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In this work we analyze the existence of electrically charged scalar clouds which are bound states of a
complex-valued massive scalar field in the background of subextremal and extremal Kerr-Newman black
holes (BH). In particular, we reanalyze neutral (uncharged) clouds in extremal Kerr BHs. For the extremal
scenarios we have implemented a novel technique which allows us to obtain regular clouds at the BH
horizonHþ which turn out to be connected “continuously”with the cloud solutions in the subextremal case
even if some derivatives of the scalar field are unbounded at the horizon. In particular, for subextremal
BHs we have established regularity conditions atHþ, by demanding that the field and its radial derivatives
are bounded there, but in the extremal scenarios we relax this last condition while demanding that some
scalar invariants are well-behaved at Hþ. Furthermore we have implemented an integral technique to
understand and justify in a simple and heuristic way the existence of such cloud configurations in those BH
backgrounds.
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I. INTRODUCTION

Black holes (BH) are one of the most enigmatic and
interesting predictions of Einstein’s theory of general rela-
tivity (GR). Nowadays these objects are considered to be
beyond the realm of theoretical speculations as currently we
count with strong observational evidence about its presence
in the universe, namely, from the detection of gravitational
waves by the LIGO-VIRGO-KAGRA Collaboration [1]
which are emitted, among other sources, by the inspiriling
and collision of two BHs, and also from the observation of
the shadows produced by massive black holes at the center of
the galaxies M87 [2] and the Milky Way [3], respectively.
From a theoretical perspective, BHs seem to be very

simple objects, since according to the uniqueness
theorems [4,5] together with the no-hair conjecture [6,7],
they can be described by only three parameters: mass (M),
angular momentum (J) and electric charge (Q) [6,7]. More
specifically, those theorems establish that all regular, sta-
tionary, axisymmetric and asymptotically flat BH solutions
(AFBH) of electrovacuum Einstein’s field equations belong
to the Kerr-Newman family of solutions which are char-
acterized by those three parameters.
Furthermore, these mathematical results and conjectures

are supported by several no-hair theorems showing that
several nontrivial fields cannot be present outside a BH. In
particular, when one considers the Einstein-Klein-Gordon

(EKG) system, these theorems show that if some energy
conditions are satisfied [8–12], the only possible scalar field
Ψ (real or complex) solution present outside a static and
spherically symmetric AFBH is the trivial oneΨ≡ 0, and so
the only AFBH solution is the Schwarzschild solution.
Remarkably, this state of affairs can change dramatically

if some spacetime symmetries are dropped and/or the
energy conditions are abandoned in those theorems. For
instance, when one introduces rotation (while keeping the
energy conditions) it is possible to find nontrivial solutions
for a complex-valued scalar field outside a BH. Hod was
perhaps the first to show the existence of bound-state
(exact) solutions for massive but otherwise free scalar fields
of that kind in the background of extremal and near
extremal Kerr BHs [13,14]. Since the background was
fixed and the scalar field was a test field that does not
backreact in the Kerr spacetime, such solutions were
termed scalar clouds and were not considered as genuine
hairy solutions, i.e. solutions of the full EKG system.
Later, Hod himself extended his results by finding exact
nontrivial electrically charged scalar-cloud solutions out-
side (extremal and near-extremal) Kerr-Newman BHs
(KNBH) [15,16]. Presumably motivated by Hod’s discov-
eries, Herdeiro and Radu [17,18] (hereafter referred to as
HR) generalized those results in several instances. First,
they found numerically scalar clouds in the background of
subextremal Kerr BHs, and then, more importantly, they
computed numerically genuine rotating, stationary, axisym-
metric and AFBH hairy solutions by taking into account the
backreaction of the field in the spacetime and thus, solving
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self-consistently the full EKG system under suitable
regularity conditions at the horizon Hþ. Moreover, they
showed that those hairy solutions are continuously con-
nected with rotating boson star solutions in the limit when
the BH horizon shrink to ‘zero’.
Benone et al. [19] extendedHod andHRcloud analysis by

studying electrically charged scalar-field clouds in the back-
ground of subextremal KNBH. More recently, scalar clouds
and rotating hairy AFBH solutions have been computed by
solving numerically the full EKG system using spectral
methods [20,21], and confirmed the results reported by HR.
Delgado et al. [22] obtained hairy rotating charged

AFBH solutions by solving numerically the Einstein-
Klein-Gordon-Maxwell system, which extends the charged
scalar-cloud analysis in a Kerr-Newman spacetime per-
formed earlier by Benone et al. [19]. All those BH solutions
with a nontrivial scalar hair represent some counterexam-
ples to the no-hair conjecture.
Finally, let us mention that previously we analyzed

the existence of clouds [23] and lack thereof [24] in the
background of Kerr and Reissner-Nordström BHs, respec-
tively, by devising an integral method that is usually
employed in proving the no-hair theorems within, but
not exclusively, spherically symmetric scenarios. This
technique provides a heuristic understanding as to why
the no-scalar-hair theorems in spherically symmetric and
static spacetimes cannot be extended to the axisymmetric
and rotating scenarios that leads precisely to the existence
of cloud and hairy solutions of the sort alluded above.
In this paper we extend the results of Refs. [23,24] in

several respects. First, we analyze the existence of charged
scalar clouds in the background of subextremal KNBH,
and then we study those clouds in the extremal case by
introducing a novel technique that allows us to impose
rigorous regularity conditions at the BH horizon Hþ even
when working with Boyer-Lindquist (BL) type of coor-
dinates that are inherently singular at the horizon. In
particular, we reanalyze the uncharged (neutral) clouds in
the extremal Kerr background. This novel treatment con-
trasts drastically with a similar analysis performed pre-
viously by us in the extremal Kerr spacetime [25] where
superregularity conditions on the scalar-field were con-
sidered by imposing boundedness in the radial derivatives
of the scalar field at Hþ. Those conditions, while reason-
able, were not necessary and led to inconsistencies that
could only be remedy if the “quantum numbers” ðn; l; mÞ
that label the cloud solutions satisfied some Diophantine
equation of the Pell-type and for a large number of nodes
in the radial part of the field (i.e. 1 ≪ n) [25]. In this paper
we show instead that the radial derivatives of the scalar
field with respect to the BL coordinate r, notably the first
radial derivative, can be unbounded at Hþ and still leads
to genuinely regular scalar clouds without the need of
imposing any further conditions on the “quantum numbers”
ðn; l; mÞ provided that the divergence in the radial

derivative is such that some invariant scalars formed from
first derivatives (e.g. the kinetic term for the field in the
Lagrangian) remain bounded, notably at Hþ.
As stressed above, this technique is applied to (electri-

cally) charged cloud solutions in the background of extremal
KN spacetime as well. We check that our solutions using that
technique are in agreement with Hod’s exact solutions in
those two extremal backgrounds [13,15]. Finally, we show
that those regular cloud solutions around exact extremal
Kerr and KN BHs, unlike the superregular clouds in such
extremal scenarios (cf. Ref. [25]), can be connected con-
tinuously with the cloud solutions around the corresponding
subextremal BHs in the limit of extremality. This feature
hints towards the robustness of our method.

II. CHARGED SCALAR CLOUDS

In our study we consider a (test) massive, complex and
charged scalar field Ψ around a KNBH, which in Boyer-
Lindquist coordinates is described by the following space-
time metric,

ds2 ¼ −
�
Δ − a2 sin2 θ

ρ2

�
dt2 þ ρ2

Δ
dr2 þ ρ2dθ2

−
2a sin2 θðr2 þ a2 − ΔÞ

ρ2
dtdφ

þ
�ðr2 þ a2Þ2 − Δa2 sin2 θ

ρ2

�
sin2 θdφ2; ð1Þ

where

ρ2 ¼ r2 þ a2 cos2 θ; and Δ ¼ r2 − 2Mrþ a2 þQ2;

ð2Þ

where M is the mass, a the angular momentum per mass
unit and Q the electric charge associated with the KNBH.
In this spacetime we can identify the presence of two

horizons located at

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
; ð3Þ

one at rþ ≡ rH that corresponds to the BH event horizon
and another one at r− which is an inner Cauchy horizon,
such that Δðr�Þ ¼ 0. The existence of a KNBH requires
a2 þQ2 ≤ M2, where the equality is associated with an
extremalKNBH, which we consider in Sec. V. In particular,
the Kerr spacetime is recovered when Q≡ 0. Due to the
presence of the two horizons, it is convenient to write

Δ ¼ ðr − rHÞðr − r−Þ; ð4Þ

where the values of rH and r− keep the following relation-
ship
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r− ¼ a2 þQ2

rH
: ð5Þ

The angular velocity of the KNBH is given as follows:

ΩH ¼ a
r2H þ a2

: ð6Þ

From (2) and the fact that ΔðrHÞ ¼ 0 one finds a relation
between the mass M and the quantities rH, a and Q,

M ¼ r2H þ a2 þQ2

2rH
: ð7Þ

Moreover, from Eqs. (5)–(7) we see that the quantities
r−, ΩH, and M can take a parametric form r− ¼
r−ðrH; a;QÞ, ΩH ¼ ΩHðrH; a;QÞ, and M ¼ MðrH; a;QÞ.
These equations will allow us to compute r−, ΩH, and M
when finding the values for a that solve the eigenvalue
problem for Ψ, once the values of rH and Q are specified
(cf. Sec. III).
The massive and charged scalar field Ψ that we analyze

for the existence of scalar-cloud solutions has the following
energy-momentum tensor (EMT):

Tab ¼
1

2
½ðDaΨÞ�ðDbΨÞ þ ðDbΨÞ�ðDaΨÞ�

− gab

�
1

2
gcdðDcΨÞ�ðDdΨÞ þUðΨ�ΨÞ

�
; ð8Þ

where the operator

Da ≡∇a − iqAa; ð9Þ

represents the covariant derivative associated with the
gauge field Aa, which in the KNBH background is
given by

Aa ¼ −
Qr
ρ2

½ðdtÞa − a sin2 θðdφÞa�; ð10Þ

and the constant q (i.e. the electric charge) is the gauge
coupling for the scalar field Ψ. The operator ∇a corre-
sponds to the covariant derivative compatible with the
metric, in this case the KN metric. For our study we focus
only on the following potential:

UðΨ�ΨÞ ¼ 1

2
μ2Ψ�Ψ; ð11Þ

which is associated with a massive but free field with
mass μ.
The dynamics of the charged and massive scalar field is

given by the Klein-Gordon (KG) equation coupled to the
electromagnetic potential,

