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Regular scalar clouds around a Kerr-Newman black hole:
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In this work we analyze the existence of electrically charged scalar clouds which are bound states of a
complex-valued massive scalar field in the background of subextremal and extremal Kerr-Newman black
holes (BH). In particular, we reanalyze neutral (uncharged) clouds in extremal Kerr BHs. For the extremal
scenarios we have implemented a novel technique which allows us to obtain regular clouds at the BH
horizon H* which turn out to be connected “‘continuously” with the cloud solutions in the subextremal case
even if some derivatives of the scalar field are unbounded at the horizon. In particular, for subextremal
BHs we have established regularity conditions at H*, by demanding that the field and its radial derivatives
are bounded there, but in the extremal scenarios we relax this last condition while demanding that some
scalar invariants are well-behaved at H™. Furthermore we have implemented an integral technique to
understand and justify in a simple and heuristic way the existence of such cloud configurations in those BH

backgrounds.
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I. INTRODUCTION

Black holes (BH) are one of the most enigmatic and
interesting predictions of Einstein’s theory of general rela-
tivity (GR). Nowadays these objects are considered to be
beyond the realm of theoretical speculations as currently we
count with strong observational evidence about its presence
in the universe, namely, from the detection of gravitational
waves by the LIGO-VIRGO-KAGRA Collaboration [1]
which are emitted, among other sources, by the inspiriling
and collision of two BHs, and also from the observation of
the shadows produced by massive black holes at the center of
the galaxies M87 [2] and the Milky Way [3], respectively.

From a theoretical perspective, BHs seem to be very
simple objects, since according to the uniqueness
theorems [4,5] together with the no-hair conjecture [6,7],
they can be described by only three parameters: mass (M),
angular momentum (J) and electric charge (Q) [6,7]. More
specifically, those theorems establish that all regular, sta-
tionary, axisymmetric and asymptotically flat BH solutions
(AFBH) of electrovacuum Einstein’s field equations belong
to the Kerr-Newman family of solutions which are char-
acterized by those three parameters.

Furthermore, these mathematical results and conjectures
are supported by several no-hair theorems showing that
several nontrivial fields cannot be present outside a BH. In
particular, when one considers the Einstein-Klein-Gordon
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(EKG) system, these theorems show that if some energy
conditions are satisfied [8—12], the only possible scalar field
WY (real or complex) solution present outside a static and
spherically symmetric AFBH is the trivial one ¥ = 0, and so
the only AFBH solution is the Schwarzschild solution.
Remarkably, this state of affairs can change dramatically
if some spacetime symmetries are dropped and/or the
energy conditions are abandoned in those theorems. For
instance, when one introduces rotation (while keeping the
energy conditions) it is possible to find nontrivial solutions
for a complex-valued scalar field outside a BH. Hod was
perhaps the first to show the existence of bound-state
(exact) solutions for massive but otherwise free scalar fields
of that kind in the background of extremal and near
extremal Kerr BHs [13,14]. Since the background was
fixed and the scalar field was a ftest field that does not
backreact in the Kerr spacetime, such solutions were
termed scalar clouds and were not considered as genuine
hairy solutions, i.e. solutions of the full EKG system.
Later, Hod himself extended his results by finding exact
nontrivial electrically charged scalar-cloud solutions out-
side (extremal and near-extremal) Kerr-Newman BHs
(KNBH) [15,16]. Presumably motivated by Hod’s discov-
eries, Herdeiro and Radu [17,18] (hereafter referred to as
HR) generalized those results in several instances. First,
they found numerically scalar clouds in the background of
subextremal Kerr BHs, and then, more importantly, they
computed numerically genuine rotating, stationary, axisym-
metric and AFBH hairy solutions by taking into account the
backreaction of the field in the spacetime and thus, solving
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self-consistently the full EKG system under suitable
regularity conditions at the horizon H*. Moreover, they
showed that those hairy solutions are continuously con-
nected with rotating boson star solutions in the limit when
the BH horizon shrink to ‘zero’.

Benone et al. [19] extended Hod and HR cloud analysis by
studying electrically charged scalar-field clouds in the back-
ground of subextremal KNBH. More recently, scalar clouds
and rotating hairy AFBH solutions have been computed by
solving numerically the full EKG system using spectral
methods [20,21], and confirmed the results reported by HR.

Delgado et al. [22] obtained hairy rotating charged
AFBH solutions by solving numerically the Einstein-
Klein-Gordon-Maxwell system, which extends the charged
scalar-cloud analysis in a Kerr-Newman spacetime per-
formed earlier by Benone et al. [19]. All those BH solutions
with a nontrivial scalar hair represent some counterexam-
ples to the no-hair conjecture.

Finally, let us mention that previously we analyzed
the existence of clouds [23] and lack thereof [24] in the
background of Kerr and Reissner-Nordstrom BHs, respec-
tively, by devising an integral method that is usually
employed in proving the no-hair theorems within, but
not exclusively, spherically symmetric scenarios. This
technique provides a heuristic understanding as to why
the no-scalar-hair theorems in spherically symmetric and
static spacetimes cannot be extended to the axisymmetric
and rotating scenarios that leads precisely to the existence
of cloud and hairy solutions of the sort alluded above.

In this paper we extend the results of Refs. [23,24] in
several respects. First, we analyze the existence of charged
scalar clouds in the background of subextremal KNBH,
and then we study those clouds in the extremal case by
introducing a novel technique that allows us to impose
rigorous regularity conditions at the BH horizon H™ even
when working with Boyer-Lindquist (BL) type of coor-
dinates that are inherently singular at the horizon. In
particular, we reanalyze the uncharged (neutral) clouds in
the extremal Kerr background. This novel treatment con-
trasts drastically with a similar analysis performed pre-
viously by us in the extremal Kerr spacetime [25] where
superregularity conditions on the scalar-field were con-
sidered by imposing boundedness in the radial derivatives
of the scalar field at H". Those conditions, while reason-
able, were not necessary and led to inconsistencies that
could only be remedy if the “quantum numbers” (n, [, m)
that label the cloud solutions satisfied some Diophantine
equation of the Pell-type and for a large number of nodes
in the radial part of the field (i.e. 1 < n) [25]. In this paper
we show instead that the radial derivatives of the scalar
field with respect to the BL coordinate r, notably the first
radial derivative, can be unbounded at H* and still leads
to genuinely regular scalar clouds without the need of
imposing any further conditions on the “quantum numbers”
(n,l,m) provided that the divergence in the radial

derivative is such that some invariant scalars formed from
first derivatives (e.g. the kinetic term for the field in the
Lagrangian) remain bounded, notably at H™.

As stressed above, this technique is applied to (electri-
cally) charged cloud solutions in the background of extremal
KN spacetime as well. We check that our solutions using that
technique are in agreement with Hod’s exact solutions in
those two extremal backgrounds [13,15]. Finally, we show
that those regular cloud solutions around exact extremal
Kerr and KN BHs, unlike the superregular clouds in such
extremal scenarios (cf. Ref. [25]), can be connected con-
tinuously with the cloud solutions around the corresponding
subextremal BHs in the limit of extremality. This feature
hints towards the robustness of our method.

II. CHARGED SCALAR CLOUDS

In our study we consider a (test) massive, complex and
charged scalar field ¥ around a KNBH, which in Boyer-
Lindquist coordinates is described by the following space-
time metric,

A — 2 o 29 2
dsz:_<7a — )dt2+%dr2+/)2d62
P

_ 2asin’ 9(r22—|— a*—A) drdy
p

2 22—A 2 o 29
n ((r +a*) : a* sin )sin29d¢2, (1)
p

where

and A =r>-2Mr+a® + Q%

(2)

where M is the mass, a the angular momentum per mass
unit and Q the electric charge associated with the KNBH.

In this spacetime we can identify the presence of two
horizons located at

p? = r* + a®cos? 6,

re =M+ M?*—a? - Q% (3)
one at r, = ry that corresponds to the BH event horizon
and another one at r_ which is an inner Cauchy horizon,
such that A(r;) = 0. The existence of a KNBH requires
a® + Q% < M?, where the equality is associated with an
extremal KNBH, which we consider in Sec. V. In particular,
the Kerr spacetime is recovered when Q = 0. Due to the
presence of the two horizons, it is convenient to write

A=(r=ru)(r=r.), @

where the values of ry and r_ keep the following relation-
ship

104012-2



REGULAR SCALAR CLOUDS AROUND A KERR-NEWMAN ...

PHYS. REV. D 108, 104012 (2023)

2 2
ro=4 +Q. (5)

'y

The angular velocity of the KNBH is given as follows:

a
re + a?

(6)

Qy

From (2) and the fact that A(ry) = 0 one finds a relation
between the mass M and the quantities ry, a and Q,

oy tat+ 07

M
27”].]

(7)

Moreover, from Egs. (5)—(7) we see that the quantities
r_, Q, and M can take a parametric form r_ =
r_(rg,a,Q), Qu = Qu(ry,a,Q), and M = M(ry, a, Q).
These equations will allow us to compute r_, Qy, and M
when finding the values for a that solve the eigenvalue
problem for W, once the values of 5 and Q are specified
(cf. Sec. IID).

The massive and charged scalar field ¥ that we analyze
for the existence of scalar-cloud solutions has the following
energy-momentum tensor (EMT):

1

Tap = 5[(D.¥)"(Dp¥) + (D,¥)" (DY)

~ g [5 5D (D) + UEW)| . ()

where the operator
Da = va - iqAaa (9)

represents the covariant derivative associated with the
gauge field A,, which in the KNBH background is
given by

Or

A==, ~asin0ldg), . (10)

and the constant g (i.e. the electric charge) is the gauge
coupling for the scalar field W. The operator V, corre-
sponds to the covariant derivative compatible with the
metric, in this case the KN metric. For our study we focus
only on the following potential:

1
U(PY) = PPy, (11)

which is associated with a massive but free field with
mass /.

