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The theory of macroscopic gravity provides a formalism to average the Einstein field equations from
small scales to largest scales in space-time. It is well known that averaging is an operation that does not
commute with calculating the Einstein tensor and this leads to a correction term in the field equations
known as backreaction. In this work, we derive exact solutions to the macroscopic gravity field equations
assuming that the averaged geometry is plane or spherically symmetric, and the source is taken as vacuum,
dust, or perfect fluid. We then focus on the specific cases of spherical symmetry and derive solutions that
are analogous to the Schwarzschild, Tolman VII, and Lemaître-Tolman-Bondi solutions. The geodesic
equations and curvature structure are contrasted with the general relativistic counterparts for the
Schwarzschild and Lemaître-Tolman-Bondi solutions.
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I. INTRODUCTION

An outstanding problem in general relativity (GR) is how
the small scale lumpy universe is averaged to be homo-
geneous at the largest scales. This problem is not easily
reconcilable due to the difficulties in defining a mathemati-
cally rigorous averaging procedure for nontrivial geom-
etries such as the pseudo-Riemannian geometry of general
relativity. Moreover, the Einstein tensor is a nonlinear
function of the metric which would mean that the average
of the Einstein tensor for a given metric is not equal to the
Einstein tensor constructed with the average of that metric,
i.e., hE½g�i ≠ E½hgi�. These issues are collectively known
as the averaging problem in general relativity [1–12].
Therefore, when dealing with large length scales, a set

of averaged equations should be used. In these equations,
a correction term should be present to account for the
noncommutativity between averaging and calculating the
Einstein tensor [1–6]. This term encapsulates the effect
of the microscopic structure of the space-time on the
dynamics of the macroscopic one, and is sometimes
referred to as backreaction. Macroscopic gravity (MG) is
a formalism for covariant space-time averaging [13–19]
which offers a promising solution to the averaging problem.
It is an exact (nonperturbative) approach which employs
averaging bivectors and Lie dragging of the averaging
regions. It is valid for arbitrary classical tensor fields on a
general n-dimensional differentiable manifold.
The field equations of MG are the macroscopic analog of

the Einstein field equations (EFEs). They are characterized

by a tensorial correction term which is a combination of
various traces of a quantity called connection correlation.
They can be written in the form of EFEs by taking this
correction term to the right-hand side of the equations.
Then, the dynamics of a (assumed) macroscopic space-time
geometry can be analyzed by determining this correction
term. This can be done by imposing some reasonable
assumptions on the connection correlation [20–22]. The
solutions to the averaged field equations in MG, with
the macroscopic geometry assumed to be FLRW, have been
presented in [20–23]. Other exact macroscopic geo-
metries like Bianchi Type-I [23] and static spherically
symmetric (Schwarzschild) [24] have also been explored.
Linear perturbations around the FLRW geometry have been
analyzed in [22]. In [25–27], the authors took the micro-
scopic geometry to be spherically symmetric and wrote it in
volume preserving coordinates. Then, they averaged it
using Zalaletdinov’s procedure which becomes trivial in
the volume preserving coordinates, since the averaging
operators reduce to Kronecker delta [15].
In this paper, we derive solutions to the MG field

equations where the macroscopic geometry is assumed
to be spherical or plane symmetric (that is, the less sym-
metric microscopic geometry averages out to be spherical/
plane symmetric). We start by assuming that the macro-
scopic geometry admits the G3 group of motion (on V2)
which contains two special cases—plane and spherical
symmetry1 [28], and then, calculate the MG correction term
for such geometries. Our approach to calculate the correc-
tion term is similar to the one taken in [24] to study static
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spherically symmetric solutions. Here, we extend the
treatment in [24] to include nonstatic spherically symmetric
and plane symmetric geometries as well. We find that the
MG correction term takes a form of an anisotropic fluid
with a qualitative behavior of an effective spatial curvature
in the field equations. Recently, such geometries were also
analyzed in the context of other averaging formalisms [29].
We categorize the solutions based on the source for the

space-time—vacuum, dust, and perfect fluid. Within these
three categories, we treat, in detail, the cases of the static
spherically symmetric vacuum solution (Schwarzschild
exterior [30]), the static spherically symmetric perfect fluid
solutions (Schwarzschild interior [30] and Tolman VII
[31–40]), and the nonstatic spherically symmetric dust
solution (Lemaître-Tolman-Bondi (LTB) [41–46]). These
solutions are the exact solutions to the MG field equations
and do not represent the same geometry as their counterparts
in GR, since they are not the solutions of Einstein field
equations. This is in the same spirit as that ofGR—thematter
distribution (at the macroscopic level) should determine the
(macroscopic) geometry through the macroscopic field
equations.
The paper is arranged in the following manner: In Sec. II,

we briefly review the macroscopic gravity formalism. In
Sec. III, we present the spherical and plane symmetric
solutions to the MG field equations. Then, in Secs. IV, V
and VI, we analyse specific solutions by assuming the
source to be a vacuum, dust, and perfect fluid, respectively.
The MG analog of the Schwarzschild, Tolman VII, and
LTB solutions are derived. Finally, we discuss the results in
this paper and make some general remarks in Sec. VII.
The notation and the convention used are as follows:

objects associated with the microscopic geometry are
denoted by lowercase letters and those with the macro-
scopic geometry by uppercase letters. Greek indices run
from 0 to 3 and Latin indices from 1 to 3. Angular brackets
h� � �i denote the averaging operation or sometimes aver-
aged quantities. Covariant differentiation with respect to
the macroscopic connection is denoted by jj. Indices with
round brackets ðÞ/square brackets ½ � are symmetrized/
antisymmetrized; and underlined indices are not included
in (anti-)symmetrization. The covariant derivative is
denoted by ∇μ. The sign convention followed is the
Landau-Lifshitz spacelike convention (LLSC) [47]. That
is, the signature of the metric is taken to be Lorentzian
ð−;þ;þ;þÞ, the Riemann curvature tensor is defined as,
rμανβ ¼ 2∂½νγμαβ� þ 2γϵα½βγμϵν� and rμν ¼ rαμαν is the Ricci
tensor. The Ricci scalar is defined as r ¼ rμμ ¼ gμνrμν.
Finally, the units are taken such that G ¼ 1 ¼ c,
i.e., κ ¼ 8π.

II. MACROSCOPIC GRAVITY FIELD EQUATIONS
AND THEIR SOLUTIONS

Using the concepts of macroscopic electrodynamics
[48–50], a covariant averaging procedure was developed

by Zalaletdinov [13–19], which can be used in general
relativity. It is a generalization of averaging on Minkowski
space-time and is based on the concept of Lie dragging
of the averaging regions. This procedure is valid for
arbitrary classical tensor fields on any differentiable mani-
fold [13–19].
Let there be a geometric object (vector, tensor etc.) pα

βðxÞ
defined on an n-dimensional differentiable metric manifold
ðM; gαβÞ. Then, the space-time averaged value of this
object over a compact region Σ ⊂ Mwith a volume n-form
around a supporting point x∈Σ, is defined as,

hpα
βðxÞi ¼

R
Σ A

α
μ0 ðx; x0Þpμ0

ν0 ðx0ÞAν0
β ðx0; xÞ

ffiffiffiffiffiffiffi
−g0

p
dnx0R

Σ

ffiffiffiffiffiffiffi
−g0

p
dnx0

ð1Þ

where
R
Σ

ffiffiffiffiffiffiffi
−g0

p
dnx0 is the volume (VΣ) of the region Σ and

g0 ¼ det ½gαβðx0Þ�. The integration is done over all the points
x0 ∈Σ. The integrand Aα

μ0 ðx; x0Þpμ0
ν0 ðx0ÞAν0

β ðx0; xÞ is called
the bilocal extension of the object pα

βðxÞ; and the objects

Aα
μ0 ðx; x0Þ and Aν0

β ðx0; xÞ are called the bilocal averaging
operators.
Then, bilocal objects F are defined in terms of these

averaging operators as,

F α
βρ ¼ Aα

ϵ0 ð∂ρAϵ0
β þ∇σ0Aϵ0

βA
σ0
ρ Þ: ð2Þ

These objects behave as connection coefficients at x and
hence, can be considered as the bilocal extension of the
microscopic connection coefficients. The averages of these
objects, hF α

βρi serve as the affine connection coefficients
of the averaged space-time.
Further, the average of the microscopic Riemann curva-

ture tensor, hrαβρσi is written as Rα
βρσ . A curvature tensor

corresponding to the macroscopic connection can be
calculated, and turns out to be related to the average of
the microscopic Riemann curvature tensor through the
following formula,

Mα
βρσ ¼ Rα

βρσ þ 2hF δ
β½ρF α

δσ�i − 2hF δ
β½ρihF α

δσ�i: ð3Þ

Then, in order to define splitting rules for averaging the
differential Bianchi identities, correlation tensors need to be
defined. The connection correlation is a six rank tensor
which takes into account the noncommutativity of averag-
ing and calculating the Einstein tensor. It is defined as,