ð∇a − iqAaÞð∇a − iqAaÞΨ ¼ μ2Ψ: ð12Þ

In order to find bound states for Ψ in the domain of outer
communication (DOC) of the KNBH, including the hori-
zon, we consider the following ansatz in terms of the
BL coordinates with temporal and angular dependence in
the form,

Ψðt; r; θ;φÞ ¼ ϕðr; θÞeimφe−iωt; ð13Þ

where ω is the frequency of the scalar field and m is an
integer number. This is the most general form that we can
choose in such a way that the energy-momentum tensor (8)
respects the symmetries of the KN spacetime.
To ensure the existence of boson clouds, we impose the

zero-flux condition at the BH horizon [17,18]:

χaDaΨjHþ ¼ 0; ð14Þ

where

χa ≡ ξa þ ΩHη
a; ð15Þ

is the helical Killing vector field given in terms of the
timelike Killing field ξa ¼ ð∂=∂tÞa and the axial Killing
field ηa ¼ ð∂=∂φÞa, which are associated with the time
and axial symmetries of the background spacetime. At the
horizon χa becomes null and thus, it is tangent to the null
geodesic generators of the horizon. From (14) together with
Eqs. (10), (13), and (15), we obtain the following condition:

�
ω −mΩH − q

QrH
r2H þ a2

�
ΨH ¼ 0: ð16Þ

Assuming that in general ΨH ≠ 0, we conclude,

ω ¼ mΩH þ qΦH; ð17Þ

where

ΦH ≔ −Aaχ
ajHþ ¼ QrH

r2H þ a2
¼ 4πQrH

AH
; ð18Þ

is the electric potential at the horizon as defined in terms of
the helical Killing field, and AH ¼ 4πðr2H þ a2Þ is the area
of the BH event horizon (cf. Ref. [26]).
The bound states thus correspond to a field with a

frequency given by (17), which is called synchronicity
condition [15,19], due to its relationship with the BHs
angular velocity ΩH, in particular when Q≡ 0.
In fact, the condition (17) results also when imposing

regularity of the field Ψ at the horizon, as we show below.
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III. TEUKOLSKY RADIAL EQUATION
AND REGULARITY CONDITIONS

When we substitute the scalar field ansatz (13) into the
KG Eq. (12) we find that the function ϕðr; θÞ is separable,
that is, it can be written as the product of a function
dependent on the variable r and a function dependent on the
variable θ which allows us to expand the Ψ field in modes
of the form

Ψnlm ¼ RnlmðrÞSlmðθÞeimφe−iωt; ð19Þ

where the angular functions SlmðθÞ (the spheroidal har-
monics) obey the following equation:

1

sin θ
d
dθ

�
sin θ

dSlm
dθ

�

þ
�
Klm þ a2ðμ2 − ω2Þsin2θ − m2

sin2θ

�
Slm ¼ 0; ð20Þ

and Klm are the separation constants (jmj ≤ l) given by

Klm þ a2ðμ2 − ω2Þ ¼ lðlþ 1Þ þ
X∞
k¼1

cka2kðμ2 − ω2Þk;

ð21Þ
which connects the angular and radial parts of the KG
equation and ensures that the angular functions SlmðθÞ are
regular on the axis of symmetry. As it occurs with the wave
function of the hydrogen atom, the number l is a non-
negative integer which is associated with the angular
momentum of the atom, while the integer n (n ≥ 0) labels
the number of nodes in the radial function RnlmðrÞ. The
expansion coefficients ck can be found in Ref. [27].
The functions RnlmðrÞ obey a type of radial Teukolsky

equation [28],

Δ
d
dr

�
Δ
dRnlm

dr

�
þ ½H2 þ ð2maω − Klm

− μ2ðr2 þ a2ÞÞΔ�Rnlm ¼ 0; ð22Þ

where

H≡ ðr2 þ a2Þω − am − qQr: ð23Þ

Given the form of the frequency ω (17), we observe that
the function H vanishes at the horizon, which is precisely
the regularity condition at the horizon when demanding
boundedness for the field and its radial derivatives in the
subextremal BH scenarios, as we discuss next.
In order to find cloud configurations, it is essential to

establish regularity conditions for the Ψ field at the event
horizon; namely, by demanding that the field and some of
its derivatives are bounded on the horizon. We thus assume
that RnlmðrÞ is C3 on the horizon. To solve the differential
equation associated with the radial part (22) it is necessary
to know the values of the field and its radial derivatives at
rH: R00

nlmðrHÞ, R0
nlmðrHÞ and RnlmðrHÞ. So, assuming that

R00
nlmðrHÞ is bounded we find the regularity condition for

R0
nlmðrHÞ from Eq. (22),

R0
nlmðrHÞ ¼ −

1

2ðrH −MÞ ½2maω − Klm − μ2ðr2H þ a2Þ�

× RnlmðrHÞ: ð24Þ

The value of RnlmðrHÞ is a free parameter, which we take
RnlmðrHÞ ¼ 1, for simplicity and also to compare our
numerical results with those presented in [19] where the
same value is used. To find the value for R00

nlmðrHÞ, we
differentiate Eq. (22) once more, and demand that R000

nlmðrHÞ
is bounded, which leads to1

R00
nlmðrHÞ ¼ −

1

2ðrH −MÞ
�ðM − r−Þð2marH þ qQðr2H − a2ÞÞ2

ðrH − r−Þ2ðr2H þ a2Þ2 − μ2rH

�
RnlmðrHÞ

−
1

4ðrH −MÞ ½2ð1þmaωÞ − Klm − μ2ðr2H þ a2Þ�R0
nlmðrHÞ: ð25Þ

Both regularity conditions (24) and (25) are valid only in
the subextremal case rH ≠ M. Thus, making use of these
two regularity conditions we can find cloud solutions close
to the extremal background only in the limit rH → M, but
we cannot treat exactly the extremal scenario with such
conditions. Clouds in the exact extremal background with
rH ¼ M ¼ r− will be analyzed separately in Sec. V below.
In order to find charged cloud solutions around a

subextremal KNBH Eq. (22) was solved numerically with
their respective regularity conditions (24) and (25), using a
fourth-order Runge-Kutta algorithm and integrating in the

DOC from r ¼ rH outwards. As a part of the numerical
scheme, the values of rH, Q, μ and q were fixed, and
selecting some values for the integers n, l and m. Then the
BH angular momentum per mass unit a can be used as an

1We can observe that, for Q ¼ 0 and a ≠ 0 these regularity
conditions reduce to those obtained in the case of the Kerr metric
(see Eqs. (77) and (78) in [23]). Alternatively, when a ¼ 0 and
Q ≠ 0, they reduce to the regularity conditions for the field in the
background of a Reissner-Nordström (RN) black hole [see
Eqs. (18) and (19) in [24] ].
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eigenvalue such that the radial function RnlmðrÞ vanishes
asymptotically as we did in our previous study for clouds
around a subextremal Kerr BH [23].
Figure 1 shows the existence lines associated with the

numerical solutions of Eq. (22), with fixed charge μQ ¼
0.1 and different values for rH. We have taken the quantum
numbers n ¼ 0 andm ¼ l ¼ 1, 2, 3, respectively, as well as
a scalar field Ψ with q=μ ¼ 1.
In Tables IV–VI of Appendix are displayed the numeri-

cal eigenvalues anlm (i.e. the spectrum) associated with the
eigenvalue problem of Eq. (22). Our results depicted in
Fig. 1 are consistent with those reported in [19].
Figure 2 plots a family of radial solutions RnlmðrÞ with

n ¼ 0 and m ¼ l ¼ 1, using different values for rH. The

corresponding values for the spectrum anlm are shown in
Table IV of Appendix.
Cloud solutions around KNBH close to extremality a2 þ

Q2 ≈M2 (i.e. rH ≈M) are depicted in Fig. 3 for the
fundamental mode (n ¼ 0) and m ¼ l ¼ 1. The numerical
values for the spectrum anlm can be found in the last four
rows and second column of Table IV (see Appendix). For
clouds similar to these ones, Tables V and VI display more
values anlm when m ¼ l ¼ 2 and m ¼ l ¼ 3, respectively.
Note from Fig. 3 that as the solutions approach the extremal
scenario the slope R0 at the horizon increases [cf. Eq. (24)].
At this respect, cloud solutions for the exact extremal
scenario around Kerr and Kerr-Newman BHs are analyzed
below in Sec. V since, as stressed before, the radial part
RðrÞ for the boson field Ψ requires different kind of
regularity conditions at the horizon because their deriva-
tives (24) and (25) blow up when rH ¼ M.
Figure 4 shows some examples of radial solutions Rnlm

with different nodes (n ¼ 0, 1, 2) associated with a fixed
value of the horizon radius μrH ¼ 0.5. In particular, the
figures depicts Rn11 and Rn22, i.e. taking m ¼ l ¼ 1 and
m ¼ l ¼ 2, respectively.
Figure 5 shows the angular function SlmðθÞ and the 3D

spheroidal harmonic jSlmðθ;φÞj for m ¼ l ¼ 2, associated
with the charged scalar field Ψ coupled to a Kerr-Newman
black hole with μrH ¼ 0.5 and μQ ¼ 0.1.