The dynamics of the charged and massive scalar field is
given by the Klein-Gordon (KG) equation coupled to the
electromagnetic potential,

(Ve —iqgA?)(V, —iqA,)¥ = p*¥. (12)

In order to find bound states for ¥ in the domain of outer
communication (DOC) of the KNBH, including the hori-
zon, we consider the following ansatz in terms of the
BL coordinates with temporal and angular dependence in
the form,

P(t.r.0.0) = P(r.0)e™r e, (13)

where o is the frequency of the scalar field and m is an
integer number. This is the most general form that we can
choose in such a way that the energy-momentum tensor (8)
respects the symmetries of the KN spacetime.

To ensure the existence of boson clouds, we impose the
zero-flux condition at the BH horizon [17,18]:

x°D,¥|;+ =0, (14)
where
2= E+Qun, (15)

is the helical Killing vector field given in terms of the
timelike Killing field & = (9/0r)® and the axial Killing
field n* = (0/0p)*, which are associated with the time
and axial symmetries of the background spacetime. At the
horizon y“ becomes null and thus, it is tangent to the null
geodesic generators of the horizon. From (14) together with
Egs. (10), (13), and (15), we obtain the following condition:

QOry

Assuming that in general ¥y # 0, we conclude,

w = mQH + qcDH, (17)
where
Ory drQry
¢ = —A a = = s 18
H aX |H+ ”%1 T A, ( )

is the electric potential at the horizon as defined in terms of
the helical Killing field, and Ay = 47(r% + a?) is the area
of the BH event horizon (cf. Ref. [26]).

The bound states thus correspond to a field with a
frequency given by (17), which is called synchronicity
condition [15,19], due to its relationship with the BHs
angular velocity Qp, in particular when Q = 0.

In fact, the condition (17) results also when imposing
regularity of the field ¥ at the horizon, as we show below.
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III. TEUKOLSKY RADIAL EQUATION
AND REGULARITY CONDITIONS

When we substitute the scalar field ansatz (13) into the
KG Eq. (12) we find that the function ¢(r, 6) is separable,
that is, it can be written as the product of a function
dependent on the variable r and a function dependent on the
variable 8 which allows us to expand the ¥ field in modes
of the form

\Pnlm = Rnlm(r)Slm (H)eim(pe—iwt’ (19)

where the angular functions S,,,(0) (the spheroidal har-
monics) obey the following equation:

LA (Gng®Sm
sin 0 dO do

Ki + (4 — 0?)sin20 — —
+< lm+a(:u 60) SinZe

2

)S,m =0, (20)

and K, are the separation constants (|m| < ) given by

Ky +a*(@> —a?) =1(1+1)+ Z cra®* (u? — w?)k,
pay
(21)

which connects the angular and radial parts of the KG
equation and ensures that the angular functions S,,,(6) are
regular on the axis of symmetry. As it occurs with the wave
function of the hydrogen atom, the number [/ is a non-
negative integer which is associated with the angular
momentum of the atom, while the integer n (n > 0) labels
the number of nodes in the radial function R, (r). The
expansion coefficients c¢; can be found in Ref. [27].

The functions R, (r) obey a type of radial Teukolsky
equation [28],
|

d dR
A— (A—"Im) + [H? + (2maw — K,

dr dr
- Mz(rz + az))A]Rnlm = 0’ (22)
where
H=(r’+da*)o—am—qQr. (23)

Given the form of the frequency w (17), we observe that
the function H vanishes at the horizon, which is precisely
the regularity condition at the horizon when demanding
boundedness for the field and its radial derivatives in the
subextremal BH scenarios, as we discuss next.

In order to find cloud configurations, it is essential to
establish regularity conditions for the W field at the event
horizon; namely, by demanding that the field and some of
its derivatives are bounded on the horizon. We thus assume
that R,,;,,(r) is C3 on the horizon. To solve the differential
equation associated with the radial part (22) it is necessary
to know the values of the field and its radial derivatives at
rg: R, (ry), R, (rg) and R, (rg). So, assuming that
R”, (ry) is bounded we find the regularity condition for

nlm

R, (rg) from Eq. (22),

1
R - -
nlm(rH) 2(rH — M)

X Rnlm(rH)‘ (24)

2maw — Ky — 127} + )]

The value of R,;,(ry) is a free parameter, which we take
R,m(rg) =1, for simplicity and also to compare our
numerical results with those presented in [19] where the
same value is used. To find the value for R/, (ry), we
differentiate Eq. (22) once more, and demand that R} (ry)
i1s bounded, which leads to!

1 M —r_)(2mary ry —a*))?
Ry (ra) = _2(rH —M) ( (r)]i _ r_)z(t;_%(az)z ) — Wiy Ry (ra)
- m (1 + maw) = Ky — g2 + @) Ry (). (25)

Both regularity conditions (24) and (25) are valid only in
the subextremal case ry # M. Thus, making use of these
two regularity conditions we can find cloud solutions close
to the extremal background only in the limit 5 — M, but
we cannot treat exactly the extremal scenario with such
conditions. Clouds in the exact extremal background with
ry = M = r_ will be analyzed separately in Sec. V below.

In order to find charged cloud solutions around a
subextremal KNBH Eq. (22) was solved numerically with
their respective regularity conditions (24) and (25), using a
fourth-order Runge-Kutta algorithm and integrating in the

DOC from r = ry outwards. As a part of the numerical
scheme, the values of ry, Q, ¢ and g were fixed, and
selecting some values for the integers n, [ and m. Then the
BH angular momentum per mass unit a can be used as an

'We can observe that, for O = 0 and a # 0 these regularity
conditions reduce to those obtained in the case of the Kerr metric
(see Egs. (77) and (78) in [23]). Alternatively, when a = 0 and
Q # 0, they reduce to the regularity conditions for the field in the
background of a Reissner-Nordstrom (RN) black hole [see
Egs. (18) and (19) in [24]].
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FIG. 1. Existence (black dotted) lines for charged scalar clouds
(n=20 and /| =m with m = 1, 2, 3) coupled to a subextremal
Kerr-Newman black hole with charge pQ = 0.1. The relation
between the mass and the charge of the scalar field is g/u = 1.
The solid blue line corresponds to an extremal KNBH a? + Q* =
M? (BH solutions do not exist above this line).

eigenvalue such that the radial function R, (r) vanishes
asymptotically as we did in our previous study for clouds
around a subextremal Kerr BH [23].

Figure 1 shows the existence lines associated with the
numerical solutions of Eq. (22), with fixed charge uQ =
0.1 and different values for ry. We have taken the quantum
numbersn = 0and m = [ = 1, 2, 3, respectively, as well as
a scalar field ¥ with g/p = 1.

In Tables IV-VI of Appendix are displayed the numeri-
cal eigenvalues a,,,, (i.e. the spectrum) associated with the
eigenvalue problem of Eq. (22). Our results depicted in
Fig. 1 are consistent with those reported in [19].

Figure 2 plots a family of radial solutions R, (r) with
n =0 and m = [ = 1, using different values for ry. The

180 T "
ury = 0.24
160} uryy = 0.30
uryy = 0.34
140} ury; = 0.40
| ury = 0.44
120 ury = 0.50
100 b pury = 0.54

Ri4

8o}
60 |
a0}
20

0

AN
0 50

100 150 200 250 300 350 400
ur

FIG. 2. Radial solutions Ry; (Rp;;) withn=0and/=1=m
associated with charged boson clouds around a subextremal Kerr-
Newman black hole and the corresponding location of the event
horizon pury taking uQ = 0.1 and q/u = 1.0.

16 T
ury = 0.570
14 } }J.I’H=0.571 _—
ury = 0.572
ol ury = 0.573
10|
o 8
6 L
4
2
0 .
1 10
ur
FIG. 3. Radial solutions Ry; (Ry;;) withn =0and/=1=m

associated with charged boson clouds around a Kerr-Newman
black hole close to extremality ry ~ M. Here uQ = 0.1 and
q/u = 1.0 are fixed.

corresponding values for the spectrum a,,,, are shown in
Table IV of Appendix.

Cloud solutions around KNBH close to extremality a” +
Q*~M? (ie. ry~M) are depicted in Fig. 3 for the
fundamental mode (n = 0) and m = [ = 1. The numerical
values for the spectrum a,,;,, can be found in the last four
rows and second column of Table IV (see Appendix). For
clouds similar to these ones, Tables V and VI display more
values a,;,, when m = [ =2 and m = [ = 3, respectively.
Note from Fig. 3 that as the solutions approach the extremal
scenario the slope R’ at the horizon increases [cf. Eq. (24)].
At this respect, cloud solutions for the exact extremal
scenario around Kerr and Kerr-Newman BHs are analyzed
below in Sec. V since, as stressed before, the radial part
R(r) for the boson field ¥ requires different kind of
regularity conditions at the horizon because their deriva-
tives (24) and (25) blow up when ry = M.

Figure 4 shows some examples of radial solutions R,,;,,
with different nodes (n = 0, 1, 2) associated with a fixed
value of the horizon radius ury = 0.5. In particular, the
figures depicts R,;; and R,,, i.e. taking m =/ =1 and
m = [ = 2, respectively.

Figure 5 shows the angular function S;,,(0) and the 3D
spheroidal harmonic |S;,,(0, ¢)| for m = [ = 2, associated
with the charged scalar field ¥ coupled to a Kerr-Newman
black hole with pury = 0.5 and uQ = 0.1.

IV. NO-HAIR THEOREM OBSTRUCTIONS

In this section we justify in a more heuristic way the
existence of charged scalar clouds in the presence of a
KNBH. The treatment developed here is similar to the
one presented in [23,24], which analyze, respectively, the
existence of neutral scalar clouds around a Kerr BH, and
their absence thereof around a RNBH. To do so, we use a
technique initially implemented by Bekenstein [8], and
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-2000 . . . . . . .
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FIG. 4. Radial solutions R,,;,, with principal numbern = 0, 1, 2
(number of nodes) around a KNBH with the horizon located
at ury = 0.5, and taking integers m = [ =1 (top panel) and
m =1=72 (bottom panel), respectively. Here xQ = 0.1 and
q/n=1.0.

then employed, mutatis mutandis, in several studies that
prove no-hair theorems in several kind of scalar-field
theories [29,30].