Zα
β½γμνσ� ¼ hF α

β½γF μ
νσ�i − hF α

β½γihF μ
νσ�i: ð4Þ

Note that the second term on the right-hand side in Eq. (3)
is merely a contraction of the connection correlation and can
be written as, Qα

βρσ ¼ 2hF δ
β½ρF α

δσ�i − 2hF δ
β½ρihF α

δσ�i ¼
2Zϵ

β½ραϵσ�. This tensor is like a curvature tensor in its

mathematical construction and follows the algebraic
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properties of one. It can be considered as a “curvature
deformation” tensor since it measures the difference between
the macroscopic curvature tensor and the average of the
microscopic curvature tensor. Higher order correlations also
exist (restricted up to the dimensionality of the macroscopic
space-time), but can be taken to be zero in a self consistent
manner [13,14]. This makes the formalism more practical
with equations involving only the connection correlation.
The final form of the averaged Einstein field equations is

given by,

Eϵ
γ ¼GβϵMβγ−

1

2
δϵγGμνMμν¼ κTϵ

γþ
�
Zϵ

μνγ−
1

2
δϵγQμν

�
Gμν

ð5Þ
where, Tϵ

γ ¼ htϵγi is the average of the energy-momentum
tensor for the microscopic matter distribution, Gμν is the
inverse of the macroscopic metric tensor, Mβγ is the macro-
scopic Ricci tensor, Zϵ

μνγ ¼ 2Zϵ
μ½αανγ� is a Ricci-tensor-like

object for the connection correlation and Qμν ¼ Qϵ
μϵν.

Therefore, in the theory of macroscopic gravity, averag-
ing out the Einstein field equations introduces additional
terms on right hand side of these equations, constituting
various traces (contractions) of the connection correlation.
We call these additional terms as the MG correction term,
denoted as,

Cϵ
γ ¼

�
Zϵ

μνγ −
1

2
δϵγQμν

�
Gμν: ð6Þ

To derive a solution to the averaged field equations (5),
we need to determine the form of this correction term
explicitly for a given macroscopic geometry. This is done
by virtue of several algebraic and differential constraints on
the connection correlation [13,14],

Zα
βγ

μ
νσ ¼ −Zα

βσ
μ
νγ ð7aÞ

Zα
βγ

μ
νσ ¼ −Zμ

νγ
α
βσ ð7bÞ

Zα
β½γμνσ� ¼ 0 ð7cÞ

Zϵ
ϵγ
μ
νσ ¼ 0 ð7dÞ

Zα
βμ

γ
δνu

ν ¼ 0 ð7eÞ

Zα
β½γμνσjjλ� ¼ 0 ð7fÞ

Zϵ
β½γμνσM

α
ϵλρ� − Zα

ϵ½γμνσM
ϵ
βλρ�

þ Zα
β½γϵνσM

μ
ϵλρ� − Zα

β½γμϵσM
ϵ
νλρ� ¼ 0 ð7gÞ

where, u is the unit time-like 4-vector field and M is the
Riemann curvature tensor for the (assumed) macroscopic
space-time geometry.

Equations (7a)–(7e) are just algebraic constraints and do
not depend on the macroscopic geometry. Solving these
leaves us with 121 independent components in the con-
nection correlation. Equations (7e), (7f), and (7g) ensure
that the higher order correlations are zero. Then, all one has
to deal with is the connection correlation. There are several
assumptions on the structure of the macroscopic geometry
and the functional form of the connection correlation that
go into solving the latter two of these [24]. Given these
assumptions, the connection correlation can be determined
completely. A systematic way of solving the MG equations
has been presented in [16,21,23,24].
In the following sections, starting with the 121 compo-

nents, we solve the last two equations to determine the MG
correction term for spherical and plane symmetric macro-
scopic geometries.

III. SPHERICAL AND PLANE SYMMETRIC
SOLUTIONS

For a coordinate system ðx0; x1; x2; x3Þ, the general form
of the line element for a spherical and plane symmetric
space-time is given by [28,51],

ds2 ¼ Gμνdxμdxν ¼ −e2Pðdx0Þ2 þ e2Qðdx1Þ2
þ R2½ðdx2Þ2 þ S2ðx2; kÞðdx3Þ2� ð8Þ

where, Gμν is the macroscopic metric, P, Q, R are, in
general, arbitrary functions of coordinates ðx0; x1Þ, and just
the coordinate x1 for the static case. The time-like unit
4-vector field (the 4-velocity of timelike particles) admitted
by such space-time is given by, uν ¼ ½e−P; 0; 0; 0�. The
function Sðx2; kÞ takes the values fsinðx2Þ;1g for k¼f1;0g,
where k ¼ KR2 and K is the constant Gaussian curvature of
the 2-subspace (x0; x1 ¼ const:). Since the function,R, has a
fixed value on this 2-subspace, one can normalise the
curvature in this manner [28]. The spherical and plane
symmetric cases are represented by k ¼ 1 and k ¼ 0,
respectively.
It is conventional to use spherical coordinates ðt; r; θ;ϕÞ

in the case of spherical symmetry (k ¼ 1). Then, the line
element takes the form,

ds2 ¼ −e2Pdt2 þ e2Qdr2 þ R2ðdθ2 þ sin2 θdϕ2Þ ð9Þ

where P, Q, R are arbitrary functions of time, t, and the
radial coordinate, r, for the nonstatic case. In the static case,
P, Q are functions of only r and the function R can be
chosen to be equal to r [28].
For the case of plane symmetry (k ¼ 0), we often use

Cartesian coordinates ðt; x; y; zÞ. Then, the line element
takes the form,

ds2 ¼ −e2Pdt2 þ e2Qdx2 þ R2ðdy2 þ dz2Þ ð10Þ
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where P, Q, R are arbitrary functions of time, t, and the
spatial coordinate, x, for the nonstatic case.2 In the static
case, P, Q, R are functions of only x.
We calculate the MG correction term with the line

element for the macroscopic geometry to be the one in
Eq. (8).3 We take the components of connection cor-
relation to be dependent on all the coordinates, i.e.,
Z≡ Zðx0; x1; x2; x3Þ. We start with the 121 independent
components in Z that remain after solving constraints (7a)–
(7e). Solving the differential constraint (7f) leaves only 7
independent components. The integrability condition (7g)
is trivially satisfied and does not reduce the independent
components any further.
These components are characterized by arbitrary func-

tions of coordinates x2 and x3. To make the MG correction
term compatible with the macroscopic geometry, two of
these need to be constant. Then, out of the 7 independent
components in Z, five are arbitrary functions and two are
constants. We label these as fnðx2; x3Þ; ðn ¼ 1;…; 5Þ and
b1, b2. The number of nonzero components in the con-
nection correlation tensor is 44 and that in the curvature
deformation tensor, Q, is 8. The non-Riemannian curvature
tensor, R, has 44 nonzero components comprising of three
out of the seven variables in Z. We do not list them here as
the real important quantity is the MG correction term, since
it enters the field equations. The MG correction term is
diagonal and takes the following form,

C0
0 ¼

B
R2

ð11aÞ

C0
i ¼ 0 ¼ Ci

0 ð11bÞ

C1
1 ¼

B
R2

; C2
2 ¼ 0 ¼ C3

3 ð11cÞ

Writing in matrix form, this looks like,

Cϵ
γ ¼

B
R2

2
6664
1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

3
7775 ð12Þ

where, B ¼ 2ðb1 þ b2Þ is a constant.
The MG correction term takes the form of an anisotropic

fluid. Only the radial component of the effective pressure is
nonzero and is equal in magnitude, but opposite in sign, to
the effective energy density. The MG correction term for

the static spherically symmetric geometry in our case is the
same as what was found in [24], although we have applied
fewer restrictions on Z.

A. The macroscopic Einstein field equations

We take the average of the microscopic energy-momen-
tum tensor to be that of an inhomogeneous relativistic
perfect fluid with an isotropic pressure,

Tϵ
γ ¼ ðρþ pÞuϵuγ þ pδϵγ ð13Þ

where, ρ≡ ρðx0; x1Þ and p≡ pðx0; x1Þ are the energy
density and pressure. Taking the averaged matter distribu-
tion to be a perfect fluid does not reduce the generality of
the equations that follow (for the purposes of this paper),
since both vacuum and dust can be considered as special
cases. The conservation of energy-momentum,4 ∇ϵTϵ

γ ¼ 0,
gives two equations—one each for γ ¼ 0, 1, while other
components are identically satisfied,

ρ̇

ρþ p
þ Q̇þ 2

Ṙ
R
¼ 0 ð14aÞ

p0

ρþ p
þ P0 ¼ 0: ð14bÞ

Then, without assuming any equation of state, pðρÞ, the
macroscopic field equations for the metric in (8) read as

E0
0 ¼

e−2Q

R2
½2RR00 þ R0ðR0 − 2RQ0Þ�

−
e−2P

R2
½ṘðṘþ 2RQ̇Þ� − k

R2
¼ −8πρþ B

R2
ð15aÞ

E0
1 ¼

2e−2P

R
½Ṙ0 − Q̇R0 − P0Ṙ� ¼ 0 ð15bÞ

E1
0 ¼ −

2e−2Q

R
½Ṙ0 − Q̇R0 − P0Ṙ� ¼ 0 ð15cÞ

E1
1 ¼ −

e−2P

R2
½2RR̈þ ṘðṘ − 2RṖÞ�

þ e−2Q

R2
½R0ðR0 þ 2RP0Þ� − k

R2
¼ 8πpþ B

R2
ð15dÞ

E2
2 ¼E3

3 ¼
e−2Q

R
½R00 þR0ðP0 −Q0ÞþRðP00 þP02 −P0Q0Þ�

−
e−2P

R
½R̈þ ṘðQ̇− ṖÞþRðQ̈þ Q̇2− Ṗ Q̇Þ� ¼ 8πp

ð15eÞ
2Note that, one can choose any one of the three spatial

coordinates to be x1. Then, the metric will be modified accord-
ingly and so would the MG correction term.

