduce sAB in a manner analogous to how we
defined sab implicitly as sμν restricted to Σt via Eq. (4a).
The defining relationship is σimσjnsmn≕ eiAe

j
Bs

AB with the
vectors defined directly above Eq. (20). As a consequence,
kijsij ¼ kABsAB can be deduced on St. We then arrive at the
final form of the ADM-decomposed action, which is one of
the central results of the current work:

SG ¼
Z

t2

t1

dtðLb þ BSÞ; ð21aÞ

with the Lagrangian in the bulk,

Lb ¼
Z
Σt

d3yLb; ð21bÞ

Lb ¼
N

ffiffiffi
q

p
2κ

�
ð1 − uÞðR − K2 þ KabKabÞ

þ snnðK2 − KabKabÞ þ sabRab

−
1

N
KabLmsab − 2KabKa

cscb þ abDasab

− acDcð2uþ snnÞ þ K
N
ð2Lmuþ LmsnnÞ

�
; ð21cÞ

and the boundary term

BS ¼
I
St

d2θ
N

ffiffiffi
σ

p
2κ

½2ð1 − uÞkþ kABsAB�: ð21dÞ

Let us summarize what we did. We ADM-decomposed the
modified EH action stated in Eq. (1b) including the
extended GHY boundary term of Eq. (1c). The latter
was shown to partially cancel with boundary terms arising
from total covariant derivatives in the bulk action. A piece
of the extended GHY boundary term evaluated on the two-
dimensional hypersurfaces St remained. This part, which is
given by Eq. (21d), was expressed completely in terms of
quantities living in St.
Now, the resulting bulk Lagrangian of Eq. (21b) involves

four classes of terms. First, there are contributions depend-
ing on R and Rab, i.e., they encode the intrinsic geometry
of Σt. Such terms occur in GR, the u, and the sab sectors,
but not for snn. Second, terms quadratic in the extrinsic
curvature or its trace are found for all sectors. Third, each
sector comes with a Lie derivative of the corresponding
SME coefficients along mμ. Last but not least, there are
three contributions involving the ADM acceleration. Note
that the surface term of Eq. (21d) does not depend on the
background field snn, which is closely related to the
observation of there being no term of the form snnR in
Lb. This property is to be explained in more detail below.

III. PALATINI METHOD OF VARIATION

Our recent work [53] is dedicated to a derivation of the
modified Einstein equations based on Eq. (1) by resorting
to the Hamiltonian formulation of this theory. Our incentive
was to verify whether or not the Hamiltonian approach
gives rise to the same dynamics as does the covariant
formulation. The reply to this question was found to be in
the affirmative, i.e., both approaches can be neatly con-
nected to each other.
In the following, we intend to derive the dynamical field

equations again, but this time by using a different approach
that incorporates a detailed analysis of the boundary terms.
Such a treatment can be beneficial in the future to explore
the limit of asymptotic flatness. Besides, as an extension of
Ref. [53], we now allow for a nonzero shift vector Na

where Na≕ g0a. Doing so poses a natural next step, as the
shift vector is needed to change coordinates when going
from one spatial hypersurface Σt to the next.
Studying a dynamical process in numerical relativity,

e.g., the frame dragging effect of a Kerr black hole or the
collapse of a star into a black hole, one finds that
coordinates can get twisted such that coordinate singular-
ities and even physical singularities may arise. There exists
a gauge known as minimal distortion [56,59,120] that relies
on the shift vector as a means to compensate the twisting of
coordinate lines. Thus, to be able to treat gravity systems
numerically, a nonzero shift vector seems indispensable.
Now, we will dedicate ourselves to the dynamics of the

modified-gravity theory stated in Eq. (1). To do so, we
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consider the Palatini method of variation [45], in which
coordinate and momentum variables are treated as inde-
pendent. In our case, the Palatini action is expressed in
terms of a generic induced metric qab and the correspond-
ing canonical momentum Πab as

SG ¼
Z

t1

t2

dt

�Z
Σt

Πabq̇abd3y −HGðΠab; qabÞ
�
: ð22Þ

Here, HG is the total Hamiltonian containing a boundary
term that may be of the form of Eq. (21d). By considering