First, let us consider the Klein-Gordon equation (12) in
the form

DD,¥Y = V. (26)

Multiplying both sides of this equation by ¥* and integrat-
ing over a suitable volume ) contained within the DOC
of the KNBH (bounded by two spatial hypersurfaces
t = const, a section of the horizon and a timelike surface
r = const when » — o0) we find,

/‘I’*D“Da‘P,/—gd“x—/yz‘P*‘I‘\/—gd“x. (27)
% %

Integrating by parts the L.h.s of the previous equation and
using the Gauss theorem we obtain,

=2, m=2

3.5
0
1.5
]
0.5
0
-0.5
3
-1.5
3
-3
FIG. 5. Angular part S, (6) of the field ¥ (top panel) and 3D

spheroidal harmonic [S,,(6, ¢)| (bottom panel) for m = [ = 2.

/ WD, WdS — / (D9)* (D¥) + 129" W] /g
% v
(28)

In this case the surface integral that corresponds to the
boundary 0V is composed by four regions; the (two
isometric X, —t = const.—) spacelike hypersurfaces X,
and X,, a portion of the black hole horizon and, finally,
the asymptotic region corresponding to spatial infinity i°.
The contributions associated with £; and %, cancel each
other because the integrals are identical except for the fact
that their normal vectors have opposite signs (i.e.
sy, = —s%,)- The surface integral associated with spatial
infinity vanishes when assuming that the scalar field ¥
decays exponentially, and thus it vanishes asymptotically.
Finally, at the horizon (a null hypersurface) the normal s¢ is
equal to the Killing vector y“. Furthermore, assuming that
W* is bounded at the horizon and using the zero-flux
condition (14) the integral associated with the portion of
horizon vanishes as well. We conclude that

/ P 54D, WdS = 0, (29)
aV

and therefore
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/V (DY) (D,¥) + 2P W] /=gd'x = 0. (30)

Given the harmonic dependence of the field ¥ (13) one
obtains the following expression for the kinetic term
K = (D*¥)*(D,¥)
= g"(D¥)"(D,¥) + g (D,¥)*(D,¥)
+ ¢ (D,¥)" (DY) + ¢**(D,¥)*(D,¥)
+97(D,¥)"(D,¥) + ¢ (Dg¥)* (Dy¥)
=R¢* +97(9,4)* + 9" (0s)*. (31)

where we have defined

R = ¢"'@&* — 29" & +g7* in?, (32)
®=w+ qA,, (33)
m=m-—qA,. (34)

Considering the frequency of the field ¥ (17) and the
electromagnetic potential A, (10), it is possible to express
Egs. (33) and (34) as follows:

aqQrsin’ 0

2

(36)

m=m

From Eqgs. (35) and (36) together with (17) it is easy to
find the following relationship between @ and 7u:

m=m+ (& —w)asin® 0. (37)

If one substitutes the explicit form of the metric

components ¢, ¢'’, and ¢g*? into Eq. (32), one obtains
the following expression for R:

1
= —A—pz[(}"z +a2)&)—am]2 m[a@siHZG—ﬁl]z,
(38)
or equivalently
R: _M[wr+(mr —an)Q ]2
pPr=r) ! !
preery [awsin?0 — m]?. (39)

From this last equation, we observe that 'R contains a
contribution that is never positive (the one with the factor
r—ry in the first line) and another contribution that is

positive defined in the DOC (including the horizon, in the
second line).

Therefore, the kinetic term K is represented by the
following expression:

_ 2
K== Um0 o+ (- ag Q)0
2 in20 — m]?
% {%} 4 grr(ar¢)2 _|_999(59¢)2, (40)

Therefore, the integrand of the integral (30) has the
following form

IEK+/421P*T

_ 2
¢? [awsin®0 —m]? A
1
3 (000) + 12 “

If nontrivial regular charged boson clouds exist (i.e.
¢(r,0) # 0 in general), the following inequality

R = ¢"&* — 2¢ M & +¢** > <0, (42)

must hold in a region of the KN spacetime so that the
(nonpositive) term in the first line of (41) compensates the
non-negative contributions associated with the quadratic
terms ¢""(9,¢)% + g% (9y¢p)* and u>¢h?, and in this way the
volume integral (30) is satisfied for nontrivial clouds. We
show that this is the case in some particular instances, and
then provide numerical evidence in more general cases.

First, considering Eq. (39) we find the following behav-
iors at the horizon ry and asymptotically (when r — o),
respectively:

[aqQry sin? 0 — (r}, + a* cos® 0)m]?

R —
" (ry, + a*cos? 0) (r}, + a*)? sin> 0

(43)

R ~ —0°. (44)

In particular, at the equatorial plane 6 = /2, Eq. (43)
reduces to

(45)

Ry = {an - mrﬂ} 2‘

r3 + a?

Clearly, this shows that R must interpolate between a
positive value at the horizon (45) and a negative value at
spatial infinity (44).

Furthermore, since in the kinetic term appears the
combination c/)zR, we introduce the quantity A,
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A=¢*R, (46)

which presents the following behaviors at the horizon
and the equatorial plane and asymptotically (ry < r),
respectively

ﬂ@;ﬂﬂ{ (47)

Aly = ¢ Ry = ¢
|H ¢H H ¢H|: I"%{‘I‘az

Aoo = 4)%073’00 ~ _¢go(mQH + q(I)H)2' (48)

In particular, A, vanishes as ¢p — 0 asymptotically.

On the other hand, when considering an extremal
KNBH, a? + Q? = M?, the quantity R given in Eq. (39)
reduces to

1
TRext — _/7 [a)r + (mM - aQQ)QH]z

1 [awsin® — m]?
— {7] . (49)
P sin @
Then, the frequency of the scalar field is given by,
ma qOM ma + qOM
= = 50
@ MeraerMera2 M? + a? (50)

In this case, the value of R**" at the horizon r = ry = M
takes the form,

Rext —

3 1 qQ> + 2maM?
M? + a’cos’6 M? + a?
ma*cos?0 + mM? — agQMsin?0|?
- 2 2\ o ’ (51)
(M* + a*)sinf

which, at the equatorial plane (8 = 7/2) reduces to

ex 1
RH[Z_W{

qQ® +2maM1?* [aqQ — mM

r. (52)

We note that when Q = 0, the above equation is simply

3m?
T 33)

Rt =

this value is similar the one that appears in Eq. (61) of [23],
and which corresponds to the extremal Kerr scenario.”

The asymptotic behavior for R®™*" when M < r, coin-

cides with the asymptotic behavior for R given by Eq. (44).

In view of this, even if R§}" were positive for some values

of the parameters, R®*" must interpolate from a positive to a

’In [23] we use a slightly different notation and the equivalent
expression for (53) does not include the factor m?.

negative value, proving that this quantity is also negative in
a region of the DOC.

We conclude that the contribution associated with
Eq. (47) to the kinetic term (40) is positive at the horizon
(in the subextremal case) and then it becomes negative. In
the extremal case something similar happens, except that at
the horizon R can be even less positive (cf. blue dashed-
line of top panel of Fig. 6 which corresponds to a near
extremal solution).

Since the field vanishes asymptotically, it follows
that the A term (in fact the entire kinetic term) will also
vanish asymptotically. As in the Kerr scenario [23],
we conclude that the existence of nontrivial localized
solutions for ¢(r, 8) in a Kerr-Newman background implies
that the inequality (42) must hold in some region of
the DOC.

Figure 6 shows the rotational part of the kinetic term (31)
that appears in the integral (30) for some of the numerical
solutions depicted in Figs. 2 and 3 with parameters
displayed in Tables IV-VI, and evaluated at 6 = 7/2,
for simplicity. On the horizon this quantity is positive
but then becomes negative. This rotational part has been
normalized with the square of the field amplitude
Y'Y = %, which is positive. Furthermore, due to this
normalization, the quantity R = A/¢> does not vanish
asymptotically, but it is close to the negative constant value
given by Eq. (44) R = A/¢* —» —(mQy + q®Py)* = —a?.

Table I shows some numerical values of the quantity
A/P*W at the horizon and asymptotically (r — o) cor-
roborating that the numerical results are consistent with the
analytical expectations.

The fact that the rotational contribution is negative in
most of the DOC for the KNBH indicates that the integral
(30) vanishes due to the presence of such a negative
quantity, without the need for the field ¥(z,r,0,¢) to
vanish identically, something that does occur in the spheri-
cally symmetric scenario [8—12], and which leads to the no-
hair theorems in such scenario. This situation is quite
similar to what is found in the background of a Kerr

TABLE 1. Values of the rotational contribution to the kinetic
term at r = ry and r — oo associated with Fig. 6.

Kinetic term (rotational contribution)

m ury e (r =) iy (r = )
1 0.15 43.77526399 —0.99998181
0.40 4.63855257 —0.99516743
0.57 0.75238174 —0.93941249
2 0.50 14.36173016 —0.99668771
0.95 2.400727382 —0.96461025
1.17 0.67682839 —0.80623325
3 0.50 34.38453473 —-0.99829089
1.00 7.11593895 —0.98607769
1.86 0.61079886 —0.69454971
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FIG. 6. Rotational contribution [cf. Eq. (46)] A/P*¥ =R to
the kinetic term K = (V. ¥*)(V°¥) given by Eq. (40) computed
from the regular cloud solutions in the background of a Kerr-
Newman BH and evaluated at the equatorial plane (0 = z/2) for
different locations of the horizon ry, and with “quantum
numbers” n =0 and m = [ =1 (top panel), m = [ = 2 (middle
panel), and m = [ = 3 (bottom panel).

black hole [23]. These results allow us to understand in a
simple and heuristic way the existence of nontrivial charged
scalar clouds and the explain why the no-hair theorems
cannot be extended for rotating BHs precisely due to the
presence of the rotational contribution A in the integrand of
Eq. (30) which is not positive (semi)definite when non-
trivial cloud solutions exist.