IV. NO-HAIR THEOREM OBSTRUCTIONS

In this section we justify in a more heuristic way the
existence of charged scalar clouds in the presence of a
KNBH. The treatment developed here is similar to the
one presented in [23,24], which analyze, respectively, the
existence of neutral scalar clouds around a Kerr BH, and
their absence thereof around a RNBH. To do so, we use a
technique initially implemented by Bekenstein [8], and
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(n ¼ 0 and l ¼ m with m ¼ 1, 2, 3) coupled to a subextremal
Kerr-Newman black hole with charge μQ ¼ 0.1. The relation
between the mass and the charge of the scalar field is q=μ ¼ 1.
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M2 (BH solutions do not exist above this line).
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then employed, mutatis mutandis, in several studies that
prove no-hair theorems in several kind of scalar-field
theories [29,30].
First, let us consider the Klein-Gordon equation (12) in

the form

DaDaΨ ¼ μ2Ψ: ð26Þ

Multiplying both sides of this equation by Ψ� and integrat-
ing over a suitable volume V contained within the DOC
of the KNBH (bounded by two spatial hypersurfaces
t ¼ const, a section of the horizon and a timelike surface
r ¼ const when r → ∞) we find,

Z
V
Ψ�DaDaΨ

ffiffiffiffiffiffi
−g

p
d4x ¼

Z
V
μ2Ψ�Ψ

ffiffiffiffiffiffi
−g

p
d4x: ð27Þ

Integrating by parts the l.h.s of the previous equation and
using the Gauss theorem we obtain,

Z
∂V

Ψ�saDaΨdS ¼
Z
V
½ðDaΨÞ�ðDaΨÞ þ μ2Ψ�Ψ� ffiffiffiffiffiffi

−g
p

d4x:

ð28Þ

In this case the surface integral that corresponds to the
boundary ∂V is composed by four regions; the (two
isometric Σt − t ¼ const.−) spacelike hypersurfaces Σ1

and Σ2, a portion of the black hole horizon and, finally,
the asymptotic region corresponding to spatial infinity i0.
The contributions associated with Σ1 and Σ2 cancel each
other because the integrals are identical except for the fact
that their normal vectors have opposite signs (i.e.
saΣ1

¼ −saΣ2
). The surface integral associated with spatial

infinity vanishes when assuming that the scalar field Ψ
decays exponentially, and thus it vanishes asymptotically.
Finally, at the horizon (a null hypersurface) the normal sa is
equal to the Killing vector χa. Furthermore, assuming that
Ψ� is bounded at the horizon and using the zero-flux
condition (14) the integral associated with the portion of
horizon vanishes as well. We conclude that

Z
∂V

Ψ�saDaΨdS ¼ 0; ð29Þ

and therefore
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Z
V
½ðDaΨÞ�ðDaΨÞ þ μ2Ψ�Ψ� ffiffiffiffiffiffi

−g
p

d4x ¼ 0: ð30Þ

Given the harmonic dependence of the field Ψ (13) one
obtains the following expression for the kinetic term

K ≡ ðDaΨÞ�ðDaΨÞ
¼ gttðDtΨÞ�ðDtΨÞ þ gtφðDtΨÞ�ðDφΨÞ
þ gφtðDφΨÞ�ðDtΨÞ þ gφφðDφΨÞ�ðDφΨÞ
þ grrðDrΨÞ�ðDrΨÞ þ gθθðDθΨÞ�ðDθΨÞ

¼ Rϕ2 þ grrð∂rϕÞ2 þ gθθð∂θϕÞ2; ð31Þ

where we have defined

R≡ gttω̂2 − 2gtφm̂ ω̂þgφφm̂2; ð32Þ

ω̂≡ ωþ qAt; ð33Þ

m̂≡m − qAφ: ð34Þ

Considering the frequency of the field Ψ (17) and the
electromagnetic potential Aa (10), it is possible to express
Eqs. (33) and (34) as follows:

ω̂ ¼ mΩH þ qΦH −
qQr
ρ2

; ð35Þ

m̂ ¼ m −
aqQr sin2 θ

ρ2
: ð36Þ

From Eqs. (35) and (36) together with (17) it is easy to
find the following relationship between ω̂ and m̂:

m̂ ¼ mþ ðω̂ − ωÞa sin2 θ: ð37Þ

If one substitutes the explicit form of the metric
components gtt, gtφ, and gφφ into Eq. (32), one obtains
the following expression for R:

R ¼ −
1

Δρ2
½ðr2 þ a2Þω̂ − am̂�2 þ 1

ρ2sin2θ
½aω̂sin2θ − m̂�2;

ð38Þ

or equivalently

R ¼ −
ðr − rHÞ
ρ2ðr − r−Þ

½ωrþ ðmrH − aqQÞΩH�2

þ 1

ρ2sin2θ
½aωsin2θ −m�2: ð39Þ

From this last equation, we observe that R contains a
contribution that is never positive (the one with the factor
r − rH in the first line) and another contribution that is

positive defined in the DOC (including the horizon, in the
second line).
Therefore, the kinetic term K is represented by the

following expression:

K ¼ −
ðr− rHÞϕ2

ρ2ðr− r−Þ
½ωrþ ðmrH − aqQÞΩH�2

þϕ2

ρ2

�
aωsin2θ−m

sinθ

�
2

þ grrð∂rϕÞ2 þ gθθð∂θϕÞ2: ð40Þ

Therefore, the integrand of the integral (30) has the
following form

I ≡ K þ μ2Ψ�Ψ

¼ −
ðr − rHÞϕ2

ρ2ðr − r−Þ
½ωrþ ðmrH − aqQÞΩH�2

þ ϕ2

ρ2

�
aωsin2θ −m

sin θ

�
2

þ Δ
ρ2

ð∂rϕÞ2

þ 1

ρ2
ð∂θϕÞ2 þ μ2ϕ2: ð41Þ

If nontrivial regular charged boson clouds exist (i.e.
ϕðr; θÞ ≠ 0 in general), the following inequality

R ¼ gttω̂2 − 2gtφm̂ ω̂þgφφm̂2 ≤ 0; ð42Þ

must hold in a region of the KN spacetime so that the
(nonpositive) term in the first line of (41) compensates the
non-negative contributions associated with the quadratic
terms grrð∂rϕÞ2 þ gθθð∂θϕÞ2 and μ2ϕ2, and in this way the
volume integral (30) is satisfied for nontrivial clouds. We
show that this is the case in some particular instances, and
then provide numerical evidence in more general cases.
First, considering Eq. (39) we find the following behav-

iors at the horizon rH and asymptotically (when r → ∞),
respectively:

RH ¼ ½aqQrH sin2 θ − ðr2H þ a2 cos2 θÞm�2
ðr2H þ a2 cos2 θÞðr2H þ a2Þ2 sin2 θ ; ð43Þ

R∞ ∼ −ω2: ð44Þ

In particular, at the equatorial plane θ ¼ π=2, Eq. (43)
reduces to

RH ¼
�
aqQ −mrH
r2H þ a2

�
2

: ð45Þ

Clearly, this shows that R must interpolate between a
positive value at the horizon (45) and a negative value at
spatial infinity (44).
Furthermore, since in the kinetic term appears the

combination ϕ2R, we introduce the quantity Λ,
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Λ≡ ϕ2R; ð46Þ

which presents the following behaviors at the horizon
and the equatorial plane and asymptotically (rH ≪ r),
respectively

ΛjH ¼ ϕ2
HRH ¼ ϕ2

H

�
aqQ −mrH
r2H þ a2

�
2

; ð47Þ

Λ∞ ¼ ϕ2
∞R∞ ∼ −ϕ2

∞ðmΩH þ qΦHÞ2: ð48Þ

In particular, Λ∞ vanishes as ϕ → 0 asymptotically.
On the other hand, when considering an extremal

KNBH, a2 þQ2 ¼ M2, the quantity R given in Eq. (39)
reduces to

Rext ¼ −
1

ρ2
½ωrþ ðmM − aqQÞΩH�2

þ 1

ρ2

�
aωsin2θ −m

sin θ

�
2

: ð49Þ

Then, the frequency of the scalar field is given by,

ω ¼ ma
M2 þ a2

þ qQM
M2 þ a2

¼ maþ qQM
M2 þ a2

: ð50Þ

In this case, the value ofRext at the horizon r ¼ rH ¼ M
takes the form,

Rext
H ¼ −

1

M2 þ a2cos2θ

��
qQ3 þ 2maM

M2 þ a2

�
2

−
�
ma2cos2θ þmM2 − aqQMsin2θ

ðM2 þ a2Þ sin θ
�
2
�
; ð51Þ

which, at the equatorial plane (θ ¼ π=2) reduces to

Rext
H ¼ −

1

M2

�
qQ3 þ 2maM

M2 þ a2

�
2

þ
�
aqQ −mM
M2 þ a2

�
2

: ð52Þ

We note that when Q ¼ 0, the above equation is simply

Rext
H ¼ −

3m2

4M2
; ð53Þ

this value is similar the one that appears in Eq. (61) of [23],
and which corresponds to the extremal Kerr scenario.2

The asymptotic behavior for Rext when M ≪ r, coin-
cides with the asymptotic behavior forR given by Eq. (44).
In view of this, even ifRext

H were positive for some values
of the parameters,Rext must interpolate from a positive to a

negative value, proving that this quantity is also negative in
a region of the DOC.
We conclude that the contribution associated with

Eq. (47) to the kinetic term (40) is positive at the horizon
(in the subextremal case) and then it becomes negative. In
the extremal case something similar happens, except that at
the horizonRext can be even less positive (cf. blue dashed-
line of top panel of Fig. 6 which corresponds to a near
extremal solution).
Since the field vanishes asymptotically, it follows

that the Λ term (in fact the entire kinetic term) will also
vanish asymptotically. As in the Kerr scenario [23],
we conclude that the existence of nontrivial localized
solutions for ϕðr; θÞ in a Kerr-Newman background implies
that the inequality (42) must hold in some region of
the DOC.
Figure 6 shows the rotational part of the kinetic term (31)

that appears in the integral (30) for some of the numerical
solutions depicted in Figs. 2 and 3 with parameters
displayed in Tables IV–VI, and evaluated at θ ¼ π=2,
for simplicity. On the horizon this quantity is positive
but then becomes negative. This rotational part has been
normalized with the square of the field amplitude
Ψ�Ψ ¼ ϕ2, which is positive. Furthermore, due to this
normalization, the quantity R ¼ Λ=ϕ2 does not vanish
asymptotically, but it is close to the negative constant value
given by Eq. (44)R ¼ Λ=ϕ2 → −ðmΩH þ qΦHÞ2 ¼ −ω2.
Table I shows some numerical values of the quantity

Λ=Ψ�Ψ at the horizon and asymptotically ðr → ∞Þ cor-
roborating that the numerical results are consistent with the
analytical expectations.
The fact that the rotational contribution is negative in

most of the DOC for the KNBH indicates that the integral
(30) vanishes due to the presence of such a negative
quantity, without the need for the field Ψðt; r; θ;φÞ to
vanish identically, something that does occur in the spheri-
cally symmetric scenario [8–12], and which leads to the no-
hair theorems in such scenario. This situation is quite
similar to what is found in the background of a Kerr

TABLE I. Values of the rotational contribution to the kinetic
term at r ¼ rH and r → ∞ associated with Fig. 6.