δHG ¼
Z
Σt

d3yðPabδqab þ F abδΠabÞ; ð23Þ

a variation of the action in Eq. (22) leads to

δSG ¼
Z

t2

t1

dt
Z
Σt

d3y
h
ðq̇ab − F abÞδΠab

−
�
Π̇ab þ Pab

�
δqab

i
; ð24Þ

where we have discarded a contribution that arises from an
integration by parts, since δqab ¼ 0 on the boundary, by
definition. In principle, the above variation may lead to
nonvanishing boundary terms depending on covariant
derivatives of δqab along the normal direction rc of St.
Also, one may have to include boundary terms already
contained in the action. In a rigorous treatment, each of
these contributions should be kept track of in the derivation.
Now, the requirement that the action be stationary

implies the following field equations in the Palatini
formalism:

q̇ab ¼ F ab; ð25aÞ

Π̇ab ¼ −Pab: ð25bÞ

It is challenging to invert the extrinsic curvature for the
canonical momentum, i.e., to compute the Hamiltonian HG

when all SME coefficients u; snn, and sab are present
simultaneously. Therefore, we will be restricting ourselves
to three separate analyses below, as we already did in
previous works [52,53,79].
On the one hand, in each of these cases, Eq. (25a) gives

rise to the generic geometric identity [45,48,50]

q̇ab ¼ 2NKab þDaNb þDbNa; ð26Þ

which, in principle, corresponds to the definition of the
extrinsic curvature. This relation remains unmodified, even
in the presence of u and sμν, since the geometric setting is
still pseudo-Riemannian geometry.
On the other hand, Eq. (25b) encodes the dynamics of

the modified-gravity theory under study. Thus, we will

focus on the latter, as it describes how gravitational
dynamics is affected by diffeomorphism violation.
However, if we were working with Eq. (25b) directly,
there would be no chance of taking into account possible
boundary terms. Instead, in what follows, we will cast the
action of Eq. (21) into the form of Eq. (24) and compute the
variation of the Hamiltonian HG for qab. After taking
proper care of boundary terms, the integral over Σt can be
dropped, which leads us automatically to Eq. (25b), evalu-
ated for the specific sector explored.

A. Dynamics in the u sector

First, we focus on the u sector, i.e., let Lu be the
Lagrange density following from Eq. (21c) such that
Lu ≔ Lbjsnn¼sab¼0. The canonical momentum then reads

πab ≔
∂Lu

∂q̇ab

¼
ffiffiffi
q

p
2κ

�
ð1 − uÞðKab − qabKÞ þ 1

N
qabLmu

�
: ð27Þ

Recall that the extrinsic curvature proper is the standard
quantity of pseudo-Riemannian geometry; cf. Eq. (26).
However, relationships between canonical variables and
geometrical quantities are affected by diffeomorphism
violation, which is observed here.
The ADM-decomposed action SG;u is

SG;u ¼
Z

t2

t1

dt
Z
Σt

d3yLu: ð28Þ

To apply the Palatini formalism, the latter must be
expressed in terms of a Hamiltonian via an inverse
Legendre transformation:

SG;u ¼
Z

t2

t1

dt

	Z
Σt

πabq̇abd3y −HΣ;u þ BS;u



; ð29aÞ

with the bulk Hamiltonian

HΣ;u ¼
Z
Σt

d3y

�
−
N

ffiffiffi
q

p
2κ

½ð1 − uÞR − 2acDcu�

þ 2κNffiffiffi
q

p ð1 − uÞ
	
πabπab −

π2

2




þ Lmu
1 − u

	
π −

3

4

ffiffiffi
q

p
κN

Lmu



þ 2πabDaNb

�
; ð29bÞ

and the boundary term of Eq. (21d) restricted to u:

BS;u ¼
I
St

d2θ
N

ffiffiffi
σ

p
κ

ð1 − uÞk: ð29cÞ

Computational details on how to actually obtain a bulk
Hamiltonian are provided by Ref. [52]. In general, the
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Hamilton density follows from the Lagrange density via a
Legendre transformation where the generalized velocities
are expressed in terms of the canonical momenta. In
particular, for the Hamiltonian stated in Eq. (29b), we
refer to Sec. IV. B. 5 of the latter paper. The crucial
difference between both derivations is that we avoided
integrations by parts in our current article. This becomes
evident in the second and the last terms of Eq. (29b) when
compared to the Hamiltonian in Eq. (68) of Ref. [52].
In the following, we intend to evaluate the variations for

qab of each term in HΣ;u that contributes to the action of
Eq. (29). The variation of the contribution including the
Ricci tensor requires an integration by parts, which gen-
erates a nonvanishing boundary term on St. We proceed to
present the calculation with some detail. Although the latter
bears many similarities with the corresponding computa-
tion done in GR, its exposition is still expected to be
worthwhile for the reader, as it may serve as a foundation to
understand the more intricate analysis in the sab sector to be
done later. As a warm-up, it is useful to consider the
variation