3We did the same calculations separately for Eqs. (9) and (10)
for both static and nonstatic cases. The results were identical to
the respective cases presented here.

4The differential constraint (7f) of the formalism ensures that
the MG correction term has also vanishing covariant derivative
[13,14]. Hence, the covariant divergence of the two sides of
equation (5) vanishes identically—the left side due to the usual
differential Bianchi identity.
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where, “dot” and “prime” represent differentiation
with respect to the coordinates x0 and x1, respectively.
The plane and spherical symmetric cases correspond to
k ¼ 0 and k ¼ 1, respectively. The MG correction term
enters Eqs. (15a) and (15d) as an additional curvature term.
Other equations are not affected. In the case of static
solutions, all the terms with a dot go to zero.

IV. VACUUM

In the case of vacuum, the conditions from conservation
of energy are identically satisfied. The MG correction
term does not change the field equations qualitatively since
the constant term B can be absorbed in the curvature term.
Therefore, the usual results for the analysis of vacuum solu-
tions hold. However, the terms with k would be replaced
by kþ B. Therefore, the generalized Birkhoff theorem
[28,52–56] would still hold and the metric would be
necessarily static. This means that all the terms with ‘dot’
vanish. Moreover, if ∂μR∂μR > 0, one can choose canonical
coordinates, where R ¼ x1 [28,51]. Then, solving Eq. (15a),
we would find,

e2Q ¼
�
ðkþ BÞ − 2m

x1

�
−1

ð16Þ

where,m is a constant that comes from integration andQ is a
function of only x1 now. Further, substituting equation (15d)
in (15a), we get,

P0 ¼ −Q0 ⇒ P ¼ −Qþ C1

where C1 is a constant of integration. This gives us,

e2P ¼ C2e−2Q ¼ C2

�
ðkþ BÞ − 2m

x1

�
ð17Þ

where, C2 ¼ e2C1 . For simplicity, we can choose C2 ¼ 1, as
one does in the usual Schwarzschild solution. Then, using
Eqs. (16) and (17) inEq. (8), themacroscopicmetric takes the
following form,

ds2 ¼ −fðx1; k;BÞðdx0Þ2 þ 1

fðx1; k;BÞ ðdx
1Þ2

þ ðx1Þ2½ðdx2Þ2 þ S2ðx2; kÞðdx3Þ2� ð18Þ

where f ¼ ½ðkþ BÞ − 2m
x1 �. Therefore, the vacuum solu-

tion is now modified to have the backreaction term in the
line element. This metric has a coordinate singularity
at x1 ¼ 2m

ðkþBÞ.

A. The MG-Schwarzschild exterior solution

The static spherically symmetric case (k ¼ 1) gives
us the MG-Schwarzschild (exterior) solution. The line
element, in coordinates ðt; r; θ;ϕÞ, then, looks like,

ds2 ¼ −
�
ð1þ BÞ − 2m

r

�
dt2 þ 1

½ð1þ BÞ − 2m
r �

dr2 þ r2dθ2

þ r2sin2θdϕ2: ð19Þ

It reduces to the usual Schwarzschild exterior solution of
GR when we take the backreaction term B to be zero. The
line element in equation (19) clearly represents a geometry
that is different from that of the Schwarzschild solution. We
know that in the GR-Schwarzschild geometry, the Ricci
tensor and hence the Ricci scalar is zero. But this is not the
case in the MG-Schwarzschild geometry where, Rμ

ν ¼
diag½0; 0;− B

r2 ;−
B
r2� and R ¼ − 2B

r2 . The Kretschmann scalar

is also modified, and is given by, K ¼ 48m2

r6
þ 4BrðBr−4mÞ

r6
.

This is exactly the same result as in [24].
As explained above, since the geometry is not

Schwarzschild anymore, the geodesic equations will be
modified as well. Using the line element in Eq. (19), the
Lagrangian density will become,

2L¼−fðr;BÞ
�
dt
dλ

�
2

þ 1

fðr;BÞ
�
dr
dλ

�
2

þ r2
�
dϕ
dλ

�
2

ð20Þ

where, λ is an affine parameter and f ¼ ð1þ B − 2m
r Þ.

Using the Euler-Lagrange equations, we get, dt
dλ ¼ γ

fðr;BÞ ;
dϕ
dλ ¼ l

r2, where, γ and l are constants. We know that for
geodesics 2L ¼ ε, where, ε ¼ −1; 0;þ1 correspond to
timelike, null, and spacelike geodesics, respectively.
Using this, we can obtain the following orbital equation
for the respective type of particles,

�
du
dϕ

�
2

¼ 2mu3 − ð1þ BÞu2 − 2mε

l2
uþ γ2 þ ð1þ BÞε

l2

ð21Þ

which gives,

d2u
dϕ2

¼ 3mu2 − ð1þ BÞu −
mε

l2
ð22Þ

where, u≡ 1
r. The above equation can bewritten in the form

of the usual equation in GR by rescaling the coordinate ϕ
and mass m as ϕ̄ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1þ B
p

ϕ and m̄ ¼ m
1þB, respectively.

The solution to this equation is, then, given by,

u ¼ −mε

ð1þ BÞl2
�
1þ α cos

	
ϕ

� ffiffiffiffiffiffiffiffiffiffiffiffi
1þ B

p þ 3m2ε

ð1þ BÞ32l2
�
�
ð23Þ

where, α is a small parameter (jαj ≪ 1) that quantifies the
deviation from the Newtonian solution.
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It is a fruitful exercise to write the metric in Eq. (19) in
various other coordinates that are frequently used to write
the GR-Schwarzschild solution. This will be particularly
useful when one wants to study the behavior of various
geodesics in the MG-Schwarzschild exterior space-time. In
isotropic coordinates [57], we have,

ds2 ¼ −ð1þ BÞ
 
1 − m

2ð1þBÞr̄
ffiffiffiffiffi
1þB

p

1þ m
2ð1þBÞr̄

ffiffiffiffiffi
1þB

p

!
2

dt2

þ r̄2
ffiffiffiffiffiffiffi
1þB

p
−2
�
1þ m

2ð1þ BÞr̄
ffiffiffiffiffiffiffi
1þB

p
�

4

× ðdx̄2 þ dȳ2 þ dz̄2Þ ð24Þ

where, r ¼ r̄
ffiffiffiffiffiffiffi
1þB

p
ð1þ m

2ð1þBÞr̄
ffiffiffiffiffi
1þB

p Þ2 and we have,

x̄ ¼ r̄ sin θ cosϕ; ȳ ¼ r̄ sin θ cosϕ; z̄ ¼ r̄ cos θ. In the
Eddington-Finkelstein coordinates [58–60], we have,

ds2 ¼−
�
ð1þBÞ− 2m

r

�
dv2þ 2dvdrþ r2dθ2þ r2sin2θdϕ2

ð25Þ

where, v ¼ tþ r
1þB þ 2m

ð1þBÞ2 ln j
ð1þBÞr
2m − 1j. Similarly, we

can write,

ds2 ¼−
�
ð1þBÞ− 2m

r

�
du2− 2dudrþ r2dθ2þ r2sin2θdϕ2

ð26Þ

where, u ¼ t − r
1þB −

2m
ð1þBÞ2 ln j

ð1þBÞr
2m − 1j. In Kruskal-

Szekeres [61,62] coordinates, we have,

ds2 ¼ −
32m3

rð1þ BÞ4 e
−ð1þBÞr

2m dUdV þ r2dθ2 þ r2sin2θdϕ2

ð27Þ

where, V ¼ e
vð1þBÞ2

4m and U ¼ −e
−uð1þBÞ2

4m . This can be further
written as,

ds2 ¼ −
32m3

rð1þ BÞ4 e
−ð1þBÞr

2m ðdT2 − dX2Þ þ r2dθ2

þ r2 sin2 θdϕ2 ð28Þ

where, T ¼ 1
2
ðV þ UÞ and X ¼ 1

2
ðV −UÞ.