Kinetic term (rotational contribution)

m μrH Λ
Ψ�Ψ ðr ¼ rHÞ Λ

Ψ�Ψ ðr → ∞Þ
1 0.15 43.77526399 −0.99998181

0.40 4.63855257 −0.99516743
0.57 0.75238174 −0.93941249

2 0.50 14.36173016 −0.99668771
0.95 2.400727382 −0.96461025
1.17 0.67682839 −0.80623325

3 0.50 34.38453473 −0.99829089
1.00 7.11593895 −0.98607769
1.86 0.61079886 −0.69454971

2In [23] we use a slightly different notation and the equivalent
expression for (53) does not include the factor m2.
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black hole [23]. These results allow us to understand in a
simple and heuristic way the existence of nontrivial charged
scalar clouds and the explain why the no-hair theorems
cannot be extended for rotating BHs precisely due to the
presence of the rotational contribution Λ in the integrand of
Eq. (30) which is not positive (semi)definite when non-
trivial cloud solutions exist.

V. EXTREMAL SCENARIOS: A NEW
PERSPECTIVE

In a previous investigation [25] we analyzed the exist-
ence of (uncharged) clouds in the background of an exact
extremal Kerr BH. In order to do so, we imposed some
superregularity conditions at the horizon rextH ¼ M on the
radial part RðrÞ of the field Ψ. Such conditions consisted in
assuming that RðrÞ and its derivatives were bounded at the
horizon, and contrary to what happens in the subextremal
scenario, those conditions constrained the separation con-
stants Klm in such a way that a priori they did not coincide
with the values (21) required for the angular part SlmðθÞ of
the spheroidal harmonics to be regular on the axis of
symmetry θ ¼ f0; πg. These inconsistencies forced us to
conclude that regular clouds could not exist around exact
extremal Kerr BHs unless the pairs of numbers ðl; mÞ
satisfied a Diophantine equation of Pell-type and only
if the numbers of nodes n were arbitrarily large.
Notwithstanding, even in that case, those clouds seemed
not to coincide with the clouds obtained from the sub-
extremal scenario in the limit of extremality M → a; both
solutions were not connected in a “continuous” way, and as
mentioned, the exact extremal ones required the existence
of a large number of nodes, and an additional restriction on
the numbers ðl; mÞ (a Pell-Diophantine equation), some-
thing that does not occur for cloud solutions around
subextremal Kerr BHs.
If we follow the same strategy for exact extremal KNBH

we encounter similar kind of problems, which allow us to
conclude that assuming superregularity conditions for the
radial part RðrÞ is a too restrictive a condition, which as we
show next, it is not necessary in order to have well-behaved
clouds.
Now, if the derivatives of RðrÞ are not bounded at the

horizon, the question is, how to solve the problem, and
clearly, how can the corresponding clouds be regular at the
horizon. The answer to these questions are analyzed in this
section by implementing a new method that leads to regular
clouds even if the radial function RðrÞ has unbounded
derivatives at the horizon. Moreover, these cloud solutions
approach the cloud solutions from the subextremal scenario
in the limit of extremality, all without the need of
constraining the separation constants and without requiring
a large number of nodes, as we will see.
The key aspect to take into account is that first derivatives

R0ðrÞ that appear whether in the trace of the energy-
momentum tensor for the scalar field or in the kinetic part
K of the action functional of the theory in the form
gabðDaΨÞ�DbΨ ¼ gab∇aΨ�∇bΨ (when Q ¼ 0), which
has an invariant (coordinate independent) meaning, show
up only in the combination grrðR0ðrÞÞ2 [times some angular
functions; cf. Eq. (31)]. In particular, for extremal BHs grr

has a factor ðr −MÞ2, thus ðr −MÞ2R02 can be bounded at
the horizon even if R0 blows up there, provided that near the
horizon R0 ∼ ðr −MÞσ with σ ≥ −1. That is, provided that
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FIG. 6. Rotational contribution [cf. Eq. (46)] Λ=Ψ�Ψ ¼ R to
the kinetic term K ¼ ð∇cΨ�Þð∇cΨÞ given by Eq. (40) computed
from the regular cloud solutions in the background of a Kerr-
Newman BH and evaluated at the equatorial plane (θ ¼ π=2) for
different locations of the horizon rH , and with “quantum
numbers” n ¼ 0 and m ¼ l ¼ 1 (top panel), m ¼ l ¼ 2 (middle
panel), and m ¼ l ¼ 3 (bottom panel).
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near the horizon RðrÞ ∼ ðr −MÞα with α > 0, where σ ¼
α − 1. In this way, not only the scalar field is bounded at the
horizon r ¼ M, but the scalar invariants formed from first
derivatives of the field are bounded there as well.
Since in this section we focus only on extremal BHs,

we consider the metric (1) but taking M2 ¼ a2 þQ2, i.e.
rextH ¼ M which leads to

Δ ¼ ðr −MÞ2: ð54Þ

Thus, the complex-valued scalar fieldΨ obeys the Klein-
Gordon Eq. (12) in the extremal KN background which
is solved again using separation of variables with the
mode expansion like in Eq. (19), similar to the subextremal
scenario.
In order to obtain bound states in the extremal scenarios

we now assume the following ansatz factorization for the
radial function Rnlm:

RnlmðrÞ ¼ ðr −MÞαLnlmðrÞ; ð55Þ

where the exponent α will be determined from the radial
equation for RnlmðrÞ, but it will be required to be positive
(i.e. α > 0) such that RðrHÞ ¼ 0 and LðrHÞ is bounded.
Otherwise, if α < 0, RðrHÞ is unbounded and regular
clouds are not possible. Moreover even if 0 < α, the radial
derivatives may still diverge at the horizon if 0 < α < 1.
However, this divergence is not physically meaningful as
the physically meaningful clouds are those with a bounded
kinetic term, K ¼ gabðDaΨÞ�DbΨ in the DOC, notably at
the horizon, in particular, the term grrðR0Þ2 [where for
convenience, we omit the mode labels ðn;m; lÞ]. More
specifically, given (55), and for simplicity Q ¼ 0, the first
radial derivative reads,

R0ðrÞ ¼ αðr −MÞα−1LðrÞ þ ðr −MÞαL0ðrÞ; ð56Þ

which as we emphasized before, it diverges at r ¼ M if
0 < α < 1. Nevertheless, when considering the term grrR02
that appears in the kinetic term K, and using the form of the
derivative R0ðrÞ as above, we find

grrR02S2ðθÞ ¼
�
α2

ρ2
½ðr −MÞαLðrÞ�2

þ 2α

ρ2
ðr −MÞ2αþ1LðrÞL0ðrÞ

þ 1

ρ2
ðr −MÞ2αþ2½L0ðrÞ�2

�
S2ðθÞ; ð57Þ

which is bounded in the DOC for any α > 0 as far as LðrÞ
and its first derivative are bounded there. When this is the
case, in particular, at the horizon r ¼ M, the term (57)
vanishes there, but it diverges if α < 0.

As we will show below, notably, for the extremal Kerr
and the extremal KN BHs, we will be looking for radial
solutions of the form (55) with 0 < α and with LðrÞ and its
derivatives bounded such that the term (57) remains
bounded in the DOC, despite the fact that R0 itself may
blow up at the horizon r ¼ M. In this way, the physically
meaningful solutions will have Ψ and the kinetic term
bounded in the DOC. To achieve this, the angular part for
Ψ, which corresponds to the spheroidal harmonics, also
satisfies suitable regularity conditions, namely, at the axis
of symmetry.

A. Extremal Kerr

First we analyze solutions for a noncharged fieldΨ in the
background of an extremal Kerr BH (jaj ¼ M; for con-
creteness we take a ¼ M) with the metric given in Boyer-
Lindquist coordinates by

ds2 ¼ −
�
Δ −M2 sin2 θ

ρ2

�
dt2 þ ρ2

Δ
dr2 þ ρ2dθ2

−
2M sin2 θðr2 þM2 − ΔÞ

ρ2
dtdφ

þ
�ðr2 þM2Þ2 − ΔM2 sin2 θ

ρ2

�
sin2 θdφ2; ð58Þ

where

ρ2 ¼ r2 þM2 cos2 θ; ð59Þ

and M is the mass associated with the Kerr BH. In this
scenario q≡ 0 and the operator Eq. (9) reduces to the
covariant derivative compatible with the spacetime metric:

Da ¼ ∇a: ð60Þ

The radial function Rnlm obeys then a simplified version
of Eq. (22) given by

Δ
d
dr

�
Δ
dRnlm

dr

�
þ ½H2

Kerr þ ð2mMω − Klm

− μ2ðr2 þM2ÞÞΔ�Rnlm ¼ 0; ð61Þ

where

HKerr ≡ ðr2 þM2Þω −Mm: ð62Þ

The frequency (17) associated with an extremal Kerr BH
and its angular velocity become

ω ¼ mΩext
H ; ð63Þ

Ωext
H ¼ 1

2M
: ð64Þ
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When replacing the ansatz (55) in the radial Eq. (61) we
obtain the following differential equation for LðrÞ (for
brevity we omit the labels ðn; l; mÞ):

ðr −MÞ2L00ðrÞ þ 2ðαþ 1Þðr −MÞL0ðrÞ

þ
�
m2

4M2
ðrþMÞ2 þ αðαþ 1Þ þm2

− Klm − μ2ðr2 þM2Þ
�
LðrÞ ¼ 0: ð65Þ

Differentiating Eq. (65) once and twice and assuming
boundedness of higher derivatives for LðrÞ at the horizon
we obtain the values (regularity conditions) for L0ðrHÞ and
L00ðrHÞ, which are given by

L0ðrHÞ ¼
ð2μ2M2 −m2Þ
2ðαþ 1ÞM LðrHÞ; ð66Þ

and

L00ðrHÞ ¼
1

ð4αþ 6Þ
��

4μ2M −
2m2

M

�
L0ðrHÞ

þ
�
2μ2 −

m2

2M2

�
LðrHÞ

�
: ð67Þ

Moreover, given those regularity conditions, the bound-
edness of LðrÞ at the horizon and assuming LðrHÞ ≠ 0 we
find, when evaluating (65) at r ¼ M, that the exponent α
satisfies the following simple quadratic algebraic equation

α2 þ αþ 2m2 − 2μ2M2 − Klm ¼ 0; ð68Þ

which has the following solutions:

α� ¼ −1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4½Klm þ 2ðμ2M2 −m2Þ�

p
2

: ð69Þ

We choose the sign (þ) for avoiding a negative definite α
and thus to consider only potentially bounded radial
solutions at the horizon. This will be possible provided
the positive square root is larger than −1. As we show
below, this depends on the values of the BH parameter μM
(i.e. M in units of 1=μ) and the numbers ðn; l; mÞ, notably,
the valuem. Figure 7 shows solutions for the radial function
LðrÞ (taking LðrextH Þ ¼ 1 for simplicity) associated with an
extremal Kerr BH with “quantum numbers” m ¼ l ¼ 1,
m ¼ l ¼ 2 and n ¼ 0, 1, 2. Figure 8 depicts the corre-
sponding radial part RðrÞ (55). Each solution has an
exponent αþ that satisfies the condition 0 < αþ which
leads to physically meaningful regular clouds with a
bounded kinetic term, despite the fact that R0ðMÞ diverges
given that 0 < αþ < 1 (see the figure’s caption).
A remarkable fact is that Hod [13] had found exact

solutions to the radial Eq. (22) associated with this scenario

(uncharged clouds in the background of an extremal Kerr
BH, Q ¼ 0, a ¼ M). These solutions are

RðzÞ ¼ Az−
1
2
þβe−

1
2
zLð2βÞ

n ðzÞ; ð70Þ
where

z≡ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −

m2

4M2

r
ðr −MÞ; ð71Þ

and

β2 ≡ Klm þ 1

4
− 2m2 þ 2μ2M2; ð72Þ

Lð2βÞ
n ðzÞ are the generalized Laguerre polynomials and A is

a normalization constant. By comparing Eqs. (69) and (72)
we find that the exponent αþ and Hod’s β maintain the
following relation:

β ¼ αþ þ 1

2
: ð73Þ
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FIG. 7. (Extremal Kerr scenario) Functions LðrÞ with m ¼ l ¼
1 (top panel) and m ¼ l ¼ 2 (bottom panel), for n ¼ 0, 1, 2. The
functions are bounded and well-behaved in the DOC, in par-
ticular, at the horizon r ¼ M where LðMÞ ¼ 1.
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Figure 9 compares our numerical solution for the radial
function Rnlm using rH ¼ M ¼ a with that obtained by
Hod analytically taking l ¼ m ¼ 1 and different values of
n. Figure 10 shows the comparison between both solutions
for l ¼ m ¼ 2. The numerical and the exact solutions
show an excellent agreement, proving that our approach
is robust.
Figure 11 shows the angular functions SlmðθÞ associated

with the values μM ¼ 0.52550879 (m ¼ l ¼ 1) and μM ¼
1.14093944 (m ¼ l ¼ 2). As we can appreciate, the func-
tions are perfectly regular on the axis of symmetry at
θ ¼ f0; πg. In this way, we have succeeded in finding
numerically neutral scalar clouds around exact extremal
Kerr BHs which are perfectly regular at the horizon and on
the axis of symmetry. Namely, given the values obtained for
the exponent α in each solution, the invariant (coordinate
independent) scalar gab∇aΨ�∇bΨ turns to be bounded in

the DOC, notably, at the horizon even if the radial
derivative R0ðrÞ is unbounded there.

B. Extremal Reissner-Nordström

C. Case q2 < μ2

Next we consider a charged field Ψ coupled with an
extremal RNBH with the metric

ds2 ¼ −
ðr −MÞ2

r2
dt2 þ r2

ðr −MÞ2 dr
2 þ r2dθ2

þ r2 sin2 θdφ2; ð74Þ

where M ¼ jQj is the mass associated with the extremal
RNBH. For this case we consider the derivative operator (9)
with
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FIG. 8. Extremal Kerr scenario: (Top panel) Radial functions
(m ¼ l ¼ 1) for n ¼ 0, 1, 2. The values αn for each n are
α0 ¼ 0.38396168, α1 ¼ 0.37307025 and α2 ¼ 0.36957870,
respectively. (Bottom panel) Radial functions (m ¼ l ¼ 2) for
n ¼ 0, 1, 2 with values αn given by α0 ¼ 0.27115038, α1 ¼
0.15291680 and α2 ¼ 0.09129800, respectively. Notice that RðrÞ
vanishes at the horizon r ¼ M and R0 blows up there.
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FIG. 9. Radial solutions Rnlm for the extremal Kerr scenario
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Aa ¼ −
Q
r
dta; ð75Þ

and the scalar-field potential (11) for a massive free field,
like in the Kerr BH of Sec. VA. The radial Eq. (22) takes
the form

Δ
d
dr

�
Δ
dRnlm

dr

�
þ ½H2

RN − ðKlm þ μ2r2ÞΔ�Rnlm ¼ 0

ð76Þ

with

HRN ≡ ωr2 − qMr; ð77Þ

and

Klm ¼ lðlþ 1Þ: ð78Þ

In this case, the boson-field frequency (17) associated
with an extremal RNBH is

ω ¼ q: ð79Þ

The radial equation for the functionLðrÞ in this scenario is

ðr −MÞ2L00 þ 2ðαþ 1Þðr −MÞL0

þ ½αðαþ 1Þ þ ðq2 − μ2Þr2 − lðlþ 1Þ�L ¼ 0; ð80Þ

subject to the following regularity conditions:

L0ðrHÞ ¼
ðμ2 − q2ÞM

αþ 1
LðrHÞ; ð81Þ

and

L00ðrHÞ ¼
ðμ2 − q2Þ
2αþ 3

½2ML0ðrHÞ þ LðrHÞ�; ð82Þ

with α satisfying the following quadratic equation

α2 þ αþ ðq2 − μ2ÞM2 − lðlþ 1Þ ¼ 0; ð83Þ

with solutions
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α� ¼ −1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4½lðlþ 1Þ þ ðμ2 − q2ÞM2�

p
2

: ð84Þ

As before, we take only the sign (þ) in order for α to be
positive and the radial functionRðrÞ to be bounded at r ¼ M.
Using the value for αþ in Eq. (84) the radial Eq. (80) for

LðrÞ reads as follows:

ðr −MÞL00 þ 2ðαþ þ 1ÞL0 þ ðq2 − μ2ÞðrþMÞL ¼ 0:

ð85Þ

When we solve numerically Eq. (85) using the regularity
conditions (81) and (82) we find that the only acceptable
solution is

LðrÞ ¼ const: ð86Þ

Since we demand that the boson field vanishes asymptoti-
cally we conclude that the function LðrÞ is the trivial
solution LðrÞ≡ 0, so that the radial functions RnlmðrÞ is
well-behaved asymptotically. Thus, under such circum-
stances RnlmðrÞ also vanishes everywhere and the only
solution to the radial Eq. (80) in this scenario is

RnlmðrÞ≡ 0: ð87Þ

These numerical results corroborate that it is not possible to
find charged scalar clouds around an extremal Reissner-
Nordström black hole, as it was concluded previously in
Ref. [24]. There exists, however, a way to avoid this
conclusion, but it requires a scalar-field potential that
includes a self-interaction term [24,31–33]. Under such
conditions it is possible to find numerically charged clouds,
known in the literature as Q-clouds, which as we just
concluded, are absent when the field is only a massive
but free.

D. Double extremal case q2 = μ2

Considering the case q2 ¼ μ2 analyzed in [24,34]
Eq. (85) reads

ðr −MÞL00 þ 2ðαþ þ 1ÞL0 ¼ 0: ð88Þ

However, we see that in this double extremal scenario
Eq. (84) leads to the following possible values for αþ

αþ ¼ l: ð89Þ

So Eq. (88) takes the form

ðr −MÞL00 þ 2ðlþ 1ÞL0 ¼ 0; ð90Þ

whose solution is of the form

LðrÞ ¼ const
ð2lþ 1Þðr −MÞ2lþ1

; ð91Þ

so the radial function RðrÞ ¼ ðr −MÞαLðrÞ is

RðrÞ ¼ const
ð2lþ 1Þðr −MÞlþ1

: ð92Þ

We can see that these solutions are not regular at horizon
r ¼ M for any l ≥ 0, and therefore, the only possibility is
again RðrÞ≡ 0, a result that is in a agreement with the
results reported in [24]. In fact, from (81) and (82) we
already notice that when q2 ¼ μ2, then L0ðrHÞ≡ 0≡
L00ðrHÞ, and thus, the solution (91) requires the constant
to be identically zero, leading also to RðrÞ≡ 0.

E. Extremal Kerr-Newman

We now consider a charged field Ψ coupled to an
extremal KNBH with the metric (1) but taking Δ ¼ ðr −
MÞ2 and M2 ¼ a2 þQ2. We assume again the scalar-field
potential for a free but massive field (11).
The equation associated with the radial part of the scalar

field is provided by Eq. (22). The frequency for an extremal
KNBH is the same as in (17) except that the BHs angular
velocity is

ΩH ≡ a
M2 þ a2

; ð93Þ

and the electric potential at the horizon is

ΦH ≡ QM
M2 þ a2

: ð94Þ

The radial equation for the function LðrÞ now satisfies
the following differential equation:

ðr−MÞ2L00 þ2ðαþ1Þðr−MÞL0 þ
�
αðαþ1Þþ

�
amðrþMÞþqQðMr−a2Þ

M2þa2

�
2

þ2maω−Klm−μ2ðr2þa2Þ
�
L¼ 0: ð95Þ

The regularity conditions for the first and second derivatives of LðrÞ at the horizon are

L0ðrHÞ ¼
μ2MðM2 þ a2Þ2 − ðamþ qQMÞð2amM þ qQ3Þ

ðαþ 1ÞðM2 þ a2Þ2 LðrHÞ; ð96Þ
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L00ðrHÞ ¼
1

ð2αþ 3ÞðM2 þ a2Þ2 f½μ
2ðM2 þ a2Þ2 − ðamþ qQMÞ2�LðrHÞ

þ 2½μ2MðM2 þ a2Þ2 − ð2maM þ qQ3Þðamþ qQMÞ�L0ðrHÞg; ð97Þ

respectively, with α satisfying the following equation

α2 þ αþ
�
2amM þ qQ3

M2 þ a2

�
2

þ 2maω − Klm − μ2ðM2 þ a2Þ ¼ 0; ð98Þ

whose solutions are

α� ¼ −1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4fKlm þ μ2ðM2 þ a2Þ − ½2maωðM2 þ a2Þ2 þ ð2amM þ qQ3Þ2�=ðM2 þ a2Þ2g

p
2

: ð99Þ

Again, we take the sign (þ) for α to be positive. We
appreciate that when taking Q ¼ 0 but a ≠ 0 in the
regularity conditions (96) and (97) and also in Eq. (99)
for α, they reduce to Eqs. (66), (67) and (69), respectively,
which are associated with the extremal Kerr BH. On the
other hand, when we take a ¼ 0 and Q ≠ 0 in those
equations, we recover Eqs. (81), (82) and (84), respectively,
corresponding to the extremal RNBH.
Figure 12 depicts the radial function LðrÞ associated

with an extremal KNBH for m ¼ l ¼ 1 and m ¼ l ¼ 2,
with number of nodes n ¼ 0, 1, 2.
Figure 13 shows the complete radial part RðrÞ (55) of the

scalar field Ψ around an extremal KNBH corresponding to
the functions LðrÞ of Fig. 12 for the integersm ¼ l ¼ 1 and
m ¼ l ¼ 2, and nodes n ¼ 0, 1, 2. These solutions have
0 < αþ < 1 (see the caption) and thus leads to regular
clouds with a bounded kinetic term even if R0 blows up at
the extremal horizon r ¼ M.
Like in the extremal Kerr BH, Hod [16] also found exact

solutions for clouds around extremal KNBH. The solutions
to the radial Eq. (22) reported by Hod are

