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In this paper, we construct a hybrid boson star model composed of a complex scalar field and a
Proca field. The scalar field and the Proca field are both in their ground state. The model is numerically
solved to obtain families of solutions for different mixed states, considering both synchronized and
nonsynchronized cases. By examining the relation between the ADMmass and the synchronized frequency
ω̃ or the nonsynchronized frequency ω̃P, we identify several types of solution families for the hybrid Proca-
boson stars. In addition to solutions that intersect with the scalar field and the Proca field at each end, there
are also several types of multibranch mixed-state solutions. The characteristics of various solutions are
analyzed and discussed in detail. We calculate the binding energy E of the hybrid Proca-boson stars and
provide the relationship between E and both the synchronized frequency ω̃ and the nonsynchronized
frequency ω̃P. Furthermore, we obtain the stability of the corresponding hybrid star solution families from
the above analyses.
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I. INTRODUCTION

The latest cosmological data suggest that about 26% of
cosmic content is dark matter (DM) [1]. However, the basic
nature of DM is ambiguous. Among the many assumptions,
there are several different views—some believe that DM
consists of weakly interacting massive particles [2], while
others propose that the mass of these dark matter particles is
contributed by primordial black holes [3]. In addition to
these two models, there is a novel idea that boson stars
could also be a candidate for dark matter [4–6], namely
macroscopic Bose-Einstein condensates formed by super-
light bosons/fields under gravity. The gravitational struc-
ture and mass distribution of different scalar dark matter in
the Universe can be explained by changing the mass of the
scalar field or introducing the self-interaction term [7,8] to
change some properties of the boson star. The boson star
model has become one of the important candidates for dark
matter, since it plays an important role in studying the
dynamics of early star clusters [9], the rotation curves of
low-surface-brightness galaxies [10], the dynamics of the
Galactic Center [11–13], and the formation of supermassive
black holes [14].
The study of the boson star model can be traced back to

the 1960s. D. J. Kaup coupled the complex scalar field with

the four-dimensional Einstein gravity [15] and then
obtained the spherical symmetric solution of the
Einstein-Klein-Gordon equation. In the same period, R.
Ruffini and S. Bonazzola solved a model of coupling a real
scalar field and gravity [16], and they obtained the same
solution as well. Later, the soliton solution of the object
formed by the scalar field under the gravitational inter-
action was called a boson star. Since then, various studies
have been conducted around the boson star model. The
self-interacting boson star can be obtained by adding
the self-interacting term (the quartic or sextic term) to
the Lagrangian density [17–20]. A charged boson star is
obtained by coupling a complex scalar field with an
electromagnetic field [21–25]. The Newtonian boson star
is obtained by solving the Einstein-Klein-Gordon equation
in the Newtonian limit [26,27]. In addition, others have
studied rotating boson stars with angular momentum
[28–31]. Gravity can also be coupled to a field with a
nonzero spin [32–36]. In 2015, Brito et al. studied the static
solution of a system with a Proca field (spin 1) coupled to
gravity, called a Proca star [32]. Soon after, I. Salazarlandea
and F. Garciaka constructed models of charged Proca stars
[24]. In addition to coupling to the boson fields, Finster
et al. [33] also constructed a spherically symmetric Dirac
star coupled by two spin-1=2 spinor fields and Einstein’s
gravity. References [34–36] consider a system coupled by
an axion field and a complex scalar field, called an axion
boson star (ABS). Their work greatly enriched the boson
star model and allowed the development of this research
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field to flourish. In recent years, with the development of
astrophysics, boson stars are also considered to be one of
the candidates for dark matter; besides, they have been
widely used in black hole shadow simulation [37–39] and
analysis of gravitational wave signals [40–43].
Other recent studies have shown systems in which

gravity is coupled to multiple matter fields, called multi-
state boson stars. In Ref. [44], Bernal et al. constructed a
system consisting of two complex scalar fields—the ground
state and the first excited state. Later, Refs. [17,28] studied
the rotating multistate boson stars. The matter field of
spherically symmetric boson stars can also be extended to
an odd number of complex scalar fields [45,46].
Some recent work has shown that the Proca star plays an

important role in the simulation of black hole shadows
[37,47,48] and gravitational wave signal analysis [43], etc.
Multifield models including the Proca field were also
studied in Ref. [49]. The multifield boson star models
studied by previous people are mostly composed of two
complex scalar fields [17]. In Ref. [50], a spherically
symmetric boson star solution coupled by a complex scalar
field and two Fermi fields (spin 1=2) is also studied. The
main focus of this paper is to study the mixed-state
solutions minimally coupled by two boson fields with
different spins (spin 0 and 1). The aim of this work is to
solve the Einstein-Proca-Klein-Gordon equation numeri-
cally, construct a spherically symmetric boson star com-
posed of a Proca field and a complex scalar field, and study
the properties of its solutions.
This paper is organized as follows: In Sec. II, we propose

a four-dimensional Einstein gravity model minimally
coupled with a complex scalar field and a Proca field. In
Sec. III, the boundary conditions of Proca-boson stars are
studied. In Sec. IV, we show the numerical results obtained
by solving the model, and we show the properties of the
mixed-state solutions in two different cases. In Sec. V, we
summarize and describe possible future work.