V. EXTREMAL SCENARIOS: A NEW
PERSPECTIVE

In a previous investigation [25] we analyzed the exist-
ence of (uncharged) clouds in the background of an exact
extremal Kerr BH. In order to do so, we imposed some
superregularity conditions at the horizon r§' = M on the
radial part R(r) of the field . Such conditions consisted in
assuming that R(r) and its derivatives were bounded at the
horizon, and contrary to what happens in the subextremal
scenario, those conditions constrained the separation con-
stants K, in such a way that a priori they did not coincide
with the values (21) required for the angular part S;,,(6) of
the spheroidal harmonics to be regular on the axis of
symmetry 6 = {0, z}. These inconsistencies forced us to
conclude that regular clouds could not exist around exact
extremal Kerr BHs unless the pairs of numbers (I, m)
satisfied a Diophantine equation of Pell-type and only
if the numbers of nodes n were arbitrarily large.
Notwithstanding, even in that case, those clouds seemed
not to coincide with the clouds obtained from the sub-
extremal scenario in the limit of extremality M — a; both
solutions were not connected in a “continuous” way, and as
mentioned, the exact extremal ones required the existence
of a large number of nodes, and an additional restriction on
the numbers (/,m) (a Pell-Diophantine equation), some-
thing that does not occur for cloud solutions around
subextremal Kerr BHs.

If we follow the same strategy for exact extremal KNBH
we encounter similar kind of problems, which allow us to
conclude that assuming superregularity conditions for the
radial part R(r) is a too restrictive a condition, which as we
show next, it is not necessary in order to have well-behaved
clouds.

Now, if the derivatives of R(r) are not bounded at the
horizon, the question is, how to solve the problem, and
clearly, how can the corresponding clouds be regular at the
horizon. The answer to these questions are analyzed in this
section by implementing a new method that leads to regular
clouds even if the radial function R(r) has unbounded
derivatives at the horizon. Moreover, these cloud solutions
approach the cloud solutions from the subextremal scenario
in the limit of extremality, all without the need of
constraining the separation constants and without requiring
a large number of nodes, as we will see.

The key aspect to take into account is that first derivatives
R'(r) that appear whether in the trace of the energy-
momentum tensor for the scalar field or in the kinetic part
K of the action functional of the theory in the form
g (D,¥)*'D,¥Y = ¢°*V,¥*V,¥ (when Q =0), which
has an invariant (coordinate independent) meaning, show
up only in the combination ¢""(R'(r))? [times some angular
functions; cf. Eq. (31)]. In particular, for extremal BHs ¢g'”
has a factor (r — M)?, thus (r — M)?R'*> can be bounded at
the horizon even if R’ blows up there, provided that near the
horizon R’ ~ (r — M)” with ¢ > —1. That is, provided that
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near the horizon R(r) ~ (r — M)* with a > 0, where ¢ =
a — 1. In this way, not only the scalar field is bounded at the
horizon r = M, but the scalar invariants formed from first
derivatives of the field are bounded there as well.

Since in this section we focus only on extremal BHs,
we consider the metric (1) but taking M?> = a*> + Q?, i.e.
rif = M which leads to

A= (r—M)>~ (54)

Thus, the complex-valued scalar field ¥ obeys the Klein-
Gordon Eq. (12) in the extremal KN background which
is solved again using separation of variables with the
mode expansion like in Eq. (19), similar to the subextremal
scenario.

In order to obtain bound states in the extremal scenarios
we now assume the following ansatz factorization for the
radial function R,,;,,:

Rnlm(r) = (r - M)aLnlm(r)’ (55)

where the exponent o will be determined from the radial
equation for R,;,,(r), but it will be required to be positive
(i.e. a > 0) such that R(ry) =0 and L(rg) is bounded.
Otherwise, if a <0, R(ry) is unbounded and regular
clouds are not possible. Moreover even if 0 < a, the radial
derivatives may still diverge at the horizon if 0 < a < 1.
However, this divergence is not physically meaningful as
the physically meaningful clouds are those with a bounded
kinetic term, K = g*(D,¥)*D,¥ in the DOC, notably at
the horizon, in particular, the term ¢"(R')> [where for
convenience, we omit the mode labels (n,m,[)]. More
specifically, given (55), and for simplicity Q = 0, the first
radial derivative reads,

R'(r) = a(r—M)*'L(r) + (r = M)*L'(r), (56)

which as we emphasized before, it diverges at r = M if
0 < a < 1. Nevertheless, when considering the term g”R’2
that appears in the kinetic term K, and using the form of the
derivative R'(r) as above, we find

a2
FTRS(6) {—2[<r— ML ()
2 (L ()

+

= RS

<r—M>Za+2[L'<r>]2}s2<e>, (57)

which is bounded in the DOC for any « > 0 as far as L(r)
and its first derivative are bounded there. When this is the
case, in particular, at the horizon r = M, the term (57)
vanishes there, but it diverges if a < 0.

As we will show below, notably, for the extremal Kerr
and the extremal KN BHs, we will be looking for radial
solutions of the form (55) with 0 < « and with L(r) and its
derivatives bounded such that the term (57) remains
bounded in the DOC, despite the fact that R’ itself may
blow up at the horizon r = M. In this way, the physically
meaningful solutions will have ¥ and the kinetic term
bounded in the DOC. To achieve this, the angular part for
W, which corresponds to the spheroidal harmonics, also
satisfies suitable regularity conditions, namely, at the axis
of symmetry.

A. Extremal Kerr

First we analyze solutions for a noncharged field ¥ in the
background of an extremal Kerr BH (|a| = M; for con-
creteness we take a = M) with the metric given in Boyer-
Lindquist coordinates by

A_MZ : 29 2
ds? = —(%) dr +'%dr2+p2d62

p
2M sin® O(r* + M?* — A
_ 2Msin® O(r 2—1— )dtdqo
p
2 M2 2 —AM2 : 29
+ <(r M)~ AM7sin >sin2 0dp?, (58
p
where
p? = r* + M?cos* 0, (59)

and M is the mass associated with the Kerr BH. In this
scenario ¢ =0 and the operator Eq. (9) reduces to the
covariant derivative compatible with the spacetime metric:

D,=V,. (60)

The radial function R,,;,, obeys then a simplified version
of Eq. (22) given by

d [ dR
A <A ""”) + [HE,, + 2mMo - K,

dr dr
_luz(rz + M2))A]Rnlm = 01 (61)
where
Hierr = (2 + M?)w — Mm. (62)

The frequency (17) associated with an extremal Kerr BH
and its angular velocity become

-y (63)
Qg = - (64)
oM
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When replacing the ansatz (55) in the radial Eq. (61) we
obtain the following differential equation for L(r) (for
brevity we omit the labels (n, [, m)):

(r—M)*L"(r) +2(a+ 1)(r = M)L'(r)

2
+ LZZ/IZ(r+M)2+a(a+1)+m2

T M2>] L(r) =0. (65)

Differentiating Eq. (65) once and twice and assuming
boundedness of higher derivatives for L(r) at the horizon
we obtain the values (regularity conditions) for L’(ry) and
L"(ry), which are given by

, _ (2uPM? —m?)
L'(ry) = WL(rH)’ (66)
and
1 _ 1 _% /
L (M)—m[(“ﬂzM M)L<rH)
m?

Moreover, given those regularity conditions, the bound-
edness of L(r) at the horizon and assuming L(ry) # 0 we
find, when evaluating (65) at r = M, that the exponent «
satisfies the following simple quadratic algebraic equation

o +a+2m?> = 2u°M?> - K,,, = 0, (68)

which has the following solutions:

=1 /1 +4[K,, +2(1PM? — m?)]
— S .

ot (69)
We choose the sign (+) for avoiding a negative definite
and thus to consider only potentially bounded radial
solutions at the horizon. This will be possible provided
the positive square root is larger than —1. As we show
below, this depends on the values of the BH parameter uM
(i.e. M in units of 1/p) and the numbers (n, [, m), notably,
the value m. Figure 7 shows solutions for the radial function
L(r) (taking L(r$") = 1 for simplicity) associated with an
extremal Kerr BH with “quantum numbers” m =1[1=1,
m=1[1=2 and n =0, 1, 2. Figure 8 depicts the corre-
sponding radial part R(r) (55). Each solution has an
exponent «, that satisfies the condition 0 < @, which
leads to physically meaningful regular clouds with a
bounded kinetic term, despite the fact that R'(M) diverges
given that 0 < @, < 1 (see the figure’s caption).

A remarkable fact is that Hod [13] had found exact
solutions to the radial Eq. (22) associated with this scenario

1.2

uM = 0.52550879
uM = 051010795 ——— |
uM = 0.50511322

1

08 |
o6}
g
04}
02 |
0 L
0.2 . . . . .
0 10 20 30 40 50 60
ur
1.2 . . . .
uM = 1.14093944 ———
i uM = 1.07438502
| uM = 1.04268502
08 |

0.6 |

L(r)

04

0.2 |

0 5 10 15 20 25 30 35 40
pr

FIG. 7. (Extremal Kerr scenario) Functions L(r) with m = =

1 (top panel) and m = [ = 2 (bottom panel), for n = 0, 1, 2. The

functions are bounded and well-behaved in the DOC, in par-
ticular, at the horizon r = M where L(M) = 1.