RðχÞ ¼ Aχ−
1
2
þβe−ϵχLð2βÞ

n ð2ϵχÞ; ð100Þ

where

χ ≡ r −M
M

; ð101Þ

ϵ≡M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

q
; ð102Þ

β2 ≡ Klm þ 1

4
− 2amω − ð2Mω − qQÞ2 þ μ2ðM2 þ a2Þ;

ð103Þ
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FIG. 12. Extremal Kerr-Newman scenario q=μ ¼ 1 and
μQ ¼ 0.1: Functions LðrÞ with m ¼ l ¼ 1 (top panel) and m ¼
l ¼ 2 (bottom panel), for number of nodes n ¼ 0, 1, 2. Like in the
extremal Kerr scenario, these functions are bounded and well-
behaved in the DOC, in particular, at the horizon r ¼ M where
LðMÞ ¼ 1.
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Lð2βÞ
n ð2ϵχÞ are the generalized Laguerre polynomials and A

is a normalization constant. The exponent αþ and Hod’s β
maintain the same relationship as in the extremal Kerr BH,

β ¼ αþ þ 1

2
; ð104Þ

except that αþ (99) includes the electric charges Q and q,
and it also includes the separation constants Klm corre-
sponding to the charged extremal scenario.
Figure 14 compares our numerical solution for the radial

function Rnlm (rextH ¼ M) with Hod’s (100) taking
l ¼ m ¼ 1 and different values for n. Figure 15 depicts
something similar but taking l ¼ m ¼ 2.

Figure 16 shows the angular functions SlmðθÞ associated
with the charged scalar field Ψ for the values μM ¼
0.57354100 (m ¼ l ¼ 1) and μM ¼ 1.18419453
(m ¼ l ¼ 2). From the figure one can appreciate the
regularity of those functions on the axis of symmetry. In
this way we have obtained a complete regular solution
(namely, regular at the horizon and on the axis of
symmetry) for the charged scalar field Ψ around an
extremal KNBH, which in addition leads to a well-behaved
kinetic term gabðDaΨÞ�DbΨ given by Eq. (31) despite the
fact that its radial derivative is unbounded at the BHs
horizon.3

 0

 0.2

 0.4

 0.6

 0.8

 0  5  10  15  20  25  30

R
01

1

�r

Exact n = 0, m = 1
Numerical n = 0, m = 1

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  10  20  30  40  50

R
11

1

�r

Exact n = 1, m = 1
Numerical n = 1, m = 1

FIG. 14. Radial solutions Rnlm for an extremal KNBH
(q=μ ¼ 1 and μQ ¼ 0.1) with principal numbers n ¼ 0, 1 and
m ¼ l ¼ 1. The red dots correspond to the numerical solutions
obtained by solving the Eq. (22) and the blue continuous line
shows the exact solution given by Hod [Eq. (49) in [16] ]. Notice
the excellent agreement between the analytic and the numerical
solutions.
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FIG. 13. Extremal Kerr-Newman scenario q=μ ¼ 1 and
μQ ¼ 0.1: (Top panel) Radial functions R with m ¼ l ¼ 1, for
n ¼ 0, 1, 2. The values of the exponent αn for each n are
α0 ¼ 0.38914753 ðμa ¼ 0.56475594Þ, α1 ¼ 0.37873576 ðμa ¼
0.55077117Þ and α2 ¼ 0.37547687 ðμa ¼ 0.54634993Þ, respec-
tively. (Bottom panel) Radial functions with m ¼ l ¼ 2, for
n ¼ 0, 1, 2. In this case α0 ¼ 0.27624214 ðμa ¼ 1.17996470Þ,
α1 ¼ 0.16035789 ðμa ¼ 1.11618248Þ and α2 ¼ 0.10040099
ðμa ¼ 1.08597093Þ, respectively. Like in the extremal Kerr
scenario, notice that RðrÞ vanishes at the horizon r ¼ M and
R0 blows up there.

3The unboundedness of the radial derivatives of RðrÞ at the
horizon, together that RðrÞ vanishes there, are features that can
be appreciated also from the solutions (70) and (100) found by
Hod [13,16] for clouds around extremal Kerr and KN BHs,
respectively, and more vividly from Figs. 9, 10, 14 and 15.
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In summary, by using the decomposition for the radial
function with the ansatz (55) it is possible to obtain both
neutral and electrically charged regular scalar-cloud sol-
utions around (exact) extremal Kerr and extremal KNBH,
respectively.
To conclude this section, a final analysis is in order. Let

us remind that in the subextremal scenarios the value of the
radial function at the horizon RðrHÞ is a free parameter that
for simplicity and convenience we take it as RðrHÞ ¼ 1.
However, if we want that the radial solutions approach as
continuously as possible to the corresponding solutions
of extremal BHs we need to modify RðrHÞ such that as
rH → rextH ¼ M, RðrHÞ → 0, since in the extremal scenarios
by construction the radial functions vanish RðrextH Þ≡ 0. To
achieve this, we propose the following modification for the
value RðrHÞ:

RðrHÞ ¼ C × ðrH −MÞα; ð105Þ

where 0 < α < 1 is the same exponent as computed for the
respective radial solutions for extremal Kerr and KNBH
(i.e. using the same numbers ðl; m; nÞ) that we want to
compare with. Here C is a constant that we take C ¼ 1.
Moreover, taking into account the regularity condition
Eq. (24) we observe that in the extremal limit (rH → M)
and with the modification (105) we will have

RðrHÞ → 0; and R0ðrHÞ → ∞; ð106Þ

which, as a bonus, allows us to avoid a trivial solution that
we would obtain if the exponent was fixed with a value
α > 1 since then R0ðrHÞ≡ 0. In this way, the regularity
conditions are respected but are changed suitably for each
cloud computed around subextremal BHs (Kerr and Kerr-
Newman). In particular, the value RðrHÞ is not fixed
anymore to RðrHÞ ¼ 1, but changes with rH and M
according to (105).
Using this improved method we obtain a “smooth”

match between the radial solutions associated with the
subextremal and extremal scenarios in the limit where the
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FIG. 15. Radial solutions Rnlm for the extremal KNBH
(q=μ ¼ 1 and μQ ¼ 0.1) with principal numbers n ¼ 0, 1 and
m ¼ l ¼ 2. The red dots correspond to the numerical solutions
obtained from solving Eq. (22) and the blue continuous line
corresponds to the exact solution given by Hod [Eq. (49) in [16]].
The agreement between the analytic and the numerical solutions
is excellent.
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former approaches the latter; something, that as empha-
sized in the Introduction, did not happen with the treatment
carried out by us in [25].
Figure 17 shows a sample of radial cloud solutions Rnlm

that are recomputed for the subextremal Kerr BH (top
panel) and the subextremal KNBH (bottom panel) with the
new value RðrHÞ fixed according to the prescription (105)
where α is taken, respectively, as αþ of Eq. (69) and αþ of
Eq. (99). In each panel, the radial function is approaching
smoothly to the corresponding solution for the exact
extremal case (and the maximum amplitude decreases as
a consequence of this) as rH → M. The latter are depicted
in both panels by the red-line solutions.
Figure 18 shows the radial functions Rnlm that are

represented in Fig. 17 but focusing on their behavior near

the event horizon. We see how the value of the radial
function on the horizon, RðrHÞ, changes depending on the
location of rH, unlike what was presented in Sec. III, where
all cloud configurations for the Kerr-Newman scenario
have a fixed value RðrHÞ ¼ 1 (see Fig. 3). For the Kerr
scenario see Fig. 3 of Ref. [23].

F. Configurations for m= l ≥ 3

The (uncharged and charged) scalar cloud configurations
around extremal Kerr and KN BHs presented in Secs. VA
and V E, respectively, correspond to values ofm ¼ l ¼ 1, 2
only. This is because numerically we observe that for m ¼
l ≥ 3 the values of the exponent αþ appearing in the radial
function (55) become negative in both scenarios, which
immediately implies that the field Ψ becomes divergent at
the event horizon including their radial derivatives.
Something to note is that αþ ≡ 0 when

Klm ¼ 2m2 − 2μ2M2; ð107Þ

for the extremal Kerr scenario [cf. Eq. (69)], and
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FIG. 17. Radial functions Rnlm associated with a scalar field Ψ
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BH angular momentum a that converge to the extremal values

rext;KerrH ¼ M ¼ a ≈ 0.525=μ (top panel) and rext;KNH ¼ M ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þQ2

p
≈ 0.564=μ (bottom panel), with Q ¼ 0.1=μ. Here

RðrHÞ ¼ ðrH −MÞα. Notice that the slope as well as the value
RðrHÞ change as the extremal cases are reached. For reference,
the corresponding radial solutions around the exact extremal BHs
(red curves) are included in both panels.
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Klm ¼ 2m2a2 þ 2qmaQM
M2 þ a2

þ ð2amM þ qQ3Þ2
ðM2 þ a2Þ2

− μ2ðM2 þ a2Þ; ð108Þ

for a KNBH [cf. Eq. (99)].4 Focusing on the case of an
extremal Kerr BH (58) and based on the study presented
in [25] we see that if we take the separation constants as in
Eq. (107), one obtains radial solutions and its derivatives
that are well-behaved on the horizon but that diverge on
the axis of symmetry. Something completely analogous
happens when one studies the Kerr-Newman scenario and
chooses the separation constants that appear in (108). It is
worth mentioning that this choice of the separation con-
stants arises precisely when superregularity conditions are
imposed on the radial functions in extremal scenarios [25],
but then the separation constants (which incidentally do
not depend explicitly on the number l) given by (107)
and (108) do not coincide in general with the actual
separation constants (21) which makes the spheroidal
harmonics to be well-behaved in the axis of symmetry.5