II. THE MODEL SETUP

We consider the minimal coupling of a Proca field and a
complex scalar field to (3þ 1)-dimensional Einstein grav-
ity. The action is given by

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
R

16πG0

þ LS þ LP

�
; ð1Þ

where G0 is the gravitational constant, R is the Ricci
scalar, LS and LP represent the Lagrangians of the scalar
field and the Proca field, respectively, and their specific
forms are

LS ¼ −gαβΦ̄;αΦ;β − μ2SΦ̄Φ;

LP ¼ −
1

4
F αβF̄ αβ −

1

2
μ2PAαĀ

α; ð2Þ

where Φ and A are functions of complex scalar and Proca
fields, respectively; Φ̄ and Ā are complex conjugates of
their corresponding fields; and F ¼ dA.
The corresponding energy-momentum tensor can be

obtained from the Lagrangian, where TS
αβ and T

P
αβ represent

the energy-momentum tensor of the scalar field and Proca
field, respectively:

TS
αβ ¼ Φ̄;αΦ;β þ Φ̄;βΦ;α

− gαβ

�
1

2
gγδðΦ̄;γΦ;δ þ Φ̄;δΦ;γÞ þ μ2SΦ̄Φ

�
; ð3Þ

TP
αβ ¼

1

2
ðF ασF̄ βγ þ F̄ ασF βγÞgσγ −

1

4
gαβF στF̄ στ

þ 1

2
μ2P½AαĀβ þ ĀαAβ − gαβAσĀ

σ�: ð4Þ

The field equation is obtained by the variation of the
Lagrange:

Rαβ −
1

2
gαβR ¼ 8πG0ðTS

αβ þ TP
αβÞ; ð5Þ

∇2Φ − μ2SΦ ¼ 0; ð6Þ

∇αF αβ − μ2PA
β ¼ 0: ð7Þ

The action of the matter fields is invariant under theUð1Þ
transformation Φ → eiαΦ, Aβ → eiαAβ with a constant α.
According to Noether’s theorem, there are conserved
currents corresponding to these two matter fields:

JαS ¼ −iðΦ�
∂
αΦ −Φ∂

αΦ�Þ; JαP ¼ i
2
½F̄ αβAβ − F αβĀβ�:

ð8Þ
We can integrate the timelike component of these

conserved currents on a spacelike hypersurface Σ, and
there obtain the Noether charges:

QS ¼
Z
Σ
JtS; QP ¼

Z
Σ
JtP: ð9Þ

According to the static spherical symmetric
Schwarzschild solution, the specific form of the ansatz
of the Proca-boson star to be solved can be expressed
as [51]

ds2¼−NðrÞσ2ðrÞdt2þ dr2

NðrÞþ r2ðdθ2þ sin2 θdϕ2Þ; ð10Þ

where NðrÞ ¼ 1 − 2mðrÞ=r, and functions mðrÞ and
σðrÞ only depend on the radial variable r. If σ2 ¼ 1, this
metric degenerates to the static spherically symmetric
Schwarzschild metric:
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ds2 ¼ −
�
1 −

2mðrÞ
r

�
dt2 þ dr2

1 − 2mðrÞ
r

þ r2ðdθ2 þ sin2 θdϕ2Þ: ð11Þ

In addition, for the static spherically symmetric system,
we use the following ansatz of the scalar and Proca
fields [32]:

Φ ¼ ϕðrÞe−iωSt; ð12Þ

A ¼ ½FðrÞdtþ iGðrÞdr�e−iωPt; ð13Þ

where ϕðrÞ, FðrÞ, andGðrÞ are real functions. Besides this,
the constants ωS and ωP are the frequencies of the scalar
and Proca fields, respectively. When ωS and ωP meet,
ωS ¼ ωP ¼ ω, we call ω the synchronized frequency.
When ωS ≠ ωP, these two frequencies are called non-
synchronized frequencies.
Substituting the above ansatz into the field equations

(5)–(7), we can get the following equations for ϕðrÞ, FðrÞ,
GðrÞ, mðrÞ, and σðrÞ:

ϕ00 þ
�
2

r
þ N0

N
þ σ0

σ

�
ϕ0 þ

�
ω2
S

Nσ2
− μ2S

�
ϕ

N
¼ 0; ð14Þ

d
dr

�
r2½F0 − ωPG�

σ

�
¼ μ2Pr

2F
σN

; ð15Þ

ωPG − F0 ¼ μ2Pσ
2NG
ωP

; ð16Þ

m0 ¼ 4πG0

"
r2Nϕ02

n þ
�
μ2S þ

ω2
S

Nσ

�
r2ϕ2 þ r2ðF0 − ωPGÞ2

2σ2

þ μ2Pr
2

2

�
G2N þ F2

Nσ2

�#
; ð17Þ

σ0

σ
¼ 4πG0r

"
2

�
ϕ02 þ ω2

Sϕ
2

N2σ2

�
þ μ2P

�
G2 þ F2

N2σ2

�#
: ð18Þ

Also, the specific forms of the Noether charges obtained
from Eqs. (8) and (9) are