(uncharged clouds in the background of an extremal Kerr
BH, QO =0, a = M). These solutions are

R(z) = Az #Pe 2L (2), (70)
where
m2
ZE2\/;¢2—W(r—M), (71)
and
P =K, + i —2m?* + 2u*M?, (72)

L,(,zﬁ ) (z) are the generalized Laguerre polynomials and A is
a normalization constant. By comparing Eqgs. (69) and (72)
we find that the exponent o, and Hod’s # maintain the
following relation:

1
p=aits. (73)
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FIG. 8. Extremal Kerr scenario: (Top panel) Radial functions

m=1=1) for n=0, 1, 2. The values «a, for each n are
ay = 0.38396168, a; =0.37307025 and a, = 0.36957870,
respectively. (Bottom panel) Radial functions (m = [ = 2) for
n=0, 1, 2 with values a, given by oy = 0.27115038, a; =
0.15291680 and a, = 0.09129800, respectively. Notice that R(r)
vanishes at the horizon r = M and R’ blows up there.

Figure 9 compares our numerical solution for the radial
function R, using ry = M = a with that obtained by
Hod analytically taking / = m = 1 and different values of
n. Figure 10 shows the comparison between both solutions
for [ = m =2. The numerical and the exact solutions
show an excellent agreement, proving that our approach
is robust.

Figure 11 shows the angular functions S, (#) associated
with the values uM = 0.52550879 (m = [ = 1) and uM =
1.14093944 (m = [ = 2). As we can appreciate, the func-
tions are perfectly regular on the axis of symmetry at
0 ={0,z}. In this way, we have succeeded in finding
numerically neutral scalar clouds around exact extremal
Kerr BHs which are perfectly regular at the horizon and on
the axis of symmetry. Namely, given the values obtained for
the exponent « in each solution, the invariant (coordinate
independent) scalar ¢*’V,¥*V,¥ turns to be bounded in

0.8 T "
Exactn=0,m=1 ———
0.7 Numericaln=0,m =1
0.6
0.5
- 04
S
T 03
0.2
0.1
0
-0.1 . : - - -
0 5 10 15 20 25 30
pr
0.8 T T T
Exactn=1,m=1 ——
Numericaln=1,m=1

0 5 10 15 20 25 30 35 40
pr

FIG. 9. Radial solutions R,;,, for the extremal Kerr scenario

with principal numbers n =0, 1 and m = [ = 1. The red dots

correspond to the numerical solutions obtained by solving

Eq. (22) and the blue continuous line corresponds to the exact

solution computed by Hod [Eq. (17) in [13]]. The agreement
between both solutions is excellent.

the DOC, notably, at the horizon even if the radial
derivative R'(r) is unbounded there.

B. Extremal Reissner-Nordstrom

C. Case ¢* < p?

Next we consider a charged field ¥ coupled with an
extremal RNBH with the metric

(r—M)? r?
dr? dr? 2d6>
2 + (r—M)2 r+r

+ r?sin? 8dg?, (74)

ds? = —

where M = | Q] is the mass associated with the extremal
RNBH. For this case we consider the derivative operator (9)
with
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FIG. 10. Same as Fig. 9 but taking n =0, 1 and m = [ = 2.

a, =2, (75)
r

and the scalar-field potential (11) for a massive free field,
like in the Kerr BH of Sec. VA. The radial Eq. (22) takes
the form

d dR
A (Aﬂ) + [HQRN - (Klm +ﬂ2r2)A]Rnlm =0

dr dr
(76)
with
Hrn = wr? — gMr, (77)
and
Ky, =I(1+1). (78)

In this case, the boson-field frequency (17) associated
with an extremal RNBH is

w=q. (79)

=1, m=1
1.2 " " " "
uM = 0.52550879
1 L
08}
)
€ 06}
[9p)
04}
0.2}
0 .
0 0.5 1 15 2 2.5 3 3.5
0
=2, m=2
3.5 T "

uM = 1.14093944

FIG. 11. Spheroidal harmonics S;,(0) associated with the
angular part of the field ¥ for [ =m =1 (top panel) and / =
m = 2 (bottom panel), respectively. (Extremal Kerr scenario).

The radial equation for the function L(r) in this scenario is

(r—=M)*L" +2(a+ 1)(r—M)L'
+la(a+ 1)+ (> = pu®)P> = I(l+ 1)L =0, (80)

subject to the following regularity conditions:

/ o (/"2 - qz)M
L'(ry) —ﬁL(m)’ (81)
and
)
L) =B =T puL ) 1 L)), (82)

with «a satisfying the following quadratic equation
& +a+ (- )M>—1(1+1)=0, (83)

with solutions

104012-13



GUSTAVO GARCIA and MARCELO SALGADO

PHYS. REV. D 108, 104012 (2023)

VTR ) + (7~ M

a4 2

(84)

As before, we take only the sign (4) in order for a to be
positive and the radial function R(r) to be bounded at r = M.

Using the value for a in Eq. (84) the radial Eq. (80) for
L(r) reads as follows:

(r=M)L"+2(a, + 1)L + (¢*> —p?)(r + M)L = 0.
(85)

When we solve numerically Eq. (85) using the regularity
conditions (81) and (82) we find that the only acceptable
solution is

L(r) = const. (86)

Since we demand that the boson field vanishes asymptoti-
cally we conclude that the function L(r) is the trivial
solution L(r) =0, so that the radial functions R,;,,(r) is
well-behaved asymptotically. Thus, under such circum-
stances R,;,,(r) also vanishes everywhere and the only
solution to the radial Eq. (80) in this scenario is

R,m(r)=0. (87)

These numerical results corroborate that it is not possible to
find charged scalar clouds around an extremal Reissner-
Nordstrom black hole, as it was concluded previously in
Ref. [24]. There exists, however, a way to avoid this
conclusion, but it requires a scalar-field potential that
includes a self-interaction term [24,31-33]. Under such
conditions it is possible to find numerically charged clouds,
known in the literature as Q-clouds, which as we just
concluded, are absent when the field is only a massive
but free.

D. Double extremal case ¢> =p>
Considering the case ¢> = u?> analyzed in [24,34]
Eq. (85) reads
(r—=M)L" +2(a, +1)L' = 0. (88)

However, we see that in this double extremal scenario
Eq. (84) leads to the following possible values for o,
|

am(r+M)+qQ(Mr—a®)]?

a, =1L (89)
So Eq. (88) takes the form
(r—=M)L"+2(I+1)L' =0, (90)
whose solution is of the form

const

L0 =G e 1)
so the radial function R(r) = (r — M)*L(r) is
R(r) = const (92)

QL+ 1)(r— M)

We can see that these solutions are not regular at horizon
r = M for any [/ > 0, and therefore, the only possibility is
again R(r) =0, a result that is in a agreement with the
results reported in [24]. In fact, from (81) and (82) we
already notice that when ¢?> = y?, then L'(ry)=0=
L"(ry), and thus, the solution (91) requires the constant
to be identically zero, leading also to R(r) = 0.

E. Extremal Kerr-Newman

We now consider a charged field ¥ coupled to an
extremal KNBH with the metric (1) but taking A = (r —
M)? and M? = a® + Q*. We assume again the scalar-field
potential for a free but massive field (11).

The equation associated with the radial part of the scalar
field is provided by Eq. (22). The frequency for an extremal
KNBH is the same as in (17) except that the BHs angular
velocity is

a

Qy=—5—-, 93
=M+ &2 ®3)
and the electric potential at the horizon is
oM
Oy=———. 94
=M+ a2 (94)

The radial equation for the function L(r) now satisfies
the following differential equation:

(r—=M)?L"+2(a+1)(r—M)L' + {a((x—l— 1)+ [

M? + 4>

+2maw— K, — p*(r* + a?) }L =0. (95)

The regularity conditions for the first and second derivatives of L(r) at the horizon are

L'(ry) =

WM(M?* + a*)* = (am + gOM)(2amM + qQ?)

(a+ 1)(M? + a?)?

L(ry). (96)
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1
(2a + 3)(M? + a?)
+ 2 M(M? + a®)? — (2maM + qQ°)(am + qOM)|L' (ry)}. 97)

L (ryy) =

AW (M? + a®)? = (am + qOM)*|L(ry)

respectively, with a satisfying the following equation

2amM + qQ?

2
az—i—a—l—{ T } +2maw — K, — p>(M?* + a*) = 0, (98)

whose solutions are

-1t /1 +4{K,, + > (M?* + a?) — 2maw(M? + a*)? + 2amM + q03)*]/(M? + a*)?}

a4 ) (99)
|
Again, we take the sign (+) for @ to be positive. We 1.2 . . . . :
appreciate that when taking Q =0 but a #0 in the ﬁm - 8;2;8?‘7‘},?2 -
regularity conditions (96) and (97) and also in Eq. (99) pM = 0.55542619 ——— ]|
for a, they reduce to Eqgs. (66), (67) and (69), respectively,
which are associated with the extremal Kerr BH. On the
other hand, when we take ¢« =0 and Q # 0 in those
equations, we recover Egs. (81), (82) and (84), respectively,
corresponding to the extremal RNBH.
Figure 12 depicts the radial function L(r) associated
with an extremal KNBH for m =1=1 and m =1 =2,
with number of nodes n =0, 1, 2.
Figure 13 shows the complete radial part R(r) (55) of the
scalar field ¥ around an extremal KNBH corresponding to 02— 20 & 40 & 6 70
the functions L(r) of Fig. 12 for the integers m = [ = 1 and ur
m=1=2, and nodes n =0, 1, 2. These solutions have
0<a, < 1 (see the captiqn) and thus .leads to regular 1.2 M= 118419453 ——
clouds with a bounded kinetic term even if R’ blows up at uM = 1.12065308 ———
the extremal horizon r = M. M uM = 1.09056539 —— |
Like in the extremal Kerr BH, Hod [16] also found exact 0s |
solutions for clouds around extremal KNBH. The solutions
to the radial Eq. (22) reported by Hod are . 06}
S/ 0.4
R(y) = Ay Fbe L) (2¢y). (100) '
02}
where
0 L
r—m
Y= (101) %20 5 10 15 20 2 80
pr
e=M /lz -, (102) FIG. 12. Extremal Kerr-Newman scenario ¢/u =1 and

uQ = 0.1: Functions L(r) with m = [ = 1 (top panel) and m =
1 [ = 2 (bottom panel), for number of nodes n = 0, 1, 2. Like in the
=K, + 1 2amw — 2Mo — qQ)* + > (M? + a?), extremal Kerr scenario, these functions are bounded and well-
behaved in the DOC, in particular, at the horizon » = M where
(103) (M) =1.
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0.8 . . . .
uM = 057354100 ——
uM = 055977574
sl uM = 055542619 ———
04}
T
02}
0 -
0.2 L . . . . . .
0 10 20 30 40 50 60 70
ur
0.8 . . .
UM = 1.18419453 ———
uM = 1.12065308 ———
06 i uM = 1.09056539 ———

04|

R(r)

0.2f

0 5 10 15 20 25 30 35
ur

FIG. 13. Extremal Kerr-Newman scenario ¢/u =1 and
1Q = 0.1: (Top panel) Radial functions R with m = [ =1, for
n=0, 1, 2. The values of the exponent a, for each n are
ay = 0.38914753 (ua = 0.56475594), a; = 0.37873576 (ua =
0.55077117) and a, = 0.37547687 (ua = 0.54634993), respec-
tively. (Bottom panel) Radial functions with m =1 =2, for
n =0, 1, 2. In this case ay = 0.27624214 (ua = 1.17996470),
a; =0.16035789 (pua = 1.11618248) and a, = 0.10040099
(na = 1.08597093), respectively. Like in the extremal Kerr
scenario, notice that R(r) vanishes at the horizon r = M and
R’ blows up there.