δðN ffiffiffi
q

p
RÞ ¼ −N

ffiffiffi
q

p
Gabδqab − N

ffiffiffi
q

p ðDcNÞδVc

þ ffiffiffi
q

p
DcðNδVcÞ; ð30Þ

where we defined the contravariant Einstein tensor on Σt

by Gab ≔ Rab − ðR=2Þqab. Moreover, we introduced the
quantity

δVc ¼ qabδΓc
ab − qacδΓb

ab; ð31Þ
which includes variations of the Christoffel symbols Γc

ab
of Σt. They can be expressed in terms of variations of the
corresponding induced metric:

δΓc
ab ¼

1

2
qcfðDaδqfb þDbδqfa −DfδqabÞ: ð32Þ

By taking into account that tangential derivatives of δqab
vanish on St, an integration by parts provides

δðN ffiffiffi
q

p
RÞ ¼ ffiffiffi

q
p ð−NGab þDaDbN − qabDcDcNÞδqab
þ ffiffiffi

q
p

DcðNδVcÞ: ð33Þ

Applying these ingredients to the u sector leads to

δ

Z
Σt

d3y
N

ffiffiffi
q

p
2κ

ð1 − uÞR

¼
Z
Σt

d3y
ffiffiffi
q

p
2κ

�
−Nð1 − uÞGab þDaDb½ð1 − uÞN�

− qabDcDc½ð1 − uÞN�
�
δqab

þ
Z
Σt

d3y
ffiffiffi
q

p
2κ

Dc½Nð1 − uÞδVc�: ð34Þ

The last integral on the right-hand side can be evaluated
with Gauss’ theorem to provide

Z
Σt

d3y
ffiffiffi
q

p
2κ

Dc½Nð1 − uÞδVc�

¼
I
St

d2θ
N

ffiffiffi
σ

p
2κ

ð1 − uÞrcδVc: ð35Þ

A derivative of δqab in the normal direction, which is
nonzero, occurs on the right-hand side of the latter
relationship. In particular,

rcδVc ¼ −σabrcDcδqab; ð36Þ

such that we arrive at

δ

Z
Σt

d3y
N

ffiffiffi
q

p
2κ

ð1 − uÞR ¼
Z
Σt

d3y
ffiffiffi
q

p
2κ

n
−Nð1 − uÞGab þDaDb½ð1 − uÞN� − qabDcDc½ð1 − uÞN�

o
δqab − δBR;u

¼
Z
Σt

d3y
N

ffiffiffi
q

p
2κ

n
−ð1 − uÞGab þ ðDa þ aaÞ½ðDb þ abÞð1 − uÞ�

− qabðDc þ acÞ½ðDc þ acÞð1 − uÞ�
o
δqab − δBR;u; ð37aÞ

with a boundary term denoted as δBR;u, which reads

δBR;u ¼
I
St

d2θ
N

ffiffiffi
σ

p
2κ

ð1 − uÞσabrcDcδqab: ð37bÞ

Here, we employed the valuable relationship Nac ¼ DcN relating the ADM acceleration ac to the lapse function N, see,
e.g., Ref. [56,59]. Thus, terms of the form Dc þ ac arise when covariant derivatives act on products of the lapse function N
and functions of the background field such as the combination 1 − u.
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The variation of the term in Eq. (29b) depending only on
the ADM acceleration provides

δ

Z
Σt

d3y
N

ffiffiffi
q

p
κ

ð−acDcuÞ ¼
Z
Σt

d3y
N

ffiffiffi
q

p
2κ

ð−qabacDcu

þ 2aðaDbÞuÞδqab: ð38Þ

Whenever a pair of indices in a tensor is enclosed by
parentheses, the object is understood to be symmetrized in
these indices.
We continue with the remaining variations necessary.