QS ¼ 8π

Z
∞

0

r2
ωSϕ

2

Nσ
dr;

QP ¼ 4π

Z
∞

0

r2
ðωPG − F0ÞG

σ
: ð19Þ

III. BOUNDARY CONDITIONS

In order to solve this set of ordinary differential equa-
tions obtained in the previous section, we need to give

corresponding boundary conditions for each unknown
function. Since they are asymptotically flat solutions, the
metric functionsmðrÞ and σðrÞ need to satisfy the boundary
conditions:

mð0Þ ¼ 0; σð0Þ ¼ σ0; mð∞Þ ¼M; σð∞Þ ¼ 1; ð20Þ

whereM and σ0 are currently unknown; the values of these
two quantities can be obtained after finding the solution
of the differential equation system. For the matter field
functions, at infinity we require

ϕð∞Þ ¼ 0; Fð∞Þ ¼ 0; Gð∞Þ ¼ 0: ð21Þ

Additionally, by considering the form of the field
equations (14)–(16) at the origin, we can obtain the
following boundary conditions satisfied by the field
functions:

dϕðrÞ
dr

				
r¼0

¼ 0;
dFðrÞ
dr

				
r¼0

¼ 0; Gð0Þ ¼ 0: ð22Þ

IV. NUMERICAL RESULTS

To facilitate numerical calculations, we use dimension-
less quantities:

r̃ ¼ r=ρ; ϕ̃ ¼
ffiffiffiffiffiffi
4π

p

MPl
ϕ; ω̃S ¼ ωSρ; μ̃S ¼ μSρ;

F̃ ¼
ffiffiffiffiffiffi
4π

p

MPl
F; G̃ ¼

ffiffiffiffiffiffi
4π

p

MPl
G; ω̃P ¼ ωPρ; μ̃P ¼ μPρ;

ð23Þ

where MPl ¼ 1=
ffiffiffiffiffiffi
G0

p
is the Planck mass, ρ is a positive

constant whose dimension is length, and we let the constant
ρ be 1=μS. Additionally, we introduce a new radial variable

x ¼ r̃
1þ r̃

; ð24Þ

where the radial coordinate r̃∈ ½0;∞Þ, so x∈ ½0; 1�. The
system of differential equations is solved numerically using
the finite element method. We discretize the integration
region 0 ≤ x ≤ 1 into 1000 grid points, and we choose the
Newton-Raphson method as our iterative approach. Finally,
we set a relative error criterion of less than 10−5 to ensure
the accuracy of the computation.
To ensure the correctness of our numerical calculations,

we need to check the numerical precision by validating
physical constraints [52,53], besides using the numerical
analysis methods mentioned before. In this study, we
compared the asymptotic mass and the Komar mass in
the numerical solution, and we found that the difference
between them was always less than 10−5.
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In our model, the ground-state scalar field function ϕ has
no node in the radial direction, so it is represented by S0,
and the script is the total number of radial nodes of the field
function. The ground-state field function F and G of the

Proca field have a total of one node in the radial direction,
so it is represented by P1, and the meaning of the script is
the same as that of the scalar field. So, in this model, we
represent the mixed state of the scalar field and Proca field
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FIG. 1. Proca field functions F̃ and G̃ (top panels) and scalar field function ϕ̃ (bottom panel) as functions of x for
ω̃ ¼ ω̃S ¼ ω̃P ¼ 0.81; 0.83; 0.85. All solutions have μ̃P ¼ 0.92 and μ̃S ¼ 1.
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FIG. 2. Left: the ADM massM as a function of the synchronized frequency ω̃. The black dashed line represents the S0-state solutions
with μ̃S ¼ 1, the red dashed line represents the P1-state solutions with μ̃P ¼ 0.862, and the blue line denotes the mixed state S0P1 with
μ̃S ¼ 1 and μ̃P ¼ 0.862. Right: the ADM mass M as a function of the synchronized frequency ω̃. The black dashed line represents the
S0-state solutions with μ̃S ¼ 1. The blue lines, from left to right, represent the mixed state S0P1 with μ̃P ¼ 0.81, 0.85, 0.88, 0.91, 0.93,
0.98, 0.999, and all solutions have μ̃S ¼ 1.
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in terms of S0P1. Next, we will analyze the different classi-
fications of solution families of Proca-boson stars in detail.

A. Synchronized frequency

Based on the characteristics of mixed-state solutions, we
categorize the synchronized frequency solution families into
three types: the one-branch solution family, two-branch
solution family, and multibranch solution family. There is a
one-to-one correspondence between the mixed-state one-
branch solution and the synchronized frequency ω̃, but for
the two-branch solution, when ω̃ is valued in some ranges,
one ω̃ corresponds to two different solutions. Similarly,
multibranch solutionswill have one ω̃ corresponding tomore
than two solutions. According to our numerical results, when
0.808 < μ̃P < 1, the mixed-state solution is of the one-
branch type.When0.801< μ̃P≤0.808, themixed-state solu-
tion is of themultibranch type.When 0.772≤ μ̃P≤0.801, the

mixed-state solution is of the two-branch type. We will
explore these families of solutions in detail next.