L;zﬁ) (2ey) are the generalized Laguerre polynomials and A
is a normalization constant. The exponent r, and Hod’s j
maintain the same relationship as in the extremal Kerr BH,

(104)

except that a, (99) includes the electric charges Q and g,
and it also includes the separation constants K, corre-
sponding to the charged extremal scenario.

Figure 14 compares our numerical solution for the radial
function R, (5'= M) with Hod’s (100) taking
[ =m =1 and different values for n. Figure 15 depicts
something similar but taking [ = m = 2.

E)&actn:O',m=1 —_—
08 F Numericaln=0, m =1
06
F ol
0.2}
0 L.
0 5 10 15 20 25 30
pr
os} Exactn=1,m=1 —— ]
: Numericaln=1, m =1 .
0.6 |
_ 04
o
0.2
0
_02 L
0 10 20 30 40 50
pr

FIG. 14. Radial solutions R,;,, for an extremal KNBH
(¢/u =1 and pQ = 0.1) with principal numbers n =0, 1 and
m =1 = 1. The red dots correspond to the numerical solutions
obtained by solving the Eq. (22) and the blue continuous line
shows the exact solution given by Hod [Eq. (49) in [16] ]. Notice
the excellent agreement between the analytic and the numerical
solutions.

Figure 16 shows the angular functions S, (0) associated
with the charged scalar field ¥ for the values uM =
0.57354100 (m=1=1) and uM =1.18419453
(m =1=2). From the figure one can appreciate the
regularity of those functions on the axis of symmetry. In
this way we have obtained a complete regular solution
(namely, regular at the horizon and on the axis of
symmetry) for the charged scalar field ¥ around an
extremal KNBH, which in addition leads to a well-behaved
kinetic term g**(D,¥)*D,¥ given by Eq. (31) despite the
fact that its radial derivative is unbounded at the BHs
horizon.’

The unboundedness of the radial derivatives of R(r) at the
horizon, together that R(r) vanishes there, are features that can
be appreciated also from the solutions (70) and (100) found by
Hod [13,16] for clouds around extremal Kerr and KN BHs,
respectively, and more vividly from Figs. 9, 10, 14 and 15.
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o7} ' E)'(actnzo,m=2
Numericaln=0,m=2
0.6 |
05}
04}
[
S
o 03F}
02}
0.1}
O L
-0.1 - - -
0 5 10 15 20
pr
0.8 " " "
Exactn=1,m=2
Numericaln=1,m=2
0.6
04}
[
o
© 02}
0 L
-0.2
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pr
FIG. 15. Radial solutions R, for the extremal KNBH

(q/p =1 and pQ = 0.1) with principal numbers n =0, 1 and
m = [ = 2. The red dots correspond to the numerical solutions
obtained from solving Eq. (22) and the blue continuous line
corresponds to the exact solution given by Hod [Eq. (49) in [16]].
The agreement between the analytic and the numerical solutions
is excellent.

In summary, by using the decomposition for the radial
function with the ansatz (55) it is possible to obtain both
neutral and electrically charged regular scalar-cloud sol-
utions around (exact) extremal Kerr and extremal KNBH,
respectively.

To conclude this section, a final analysis is in order. Let
us remind that in the subextremal scenarios the value of the
radial function at the horizon R(ry) is a free parameter that
for simplicity and convenience we take it as R(ry) = 1.
However, if we want that the radial solutions approach as
continuously as possible to the corresponding solutions
of extremal BHs we need to modify R(ry) such that as
ry = r5t = M, R(ry) — 0, since in the extremal scenarios
by construction the radial functions vanish R(r$") = 0. To
achieve this, we propose the following modification for the
value R(ry):

R(ry) = C x (ry — M)“, (105)

=1, m=1
1ol ' ' "uM = 057354100 ——
1t
_ o8}
S
E i
& 06
04 |
02t
0 .
o o5 1 15 2 25 3 35
0
=2, m=2
35

"uM = 1.18419453 ———

SIm(e)

6

FIG. 16. Spheroidal harmonics S, (0) associated with the
angular part of the charged scalar field ¥ corresponding to
l=m =1 (top panel) and / =m = 2 (bottom panel) respec-
tively. (Extremal Kerr-Newman scenario).

where 0 < a < 1 is the same exponent as computed for the
respective radial solutions for extremal Kerr and KNBH
(i.e. using the same numbers (/,m,n)) that we want to
compare with. Here C is a constant that we take C = 1.
Moreover, taking into account the regularity condition
Eq. (24) we observe that in the extremal limit (ry — M)
and with the modification (105) we will have

R(ry) =0,

and R'(ry) — oo, (106)

which, as a bonus, allows us to avoid a trivial solution that
we would obtain if the exponent was fixed with a value
a > 1 since then R'(ry) =0. In this way, the regularity
conditions are respected but are changed suitably for each
cloud computed around subextremal BHs (Kerr and Kerr-
Newman). In particular, the value R(ry) is not fixed
anymore to R(ry) =1, but changes with ry and M
according to (105).

Using this improved method we obtain a “smooth”
match between the radial solutions associated with the
subextremal and extremal scenarios in the limit where the
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pa = 0.56475594
_ 20}
=)
o 15 }
10 }
5 L
0f " : . . A
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FIG. 17. Radial functions R,,;,, associated with a scalar field ¥

around a subextremal Kerr BH (top panel) and KNBH (bottom
panel) with n =0, m =1, [ =1 for different values of the
BH angular momentum a that converge to the extremal values
PSR — M — 4~ 0.525/u (top panel) and r5YN =M =
Va* 4+ 0?~0.564/u (bottom panel), with Q = 0.1/u. Here
R(ry) = (ry — M)“. Notice that the slope as well as the value
R(ry) change as the extremal cases are reached. For reference,
the corresponding radial solutions around the exact extremal BHs
(red curves) are included in both panels.

former approaches the latter; something, that as empha-
sized in the Introduction, did not happen with the treatment
carried out by us in [25].

Figure 17 shows a sample of radial cloud solutions R,
that are recomputed for the subextremal Kerr BH (top
panel) and the subextremal KNBH (bottom panel) with the
new value R(ry) fixed according to the prescription (105)
where a is taken, respectively, as a, of Eq. (69) and a, of
Eq. (99). In each panel, the radial function is approaching
smoothly to the corresponding solution for the exact
extremal case (and the maximum amplitude decreases as
a consequence of this) as ry — M. The latter are depicted
in both panels by the red-line solutions.

Figure 18 shows the radial functions R, that are
represented in Fig. 17 but focusing on their behavior near

pa = 0.09955479 ——
g | va=019727087 ——
pa = 0.39880307
pa = 0.43882750
¢ | na=049106332

pa = 0.52550879 ——

R01‘I

0 05 1 15 2 25 3 35 4 45 5
ur

pa = 0.06404300 ——
5 pa=0.13884419 ——
pa = 0.27108320
pa = 0.40057873
41  pa=052117607
pa = 0.56475594 ———

Ro11
w

02 04 06 08 1 12 14 16 18 2
ur

FIG. 18. Behavior of the radial functions R, that appears in
the Fig. 17, but depicted close to the event horizon.

the event horizon. We see how the value of the radial
function on the horizon, R(ry), changes depending on the
location of ry, unlike what was presented in Sec. III, where
all cloud configurations for the Kerr-Newman scenario
have a fixed value R(ry) =1 (see Fig. 3). For the Kerr
scenario see Fig. 3 of Ref. [23].

F. Configurations for m=1> 3

The (uncharged and charged) scalar cloud configurations
around extremal Kerr and KN BHs presented in Secs. VA
and V E, respectively, correspond to valuesof m = [ =1, 2
only. This is because numerically we observe that for m =
[ > 3 the values of the exponent a, appearing in the radial
function (55) become negative in both scenarios, which
immediately implies that the field ¥ becomes divergent at
the event horizon including their radial derivatives.

Something to note is that a, =0 when

K, = 2m? — 24> M?, (107)

for the extremal Kerr scenario [cf. Eq. (69)], and
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K 2m*a® + 2qgmaQM ~ (2amM + qQ*)?
Im — M2 + a2 (MZ + (12)2
- (M? + @), (108)

for a KNBH [cf. Eq. (99)].* Focusing on the case of an
extremal Kerr BH (58) and based on the study presented
in [25] we see that if we take the separation constants as in
Eq. (107), one obtains radial solutions and its derivatives
that are well-behaved on the horizon but that diverge on
the axis of symmetry. Something completely analogous
happens when one studies the Kerr-Newman scenario and
chooses the separation constants that appear in (108). It is
worth mentioning that this choice of the separation con-
stants arises precisely when superregularity conditions are
imposed on the radial functions in extremal scenarios [25],
but then the separation constants (which incidentally do
not depend explicitly on the number /) given by (107)
and (108) do not coincide in general with the actual
separation constants (21) which makes the spheroidal
harmonics to be well-behaved in the axis of symmetry.5
Thus, we must disregard this possibility and look
for a, > 0.