Recall that the Lie derivative of a generic tensor field
with respect to a vector field is a measure of how the tensor
field changes infinitesimally due to the flux defined by
the vector field. Therefore, the Lie derivative of a generic
tensor field can be defined without resorting to any
(pseudo-)Riemannian metric [119]. So the variation of
the Lie derivative of u along mμ vanishes:

δ

Z
Σt

d3yLmu ¼ 0: ð39Þ

Thus, we infer that

δ

Z
Σt

d3y
Lmu
1 − u

	
π −

3

4

ffiffiffi
q

p
κN

Lmu




¼
Z
Σt

d3y
Lmu
1 − u

	
πab −

3

8

ffiffiffi
q

p
κN

qabLmu



δqab: ð40Þ

Furthermore, for the canonical-momentum terms,

δ

Z
Σt

d3y
2κNffiffiffi
q

p ð1 − uÞ
	
πcdπcd −

π2

2




¼
Z
Σt

d3y
2κNffiffiffi
q

p ð1 − uÞ
�
2πacπbc − ππab

−
1

2

	
πcdπ

cd −
π2

2



qab

�
δqab: ð41Þ

Next, the contribution depending on the components of the
shift vector provides

δ

Z
Σt

d3yπcdDcNd

¼
Z
Σt

d3y
ffiffiffi
q

p
2

Dc

	
2NðaπbÞc − πabNcffiffiffi

q
p



δqab: ð42Þ

Finally, the variation of the boundary term in the action,
Eq. (29c), remains to be computed:

δBS;u ¼
I
St

d2θ
N

ffiffiffi
σ

p
κ

ð1 − uÞδk; ð43aÞ

with the variation of the extrinsic-curvature scalar k on St,
which can be expressed as

δk ¼ δðσabDarbÞ ¼
1

2
σabrcDcδqab: ð43bÞ

We see that the latter cancels the boundary term of
Eq. (37b), which results from varying the contribution
proportional to the Ricci scalar: δBS;u − δBR;u ¼ 0.
After canceling the boundary terms, putting together the

individual pieces of Eqs. (37a) (with δBR;u discarded), (38),
(40), (41), and (42) and inserting those into the second line
of Eq. (24) leads to an integral of a second-rank tensor over
Σt, which must be equal to zero. The foliation and,
therefore, Σt is arbitrary, so is δqab. Thus, the integral is
equal to zero if and only if the integrand vanishes. This line
of reasoning implies the field equations:

π̇ab ¼
ffiffiffi
q

p
2κ

�
−Nð1 − uÞGab þDaDb½ð1 − uÞN� − qabDcDc½ð1 − uÞN�

�

−
2κNffiffiffi
q

p ð1 − uÞ
�
2πacπbc − ππab −

1

2

	
πcdπ

cd −
π2

2



qab

�
þ N

ffiffiffi
q

p
2κ

ð2aðaDbÞu − qabacDcuÞ

−
Lmu
1 − u

	
πab −

3

8

ffiffiffi
q

p
κN

qabLmu



−

ffiffiffi
q

p
Dc

	
2NðaπbÞc − πabNcffiffiffi

q
p



: ð44Þ

The reader can check that the latter correctly reduce to ðq⃗�QÞij ¼ 0with Eq. (30a) in Ref. [53] in the limit of Na ¼ 0. These
field equations are the physical part of the modified Einstein equations onM [31] and encode the dynamical information of
the theory described by Eq. (1) with sμν ¼ 0. Modifications of the Hamiltonian and momentum constraints from GR have
been separated from the latter.
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B. Dynamics in the snn sector

The computations are similar for the snn sector. We
define the Lagrange density from Eq. (21c) by
L1 ≔ Lbju¼sab¼0. The canonical momentum follows from
the latter as before:

pab≔
∂L1

∂q̇ab

¼
ffiffiffi
q

p
2κ

�
ð1−snnÞðKab−qabKÞþ 1

2N
qabLmsnn

�
; ð45Þ

i.e., the relationship between the canonical momentum and
the extrinsic curvature is modified in a way quite similar to
Eq. (27) for u. Then, the ADM-decomposed action is

SG;1 ¼
Z

t2

t1

dt
Z
Σt

d3yL1: ð46Þ

To apply the Palatini formalism, the latter is cast into the
following more suitable form:

SG;1 ¼
Z

t2

t1

dt

	Z
Σt

pabq̇abd3y −HΣ;1 þ BS



; ð47aÞ

with the Hamiltonian in the bulk,

HΣ;1 ¼
Z
Σt

d3y

�
−
N

ffiffiffi
q

p
2κ

ðR − acDcsnnÞ

þ 2κNffiffiffi
q

p ð1 − snnÞ
	
pabpab −

p2

2




þ Lmsnn

2ð1 − snnÞ
	
p −

3

8

ffiffiffi
q

p
κN

Lmsnn


þ 2pabDaNb

�
;