1. One-branch

The relation between the field function F̃, G̃, ϕ̃ and the
synchronized frequency ω̃ is shown in Fig. 1. For scalar field
functions, jϕ̃jmax increases as ω̃ increases; For Proca field
functions, jF̃jmax and jG̃jmax decrease as ω̃ increases.
According to the analysis of Fig. 1, the function F̃ has
one node, while G̃ and ϕ̃ have no node, whichmeans that the
mixed state is the S0P1 state—that is, the corresponding
scalar field and Proca field are both in the ground state. Next,
we will examine the properties of the S0P1 state in detail.
Figure 2 shows the relationship between ADM mass and

synchronized frequency ω̃, where we take different values
of μ̃P to obtain a one-branch solution for different mixed
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FIG. 3. Proca field functions F̃ (top panel) and G̃ (middle panel), and scalar field function ϕ̃ (bottom panel) as functions of x with
several values of synchronized frequency ω̃, where the field functions on the first, second, and third branches are located in the first,
second, and third rows. All solutions have μ̃P ¼ 0.808 and μ̃S ¼ 1.
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states. The black dashed line represents the S0-state
solutions of the boson stars with μ̃S ¼ 1, the red dashed
line represents the P1-state solutions of the Proca stars, and
the blue line denotes the mixed state S0P1. The relationship
between the ADM mass and the synchronized frequency is
similar to the cases of the 1S2S or 1S2P of the Rotating
multistate boson stars (RMSBSs) in Ref. [28]. It can be
seen from the image that S0P1 has only one branch, that the
ADM mass decreases with the increase of frequency, and
that the two ends of the blue line fall on the black and red
spiral dashed lines. As can be seen from Fig. 1, jϕ̃jmax
decreases when the frequency decreases, and when the
frequency decreases to the minimum value, the mixed-state
solution falls on the Proca single field curve. At this time,
the ADM mass reaches the maximum value, the amplitude
of the scalar field function decreases to 0, only the Proca field
remains, and the mixed star becomes a Proca star. Similarly,
when the frequency increases to the maximum value, the
ADM mass reaches the minimum value, and jF̃jmax and
jG̃jmax decrease to 0, leaving only the scalar field remaining
and transforming the mixed star into a boson star.
As can be seen from Fig. 2, when we gradually reduce

μ̃P, the intersection point of the mixed state and two single-
field curves will gradually move from the larger part of the
synchronized frequency of the first branch to the inflection
point of the first branch, and then pass the inflection point
and move along the second branch to the part of the
increased synchronized frequency. The synchronized fre-
quency range of the mixed-state solution will also gradually
increase until the multibranch solution appears.
In Table I, the existence range of the synchronized

frequency ω̃ and the range of M are shown for several
different values of the Proca field mass μ̃P for the one-
branch solution family. As μ̃P increases, the existence

domain of ω̃ decreases, while Mmax and Mmin both first
increase and then decrease. The existence range of M does
not change significantly when μ̃P is small. However, when
μ̃P is large, the existence domain of M rapidly decreases
with the decrease of the existence domain of ω̃.

2. Multibranch

Unlike Fig. 1, in the case of multibranch solutions, the
field functions F̃, G̃, ϕ̃, and the synchronized frequency ω̃
are no longer in a one-to-one correspondence. Their
relationship is shown in Fig. 3, where the first, second,
and third rows represent the first branch, second branch,
and third branch of the multibranch solution, respectively.
For the first and second branches, the field functions jF̃jmax,
jG̃jmax, and jϕ̃jmax vary with the synchronized frequency ω̃
in the same manner as one-branch solutions. For the third
branch, the field functions jF̃jmax, jG̃jmax, and jϕ̃jmax
increase with the increase of synchronized frequency.
The relationship between the ADM mass and the

synchronized frequency can be observed from Fig. 4. In
Fig. 2, when μ̃P ¼ 0.81, the mixed-state solution is almost
tangent to the second branch of the scalar field curve. If we
continue to reduce the value of μ̃P, the right end of the
mixed-state solution will not fall on the scalar field curve,
but will instead appear as a spiral. In this type of solution
family, the left end of the first branch of the mixed state is
similar to the one-branch case, still starting from the Proca
field helix. However, for the mixed state, there are still
some differences. After passing the inflection point of the
first branch, the second branch is extended, and then the
next inflection point is passed again, and the third branch is
extended, finally forming a helix. There is no disappear-
ance of either the Proca field or scalar field in the mixed
state. In short, the multibranch solution family is both
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FIG. 4. Left: the ADM massM as a function of the synchronized frequency ω̃. The black dashed line represents the S0-state solutions
with μ̃S ¼ 1, the red dashed line represents the P1-state solutions with μ̃P ¼ 0.808, and the blue line denotes the mixed state S0P1 with
μ̃S ¼ 1 and μ̃P ¼ 0.808. Right: the ADM mass M as a function of the synchronized frequency ω̃. The light blue, red, and purple lines
denote the mixed state S0P1, with μ̃P ¼ 0.802, 0.805, and 0.806, respectively. The black dashed line represents the S0-state solutions
with μ̃S ¼ 1. All solutions have μ̃S ¼ 1.
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different from the one-branch solution family and more
complex than the one-branch solution family.
In Table II, the domain of existence for the synchronized