To understand what happens when m > 3, we analyze
first the following term associated with the Kerr scenario

0 =1+4[K,, +2(u*M?* —m?)], (109)

which appears as subradical in Eq. (69). Using Eq. (21) in
the previous equation we find

1\ 2
@:4(l+5) + 4> M* —Tm?* + 42, (110)

where

lzick(ﬂzMz—mz/él)k. (111)
k=1

Table II shows some values of certain quantities associated
with the parameter © for the optimal values of uM that we
found for the extremal Kerr BH leading to asymptotically
vanishing clouds. The table includes the values m = [ =3
alluded above leading to bad behaved clouds at the horizon
(. < 0), and also some values m < [ leading to well-
behaved clouds everywhere in the DOC.

In [13] Hod finds that the existence of bound states
implies that®

*When Q =0 in (108) the constants K;,, reduce to those of
Eq. (107), where @ = M for an extremal Kerr BH.

3See Ref. [25] for more details.

®See Eq. (18) in [13].

TABLE 1II. Quantities uM, ® and A that contributes to the
parameter o, given in Eq. (69). These values correspond to
n = 0. Clouds are not regular when a, < 0, namely, when m =
| = 3 as one notices in the second-last row.

m uM NG) A a,
1 1 0.52550879 1.76792337 0.00522877 0.38396168
2 0.50806701 4.36422594 0.00348492 1.68211297
3 0.50420923 6.55932909 0.00197260 2.77966454
2 2 1.14093944 1.54230077 0.04293009 0.27115039
3 1.04424934 5.04800576 0.03013387 2.02400474
4 1.02432966 7.56811183 0.01982790 3.28405591
3 3 1.87316979 0.76699072 0.13830364 —0.11650463
4 1.61385150 5.36694663 0.09651237  2.18347331
m m
— < uM < —. 112
5 <H 7 (112)

Using the inequalities (112) in ® given by Eq. (110) it is
possible to observe the corresponding inequalities:

®min <0< ®max’ (113)
where’
1 2
®min :4(l+2> —6m2, (114)
and

1\2 e m2\ ¥
@max_4(l+§) —5m +k§:le(T> . (115)

Now, in order for @, > 0, we require ® > 1. If © saturates
the lower bound of (113) and in addition ®,;, > 1, then
these conditions are sufficient for &, > 0. From Eq. (114)
we find that 1 < @, if

20(1+1)

<
ml < \[7

(116)
For example, taking [ = 1, |m| < \/4/3 ~ 1.15; for [ = 2,
|m| <2; for =3, |m|< V8~283; and for [=4,
Im| < \/40/3 ~3.65, and so on.® In the case [ = 3, and

given that m is an integer, the condition |m| < /8 can be
only satisfied if for instance, |m| = 2, but not for |m| = 3.
This trend is confirmed by the numerical analysis as shown
in Table II. From the table we appreciate that for [ =3 =m,

VO < 1, and thus a, < 0, which leads to singular scalar
4 g

"For m = [ we have that ©,;, = 2m(2 —m) + 1.
SFor m =1, ©,, >1 implies 2m(2—m) >0 and then
0<m<2.
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TABLE III.  Behavior of the exponent o, given in Eq. (99) for
some values of the parameters (n =0, uQ = 0.1 and g/u = 1)
leading to charged clouds around a KNBH. Only the clouds with
a, > 0 are regular in the DOC, including the horizon.

I m ua uM ay

3 2 1.08761968 1.09220720 2.02617256
3 3 1.90941874 1.91203554 —0.11159253
4 3 1.65721537 1.66022974 2.18544718

clouds at the horizon. This problem persists for / > 4 which
forces |m| < [ when [ > 3. Notwithstanding, when |m| < [,
the numerical evidence shows that a; > 1, which leads not
only to a field V¥ that vanishes at the horizon, but its radial
derivative also vanishes there [cf. Eq. (56)].

We thus conjecture that if m = [ > 3 the scalar cloud
configurations are not regular at the horizon. On the other
hand, when |m| < [ the scalar clouds around an extremal

22N
33
mnu

ROlm
N

ROlm

0 5 10 15 20 25 30 35 40
ur

FIG. 19. Radial part R, of the scalar field ¥ associated with
integer numbers n =0 and [ # m, considering [ = {4,3} and
m = {3, 2}, respectively, around an extremal Kerr BH (top panel)
and an extremal Kerr-Newman BH (bottom panel) with

10 = 0.1.

Kerr BH are regular everywhere and the field and its radial
derivative R’ vanish at the horizon r = M since in this
situation @, > 1. Even R” vanish at the horizon when
a, > 2. A similar behavior occurs in extremal KNBH (see
Table III) and we extend our conjecture to that scenario
as well.

Figure 19 depicts some solutions for the radial function
R(r) with m < [, around extremal Kerr BHs (top panel)
and extremal KNBH (bottom panel). These radial functions
have a, > 0, and thus, provide clouds that are regular in
the DOC. The plots confirm that R(M) =0 = R'(M).

In this regard, it is important to emphasize that our
parametrization (55) allows us to find numerically non-
trivial regular clouds even in cases where R(M) =0 =
R' (M) = R"(M) as otherwise treating directly the differ-
ential equation for R(r) with those conditions at the horizon
would not necessarily lead to the actual nontrivial solution
but rather to the trivial one R(r) = 0.

VI. CONCLUSION

We analyzed the existence of scalar clouds, electrically
charged and noncharged, in the backgrounds of Kerr and
Kerr-Newman BHs (extremal and subextremal), respec-
tively. The electrically charged cloud solutions presented in
this work are consistent with those reported in Ref. [19].
Some of the results presented in [23] about the existence of
clouds around a Kerr BH were extended here as to include
the electric charge in both the clouds and the BH by
establishing an integral method that allows us to understand
and justify in a simple and heuristic way the existence of
such nontrivial cloud solutions in this type of scenario.
Since a similar method is precisely used to prove no-hair
theorems in static spacetimes, we illustrate that when
rotating BHs are present there exist obstructions to extend
those theorems due to the presence of nonpositive definite
terms associated with the rotation which does not allow us
to conclude that only trivial fields are possible around
rotating BHs.

Moreover, a new technique based on factorizing the
radial function in terms of a regular part and a potentially
irregular one at the horizon of the form (r — M)®, allows
us to analyze clouds around exact extremal Kerr and KN
BHs. In this way when a > 0 the cloud solutions turn to be
well-behaved in the DOC (including the horizon), where
the scalar field associated with the clouds vanishes.
Remarkably even if the radial derivatives are unbounded
at the horizon when O < a < 1, the cloud solutions are still
regular since the covariant (coordinate invariant) kinetic
term that contains radial derivatives turns to be bounded
due to the presence of an (inverse) metric component
that vanishes at the horizon. This treatment closes a gap
left in a previous analysis by us [25] where boundedness
of radial derivatives at the horizon (superregularity con-
ditions) were imposed leading to some inconsistencies.
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Furthermore, we checked that the cloud solutions without
the superregularity restriction are in excellent agreement
with the exact solutions found in the past by Hod [13,16].
Finally, the factorization technique made possible to
find cloud solutions when m < [, even for large [ or
when m =1 for [ =1, 2 while providing us with some
insight about the impossibility to find regular solutions
when [ = m >3 which are associated with a < 0. It is
possible that a similar factorization technique might be
implemented when dealing with hairy-rotating black holes
(at the full nonlinear level) like those analyzed recently
in [21], which may help us to deal with the extremal
scenario in quasi-isotropic coordinates (as opposed to
the Boyer-Lindquist coordinates used in this work)
which are inherently singular at the horizon located at
rgiso = 0 [21,35].
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APPENDIX: DATA KERR-NEWMAN-BOSONIC
FIELD

Tables IV-VI show the eigenvalues ua found for differ-
ent values of ury that leads to cloud solutions associated
with a massive and charged scalar field around Kerr-
Newman black holes with electric charge uQ = 0.1. The
numerical data corresponds to the fundamental mode with
n = 0 (nodeless).

TABLE IV. Eigenvalues associated with charged scalar clouds (¢/u = 1) around a Kerr-Newman black hole
(0O = 0.1) with parameters / = m = 1, which are indicated by the dashed line labeled m = 1 in Fig. I.