It should be possible to also write an equivalent form of
the MG-Schwarzschild metric in coordinate systems like
that of Lemaître-Novikov [41,63] and Israel [64].

V. DUST

In the case of dust, the pressure, p, in equations (14) and
(15) is zero. Then, Eq. (14b) means that P0 ¼ 0. This
implies that P≡ Pðx0Þ. We can divide the solutions into
two classes: (i) when R0 ¼ 0; Ṙ ≠ 0 and, (ii) when R0 ≠ 0.

A. Solutions with R0 = 0;Ṙ ≠ 0

When R0 ¼ 0; Ṙ ≠ 0, one can choose R ¼ x0 [28] and
then integrate Eq. (15d) to get,

e2P ¼
	
C1

x0
− ðkþ BÞ



−1

¼ x0

C1 − ðkþ BÞx0 ð29Þ

where, C1 is a constant of integration.
Then, assuming eQ ¼ Uðx0; x1Þe−P, Eqs. (15e) can be

written as,

Ü þ U̇

�
1

x0
− 3Ṗ

�
¼ 0: ð30Þ

This can be integrated to find,

U ¼ F1

Z
e3P

x0
dx0 þ F2 ð31Þ

where, F1, F2 are arbitrary functions of the coordinate x1

that arise due to integration. Using Eq. (29), the integration
in the above equation can be solved to get,

Z
e3P

x0
dx0 ¼

Z
2e2P

1þðkþBÞe2P dðe
PÞ

¼ 2

ðkþBÞ
	
eP−

tan−1ð ffiffiffiffiffiffiffiffiffiffiffi
kþB

p
ePÞffiffiffiffiffiffiffiffiffiffiffi

kþB
p



þC2 ð32Þ

where, C2 is a constant of integration. Using this, we get,

eQ ¼ F3 − e−P
	
F3tan−1ð

ffiffiffiffiffiffiffiffiffiffiffiffi
kþ B

p
ePÞffiffiffiffiffiffiffiffiffiffiffiffi

kþ B
p − F4



ð33Þ

where, F3ðx1Þ ¼ 2F1

kþB and F4ðx1Þ ¼ C2F1 þ F2.
Using Eq. (29) in (15a), we get the equation for the

energy density,

2e−2P

x0
ðṖþ Q̇Þ: ð34Þ

If F3 ¼ 0 (i.e., F1 ¼ 0), we recover the vacuum sol-
utions (eP ¼ e−Q). Assuming that F3 ≠ 0, we can rescale
the coordinate x1 such that F3 ¼ 1. Then the line element in
(8) takes the form,
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ds2 ¼ −
x0

C1 − ðkþ BÞx0 ðdx
0Þ2

þ
�
1 − e−P

	
tan−1ð ffiffiffiffiffiffiffiffiffiffiffiffi

kþ B
p

ePÞffiffiffiffiffiffiffiffiffiffiffiffi
kþ B

p − F4


�2
ðdx1Þ2

þ ðx0Þ2½ðdx2Þ2 þ S2ðx2; kÞðdx3Þ2�: ð35Þ

This reduces to the solution in general relativity when
the backreaction term, B, is zero. In general relativity,
this subclass of solutions contains generalizations of the
Kantowski-Sachs solution (for k ¼ 1) [28,65] and Bianchi
Type-I solution (for k ¼ 0). It would be interesting to see if
the same is true for the MG analogs of these solutions.
Given that the backreaction term in MG couples with the
geometry in a nontrivial manner, we expect these limits to
either change or even not work at all.

B. Solutions with R0 ≠ 0

When R0 ≠ 0, we can rescale the coordinate x0 such that
G00 ¼ 1. This is equivalent to taking P ¼ 0 and then
defining the dots to be the differentiation with respect to
this new rescaled coordinate. Then, we can integrate
Eq. (15b) [or (15c)] to get,

Q ¼ lnðR0Þ þ lnF1 ð36Þ

where, F1ðx1Þ is an arbitrary function depending on the
boundary conditions.
By conveniently redefining the function F1 as, F1ðx1Þ≡

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþBÞ−εf2

p , we can write,

e2Q ¼ R02

ðkþ BÞ − εf2ðx1Þ ð37Þ

The function f is an arbitrary function of the coordinate x1

and the variable, ε ¼ ð0;�1Þ, is to be chosen such that e2Q

remains positive. This redefinition makes the other dynami-
cal equations simpler. These expressions are valid for both
static and nonstatic cases.
In the static case, all the terms with dots go to zero. Then,

Eq. (15d) implies that εf2 ¼ 0. When used in Eq. (15a), we
get, ρ ¼ 0. Therefore, the static solutions in the case of a
pressureless fluid invariably reduce to vacuum solutions
which, in the case of spherical symmetry (k ¼ 1), leads to
nothing but the Schwarzschild solution in the Lemaître-
Novikov [28,42,63] coordinates.
In the nonstatic case, using Eqs. (36) and (37) in (15a)

gives,

Ṙ2 þ εf2

R2
þ 2ṘṘ0 þ 2εff0

RR0 ¼ 8πρ ð38Þ

Then, Eq. (15d) gives the following differential equation
for R,

2RR̈þ Ṙ2 ¼ −εf2 ð39Þ

Performing an integration once, this equation gives,

Ṙ2 −
2mðx1Þ

R
¼ −εf2 ð40Þ

where, mðx1Þ is another arbitrary function coming from
integration. This equation can be completely integrated for
both the cases, ε ¼ 0, ε ≠ 0 (see chapter 15 in [28] for a
complete analysis). Using Eq. (39) and its differentiation,
the other two field equations (15e) are identically satisfied.
Using Eq. (40) to substitute values of εf2 and εff0 in

Eq. (39), we get,5

2m0

R2R0 ¼ 8πρ: ð41Þ

Similarly, if we use Eq. (38) to do the same, we get another
equation for the density, in terms of the function R only,

R̈0

R0 þ
2R̈
R

¼ −4πρ: ð42Þ

Using Eq. (37), the line element in Eq. (8) takes the form,

ds2 ¼ −ðdx0Þ2 þ R02

ðkþ BÞ − εf2
ðdx1Þ2

þ R2½ðdx2Þ2 þ S2ðx2; kÞðdx3Þ2�: ð43Þ

Therefore, the dust solution is modified to have a back-
reaction term. The usual dust solution can be obtained by
putting the backreaction term to be zero.

1. The MG-LTB solution

Our analysis until this point is done for both plane and
spherical symmetry in a combined way. Although there has
been some interest in the plane symmetric cosmological
models in the past, none of these models has stood the tests
of precision cosmology as well as the spatially homo-
geneous and isotropic FLRW model. The only exciting
alternative to the FLRW model is the Lemaître-Tolman-
Bondi (LTB) [41,43,44] model. The LTB model is a
subcase (for R0 ≠ 0) of the spherically symmetric dust
solutions to the Einstein field equations. It is only radially
inhomogeneous (due to spherical symmetry) with the

5Note that Eq. (41) can be rearranged to give,

2mðx1Þ ¼ 8π

Z
ρR2R0dx1

This equation resembles that for a mass function and hence
justifies the labeling of the function arising from the integration
as m.
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spatial hypersurfaces spherically symmetric about a central
worldline. In this section, we will look at the LTB model in
the framework of macroscopic gravity—the MG-LTB
model. To do this, we choose spherical coordinates
ðt; r; θ;ϕÞ and k ¼ 1 in Eqs. (37) and (43). The line
element then looks like,

ds2 ¼ −dt2 þ R02

ð1þ BÞ − εf2
dr2 þ R2½dθ2 þ sin2 θdϕ2�:

ð44Þ

This is a modified form of LTB metric [66,67] where there
is a backreaction term in the denominator of the radial
metric coefficient.
The dynamical equations governing this model would be

given by Eqs. (38)–(42). Comparing them to the Friedman
equations, we can define local cosmological parameters
within the LTB models [68–71],

Hðt; rÞ ¼ Ṙðt; rÞ
Rðt; rÞ ð45aÞ

Ωm0
ðrÞ ¼ 2mðrÞ

H2
0ðrÞR3

0ðrÞ
ð45bÞ

Ωc0ðrÞ ¼
−εf2

R2
0ðrÞH2

0ðrÞ
ð45cÞ

where, H;Ωm0
;Ωc0 are the local Hubble parameter,

matter density parameter and curvature density parameter,
respectively. The functions, H0ðrÞ≡Hðt0; rÞ and R0ðrÞ≡
Rðt0; rÞ, are the boundary values at the present time, t0.
Using Eq. (45) in (40), we can get an expression for the
expansion history in LTB models,

H2ðt; rÞ ¼ H2
0ðrÞ

�
Ωm0

ðrÞ
�
R0

R

�
3

þ Ωc0ðrÞ
�
R0

R

�
2
�
: ð46Þ

Integrating this equation, we get an equation for the age of
the LTB universe,

t0 − t ¼ 1

H0

Z
R0

R

dR

ðΩm0
R2
0R

−1 þΩc0R
2
0Þ

1
2

: ð47Þ

The next thing to look at, from the point of view of
observational cosmology, would be light propagation. For a
radial null geodesic, dθ ¼ 0 ¼ dϕ, and from Eq. (44), we
get a constraint equation for the light rays [68–71],

dt
dλ

¼ −
dr
dλ

R0ðt; rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B − εf2

p ð48Þ

where, λ is an affine parameter and the negative sign tells
that we are dealing with incoming light rays. Let tðλÞ and