frequency ω̃ is presented, with varying values of μ̃P, as well
as the range of values for M in the multibranch solution
family. As μ̃P increases, the domain of existence for both
the first and second branches gradually expands, while that
of the third branch remains relatively unchanged. Mmax

exhibits a gradual upward trend, while Mmin displays a
gradual downward trend. The range of values for M
expands as the domain of existence for ω̃ increases.

3. Two-branch

In Fig. 5, the graph of the field functions F̃, G̃, ϕ̃ is
different from the previous two cases. The first and second
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columns of graphs represent the first and second two-
branch solutions, respectively. The two-branch solution is
similar to the one-branch solution, with jF̃jmax and jG̃jmax

decreasing as ω̃ increases, while jϕ̃jmax increases with an

increase in the synchronized frequency ω̃. For the second
branch, the field functions jF̃jmax, jG̃jmax, and jϕ̃jmax exhibit
the same trend as the first branch. This is because, in the
two-branch solution case, the mixed-state solutions should
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degenerate into Proca field solutions when ω̃ takes extreme
values, so the value of ϕ̃ is required to be 0 at this point.
In Fig. 6, we demonstrate the relationship between ADM

mass and synchronized frequency ω̃, similar to Fig. 2.
Unlike one-branch solutions, mixed-state solutions are
two-branch solutions when μ̃P is small. This solution
differs from the one-branch solution, where both ends fall
on two single-field helices. When the synchronized fre-
quency increases to a certain value, there exists a synchron-
ized frequency corresponding to two distinct solutions, and
the scalar field function ϕ̃ never vanishes. The mixed-state
curve still originates from the Proca field, but the right end
point does not fall on the scalar field single-field curve;
instead, an inflection point appears. After crossing the
inflection point, as the synchronized frequency decreases,
the mixed-state solution progresses along the second
branch. When the final synchronized frequency reaches

its minimum, the mixed-state curve intersects with the
Proca single-field spiral again. At this point, the mixed state
will only have a Proca field, and the mixed star will
transform into a Proca star.
In Table III, the existence domain of the synchronized

frequency ω̃ and the values forM are shown, when the two-
branch solution family assumes several different values of
the Proca field mass μ̃P. As μ̃P decreases, the domains of
existence for both the first and second branches become
narrower.When μ̃P ¼ 0.772, the second branch is extremely
narrow and nearly vanishes. Mmax exhibits a gradually
decreasing trend, whileMmin displays a gradually increasing
trend, resulting in a decrease in the range of values for M.

B. Nonsynchronized frequency

Similar to the case of synchronized frequency, we divide
the mixed-state solutions in the case of nonsynchronized
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FIG. 8. The ADM mass M of the Proca-boson stars as a function of the nonsynchronized frequency ω̃P for ω̃S ¼ 0.77, 0.8, 0.87,
0.939. We have included the single-field curve of the scalar field in the figure (represented by a black dashed line). The value
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frequencies into three categories: the one-branch-A solu-
tion family, the multibranch solution family, and the one-
branch-B solution family. When 0.768 < μ̃P ≤ 0.939, the
mixed-state solution is part of the one-branch-A solution
family. When 0.73 < μ̃P ≤ 0.768, it belongs to the mixed-
state multi-branch solution family. When 0.7109 ≤ μ̃P ≤
0.73, the mixed-state solution is part of the one-branch-B
solution family. However, there are some differences in
details between the classification of solution families in the
case of nonsynchronized frequencies and that in the case of

a synchronized frequency. The three solution families here
do not have the very obvious critical case in the case of the
same frequency. We will discuss the properties of these
three types of solutions in detail below.

1. One-branch-A

For the one-branch-A solution family, Fig. 7 displays the
image of the field functions F̃, G̃, and ϕ̃, analogous to the
one-branch solution in the case of synchronized frequency.
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For the scalar field function, jϕ̃jmax increases with an
increase in the nonsynchronized frequency ω̃P. For the
Proca field function, both jF̃jmax and jG̃jmax decrease as the
nonsynchronized frequency ω̃P increases.
In Fig. 8, we demonstrate the relationship between the

ADM mass M and the nonsynchronized frequency ω̃P,
when the scalar field frequency ω̃S assumes different values.
This solution is analogous to the one-branch solution in the
case of synchronized frequency, where the left end of
the mixed-state solution curve still falls on the single-field
helix of the Proca field, and the ADMmass value at the right
end is equal to the ADMmass of the single field of the scalar
field when the corresponding value of ω̃S is taken in S0P1.
In other words, when the nonsynchronized frequency ω̃P
reaches its maximum value, the Proca field vanishes, and the
mixed star transforms into a boson star. Furthermore, as ω̃S
decreases, the range of existence for the mixed-state solution
gradually expands until no solution remains.
Table IV displays the domain of existence for the

nonsynchronized frequency ω̃P, with varying values of

the scalar field frequency ω̃S, as well as the values of Mmax
and Mmin. As ω̃S increases, the domain of existence for ω̃P
gradually narrows, becoming quite narrow when
ω̃S ¼ 0.939. Additionally, as ω̃S increases, both Mmax
and Mmin first increase and then decrease.