HTi Ha /p Qp/u uM

0.12 0.0024057827214 0.9999996481207 0.1670011217984 0.1016907824604
0.13 0.0039153033832 0.9999984500873 0.2314648000216 0.1035204984637
0.14 0.0056316381056 0.9999960654455 0.2868642910689 0.1058275548134
0.15 0.0075569016729 0.9999909079654 0.3350120098438 0.1085236892096
0.16 0.0096935363204 0.9999833297078 0.3772689989226 0.1115436395199
0.18 0.0146121358341 0.9999577267443 0.4480392883781 0.1183708736489
0.20 0.0204132614973 0.9999148929166 0.5050699554542 0.1260417531124
0.22 0.0271286580352 0.9998513094893 0.5521140887208 0.1343999183790
0.24 0.0347969078252 0.9997633604195 0.5916752221561 0.1433558849879
0.26 0.0434646737536 0.9996473679561 0.6254883866728 0.1528638035856
0.28 0.0531883296210 0.9994993316724 0.6547948474511 0.1629089257283
0.30 0.0640361280605 0.9993145886544 0.6805069316617 0.1735010428283
0.32 0.0760911342624 0.9990874703943 0.7033111398859 0.1846716573645
0.34 0.0894552748854 0.9988109332642 0.7237350261189 0.1964738914776
0.36 0.1042551145940 0.9984764316070 0.7421923620962 0.2089849012764
0.38 0.1206497816675 0.9980712433904 0.7590119339466 0.2223110129163
0.40 0.1388439245643 0.9975807867885 0.7744631630351 0.2365970442355
0.42 0.1591062367041 0.9969830777394 0.7887683055310 0.2520414220930
0.44 0.1818009833365 0.9962470407675 0.8021164876315 0.2689222699342
0.45 0.1942129892664 0.9958134150449 0.8084841073244 0.2780207613331
0.46 0.2074420085504 0.9953258919251 0.8146731607918 0.2876436814255
0.48 0.2367940433120 0.9941447016175 0.8265887193270 0.3088243947375
0.50 0.2710838133913 0.9925727318373 0.8380067446339 0.3334864338828
0.52 0.3125126793142 0.9903508799232 0.8490711695634 0.3635232449347
0.54 0.3658458319769 0.9868435054170 0.8599170356659 0.4031881229396
0.55 0.4005968950143 0.9840576024849 0.8652614282156 0.4299798839046
0.56 0.4464066171732 0.9795814346444 0.8703938593518 0.4668561320143
0.57 0.5216314025034 0.9692329338467 0.8737554381729 0.5324555439278
0.571 0.5331035527382 0.9671656526322 0.8735959705977 0.5431176864642
0.572 0.5456459308501 0.9646870300545 0.8731543592753 0.5549943023193
0.573 0.5589214827882 0.9617607440179 0.8723304138988 0.5678204397227
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TABLE V.  Similar to Table IV but for the mode / = m = 2 with n = 0. These eigenvalues are associated with the

dashed line labeled m = 2 in Fig. 1.

KTy Ha o/p Qy/u uM

0.11 0.0005501512807 0.9999999913311 0.0454659107242 0.1004559212110
0.12 0.0012007197534 0.9999998457823 0.0833749687127 0.1016726738663
0.13 0.0019518996880 0.9999993766910 0.1154709913424 0.1034761919707
0.14 0.0028039130146 0.9999981691570 0.1429994267048 0.1057423640292
0.15 0.0037570136356 0.9999960966621 0.1668736972497 0.1083803838381
0.20 0.0100497880790 0.9999645374804 0.2506119179064 0.1252524956010
0.25 0.0189254314487 0.9998837214336 0.3010814800992 0.1457163439110
0.30 0.0304518478210 0.9997402387422 0.3349031895315 0.1682121917261
0.35 0.0447203722441 0.9995247610664 0.3592000318380 0.1921427309909
0.40 0.0618494070021 0.9992276217155 0.3775325816450 0.2172816864331
0.45 0.0819895860755 0.9988379819796 0.3918778692444 0.2435803246942
0.50 0.1053309163894 0.9983424813634 0.4034205058387 0.2710946019474
0.53 0.1209694101014 0.9979874437927 0.4093254061340 0.2882392435663
0.56 0.1379073613568 0.9975836649289 0.4146112922233 0.3059093217110
0.59 0.1562164495946 0.9971257190680 0.4193689895868 0.3241555755287
0.62 0.1759797916451 0.9966071031775 0.4236710960409 0.3430394250544
0.65 0.1972942730077 0.9960199728535 0.4275760093436 0.3626346385859
0.68 0.2202735266691 0.9953547106563 0.4311307891055 0.3830297254053
0.71 0.2450518675579 0.9945995206569 0.4343732802970 0.4043312801363
0.74 0.2717894364571 0.9937396366685 0.4373335094200 0.4266685795741
0.77 0.3006791637884 0.9927563671831 0.4400346280063 0.4501999737249
0.80 0.3319562973226 0.9916256588933 0.4424933579909 0.4751218645825
0.83 0.3659117265932 0.9903159676282 0.4447199257343 0.5016815612400
0.86 0.4029110404802 0.9887850014551 0.4467173467138 0.5301961084539
0.89 0.4434224612577 0.9869745617414 0.4484797525389 0.5610806062628
0.92 0.4880588597134 0.9848020384726 0.4499891268523 0.5948920926873
0.95 0.5376425365021 0.9821457307799 0.4512091404838 0.6323997352928
0.98 0.5933068329668 0.9788181524010 0.4520732679808 0.6747005092067
1.01 0.6566536849725 0.9745146810617 0.4524608087165 0.7234129019742
1.04 0.7299691681541 0.9687097809656 0.4521458785027 0.7809879742575
1.07 0.8163174734726 0.9604481365331 0.4506868510505 0.8510627184563
1.10 0.9182234019219 0.9480368057917 0.4472300908723 0.9377882799259
1.13 1.0301793052790 0.9295128956888 0.4405922448678 1.0390130093032
1.16 1.1292776607708 0.9060186509682 0.4308792528429 1.1339948427224
1.17 1.1554073083968 0.8979049159343 0.4273167707862 1.1597718155114
1.171 1.1577936094314 0.8970988529260 0.4269580202881 1.1621379342614
1.172 1.1601361476599 0.8962943195009 0.4265990801174 1.1644624066156
1.173 1.1624338345399 0.8954914592236 0.4262400096121 1.1667439981599
1.174 1.1646852618309 0.8946904231618 0.4258808660970 1.1689811580605
1.175 1.1668885219775 0.8938913763719 0.4255217049233 1.1711718394565
1.176 1.1690408371188 0.8930945110393 0.4251625794030 1.1733131287633
1.177 1.1711375085258 0.8923000828668 0.4248035401426 1.1754001970586
1.178 1.1731655545607 0.8915086268446 0.4244446282652 1.1774199568793

104012-22



REGULAR SCALAR CLOUDS AROUND A KERR-NEWMAN ... PHYS. REV. D 108, 104012 (2023)

TABLE VI.  Similar to Table IV but for the mode / = m = 3 with n = 0. These eigenvalues are associated with the
dashed line labeled m = 3 in Fig. 1.

HTH Ha o/p Qy/u uM

0.11 0.0003667114669 0.9999999936894 0.0303063959882 0.1004551567150
0.12 0.0008002130296 0.9999999130702 0.0555678782846 0.1016693347537
0.13 0.0013005618428 0.9999996490018 0.0769486205492 0.1034680440811
0.14 0.0018678229089 0.9999989779648 0.0952801275132 0.1057267455800
0.15 0.0025020704490 0.9999978224055 0.1111721987292 0.1083542011884
0.20 0.0066812847781 0.9999803910845 0.1668459212137 0.1251115989157
0.25 0.0125511715278 0.9999358844349 0.2003138512792 0.1453150638134
0.30 0.0201308031580 0.9998579754837 0.2226729457434 0.1673420820596
0.35 0.0294451011920 0.9997429587765 0.2386788837717 0.1905243056917
0.40 0.0405252189993 0.9995877540750 0.2507092553147 0.2145528667186
0.45 0.0534090512068 0.9993894736426 0.2600847043470 0.2392805852786
0.50 0.0681418718515 0.9991450820340 0.2675973328890 0.2646433146994
0.55 0.0847771353082 0.9988512383161 0.2737508864655 0.2906246933373
0.60 0.1033774554613 0.9985040423163 0.2788807911368 0.3172390819147
0.65 0.1240158270189 0.9980989210825 0.2832188000384 0.3445230195009
0.70 0.1467771341929 0.9976304566891 0.2869299021704 0.3725310908013
0.75 0.1717600232967 0.9970921767998 0.2901344366039 0.4013343370686
0.80 0.1990792424803 0.9964763056687 0.2929218796355 0.4310203404916
0.85 0.2288685825797 0.9957734399481 0.2953597176268 0.4616946047600
0.90 0.2612846044529 0.9949721236604 0.2974992999951 0.4934831358467
0.95 0.2965114078248 0.9940582809832 0.2993797608315 0.5265363236685
1.00 0.3347667970329 0.9930144454746 0.3010306507165 0.5610344041978
1.05 0.3763103452734 0.9918186941452 0.3024736589061 0.5971949885522
1.10 0.4214540724942 0.9904431444100 0.3037236410283 0.6352834251008
1.15 0.4705767659242 0.9888517901817 0.3047890502212 0.6756271707076
1.20 0.5241434279212 0.9869973133089 0.3056717668726 0.7186359720970
1.25 0.5827319765302 0.9848162647386 0.3063662051602 0.7648306225883
1.30 0.6470701365174 0.9822215790490 0.3068574048848 0.8148845236817
1.35 0.7180861622466 0.9790906071036 0.3071175319952 0.8696843468185
1.40 0.7969763040270 0.9752454418509 0.3070996992667 0.9304182961359
1.45 0.8852846376814 0.9704198870107 0.3067271070690 0.9986996171429
1.50 0.9849584254600 0.9642041300870 0.3058741164314 1.0767143666282
1.55 1.0982215461176 0.9559590030595 0.3043353150022 1.1672872788248
1.60 1.2267292840044 0.9447270945530 0.3017884637265 1.2733952300731
1.65 1.3687597323441 0.9293464357228 0.2978152258224 1.3957585469354
1.70 1.5144783472102 0.9092897655990 0.2921647692556 1.5275425482848
1.75 1.6474738004273 0.8858774119710 0.2851943805618 1.6533342637413
1.80 1.7569780179411 0.8615391793175 0.2776965167271 1.7602699320911
1.85 1.8416061126351 0.8379523602049 0.2702674756578 1.8443278578635
1.86 1.8554705618497 0.8333964779116 0.2688164052998 1.8581642488953
1.861 1.8567869929913 0.8329443673848 0.2686720665517 1.8594784893448
1.862 1.8580878534479 0.8324929349477 0.2685278700756 1.8607772478868
1.863 1.8593800880717 0.8320420880535 0.2683838187323 1.8620674481796
1.864 1.8606487211222 0.8315920316224 0.2682399090332 1.8633341371817
1.865 1.8618953389739 0.8311427465329 0.2680961426494 1.8645788882822
1.866 1.8631094879049 0.8306943781580 0.2679525183212 1.8657912550700
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