τðλÞ be two solutions to the equation above. Then, tþ τ
would be a solution too. Then, we can write,

dt
dλ

¼ −
dr
dλ

R0ðt; rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B − εf2

p ð49aÞ

dðtþ τÞ
dλ

¼ −
dr
dλ

R0ðt; rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B − εf2

p þ dτðλÞ
dλ

ð49bÞ

dðtþ τÞ
dλ

¼ −
dr
dλ

R0ðt; rÞ þ Ṙ0ðt; rÞτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B − εf2

p : ð49cÞ

Using Eqs. (49b) and (49c), we get,

1

τ

dτ
dλ

¼ −
dr
dλ

Ṙ0ðt; rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B − εf2

p : ð50Þ

Defining the redshift, z, as, 1þ z≡ τð0Þ
τðλÞ, we can write,

dz
dλ

¼ ð1þ zÞ dr
dλ

Ṙ0ðt; rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B − εf2

p : ð51Þ

This gives us,

dr
dz

¼ 1

1þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B − εf2

p
Ṙ0ðt; rÞ: ð52Þ

Further, using Eqs. (48) and (51), we get,

dt
dz

¼ −
1

1þ z
R0ðt; rÞ
Ṙ0ðt; rÞ : ð53Þ

It is, then, straightforward to calculate the comoving,
angular diameter, and luminosity distances, which are
given by [68–71],

dCðzÞ ¼ ð1þ zÞRðtðzÞ; rðzÞÞ ð54aÞ

dAðzÞ ¼ RðtðzÞ; rðzÞÞ ð54bÞ

dLðzÞ ¼ ð1þ zÞ2RðtðzÞ; rðzÞÞ: ð54cÞ

These equations tell us that the backreaction term will
modify the redshift dependence of the coordinates, t and r,
and hence, the distance calculations.
Looking at Eqs. (45)–(47), we can see that the equations

governing the MG-LTB solution are the same as the ones
for the GR-LTB solution. But the geometry of MG-LTB
model [Eq. (44)] is not the same. This points to an
important feature of models within macroscopic gravity,
which is that the backreaction (the connection correlation)
can be set in such a way that it only affects either the
averaged geometry or the averaged evolution but not both.
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For example, we could have chosen the integration function
F1 in Eq. (36) to be simply 1ffiffiffiffiffiffiffiffiffi

k−εf2
p , and then, Eq. (40) would

have had a backreaction term, B
R2, in it. The FLRW limit of

the LTB model is also affected in a similar fashion—either
we end up with a geometry that is not FLRW but Eq. (40)
reduces to the usual Friedmann equation or we have an
FLRW geometry that evolves differently. In the next
section, we will see that something similar happens in
the case of the homogeneous perfect fluid solutions as well.

VI. PERFECT FLUID

In the case of perfect fluid, the dynamical equations are
the same as Eqs. (14) and (15). Perfect fluid solutions are
more complicated to solve analytically. In GR, the addi-
tional condition due to the isotropy of the pressure looks
like, E1

1 − E3
3 ¼ 0. However, in MG, this condition gets

modified due to the anisotropy in the effective pressure due
to the backreaction and we have, E1

1 − E3
3 ¼ B

R2.

A. Static solutions

In the static case, all the terms with dots in Eqs. (14) and
(15) go to zero and we can assume R ¼ x1 [28,51]. Then,
Eq. (15a) becomes,

E0
0 ¼ ½x1ðkþ B − e−2QÞ�0 ¼ 8πρðx1Þ2: ð55Þ

We can easily integrate this equation to get,

e2Q ¼
�
ðkþ BÞ − 2mðx1Þ

x1

�−1
ð56Þ

where, mðx1Þ is a mass function defined as,

2mðx1Þ ¼ 8π

Z
ρðx1Þðx1Þ2dx1: ð57Þ

The condition due to isotropy, E1
1 − E3

3 ¼ B
R2, further

gives,

P00 þ ðP0Þ2−P0Q0 ¼ 1

ðx1Þ2 ½1þ x1ðP0 þQ0Þ− ðkþBÞe2Q�:

ð58Þ

Using Eqs. (56)–(58) in (15e), we get,

2x1½ðkþ BÞx1 − 2m�P0 ¼ 8πpðx1Þ3 þ 2m: ð59Þ

Now, using Eq. (14b) to eliminate P0 from the equation
above, we get,

2x1½ðkþBÞx1− 2m�p0 ¼−ðρþpÞ½8πpðx1Þ3þ 2m�: ð60Þ

This is the MG analog of the Tolman-Oppenheimer-Volkoff
(TOV) equation [31,72].
The analysis until here is quite general. However, as in

the case of vacuum solutions, we are interested in spheri-
cally symmetric solutions. For that, we use spherical
coordinates ðt; r; θ;ϕÞ and k ¼ 1 in Eqs. (55)–(60). We
will look, in detail, at two static spherically symmetric
perfect fluid solutions—the Schwarzschild interior solution
[30] (constant density) and the Tolman VII solution [31]
(variable density).

1. MG-Schwarzschild interior solution

The Schwarzschild interior solution is, perhaps, the best
known static spherically symmetric perfect fluid solution in
GR. The MG analog of this solution has been presented in
[24]. It is characterized by a constant energy density ðρ ¼
ρ̄ ¼ constantÞ inside a boundary, say, r ≤ rb. Then, using
Eq. (57), the mass function inside this boundary becomes,

2mðrÞ ¼ 8π

Z
r

0

ρ̄r2dr ¼ 8π

3
ρ̄r3 ð61Þ

and then, using Eq. (56), we get,

e2QðrÞ ¼
�
ð1þ BÞ − 8π

3
ρ̄r2
�
−1

ð62Þ

Further, using the constant density term in Eq. (14b), we
can integrate to get,

p ¼ C1e−P − ρ̄ ð63Þ

Then, using this equation in (59), we can integrate to find,

eP ¼ 3

2ρ̄
ðC1 − C2e−QÞ

¼ 3

2ρ̄

�
C1 − C2

	
ð1þ BÞ − 8π

3
ρ̄r2

1

2

�
ð64Þ

Putting this equation back in the expression for pressure
above (63), we get,

p ¼ ρ̄

3

�
3C2e−QðrÞ − C1

C1 − C2e−QðrÞ

�

¼ ρ̄

3

3C2½ð1þ BÞ − 8π
3
ρ̄r2�12 − C1

C1 − C2½ð1þ BÞ − 8π
3
ρ̄r2�12 ð65Þ

The values for the constants C1, C2 can be determined by
matching the interior solution to the exterior solution. The
expression for e2Q already matches the one for the exterior
solution. Requiring that, for some boundary rb, pðrbÞ ¼ 0,
gives us, C1

C2
¼ 3e−QðrbÞ. Using this, the expression for

pressure becomes,
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p ¼ ρ̄

�
e−QðrÞ − e−QðrbÞ

3e−QðrbÞ − e−QðrÞ

�

¼ ρ̄
½ð1þ BÞ − 8π

3
ρ̄r2�12 − ½ð1þ BÞ − 8π

3
ρ̄r2b�

1
2

3½ð1þ BÞ − 8π
3
ρ̄r2b�

1
2 − ½ð1þ BÞ − 8π

3
ρ̄r2�12 : ð66Þ

Further, we require that ePðrbÞjint ¼ ePðrbÞjext. Using this, we
can completely specify the constants as,

C1 ¼ ρ̄

	
ð1þ BÞ − 8π

3
ρ̄r2b


1
2

; C2 ¼
ρ̄

3
: ð67Þ

Then, Eq. (64) becomes,

eP ¼ 1

2

�
3

	
ð1þ BÞ − 8π

3
ρ̄r2b


1
2

	
ð1þ BÞ − 8π

3
ρ̄r2

1

2

�
:

ð68Þ
Therefore, the MG-Schwarzschild interior solution is

characterized by a constant density ρ̄ and a pressure given
by Eq. (66). The metric coefficients are given by equa-
tions (62) and (68). The line element for the interior
solution then looks like,

ds2 ¼ −
1

4

�
3

	
ð1þ BÞ − 8π

3
ρ̄r2b


1
2

−
	
ð1þ BÞ − 8π

3
ρ̄r2

1

2

�
2

dt2

þ 1

½ð1þ BÞ − 8π
3
ρ̄r2� dr

2 þ r2dθ2

þ r2sin2θdϕ2: ð69Þ
The Schwarzschild interior and exterior solutions

derived here match the ones presented in [24]. However,
presenting all the calculations again is justified since we are
working with fewer restrictions on the connection corre-
lation. This adds to the completeness of the analysis in this
paper. In the next section, we will present an interior
solution with nonconstant density.