Thus, we must disregard this possibility and look
for αþ > 0.
To understand what happens when m ≥ 3, we analyze

first the following term associated with the Kerr scenario

Θ≡ 1þ 4½Klm þ 2ðμ2M2 −m2Þ�; ð109Þ

which appears as subradical in Eq. (69). Using Eq. (21) in
the previous equation we find

Θ ¼ 4

�
lþ 1

2

�
2

þ 4μ2M2 − 7m2 þ 4λ; ð110Þ

where

λ≡X∞
k¼1

ckðμ2M2 −m2=4Þk: ð111Þ

Table II shows some values of certain quantities associated
with the parameter Θ for the optimal values of μM that we
found for the extremal Kerr BH leading to asymptotically
vanishing clouds. The table includes the values m ¼ l ¼ 3
alluded above leading to bad behaved clouds at the horizon
(αþ < 0), and also some values m < l leading to well-
behaved clouds everywhere in the DOC.
In [13] Hod finds that the existence of bound states

implies that6

m
2
< μM <

mffiffiffi
2

p : ð112Þ

Using the inequalities (112) in Θ given by Eq. (110) it is
possible to observe the corresponding inequalities:

Θmin < Θ < Θmax; ð113Þ

where7

Θmin ¼ 4

�
lþ 1

2

�
2

− 6m2; ð114Þ

and

Θmax ¼ 4

�
lþ 1

2

�
2

− 5m2 þ
X∞
k¼1

ck

�
m2

4

�
k

: ð115Þ

Now, in order for αþ > 0, we require Θ > 1. If Θ saturates
the lower bound of (113) and in addition Θmin ≥ 1, then
these conditions are sufficient for αþ > 0. From Eq. (114)
we find that 1 ≤ Θmin if

jmj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þ

3

r
: ð116Þ

For example, taking l ¼ 1, jmj < ffiffiffiffiffiffiffiffi
4=3

p
≈ 1.15; for l ¼ 2,

jmj ≤ 2; for l ¼ 3, jmj ≤ ffiffiffi
8

p
≈ 2.83; and for l ¼ 4,

jmj ≤ ffiffiffiffiffiffiffiffiffiffi
40=3

p
≈ 3.65, and so on.8 In the case l ¼ 3, and

given that m is an integer, the condition jmj ≤ ffiffiffi
8

p
can be

only satisfied if for instance, jmj ¼ 2, but not for jmj ¼ 3.
This trend is confirmed by the numerical analysis as shown
in Table II. From the table we appreciate that for l¼3¼m,ffiffiffiffi
Θ

p
< 1, and thus αþ < 0, which leads to singular scalar

TABLE II. Quantities μM, Θ and λ that contributes to the
parameter αþ given in Eq. (69). These values correspond to
n ¼ 0. Clouds are not regular when αþ < 0, namely, when m ¼
l ¼ 3 as one notices in the second-last row.

m l μM
ffiffiffiffi
Θ

p
λ αþ

1 1 0.52550879 1.76792337 0.00522877 0.38396168
2 0.50806701 4.36422594 0.00348492 1.68211297
3 0.50420923 6.55932909 0.00197260 2.77966454

2 2 1.14093944 1.54230077 0.04293009 0.27115039
3 1.04424934 5.04800576 0.03013387 2.02400474
4 1.02432966 7.56811183 0.01982790 3.28405591

3 3 1.87316979 0.76699072 0.13830364 −0.11650463
4 1.61385150 5.36694663 0.09651237 2.18347331

4When Q ¼ 0 in (108) the constants Klm reduce to those of
Eq. (107), where a ¼ M for an extremal Kerr BH.

5See Ref. [25] for more details.
6See Eq. (18) in [13].

7For m ¼ l we have that Θmin ¼ 2mð2 −mÞ þ 1.
8For m ¼ l, Θmin ≥ 1 implies 2mð2 −mÞ ≥ 0 and then

0 ≤ m ≤ 2.

REGULAR SCALAR CLOUDS AROUND A KERR-NEWMAN … PHYS. REV. D 108, 104012 (2023)

104012-19



clouds at the horizon. This problem persists for l ≥ 4 which
forces jmj < l when l ≥ 3. Notwithstanding, when jmj < l,
the numerical evidence shows that αþ > 1, which leads not
only to a field Ψ that vanishes at the horizon, but its radial
derivative also vanishes there [cf. Eq. (56)].
We thus conjecture that if m ¼ l ≥ 3 the scalar cloud

configurations are not regular at the horizon. On the other
hand, when jmj < l the scalar clouds around an extremal

Kerr BH are regular everywhere and the field and its radial
derivative R0 vanish at the horizon r ¼ M since in this
situation αþ > 1. Even R00 vanish at the horizon when
αþ > 2. A similar behavior occurs in extremal KNBH (see
Table III) and we extend our conjecture to that scenario
as well.
Figure 19 depicts some solutions for the radial function

RðrÞ with m < l, around extremal Kerr BHs (top panel)
and extremal KNBH (bottom panel). These radial functions
have αþ > 0, and thus, provide clouds that are regular in
the DOC. The plots confirm that RðMÞ ¼ 0 ¼ R0ðMÞ.
In this regard, it is important to emphasize that our

parametrization (55) allows us to find numerically non-
trivial regular clouds even in cases where RðMÞ ¼ 0 ¼
R0ðMÞ ¼ R00ðMÞ as otherwise treating directly the differ-
ential equation for RðrÞwith those conditions at the horizon
would not necessarily lead to the actual nontrivial solution
but rather to the trivial one RðrÞ≡ 0.

VI. CONCLUSION

We analyzed the existence of scalar clouds, electrically
charged and noncharged, in the backgrounds of Kerr and
Kerr-Newman BHs (extremal and subextremal), respec-
tively. The electrically charged cloud solutions presented in
this work are consistent with those reported in Ref. [19].
Some of the results presented in [23] about the existence of
clouds around a Kerr BH were extended here as to include
the electric charge in both the clouds and the BH by
establishing an integral method that allows us to understand
and justify in a simple and heuristic way the existence of
such nontrivial cloud solutions in this type of scenario.
Since a similar method is precisely used to prove no-hair
theorems in static spacetimes, we illustrate that when
rotating BHs are present there exist obstructions to extend
those theorems due to the presence of nonpositive definite
terms associated with the rotation which does not allow us
to conclude that only trivial fields are possible around
rotating BHs.
Moreover, a new technique based on factorizing the

radial function in terms of a regular part and a potentially
irregular one at the horizon of the form ðr −MÞα, allows
us to analyze clouds around exact extremal Kerr and KN
BHs. In this way when α > 0 the cloud solutions turn to be
well-behaved in the DOC (including the horizon), where
the scalar field associated with the clouds vanishes.
Remarkably even if the radial derivatives are unbounded
at the horizon when 0 < α < 1, the cloud solutions are still
regular since the covariant (coordinate invariant) kinetic
term that contains radial derivatives turns to be bounded
due to the presence of an (inverse) metric component
that vanishes at the horizon. This treatment closes a gap
left in a previous analysis by us [25] where boundedness
of radial derivatives at the horizon (superregularity con-
ditions) were imposed leading to some inconsistencies.

TABLE III. Behavior of the exponent αþ given in Eq. (99) for
some values of the parameters (n ¼ 0, μQ ¼ 0.1 and q=μ ¼ 1)
leading to charged clouds around a KNBH. Only the clouds with
αþ > 0 are regular in the DOC, including the horizon.

l m μa μM αþ

3 2 1.08761968 1.09220720 2.02617256
3 3 1.90941874 1.91203554 −0.11159253
4 3 1.65721537 1.66022974 2.18544718
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FIG. 19. Radial part Rnlm of the scalar field Ψ associated with
integer numbers n ¼ 0 and l ≠ m, considering l ¼ f4; 3g and
m ¼ f3; 2g, respectively, around an extremal Kerr BH (top panel)
and an extremal Kerr-Newman BH (bottom panel) with
μQ ¼ 0.1.
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Furthermore, we checked that the cloud solutions without
the superregularity restriction are in excellent agreement
with the exact solutions found in the past by Hod [13,16].
Finally, the factorization technique made possible to
find cloud solutions when m < l, even for large l or
when m ¼ l for l ¼ 1, 2 while providing us with some
insight about the impossibility to find regular solutions
when l ¼ m ≥ 3 which are associated with α < 0. It is
possible that a similar factorization technique might be
implemented when dealing with hairy-rotating black holes
(at the full nonlinear level) like those analyzed recently
in [21], which may help us to deal with the extremal
scenario in quasi-isotropic coordinates (as opposed to
the Boyer-Lindquist coordinates used in this work)
which are inherently singular at the horizon located at
rqiso ¼ 0 [21,35].
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APPENDIX: DATA KERR-NEWMAN-BOSONIC
FIELD

Tables IV–VI show the eigenvalues μa found for differ-
ent values of μrH that leads to cloud solutions associated
with a massive and charged scalar field around Kerr-
Newman black holes with electric charge μQ ¼ 0.1. The
numerical data corresponds to the fundamental mode with
n ¼ 0 (nodeless).

TABLE IV. Eigenvalues associated with charged scalar clouds ðq=μ ¼ 1Þ around a Kerr-Newman black hole
ðμQ ¼ 0.1Þ with parameters l ¼ m ¼ 1, which are indicated by the dashed line labeled m ¼ 1 in Fig. 1.