ð47bÞ

and the boundary term

BS ¼
I
St

d2θ
N

ffiffiffi
σ

p
κ

k; ð47cÞ

corresponding to that of GR. The principal derivation of the
bulk Hamiltonian of Eq. (47b) agrees with that presented in
Sec. IV. B. 4 of Ref. [52]. The canonical momentum is now
denoted as pab, which is the notation taken over from
Ref. [53]. As for the u sector, integrations by parts are not
performed for the current analysis. Consequently, the

second and last terms of Eq. (47b) differ from the
corresponding contributions in Eq. (62) of Ref. [52].
Computing the variations works such as it does for u. It is

even a bit simpler, since a term that multiplies the curvature
scalar R with snn is absent. From the point of view
established until this moment, this property makes perfect
sense. The boundary term of Eq. (47c) does not contain a
piece proportional to snn, which would have to be canceled
against the boundary term arising from the variation of R,
cf. Eqs. (37b), (43) for the u sector.
The remaining variations can be computed in a manner

analogous to how we did it in Eqs. (40), (41), and (42) for u.
The Ricci scalar term does not involve the coefficient snn.
Therefore, the variation of this term gives rise to the same
boundary term on St that must also be considered for the
EH action. We will denote the latter as −δBR. The total
variation then reads

δ

Z
Σt

d3y
N

ffiffiffi
q

p
2κ

R ¼
Z
Σt

d3y
ffiffiffi
q

p
2κ

ðDaDbN − qabDcDcN

− NGabÞδqab − δBR; ð48aÞ

with

δBR ¼
I
St

d2θ
N

ffiffiffi
σ

p
2κ

σabrcDcδqab: ð48bÞ

Here, we have used the result of Eq. (37b) for u ¼ 0. We
now immediately consider the variation of the boundary
term in the action, i.e., Eq. (47c), which amounts to

δBS ¼
I
St

d2θ
N

ffiffiffi
σ

p
κ

δk: ð49Þ

By benefiting from Eq. (43b), the boundary term of
Eq. (48b) compensates the variation of Eq. (49), as
expected: δBS − δBR ¼ 0.
For the contribution in Eq. (47b) depending on the ADM

acceleration we have

δ

Z
Σt

d3y
N

ffiffiffi
q

p
2κ

ð−acDcsnnÞ ¼
Z
Σt

d3y
N

ffiffiffi
q

p
4κ

ð−qabacDcsnn

þ 2aðaDbÞsnnÞδqab; ð50Þ

cf. Eq. (38). Furthermore,

δ

Z
Σt

d3y
Lmsnn

2ð1 − snnÞ
	
p −

3

8

ffiffiffi
q

p
κN

Lmsnn



¼
Z
Σt

d3y
Lmsnn

2ð1 − snnÞ
	
pab −

3

16

ffiffiffi
q

p
κN

qabLmsnn


δqab; ð51aÞ

δ

Z
Σt

d3y
2κNffiffiffi

q
p ð1 − snnÞ

	
pcdpcd −

p2

2



¼

Z
Σt

d3y
2κNffiffiffi

q
p ð1 − snnÞ

�
2pacpb

c − ppab −
1

2

	
pcdpcd −

p2

2



qab

�
δqab: ð51bÞ

THE BOUNDARY OF THE GRAVITATIONAL STANDARD-MODEL … PHYS. REV. D 108, 104013 (2023)

104013-11



Compiling the variations of Eqs. (48a) (with δBR dropped), (50), (51) as well as the analog of Eq. (42) and inserting them
into the second line of Eq. (24) implies another second-rank tensor integrated over Σt, which has to vanish. The same
argument that we previously employed for u results in the dynamical part of the modified Einstein equations:

ṗab ¼
ffiffiffi
q

p
2κ

ð−NGab þDaDbN − qabDcDcNÞ − 2κNffiffiffi
q

p ð1 − snnÞ
�
2pacpb

c − ppab −
1

2

	
pcdpcd −

p2

2



qab

�

þ N
ffiffiffi
q

p
4κ

ð2aðaDbÞsnn − qabacDcsnnÞ − Lmsnn

2ð1 − snnÞ
	
pab −

3

16

ffiffiffi
q

p
κN

qabLmsnn


−

ffiffiffi
q

p
Dc

	
2NðapbÞc − pabNcffiffiffi

q
p



: ð52Þ

The validity of ðq⃗�J1Þij ¼ 0 based on Eq. (35a) in Ref. [53]
is confirmed for Na ¼ 0. Similarly, Eq. (52) describes the
dynamics of the modified-gravity theory governed by L1.