2. MG-Tolman VII solution

The obvious solution to look at, after the Schwarzschild
solution, is the Tolman VII solution [31]. The Tolman VII
solution is characterized by the following ansatz on the
energy density [39],

ρ ¼ ρ0

�
1 − β

�
r
rb

�
2
�

ð70Þ

where, ρ0 is the central density [ρ0 ≡ ρðr ¼ 0Þ], rb repre-
sents a boundary radius beyond which the solution can be
considered to be the Schwarzschild exterior solution, and β
is a dimensionless parameter that takes values between 0
and 1.

Using this ansatz for the energy density, the mass
function [Eq. (57)] inside the boundary becomes,

2mðrÞ ¼ 8πρ0

�
r3

3
−
βr5

5r2b

�
ð71Þ

and then, using Eq. (56), we get,6

e2Q ¼
�
ð1þ BÞ − 8πρ0

�
r2

3
−

β

5r2b
r4
��−1

ð72Þ

We define a new variable x≡ r2

r2b
. Then, the above equation

can be written as,

e2Q ¼
�
ð1þ BÞ − A

�
x
3
−
β

5
x2
��

−1
ð73Þ

where, A ¼ 8πρ0r2b, is simply a constant.
Rearranging Eq. (58), we get,

e−2Q½1þ rP0 þ rQ0ð1þ rP0Þ − r2ðP00 þ P02Þ� ¼ ð1þ BÞ
ð74Þ

Using Eq. (72) and its differentiation with respect to r to
find the value of Q0e−2Q, the above equation becomes,�

ð1þ BÞ − A
�
x
3
−
β

5
x2
��

r2ðP00 þ P02Þ

−
�
ð1þ BÞ − A

β

5
x2
�
rP0 − A

β

5
x2 ¼ 0 ð75Þ

Then, following [33,34], we define a function UðrÞ, such
that, P≡ lnU and simplify further to get,�
5ð1þ BÞ

βA
−
5x
3β

þ x2
�
r2U00 −

�
5ð1þ BÞ

βA
− x2

�
rU0

− x2U ¼ 0 ð76Þ
Writing the differential terms to be with respect to the
variable, x, we get,�
5ð1þ BÞ

βA
−
5x
3β

þ x2
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M

˜̃Uþ
�
x −

5

6β

�
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

N

Ũ−
U
4
¼ 0 ð77Þ

where tilde represents differentiation with respect to x and

we have used, U0 ¼ 2r
r2b
Ũ and U00 ¼ 2r

r2b
Ũ þ 4r2

r4b

˜̃U.

Now, we define a variable w ¼ lnð ffiffiffiffiffi
M

p þ NÞ. This gives,
w̃ ¼ 1ffiffiffiffi

M
p , and, w̃ ¼ −NM

ffiffiffiffiffi
M

p
. Using this, we get,

Ũ ¼ 1ffiffiffiffi
M

p dU
dw, and,

˜̃U ¼ 1
M

d2U
dw2 − N

M
ffiffiffiffi
M

p dU
dw. Substituting these

in Eq. (77), we get,

6In the original paper by Tolman [31], this form for the metric
coefficient was assumed and the expression for the density was
derived using that.
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d2U
dw2

þ U
4
¼ 0: ð78Þ

This is the equation of a simple harmonic oscillator with
frequency 1

2
and has the following solution,

U ¼ C1 cos

�
1

2
w

�
þ C2 sin

�
1

2
w

�
ð79Þ

where, C1, C2 are constants of integration. Then using the
definition of the function U, we can write,

e2P ¼
�
C1 cos

�
1

2
w

�
þ C2 sin

�
1

2
w

��
2

ð80Þ

where, w ¼ ln
n
r2

r2b
− 5

6β þ
�
r4

r4b
− 5r2

3βr2b
þ 5ð1þBÞ

8πβρ0r2b

�1
2

o
.

Substituting the expression for the mass function
[Eq. (71)] and using Eq. (79) to find P0 ¼ U0

U in Eq. (59),
we get an expression for the pressure,

p ¼ 1

rb

�
βρ0
10π

�1
2

	
ð1þ BÞ − 8πρ0

�
r2

3
−

β

5r2b
r4
�
1

2

×

8<
:
C2 − C1 tan

�
1
2
w
�

C1 þ C2 tan
�
1
2
w
�
9=
; − ρ0

�
1

3
−

β

5r2b
r2
�
: ð81Þ

The constants C1, C2 can be determined using the boundary
conditions: e2PðrbÞjtol ¼ e2PðrbÞjext and pðrbÞ ¼ 0. The first
one gives,

C1 cos

�
1

2
wb

�
þ C2 sin

�
1

2
wb

�

¼
n�

1þ BÞ − 8πρ0r2b

�
1

3
−
β

5

�
1
2

: ð82aÞ

Using this, the second boundary condition gives,

C2 cos

�
1

2
wb

�
− C1 sin

�
1

2
wb

�
¼ rb

�
10πρ0
β

�1
2

�
1

3
−
β

5

�
ð82bÞ

where, wb ≡ wðrbÞ. Solving Eq. (82), we get,

C1 ¼
	
ð1þ BÞ − 8πρ0r2b

�
1

3
−
β

5

�
1
2

cos

�
1

2
wb
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�
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�
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�
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�
ð83aÞ

C2 ¼
	
ð1þ BÞ − 8πρ0r2b

�
1

3
−
β

5
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2
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1
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where, wb ¼ ln
n
1 − 5

6β þ
�
1 − 5

3β þ 5ð1þBÞ
8πβρ0r2b

�1
2

o
.

Using these expressions for the constants and simplify-
ing even further, Eqs. (80) and (81) become,

e2P ¼

2
664
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and,

p ¼
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The line element for this solution then looks like,

ds2 ¼

2
6664
	
ð1þ BÞ − 8πρ0r2b

�
1

3
−
β

5

�
1
2

cos

8>><
>>:ln

0
B@

r2

r2b
− 5

6β þ
�

r4

r2b
− 5r2

3βr2b
þ 5ð1þBÞ

8πβρ0r2b

�1
2

1 − 5
6β þ

�
1 − 5

3β þ 5ð1þBÞ
8πβρ0r2b

�1
2

1
CA

1
2
9>>=
>>;

þ rb

�
10πρ0
β

�1
2

�
1

3
−
β

5

�
sin

8>><
>>:ln

0
B@

r2

r2b
− 5

6β þ
�

r4

r2b
− 5r2

3βr2b
þ 5ð1þBÞ

8πβρ0r2b

�1
2

1 − 5
6β þ

�
1 − 5

3β þ 5ð1þBÞ
8πβρ0r2b

�1
2

1
CA

1
2
9>>=
>>;
3
7775
2

dt2

þ 1h
ð1þ BÞ − 8πρ0

�
r2
3
− β

5r2b
r4
�i dr2 þ r2dθ2 þ r2sin2θdϕ2: ð86Þ

The MG-Tolman VII solution is completely specified by
Eqs. (70), (72), (84), (85), and (86). It reduces to the usual
Tolman VII solution in [33] if we put the backreaction term
to be zero.
Note that the static perfect fluid solutions presented here

are not the most general for their assumed form of density,
since we took the constant of integration in the mass
function to be zero. In the more general solutions, there
would be a term ∝ 1

r in the metric coefficient G11 [Eqs. (62)
and (72)] which would lead to a singularity at r ¼ 0. We
only mention this for the sake of completeness and these
cases are beyond the scope of this paper.

B. Nonstatic solutions

The nonstatic plane or spherically symmetric perfect
fluid solutions are usually classified according to the
properties of the kinematic variables [28,73],

Θ ¼ e−P
�
Q̇þ 2

Ṙ
R

�
ð87aÞ

u̇α ¼ ½0; P0; 0; 0� ð87bÞ

σ00 ¼ 0; −
1

2
σ11 ¼ σ22 ¼ σ33 ¼

1

3
e−P
�
Ṙ
R
− Q̇

�
: ð87cÞ

And due to the symmetry here, we have,

ωαβ ¼ 0 ð87dÞ

where, Θ; u̇; σ and ω are the 4-velocity’s expansion,
acceleration, shear, and rotation (or vorticity), respectively
[28,74]. A wide variety of solutions exist with different
assumptions on these variables.

1. Solutions with Θ= 0; σαβ = 0

The vanishing shear and expansion, through Eqs. (87a)
and (87c), imply that Q̇ ¼ 0 ¼ Ṙ. Then, Eq. (14a) implies

that the energy density does not depend on x0 (given that
ρþ p ≠ 0). This will modify the field equations such that
no derivative with respect to x0 is present there. This is the
same as the static case. However, one can still have Ṗ ≠ 0.
Then, for the pressure, we have ṗ ≠ 0, if Ṗ0 ≠ 0. Therefore,
these solutions are either static or can be generated from
static solutions [28].