2. Multibranch

In the case of nonsynchronized frequency, the field
functions of the multibranch solutions are similar to those
in synchronized case, as shown in Fig. 9. The first and
second columns of graphs represent the first and second
two-branch solutions, respectively. For the first branch,
both jF̃jmax and jG̃jmax initially increase and then decrease
with the nonsynchronized frequency ω̃P, while jϕ̃jmax
increases as the nonsynchronized frequency ω̃P increases.
For the second branch, both jF̃jmax and jG̃jmax decrease as
the nonsynchronized frequency ω̃P increases, while jϕ̃jmax
continues to increase with an increase in the nonsynchron-
ized frequency ω̃P.
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FIG. 10. The ADM mass M of the Proca-boson stars as a function of the nonsynchronized frequency ω̃P for ω̃S ¼ 0.74, 0.75, 0.755,
0.76. The red dashed line represents the P1-state solutions, and the blue line denotes the mixed state S0P1. All solutions
have μ̃S ¼ μ̃P ¼ 1.
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In Fig. 10, the correlation between the mixed-state
solution’s ADM mass M and the nonsynchronized
frequency ω̃P is illustrated, given various values of
ω̃P. It can be observed that this type of solution is
similar to the two-branch solution in the case of
synchronized frequency. The first branch also extends
from the single-field curve of the Proca field and returns
to form the second branch at the inflection point. The end
point of the second branch intersects with the single-field
curve of the Proca field again at another location. At this
point, the scalar field vanishes, and the mixed star
transforms into a Proca star. The difference is that, while
the two-branch solution in the synchronized frequency
case is quite smooth around the inflection point, the
inflection point in the mixed-state curve in the non-
synchronized frequency case is sharp. This also reflects
the primary difference between the synchronized and
nonsynchronized frequency cases.
In Table V, we present the domain of existence for the

nonsynchronized frequency ω̃P, with varying values of

the scalar field frequency ω̃S, and the values of Mmax and
Mmin. As ω̃S decreases, the domains of existence for both
the first and second branches gradually narrow. When
ω̃S ¼ 0.74, the second branch nearly vanishes, with Mmax
decreasing as ω̃S decreases, while Mmin increases.

3. One-branch-B

For the one-branch-B solution family, the amplitudes of
the field functions F̃, G̃, and ϕ̃ with the nonsynchronized
frequency are shown in Fig. 11. For the scalar field
function, jϕ̃jmax initially increases and then decreases as
the nonsynchronized frequency ω̃P increases. For the Proca
field functions, both jF̃jmax and jG̃jmax increase with the
nonsynchronized frequency ω̃P.
Figure 12 shows the relationship between the ADM

mass M of the mixed star and the nonsynchronized
frequency ω̃P, when the scalar field frequency ω̃S
assumes different values. According to Fig. 10, when
ω̃S ¼ 0.74, it remains a two-branch solution. If ω̃S
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continues to decrease, the second branch of the two-
branch solution will disappear, and the mixed state will
transform into another one-branch solution. At this point,
the one-branch solution differs from the one-branch-A
solution family, where the two ends of the one-branch-A
solution family intersect the Proca field curve and the
scalar field curve. That is, the Proca field function must
not disappear during an increase in ω̃P. For one-branch-B
solutions, both ends of the mixed-state curve are on the
Proca field curve—that is, when ω̃P reaches its minimum
or maximum, the mixed star is a Proca star. As ω̃P

increases, jϕ̃jmax first increases and then decreases,
disappearing when ω̃S reaches its maximum value, and
the mixed star transforms into a Proca star again.
Table VI shows the range of the nonsynchronized

frequency ω̃P for different values of the scalar field
frequency ω̃S, along with the Mmax and Mmin values. As
ω̃S decreases, the domain of existence for ω̃P narrows, with
Mmax gradually decreasing, while Mmin increases.