C. Dynamics in the sab sector

Last but not least, let L2 be the Lagrange density based
on Eq. (21c) restricted to a nonzero sab only, i.e.,
L2 ≔ Lbju¼snn¼0. Then, the canonical momentum is
given by

Pab≔
∂L2

∂q̇ab

¼
ffiffiffi
q

p
2κ

�
Kab−qabK−ðsacKc

bþsbcKc
aÞ− 1

2N
Lmsab

�
:

ð53Þ

Due to the tensorial nature of sab, the latter relation has a
more complicated structure as did Eqs. (27), (45) for u and
snn, respectively. Therefore, it does not come as a surprise

that the sab sector is involved from a calculational per-
spective. After all, it contains six independent coefficients,
which makes it challenging to invert Eq. (53) for the
extrinsic curvature in a closed form. Therefore, as we did
before in Refs. [52,53], we will be working at first order in
sab and derivatives thereof.
Applying the (3þ 1) decomposition to the action then

implies

SG;2 ¼
Z

t2

t1

dt
Z
Σt

d3yL2: ð54Þ

Again, the latter is expressed in a form adequate for the
Palatini formalism:

SG;2 ¼
Z

t2

t1

dt

	Z
Σt

Pabq̇abd3y −HΣ;2 þ BS;2



; ð55aÞ

with the bulk Hamiltonian

HΣ;2 ¼
Z
Σt

d3y
�
−
N

ffiffiffi
q

p
2κ

ðRþ sabRab þ abDasabÞ þ
	
Pab −

P
2
qab



Lmsab þ

2κNffiffiffi
q

p
�
PabPab − ð1 − saaÞ

P2

2

− 2sabðPabP − Pa
cPcbÞ

�
þ 2PabDaNb

�
þO½ðsabÞ2�: ð55bÞ

The symbol O indicates that we have approximated the
Hamiltonian to linear order in the background field and
derivatives thereof when we expressed the extrinsic curva-
ture in terms of momenta via Eq. (53). Moreover, the
boundary term is

BS;2 ¼
I
St

d2θ
N

ffiffiffi
σ

p
2κ

ð2kþ kABsABÞ: ð55cÞ

Basically, major parts of Sec. IV. B. 2 of Ref. [52] can be
taken over to the derivation of the bulk Hamiltonian in
Eq. (55b), in particular, Eqs. (45), (46), and (49) of the latter
paper. Now the canonical momentum is called Pab to be
consistent with the notation introduced in the follow-up

work [53]. To arrive at Eq. (55b), the derivation must only
be adapted in two respects. First, in contrast to what we did
in Ref. [52], the Lie derivative Lmsab is now taken into
account at first order. Second, as already pointed out for the
u and snn sectors, integrations by parts are not carried out
for the third and last terms of Eq. (55b). Hence, these terms
are different from the corresponding ones in the Hamil-
tonian for the purely spacelike sector of sμν, which is stated
in our earlier article [52] on the ADM formalism of the
minimal gravitational SME.
Obtaining the dynamical field equations through the

variation of the action is tedious. However, the computa-
tional steps involved are similar to those of the u and snn

sectors investigated before. We need the variation of the
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Ricci scalar contribution, which was already computed in
Eq. (48a). In a manner analogous to how the latter implies a
boundary term on St—recall Eqs. (37b), (48b)—the varia-
tion of the contribution in Eq. (55b) that involves the Ricci
tensor provides another boundary term on St. To compute
this variation, it is convenient to consider

δðN ffiffiffi
q

p
sabRabÞ ¼

N
2

ffiffiffi
q

p
sabRabqcdδqcd þ

ffiffiffi
q

p
DcðNδQcÞ

−DcðNsabÞδΓc
ab þDbðNsabÞδΓc

ac;