2. Solutions with Θ ≠ 0; σαβ = 0

The most interesting and well studied case is that of
expanding, shear free solutions. We will look at this case in
some detail since it has the FLRW solution as a subcase.
Vanishing shear, through Eq. (87c), implies Q̇ ¼ Ṙ

R. This
can be integrated to give,

R ¼ Xðx1ÞeQ ð88Þ

where, X is an arbitrary function arising from integration.
Using this in Eq. (15b) and then integrating, we get,

eP ¼ Q̇e−Yðx0Þ ð89Þ

where, Y is another arbitrary function coming from
integration. Then, using this and Eq. (88), the expansion
scalar becomes, Θ ¼ 3eY .
Using Eqs. (88) and (89) in Eqs. (15a) and (15d), the

energy density and pressure can be written as,

3e2Y −
e−2Q

X2
ð2XX00 þ X02 þ 2X2Q00 þ 4XX0Q0 þ X2Q02

þ kþ BÞ ¼ 8πρ ð90Þ

and,

e−3Q

Q̇X2
∂0½eQfðX0 þ XQ0Þ2 − ðkþ BÞ − e2ðQþYÞg� ¼ 8πp:

ð91Þ
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The isotropy condition, E1
1 − E3

3 ¼ B
R2, gives,

∂0½eQfX02 − XðX00 þ X0Q0Þ þ X2ðQ02 −Q00Þ
− ðkþ BÞg� ¼ 0: ð92Þ

Further, the metric becomes,

ds2 ¼ −Q̇2e−2Yðdx0Þ2 þ e2Qðdx1Þ2
þ e2QX2½ðdx2Þ2 þ S2ðx2; kÞðdx2Þ2�: ð93Þ

Equation (92) can be integrated and then further solved
to produce several classes of solutions [28], especially in
the case of spherical symmetry. The one that is of interest to
us is the spherically symmetric solution ððk ¼ 1Þ; xμ ¼
ðt; r; θ;ϕÞÞ with a homogeneous distribution of matter
density and pressure ðρ≡ ρðtÞ;p≡ pðtÞÞ. The homo-
geneity of the pressure, through Eq. (14b), implies
P0 ¼ 0. As explained in section V, this allows one to put
P ¼ 0 and write the metric coefficientQ as in equation (37).
Further, Eq. (89) then implies Q̇0 ¼ 0. Using this, we can
write,

Q ¼ Q1ðtÞ þQ2ðrÞ ð94Þ

Using this in Eq. (88), we get,

R0 ¼ Z0aðtÞ ð95Þ

where, ZðrÞ ¼ XeQ2ðrÞ and aðtÞ ¼ eQ1ðtÞ.
Then, using Eqs. (37) and (95), the metric in Eq. (93) (for

the spherically symmetric case) becomes,

ds2 ¼ −dt2 þ Z02a2

F2ðrÞ dr
2 þ Z2a2ðdθ2 þ sin2 θdϕ2Þ ð96Þ

where, the function F is an arbitrary function that comes
from integration. Now, since Z, Z0 are functions of only r,
we can perform a coordinate transformation r ¼ ZðrÞ such
that the above metric becomes,

ds2 ¼ −dt2 þ a2
�

dr2

F2ðrÞ þ r2dθ2 þ r2 sin2 θdϕ2

�
: ð97Þ

This is nothing but the spatially homogeneous and isotropic
FLRW metric.
The function F can be (conveniently) redefined such that

F2ðrÞ ¼ ð1þ BÞ − Kr2. Given this redefinition, the MG
field equations reduce to the usual Friedmann equations.
On the other hand, if F2 is taken to be simply 1 − Kr2,
we recover the usual FLRW geometry, but now, its
evolution is affected by the backreaction term. This high-
lights the obvious, albeit important, point that we discussed
briefly in the case of LTB solution, which is, in MG, the
FLRW geometry evolves differently than in GR and the

geometry that evolves like a FLRW geometry is different
from FLRW.

3. Solutions with σαβ ≠ 0; u̇α = 0

The vanishing acceleration, through Eq. (87b), implies
that P0 ¼ 0. Then, Eq. (14b) would mean that p0 ¼ 0.
Further, Eq. (15b) or (15c) gives,

Ṙ0 ¼ Q̇R0: ð98Þ

Since the integration of this equation depends on what kind
of a function R is, the solutions with shear and vanishing
acceleration are divided into the following three categories:

(i) When R ¼ constant ¼ CðsayÞ, Eq. (15a) and (15b)
gives us,

−8πρ ¼ kþ B
C2

¼ 8πp ð99Þ

Using this, Eq. (15e) can be solved to find Q. Since
P≡ Pðx0Þ, the time coordinate can be rescaled such
that P ¼ 0 (similar to what we had in the case of
dust). The line element, in this case, looks like,

ds2 ¼ −ðdx0Þ2 þ S2
	
x0

C
;−ðkþ BÞ



ðdx1Þ2

þ C2½ðdx2Þ2 þ S2ðx2; kÞðdx3Þ2�: ð100Þ

(ii) When R ≠ constant; R0 ¼ 0, one can choose R ¼ x0.
The field equations then give,

e−2P

ðx0Þ2 f1þ 2x0Q̇þ ðkþ BÞe2Pg ¼ 8πρ ð101aÞ

e−2P

ðx0Þ2 f1 − 2x0Ṗ − ðkþ BÞe2Pg ¼ 8πp ð101bÞ

e−2P

ðx0Þ2 f1 − ðx0Þ2ðQ̈þ Q̇2 − Ṗ Q̇Þg ¼ 4πðρþ 3pÞ:

ð101cÞ

These equations can be solved to find one of the
two functions P, Q by prescribing the other one.
We know that due to zero acceleration, P0 ¼ 0.
However, it should be noted that, even though there
is no Q0 in the field equations, it is not zero in
general.

(iii) When R0 ≠ 0, one can choose P ¼ 0. Then, this case
becomes similar to the corresponding case with dust.
Equation (98) can be integrated to find,

e2Q ¼ R02

ðkþ BÞ − εf2
ε ¼ 0;�1: ð102Þ
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The energy density and pressure can be determined
from the field equations, which reduce to,

Ṙ2 þ εf2

R2
þ 2ṘṘ0 þ 2εff0

RR0 ¼ 8πρ ð103aÞ

Ṙ2 þ εf2

R2
þ 2R̈

R
¼ −8πp ð103bÞ

R̈0

RR0 þ
2R̈
R

¼−4πðρþ 3pÞ: ð103cÞ

The first equation above is the same as the one in the
case of dust and the third equation comes from
differentiating the second one with respect to x1. The
metric takes the same form as the one on Eq. (43).

VII. CONCLUSION

In this paper, we have analyzed the effects of averaging
on plane and spherically symmetric macroscopic geom-
etries within the framework of macroscopic gravity. We
found that the backreaction takes a form of an anisotropic
fluid and enters the field equations in the form of an
additional spatial curvature. This was consistent with the
findings in [24–26] for spherically symmetric geometries.
Here, we have extended the analysis further to include
plane symmetric geometries as well. We categorized the

solutions based on the type of source and then analyzed
various subcases within.
Taking the source to be vacuum led to the MG-

Schwarzschild solution. Similarly, for dust, the nonstatic
solutions led to the MG-LTB solution and for a perfect
fluid, we derived Schwarzschild interior and Tolman VII
(static case) and some nonstatic solutions. Our approach in
this work was different from how backreaction has been
treated in the literature in that we considered the influence
of backreaction on the geometry instead of the dynamics.
Since in MG, the backreaction modifies the field equations,
it will influence the geometry and not just the dynamical
evolution.

ACKNOWLEDGMENTS

A. A. acknowledges that a code to find exact-FLRW
solutions in MG was written by Tharake Wijenayake and
M. I. [23], using the computer algebra software Maple [75]
and the openly available package GRTensor [76]. All the
results in this paper were obtained by modification and
expansion of this code. M. I. acknowledges that this
material is based upon work supported in part by the
U.S. National Science Foundation under Grant AST-
2327245 and in part by the Department of Energy,
Office of Science, under Award No. DE-SC0022184.

[1] G. Ellis, Relativistic cosmology: Its nature, aims and
problems, Fundam. Theor. Phys. 9, 215 (1984).

[2] G. Ellis and W. Stoeger, The “fitting problem” in cosmol-
ogy, Classical Quantum Gravity 4, 1697 (1987).

[3] G. Ellis, 83 years of general relativity and cosmology:
Progress and problems, Classical Quantum Gravity 16, A37
(1999).

[4] M. F. Shirokov and I. Z. Fisher, Isotropic space with discrete
gravitational-field sources. On the theory of a nonhomo-
geneous isotropic universe, Astron. Zh. 39, 899 (1962).

[5] M. F. Shirokov and I. Z. Fisher, Isotropic space with discrete
gravitational-field sources. On the theory of a nonhomo-
geneous isotropic universe, Sov. Astron. 6, 699 (1963).

[6] M. F. Shirokov and I. Z. Fisher, Isotropic space with discrete
gravitational-field sources. On the theory of a nonhomo-
geneous isotropic universe, Gen. Relativ. Gravit. 30, 1411
(1998).