C. Binding energy

In conclusion, we examine the binding energy E ¼ M −
μSQS − μPQP for the six solution families obtained above.
Figure 13 presents the binding energy E of the mixed state
versus the synchronized frequency ω̃ for several values of
the mass μ̃P. For the family of synchronized frequency
solutions, the one-branch solution is unstable (E > 0)
when μ̃P is small. However, as μ̃P increases, the solution
gradually becomes stable within a certain frequency
domain and eventually transforms into a stable (E < 0)
mixed-state solution as μ̃P continues to increase. The cases
of multibranch and two-branch solutions exhibit identical
behavior in terms of binding energy, remaining perpetually
unstable.
Figure 14 presents the binding energy E of the mixed

state versus the nonsynchronized frequency ω̃P for several
values of the scalar field frequency ω̃S. For the one-
branch-A solution family, the binding energy E increases
as the nonsynchronized frequency ω̃P decreases. For the
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FIG. 12. The ADM mass M of the Proca-boson stars as a function of the nonsynchronized frequency ω̃P for ω̃S ¼ 0.7109, 0.719,
0.722, 0.73. The red dashed line represents the P1-state solutions, and the blue line denotes the mixed state S0P1. All solutions
have μ̃S ¼ μ̃P ¼ 1.
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multibranch and one-branch-B solution families, as ω̃P
increases, the binding energy E exhibits a tendency to first
decrease and then increase. For the one-branch-A family
and multibranch family, their solutions display stable

(E < 0) behavior in one part of the frequency domain
and unstable (E > 0) behavior in the remaining part, while
for one-branch-B solutions, their solutions are perpetually
unstable (E > 0).
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V. CONCLUSIONS

In this paper, we introduce a spherically symmetric hybrid
Proca-boson star model consisting of a scalar field and a
Proca field, both in their ground states. Additionally, we
examine the characteristics of various mixed-state solutions.
For synchronized frequency solutions, we categorize

mixed-state solutions into three groups based on the
number of branches: one-branch, two-branch, and multi-
branch solutions. The field function of the first branch
for these three solution types changes similarly. As the
synchronized frequency ω̃ increases, both jF̃jmax and jG̃jmax

decrease, while jϕ̃jmax increases. In the case of one-branch
solutions, the mass M of the mixed state decreases as the
synchronized frequency ω̃ increases, while the binding
energy E exhibits an opposite trend. Furthermore, as we
decrease the mass of the Proca field μ̃P, the existence
domain of synchronized frequency solutions gradually
expands. For two-branch solutions, the field function on
the second branch changes with the synchronized fre-
quency ω̃ as well as the first branch. The image ofM of the
mixed state with respect to the synchronized frequency ω̃ is
a smooth curve. Starting from a point on the Proca single-
field helix corresponding to μ̃P, the frequency reaches its
maximum value at an inflection point and then decreases.
The second branch appears and eventually returns to the
single-field helix of the Proca field when the frequency
decreases to its minimum value. The M of the first
branch increases with the synchronized frequency ω̃, first
decreasing and then slightly increasing. The second branch
is monotonically decreasing (for the critical state of
μ̃P ¼ 0.801, M slightly increases first and then monoton-
ically decreases). For multibranch solutions, the image of
M with respect to the synchronized frequency ω̃ becomes a
spiral shape. For the first and second branches, jF̃jmax and
jG̃jmax decrease, and jϕ̃jmax increases with an increase in
synchronized frequency ω̃. For the third branch, however,
the trend of jF̃jmax and jG̃jmax is opposite to that of the first
and second branches, while jϕ̃jmax is consistent with that of
the first and second branches. For each branch, as Proca
field mass μ̃P decreases, the existence domain of ω̃
increases. Additionally, as μ̃P decreases, Mmin increases,
while Mmax first decreases and then increases.
In the case of nonsynchronized frequency, the mixed-

state solution family is still divided into three categories:
one-branch-A solutions, multibranch solutions, and one-
branch-B solutions. One-branch-A is similar to the one-
branch solution of the synchronized frequency. With an
increase in the nonsynchronized frequency ω̃P, the varia-
tion of the existence domain of jF̃jmax, jG̃jmax, jϕ̃jmax, mass
M, and nonsynchronized frequency ω̃P is similar to that of
the one-branch solution family of the synchronized fre-
quency case. However, the minimum value of M of the
nonsynchronized frequency depends on ω̃S. It is equal toM
of the scalar field single field of μ̃S ¼ 1 when ω̃S takes the

same value. Formultibranch solutions, jF̃jmax and jG̃jmax of
the first branch first increase and then decrease with an
increase in the nonsynchronized frequency ω̃P, while jϕ̃jmax

is monotonically increasing. The jF̃jmax and jG̃jmax of the
second branch decrease monotonically, and jϕ̃jmax is
consistent with the trend of the first branch, still increasing
monotonically. For each branch, the existence domain
of the nonsynchronized frequency ω̃P decreases as the
frequency ω̃S of the scalar field decreases. The relation-
ship between mass M and the nonsynchronized frequency
ω̃P is similar to that between two-branch solutions in the
synchronized frequency case but behaves differently at
inflection points. It is not smooth at inflection points but
appears sharply bent. Finally, when the nonsynchronized
frequency ω̃P of the second branch reaches its lowest
point, the mixed-state curve falls on the Proca field. As
ω̃S decreases, both Mmin and Mmax decrease. For one-
branch-B solutions, as the nonsynchronized frequency ω̃P

increases, both jF̃jmax and jG̃jmax increase, while jϕ̃jmax
first increases and then decreases. The mass M of mixed
states decreases. When the nonsynchronized frequency
reaches its maximum value, the curve falls on the Proca
field. The existence domain of the mixed-state non-
synchronized frequency ω̃P increases with an increase
in scalar field frequency ω̃S.
The Proca-boson star solutions presented in this paper

exhibit several new solution families that differ signifi-
cantly from those found in previous studies [28,50].
Through the analysis of binding energy, in the solution
families of the six branches we obtained, the multibranch
and two-branch solutions of the synchronized frequency
case are unstable, while the other solutions are stable in
some part of the frequency domain. In terms of the stability
of the solution, the situation is similar to that of several
solutions obtained in [44]. In future research, we plan to
investigate mixed stars composed of both fields in the first
excited state. Additionally, inspired by [45], we may
explore the superposition of more matter fields as another
possible direction for future study.
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APPENDIX