ð56aÞ

with

δQc ¼ sabδΓc
ab − sacδΓb

ab: ð56bÞ

We also consult the following expression in 3 dimensions
analogous to Eq. (D13) of Ref. [52], which is

rcδQc ¼ −
1

2
σdaσ

e
bsabrcDcδqde; ð56cÞ

where we discarded the term proportional to snn, as the
latter coefficient would have to be replaced by srr ¼ 0 in
this sector. By doing so, we arrive at the variation

δ

Z
Σt

d3y
N

ffiffiffi
q

p
2κ

scdRcd ¼
Z
Σt

d3y
ffiffiffi
q

p
4κ

fqab½NRcdscd −DcDdðNscdÞ� þDc½DaðNsbcÞ þDbðNsacÞ−DcðNsabÞ�gδqab − δBR;s

¼
Z
Σt

d3y
N

ffiffiffi
q

p
4κ

fqab½Rcd − ðDc þ acÞðDd þ adÞ�scd þ ðDc þ acÞ½ðDa þ aaÞsbc þ ðDb þ abÞsac

− ðDc þ acÞsab�gδqab − δBR;s; ð57aÞ

where

δBR;s ¼
I
St

d2θ
N

ffiffiffi
σ

p
2κ

σdaσ
e
bsabrcDcδqde: ð57bÞ

Note that xTensor is powerful when it comes to computing
results like Eq. (57a), but it omits boundary terms such as
that stated in Eq. (57b). Hence, these must be taken into
account by hand. Now, the total boundary term corresponds
to the sum of Eq. (48b), which results from the variation of
the EH term, and of Eq. (57b), which we have just obtained.
So we define

δBR;2 ≔ δBR þ δBR;s: ð58Þ

Note also the compelling form of Eq. (57a) that depends
only on combinations of the covariant derivative and the
ADM acceleration, Dc þ ac.
Moreover, the variation of the term involving the ADM

acceleration can also be cast into an appealing form as
follows:

δ

Z
Σt

d3y
N

ffiffiffi
q

p
2κ

acDdscd

¼
Z
Σt

d3y

	
−Dcϒabc þ N

ffiffiffi
q

p
4κ

qabacDdscd


δqab; ð59aÞ

with

ϒabc ¼ N
ffiffiffi
q

p
4κ

ð2aðasbÞc − sabac þ qabsdcadÞ: ð59bÞ

The last term of Eq. (59a) results directly from varying
ffiffiffi
q

p
.

The remaining part can be written as a total covariant
derivative of the third-rank tensor in Eq. (59b). In contrast,
it is impossible to state the variations of the contributions
ð ffiffiffi

q
p

=κÞacDcu and
ffiffiffi
q

p
=ð2κÞacDcsnn in Eq. (29b) and

Eq. (47b), respectively, in a similar fashion.
The Lie derivative of sab along mμ is independent of the

induced metric on Σt, as we argued around Eq. (39). So,

δ

Z
Σt

d3yLmsab ¼ 0: ð60Þ

Then, the variation of the terms depending on Lie deriv-
atives of the background tensor is

δ

Z
Σt

d3y

	
Pcd −

P
2
qcd



Lmscd

¼
Z
Σt

d3y

�
Pa

cLmscb þ Pb
cLmsca

−
1

2
ðPabqcdLmscd þ PLmsabÞ

�
δqab: ð61Þ

Varying the contributions involving the canonical momen-
tum is lengthy, but xTensor provides the result in a
straightforward manner:
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δ

Z
Σt

d3y
2κNffiffiffi

q
p

�
PcdPcd −

1

2
ð1 − sccÞP2 − 2scdðPPcd − Pc

ePdeÞ
�

¼
Z
Σt

d3y
κN
2

ffiffiffi
q

p
��ð1 − sccÞP2 − 2PcdPcd þ 4scdðPPcd − Pc

ePdeÞ
�
qab

þ 8
h
PacPc

b þ sacPcdPdb þ sbcPcdPda − sacPPc
b − sbcPPc

a

þ scdðPa
cPd

b − PcdPabÞ
i
þ 2P2sab − 4ð1 − sccÞPPab

�
δqab: ð62Þ

Finally, we should not forget to vary the boundary term in
the action, Eq. (55c):