[7] R. K. Tavakol and R. Zalaletdinov, On the domain of
applicability of general relativity, Found. Phys. 28, 307
(1998).

[8] T. Clifton, Back-reaction in relativistic cosmology, Int. J.
Mod. Phys. D 22, 1330004 (2013).

[9] T. Buchert and S. Räsänen, Backreaction in late-time
cosmology, Annu. Rev. Nucl. Part. Sci. 62, 57 (2012).

[10] G. F. Ellis and T. Buchert, The universe seen at different
scales, Phys. Lett. A 347, 38 (2005).

[11] G. F. Ellis, Inhomogeneity effects in cosmology, Classical
Quantum Gravity 28, 164001 (2011).

[12] R. van den Hoogen, Averaging spacetime: Where do we go
from here?, in 12th Marcel Grossmann Meeting on General
Relativity (World Scientific, Singapore, 2010), pp. 578–588.

[13] R. M. Zalaletdinov, Averaging out the Einstein equations,
Gen. Relativ. Gravit. 24, 1015 (1992).

[14] R. Zalaletdinov, Towards a theory of macroscopic gravity,
Gen. Relativ. Gravit. 25, 673 (1993).

[15] M. Mars and R. M. Zalaletdinov, Space–time averages in
macroscopic gravity and volume-preserving coordinates,
J. Math. Phys. (N.Y.) 38, 4741 (1997).

[16] R. M. Zalaletdinov, Averaged Lagrangians and MacCal-
lum–Taub’s limit in macroscopic gravity, Gen. Relativ.
Gravit. 28, 953 (1996).

[17] R. Zalaetdinov, The averaging problem in cosmology
and macroscopic gravity, Int. J. Mod. Phys. A 23, 1173
(2008).

[18] R. M. Zalaletdinov, Space-time averages of classical physi-
cal fields, Ann. Eur. Acad. Sci. 344 (2004).

[19] R. M. Zalaletdinov, Averaging problem in general relativity,
macroscopic gravity and using Einstein’s equations in

ANISH AGASHE and MUSTAPHA ISHAK PHYS. REV. D 108, 104010 (2023)

104010-14

https://doi.org/10.1007/978-94-009-6469-3_14
https://doi.org/10.1088/0264-9381/4/6/025
https://doi.org/10.1088/0264-9381/16/12A/303
https://doi.org/10.1088/0264-9381/16/12A/303
https://doi.org/10.1023/A:1018860826417
https://doi.org/10.1023/A:1018860826417
https://doi.org/10.1023/A:1018761005186
https://doi.org/10.1023/A:1018761005186
https://doi.org/10.1142/S0218271813300048
https://doi.org/10.1142/S0218271813300048
https://doi.org/10.1146/annurev.nucl.012809.104435
https://doi.org/10.1016/j.physleta.2005.06.087
https://doi.org/10.1088/0264-9381/28/16/164001
https://doi.org/10.1088/0264-9381/28/16/164001
https://doi.org/10.1007/BF00756944
https://doi.org/10.1007/BF00756937
https://doi.org/10.1063/1.532119
https://doi.org/10.1007/BF02113091
https://doi.org/10.1007/BF02113091
https://doi.org/10.1142/S0217751X08040032
https://doi.org/10.1142/S0217751X08040032


cosmology, Bulletin of the Astronomical Society of India
25, 401 (1997).

[20] A. A. Coley, N. Pelavas, and R. M. Zalaletdinov, Cosmo-
logical solutions in macroscopic gravity, Phys. Rev. Lett. 95,
151102 (2005).

[21] R. J. van den Hoogen, A complete cosmological solution to
the averaged Einstein field equations as found in macro-
scopic gravity, J. Math. Phys. (N.Y.) 50, 082503 (2009).

[22] T. Clifton, A. Coley, and R. v. d. Hoogen, Observational
cosmology in macroscopic gravity, J. Cosmol. Astropart.
Phys. 10 (2012) 044.

[23] T. Wijenayake and M. Ishak, Expansion and growth of
structure observables in a macroscopic gravity averaged
universe, Phys. Rev. D 91, 063534 (2015).

[24] R. Van Den Hoogen, Spherically symmetric solutions in
macroscopic gravity, Gen. Relativ. Gravit. 40, 2213 (2008).

[25] A. A. Coley and N. Pelavas, Averaging spherically sym-
metric spacetimes in general relativity, Phys. Rev. D 74,
087301 (2006).

[26] A. A. Coley and N. Pelavas, Averaging in spherically
symmetric cosmology, Phys. Rev. D 75, 043506 (2007).

[27] S. P. Tegai and I. V. Drobov, Averaging Schwarzschild
spacetime, Phys. Rev. D 96, 024041 (2017).

[28] H. Stephani, D. Kramer, M. A. MacCallum, C. Hoenselaers,
and E. Herlt, Exact Solutions of Einstein’s Field Equations,
Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England, 2003).

[29] T. Clifton and R. A. Sussman, Cosmological backreaction in
spherical and plane symmetric dust-filled space-times,
Classical Quantum Gravity 36, 205004 (2019).

[30] K. Schwarzschild, Über das Gravitationsfeld eines
Massenpunktes nach der Einsteinschen Theorie, Sitzungsber.
König. Preuß. Akad. Wiss. (Berlin) 3, 189 (1916); [K.
Schwarzschild, “Golden Oldie”: On the gravitational field
of a mass point according to Einstein’s theory, Gen. Relativ.
Gravit. 35, 951 (2003)]; Correction by: Senovilla, J. M.M.,
The Schwarzschild solution: Corrections to the editorial note.
Gen. Relativ. Gravit. 39, 685 (2007).

[31] R. C. Tolman, Static solutions of Einstein’s field equations
for spheres of fluid, Phys. Rev. 55, 364 (1939).

[32] M. Wyman, Radially symmetric distributions of matter,
Phys. Rev. 75, 1930 (1949).

[33] A. L. Mehra, Radially symmetric distribution of matter,
J. Aust. Math. Soc. 6, 153 (1966).

[34] M. C. Durgapal and G. L. Gehlot, Spheres with varying
density in general relativity, J. Phys. A 4, 749 (1971).

[35] M. C.Durgapal andP. S.Rawat,Non-rigidmassive spheres in
general relativity, Mon. Not. R. Astron. Soc. 192, 659 (1980).

[36] M. S. R. Delgaty and K. Lake, Physical acceptability of
isolated, static, spherically symmetric, perfect fluid solu-
tions of Einstein’s equations, Comput. Phys. Commun. 115,
395 (1998).

[37] N. Neary, M. Ishak, and K. Lake, Tolman type VII solution,
trapped null orbits, and w-modes, Phys. Rev. D 64, 084001
(2001).

[38] N. Neary and K. Lake, r-modes in the Tolman VII solution,
arXiv:gr-qc/0106056.

[39] A. M. Raghoonundun and D.W. Hobill, Possible physical
realizations of the Tolman VII solution, Phys. Rev. D 92,
124005 (2015).

[40] P. C. Vaidya and G. K. Patwardhan, Relativistic distributions
of matter of radial symmetry, Journal of the University of
Bombay 12N3, 23 (1943).

[41] G. Lemaître, L’Univers en expansion, Ann. Soc. Sci.
Bruxelles 53, 51 (1933).

[42] G. A. Lemaître and M. A. H. MacCallum, The expanding
universe, Gen. Relativ. Gravit. 29, 641 (1997).

[43] R. C. Tolman, Effect of inhomogeneity on cosmological
models, Proc. Natl. Acad. Sci. U.S.A. 20, 169 (1934).

[44] H. Bondi, Spherically symmetrical models in general
relativity, Mon. Not. R. Astron. Soc. 107, 410 (1947).

[45] B. Datt, Über eine Klasse von Lösungen der Gravitations-
gleichungen der Relativität, Z. Phys. 108, 314 (1938).

[46] B. Datt, On a class of solutions of the gravitation equations
of relativity, Gen. Relativ. Gravit. 31, 1619 (1999).

[47] C. W. Misner, K. Thorne, and J. Wheeler, Gravitation
(W. H. Freeman, San Francisco, 1973).

[48] G. Russakoff, A derivation of the macroscopic Maxwell
equations, Am. J. Phys. 38, 1188 (1970).

[49] H. Lorentz, The Theory of Electrons and Its Applications to
the Phenomena of Light and Radiant Heat, Dover Books on
Physics (Dover Publications, New York, 2003).

[50] J. D. Jackson, Classical Electrodynamics (Wiley, New York,
1998).

[51] H. Goenner and J. Stachel, Einstein tensor and 3-parameter
groups of isometries with 2-dimensional orbits, J. Math.
Phys. (N.Y.) 11, 3358 (1970).

[52] G. D. Birkhoff and R. E. Langer, Relativity and Modern
Physics (Harvard University Press, Cambridge, USA,
1923).

[53] M. Cahen and R. Debever, Sur le théorème de Birkhoff, C.
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