This appendix contains Tables I–VI, where we offer a
comprehensive analysis of the numerical results, including
detailed data on the existence domain, ADM mass range,
and binding energy of these solutions.
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TABLE II. The existence domain of the synchronized fre-
quency ω̃, ADM mass (M), and binding energy (E) of the mixed
state, for several values of the Proca field mass μ̃P. B1, B2, and B3

represent the first, second, and third branches in Fig. 4, respec-
tively. All solutions have μ̃S ¼ 1.

μ̃P B1 B2 B3 E

0.802 0.659–0.765 0.715–0.765 0.715–0.723 0.035–0.093
0.805 0.661–0.771 0.72–0.771 0.72–0.729 0.031–0.089
0.806 0.661–0.774 0.722–0.774 0.722–0.730 0.03–0.088
0.808 0.662–0.778 0.725–0.778 0.725–0.734 0.028–0.086

TABLE III. The existence domain of the synchronized frequency
ω̃, maximum and minimum ADM masses (Mmax and Mmin), and
binding energy (E) of the mixed state, for several values of the
Proca field mass μ̃P. B1 and B2 represent the first and second
branches in Fig. 6, respectively. All solutions have μ̃S ¼ 1.

μ̃P B1 B2 Mmax Mmin

0.772 0.654–0.7042 0.6989–0.7042 0.757 0.612
0.781 0.654–0.722 0.7088–0.722 0.793 0.577
0.79 0.655–0.74 0.7133–0.74 0.828 0.536
0.795 0.6565–0.7503 0.7157–0.7503 0.846 0.51
0.801 0.6588–0.7829 0.7112–0.7829 0.866 0.474

TABLE IV. The existence domain of the nonsynchronized
frequency ω̃P, and the maximum and minimum ADM masses
(Mmax and Mmin) of the mixed state, for several values of the
scalar field frequencies ω̃S. ω̃0 represents the value of the
nonsynchronized frequency when E ¼ 0 in Fig. 8. All solutions
have μ̃S ¼ μ̃P ¼ 1.

ω̃S ω̃P M E ω̃0

0.77 0.838–0.8862 0.516–1.01 −0.066–0.216 0.866
0.8 0.844–0.8871 0.557–1.026 −0.084–0.187 0.878
0.87 0.9033–0.9275 0.629–1.029 −0.062–0.111 0.917
0.939 0.9535–0.965 0.526–0.826 −0.024–0.039 0.96

TABLE V. The existence domain of the nonsynchronized
frequency ω̃P, and the maximum and minimum ADM masses
(Mmax and Mmin) of the mixed state, for several values of the
scalar field frequencies ω̃S. B1 and B2 represent the first and
second branches in Fig. 10, respectively. ω̃0 represents the value
of the nonsynchronized frequency when E ¼ 0 in Fig. 10. All
solutions have μ̃S ¼ μ̃P ¼ 1.

ω̃S B1 B2 M ω̃0

0.74 0.8222–0.8636 0.8633–0.8636 0.538–0.934 � � �
0.75 0.8271–0.875 0.8735–0.875 0.505–0.968 � � �
0.76 0.8325–0.8861 0.883–0.8861 0.474–0.992 0.864, 0.885

TABLE I. The existence domain of the synchronized frequency
ω̃, maximum and minimum ADM masses (Mmax and Mmin), and
maximum and minimum binding energy (Emax and Emin) of the
mixed state, for several values of the Proca field mass μ̃P. ω̃0

represents the value of the synchronized frequency when E ¼ 0 in
Fig. 2. All solutions have μ̃S ¼ 1.

μ̃P ω̃ Mmax Mmin Emax ω̃0

0.81 0.6631–0.7704 0.894 0.448 0.051 � � �
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0.93 0.8002–0.8694 1.132 0.63 −0.019 � � �

TABLE VI. The existence domain of the nonsynchronized
frequency ω̃P, and the maximum and minimum ADM masses
(Mmax andMmin) of the mixed state, for several values of the scalar
field frequencies ω̃S in Fig. 12. All solutions have μ̃S ¼ μ̃P ¼ 1.

ω̃S ω̃P Mmax Mmin

0.7109 0.8144–0.8261 0.785 0.671
0.719 0.8144–0.839 0.85 0.612
0.722 0.8152–0.8427 0.867 0.598
0.73 0.8178–0.852 0.904 0.57
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