δBS;2 ¼
I
St

d2θ
N

ffiffiffi
σ

p
2κ

σabrcDcδqab

þ
I
St

d2θ
N

ffiffiffi
σ

p
2κ

σmiσ
n
jsijrkDkδqmn; ð63aÞ

where we have used

δkij ¼ σmiσ
n
jsijrkDkδqmn: ð63bÞ

As we found for the u and snn sectors, Eq. (63) neatly
cancels the sum in Eq. (58): δBS;2 − δBR;2 ¼ 0.
Now we are ready to compile Eqs. (48a) (with δBR

omitted), (57a) (with δBR;s discarded), (59), (61), and (62)
as well as Eq. (42) adapted to the current sector. After
inserting these variations into the second line of Eq. (24)
and dropping the integral over Σt, we can cast the
dynamical part of the modified Einstein equations into
the following form:

Ṗab ¼
ffiffiffi
q

p
2κ

ð−NGab þDaDbN − qabDcDcNÞ þ N
ffiffiffi
q

p
4κ

�
qab½Rcd − ðDc þ acÞðDd þ adÞ þ acDd�scd

þ ðDc þ acÞ½ðDa þ aaÞsbc þ ðDb þ abÞsac − ðDc þ acÞsab�
�
−Dc

	
N

ffiffiffi
q

p
4κ

h
2aðasbÞc − sabac þ qabsdcad

i


þ 1

2
ðPabqcdLmscd þ PLmsabÞ − ðPa

cLmscb þ Pb
cLmscaÞ

−
κN
2

ffiffiffi
q

p
��ð1 − sccÞP2 − 2PcdPcd þ 4scdðPPcd − Pc

ePdeÞ
�
qab þ 8

h
PacPc

b þ sacPcdPdb

þ sbcPcdPda − sacPPc
b − sbcPPc

a þ scdðPa
cPd

b − PcdPabÞ
i
þ 2P2sab − 4ð1 − sccÞPPab

�

−
ffiffiffi
q

p
Dc

	
2NðaPbÞc − PabNcffiffiffi

q
p



þO½ðsabÞ2�: ð64Þ

The latter is a generalization of ðq⃗�J2Þij ¼ 0 given in
Eq. (38a) of Ref. [53] to a nonzero shift vector.
Equations (44), (52), and (64) completely govern the
dynamics of the u, snn, and sab sectors of the modified-
gravity theory based on Eq. (1). The dynamical
field equations of GR in Eq. (28f) of Ref. [49] are
reproduced when diffeomorphism violation is switched
off, u ¼ snn ¼ sab ¼ 0, as expected. The complexity of
Eq. (64) illustrates the challenge of dealing with all sectors
simultaneously, which is a manifestation of the profoundly
nonlinear character of Eq. (1). At the moment the best
strategy seems to separate the sectors from each other in
phenomenological studies.

IV. FINAL REMARKS

In this work, we have investigated a modification of GR
governed by theu- and sμν-type background fields contained
in the minimal gravitational SME. The background fields
were assumed to be nondynamical, which implies diffeo-
morphism breaking. Having carried out the ADM decom-
position of this theory in previous articles, our current focus
was on a rigorous treatment of the gravitational boundary
terms, which are unavoidable in this context.
To do so, we decomposed the spacetime boundary into two

spacelike and one timelike hypersurface. As a consequence,
the extended GHY boundary term split into three parts, each
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evaluated on one of the hypersurfaces previously referred to.
By treating total-derivative terms in the action suitably,
we were able to cancel corresponding contributions of the
extended GHY boundary term on the spacelike hypersurfa-
ces. Foliating the timelike part of the boundary properly into
two-dimensional hypersurfaces St, the remaining boundary
contributions neatly combined to give rise to boundary terms
on St. This procedure led us to the ADM-decomposed action
of Eq. (21), which is one of our central results.
Variations of the boundary term on St for the induced

metric were demonstrated to compensate further boundary
terms originating from varying the Ricci scalar and Ricci
tensor, respectively. Compiling the variations of each
contribution in the action for the induced metric implied
the dynamical field equations stated in Eqs. (44), (52),
and (64) for each of the three sectors of the ADM-
decomposed modified-gravity theory. A bonus of this
new analysis is that it generalizes some of the findings
in our previous paper [53] to a nonzero shift vector.
The formalism presented and the results obtained are a

well-suited starting point for phenomenology in black-hole
physics affected by diffeomorphism violation. Moreover,

from a theoretical viewpoint they show that explicit diffeo-
morphism violation in gravity does not necessarily imply
internal inconsistencies—at least not at the level studied here
and in our previous papers [52,53]. Time will show whether
or not this conclusion can be upheld under different criteria.
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