μrH μa ω=μ ΩH=μ μM

0.12 0.0024057827214 0.9999996481207 0.1670011217984 0.1016907824604
0.13 0.0039153033832 0.9999984500873 0.2314648000216 0.1035204984637
0.14 0.0056316381056 0.9999960654455 0.2868642910689 0.1058275548134
0.15 0.0075569016729 0.9999909079654 0.3350120098438 0.1085236892096
0.16 0.0096935363204 0.9999833297078 0.3772689989226 0.1115436395199
0.18 0.0146121358341 0.9999577267443 0.4480392883781 0.1183708736489
0.20 0.0204132614973 0.9999148929166 0.5050699554542 0.1260417531124
0.22 0.0271286580352 0.9998513094893 0.5521140887208 0.1343999183790
0.24 0.0347969078252 0.9997633604195 0.5916752221561 0.1433558849879
0.26 0.0434646737536 0.9996473679561 0.6254883866728 0.1528638035856
0.28 0.0531883296210 0.9994993316724 0.6547948474511 0.1629089257283
0.30 0.0640361280605 0.9993145886544 0.6805069316617 0.1735010428283
0.32 0.0760911342624 0.9990874703943 0.7033111398859 0.1846716573645
0.34 0.0894552748854 0.9988109332642 0.7237350261189 0.1964738914776
0.36 0.1042551145940 0.9984764316070 0.7421923620962 0.2089849012764
0.38 0.1206497816675 0.9980712433904 0.7590119339466 0.2223110129163
0.40 0.1388439245643 0.9975807867885 0.7744631630351 0.2365970442355
0.42 0.1591062367041 0.9969830777394 0.7887683055310 0.2520414220930
0.44 0.1818009833365 0.9962470407675 0.8021164876315 0.2689222699342
0.45 0.1942129892664 0.9958134150449 0.8084841073244 0.2780207613331
0.46 0.2074420085504 0.9953258919251 0.8146731607918 0.2876436814255
0.48 0.2367940433120 0.9941447016175 0.8265887193270 0.3088243947375
0.50 0.2710838133913 0.9925727318373 0.8380067446339 0.3334864338828
0.52 0.3125126793142 0.9903508799232 0.8490711695634 0.3635232449347
0.54 0.3658458319769 0.9868435054170 0.8599170356659 0.4031881229396
0.55 0.4005968950143 0.9840576024849 0.8652614282156 0.4299798839046
0.56 0.4464066171732 0.9795814346444 0.8703938593518 0.4668561320143
0.57 0.5216314025034 0.9692329338467 0.8737554381729 0.5324555439278
0.571 0.5331035527382 0.9671656526322 0.8735959705977 0.5431176864642
0.572 0.5456459308501 0.9646870300545 0.8731543592753 0.5549943023193
0.573 0.5589214827882 0.9617607440179 0.8723304138988 0.5678204397227
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TABLE V. Similar to Table IV but for the mode l ¼ m ¼ 2 with n ¼ 0. These eigenvalues are associated with the
dashed line labeled m ¼ 2 in Fig. 1.

μrH μa ω=μ ΩH=μ μM

0.11 0.0005501512807 0.9999999913311 0.0454659107242 0.1004559212110
0.12 0.0012007197534 0.9999998457823 0.0833749687127 0.1016726738663
0.13 0.0019518996880 0.9999993766910 0.1154709913424 0.1034761919707
0.14 0.0028039130146 0.9999981691570 0.1429994267048 0.1057423640292
0.15 0.0037570136356 0.9999960966621 0.1668736972497 0.1083803838381
0.20 0.0100497880790 0.9999645374804 0.2506119179064 0.1252524956010
0.25 0.0189254314487 0.9998837214336 0.3010814800992 0.1457163439110
0.30 0.0304518478210 0.9997402387422 0.3349031895315 0.1682121917261
0.35 0.0447203722441 0.9995247610664 0.3592000318380 0.1921427309909
0.40 0.0618494070021 0.9992276217155 0.3775325816450 0.2172816864331
0.45 0.0819895860755 0.9988379819796 0.3918778692444 0.2435803246942
0.50 0.1053309163894 0.9983424813634 0.4034205058387 0.2710946019474
0.53 0.1209694101014 0.9979874437927 0.4093254061340 0.2882392435663
0.56 0.1379073613568 0.9975836649289 0.4146112922233 0.3059093217110
0.59 0.1562164495946 0.9971257190680 0.4193689895868 0.3241555755287
0.62 0.1759797916451 0.9966071031775 0.4236710960409 0.3430394250544
0.65 0.1972942730077 0.9960199728535 0.4275760093436 0.3626346385859
0.68 0.2202735266691 0.9953547106563 0.4311307891055 0.3830297254053
0.71 0.2450518675579 0.9945995206569 0.4343732802970 0.4043312801363
0.74 0.2717894364571 0.9937396366685 0.4373335094200 0.4266685795741
0.77 0.3006791637884 0.9927563671831 0.4400346280063 0.4501999737249
0.80 0.3319562973226 0.9916256588933 0.4424933579909 0.4751218645825
0.83 0.3659117265932 0.9903159676282 0.4447199257343 0.5016815612400
0.86 0.4029110404802 0.9887850014551 0.4467173467138 0.5301961084539
0.89 0.4434224612577 0.9869745617414 0.4484797525389 0.5610806062628
0.92 0.4880588597134 0.9848020384726 0.4499891268523 0.5948920926873
0.95 0.5376425365021 0.9821457307799 0.4512091404838 0.6323997352928
0.98 0.5933068329668 0.9788181524010 0.4520732679808 0.6747005092067
1.01 0.6566536849725 0.9745146810617 0.4524608087165 0.7234129019742
1.04 0.7299691681541 0.9687097809656 0.4521458785027 0.7809879742575
1.07 0.8163174734726 0.9604481365331 0.4506868510505 0.8510627184563
1.10 0.9182234019219 0.9480368057917 0.4472300908723 0.9377882799259
1.13 1.0301793052790 0.9295128956888 0.4405922448678 1.0390130093032
1.16 1.1292776607708 0.9060186509682 0.4308792528429 1.1339948427224
1.17 1.1554073083968 0.8979049159343 0.4273167707862 1.1597718155114
1.171 1.1577936094314 0.8970988529260 0.4269580202881 1.1621379342614
1.172 1.1601361476599 0.8962943195009 0.4265990801174 1.1644624066156
1.173 1.1624338345399 0.8954914592236 0.4262400096121 1.1667439981599
1.174 1.1646852618309 0.8946904231618 0.4258808660970 1.1689811580605
1.175 1.1668885219775 0.8938913763719 0.4255217049233 1.1711718394565
1.176 1.1690408371188 0.8930945110393 0.4251625794030 1.1733131287633
1.177 1.1711375085258 0.8923000828668 0.4248035401426 1.1754001970586
1.178 1.1731655545607 0.8915086268446 0.4244446282652 1.1774199568793

GUSTAVO GARCÍA and MARCELO SALGADO PHYS. REV. D 108, 104012 (2023)

104012-22



TABLE VI. Similar to Table IV but for the mode l ¼ m ¼ 3with n ¼ 0. These eigenvalues are associated with the
dashed line labeled m ¼ 3 in Fig. 1.

μrH μa ω=μ ΩH=μ μM

0.11 0.0003667114669 0.9999999936894 0.0303063959882 0.1004551567150
0.12 0.0008002130296 0.9999999130702 0.0555678782846 0.1016693347537
0.13 0.0013005618428 0.9999996490018 0.0769486205492 0.1034680440811
0.14 0.0018678229089 0.9999989779648 0.0952801275132 0.1057267455800
0.15 0.0025020704490 0.9999978224055 0.1111721987292 0.1083542011884
0.20 0.0066812847781 0.9999803910845 0.1668459212137 0.1251115989157
0.25 0.0125511715278 0.9999358844349 0.2003138512792 0.1453150638134
0.30 0.0201308031580 0.9998579754837 0.2226729457434 0.1673420820596
0.35 0.0294451011920 0.9997429587765 0.2386788837717 0.1905243056917
0.40 0.0405252189993 0.9995877540750 0.2507092553147 0.2145528667186
0.45 0.0534090512068 0.9993894736426 0.2600847043470 0.2392805852786
0.50 0.0681418718515 0.9991450820340 0.2675973328890 0.2646433146994
0.55 0.0847771353082 0.9988512383161 0.2737508864655 0.2906246933373
0.60 0.1033774554613 0.9985040423163 0.2788807911368 0.3172390819147
0.65 0.1240158270189 0.9980989210825 0.2832188000384 0.3445230195009
0.70 0.1467771341929 0.9976304566891 0.2869299021704 0.3725310908013
0.75 0.1717600232967 0.9970921767998 0.2901344366039 0.4013343370686
0.80 0.1990792424803 0.9964763056687 0.2929218796355 0.4310203404916
0.85 0.2288685825797 0.9957734399481 0.2953597176268 0.4616946047600
0.90 0.2612846044529 0.9949721236604 0.2974992999951 0.4934831358467
0.95 0.2965114078248 0.9940582809832 0.2993797608315 0.5265363236685
1.00 0.3347667970329 0.9930144454746 0.3010306507165 0.5610344041978
1.05 0.3763103452734 0.9918186941452 0.3024736589061 0.5971949885522
1.10 0.4214540724942 0.9904431444100 0.3037236410283 0.6352834251008
1.15 0.4705767659242 0.9888517901817 0.3047890502212 0.6756271707076
1.20 0.5241434279212 0.9869973133089 0.3056717668726 0.7186359720970
1.25 0.5827319765302 0.9848162647386 0.3063662051602 0.7648306225883
1.30 0.6470701365174 0.9822215790490 0.3068574048848 0.8148845236817
1.35 0.7180861622466 0.9790906071036 0.3071175319952 0.8696843468185
1.40 0.7969763040270 0.9752454418509 0.3070996992667 0.9304182961359
1.45 0.8852846376814 0.9704198870107 0.3067271070690 0.9986996171429
1.50 0.9849584254600 0.9642041300870 0.3058741164314 1.0767143666282
1.55 1.0982215461176 0.9559590030595 0.3043353150022 1.1672872788248
1.60 1.2267292840044 0.9447270945530 0.3017884637265 1.2733952300731
1.65 1.3687597323441 0.9293464357228 0.2978152258224 1.3957585469354
1.70 1.5144783472102 0.9092897655990 0.2921647692556 1.5275425482848
1.75 1.6474738004273 0.8858774119710 0.2851943805618 1.6533342637413
1.80 1.7569780179411 0.8615391793175 0.2776965167271 1.7602699320911
1.85 1.8416061126351 0.8379523602049 0.2702674756578 1.8443278578635
1.86 1.8554705618497 0.8333964779116 0.2688164052998 1.8581642488953
1.861 1.8567869929913 0.8329443673848 0.2686720665517 1.8594784893448
1.862 1.8580878534479 0.8324929349477 0.2685278700756 1.8607772478868
1.863 1.8593800880717 0.8320420880535 0.2683838187323 1.8620674481796
1.864 1.8606487211222 0.8315920316224 0.2682399090332 1.8633341371817
1.865 1.8618953389739 0.8311427465329 0.2680961426494 1.8645788882822
1.866 1.8631094879049 0.8306943781580 0.2679525183212 1.8657912550700
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