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Eccentric compact binary mergers are significant scientific targets for current and future gravitational
wave observatories. To detect and analyze eccentric signals, there is an increasing effort to develop
waveform models, numerical relativity simulations, and parameter estimation frameworks for eccentric
binaries. Unfortunately, current models and simulations use different internal parametrizations of
eccentricity in the absence of a unique natural definition of eccentricity in general relativity, which
can result in incompatible eccentricity measurements. In this paper, we adopt a standardized definition of
eccentricity and mean anomaly based solely on waveform quantities and make our implementation publicly
available through an easy-to-use Python package, gw_eccentricity. This definition is free of gauge
ambiguities, has the correct Newtonian limit, and can be applied as a postprocessing step when comparing
eccentricity measurements from different models. This standardization puts all models and simulations on
the same footing and enables direct comparisons between eccentricity estimates from gravitational wave
observations and astrophysical predictions. We demonstrate the applicability of this definition and the
robustness of our implementation for waveforms of different origins, including post-Newtonian theory,
effective-one-body, extreme mass ratio inspirals, and numerical relativity simulations. We focus on binaries
without spin precession in this work, but possible generalizations to spin-precessing binaries are discussed.
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I. INTRODUCTION

The gravitational wave (GW) detectors LIGO [1] and
Virgo [2] have observed a total of ∼90 compact binary
coalescences so far [3], which includes binary black holes
(BHs) [4], binary neutron stars (NSs) [5], and BH-NS
binaries [6]. One of the key goals of GW astronomy is to
understand how such compact binaries form in nature. The
astrophysical source properties inferred from the GW
signals carry valuable clues about the origin of these
binaries. In particular, the spins of the compact objects
and the eccentricity of the orbit are powerful GW observ-
ables for this purpose.
If the spins are aligned with the orbital angular momen-

tum, the orbital plane remains fixed throughout the evo-
lution. If the spins are tilted, on the other hand, the spins
interact with the orbit, causing the orbital plane to precess
on a timescale of several orbits [7,8]. Spin precession
leaves a direct imprint on the GW signal and can be used to

distinguish between possible binary formation mecha-
nisms. For example, while isolated binaries formed in
galactic fields are expected to have aligned spins [9],
binaries formed via random encounters in dense stellar
clusters can have randomly oriented spins [9]. To reliably
extract this astrophysical information from GW signals,
accurate waveform models [10–15] and GW data analysis
methods [16–18] that capture the effects of spin precession
have been developed.
By contrast, orbital eccentricity leads to bursts of GW

radiation at every pericenter (point of closest approach)
passage [19,20], which appear as orbital timescale modu-
lations of the GW amplitude and frequency [21]. The
eccentricity of GW signals carries information about the
binary formation mechanism that is complementary to what
can be learned from spin precession alone. For example,
isolated galactic-field binaries are expected to become
circularized via GW emission [19,20] before they enter
the LIGO-Virgo frequency band [9]. Because eccentric
signals are considered less likely for LIGO-Virgo, most
analyses to date (e.g., Ref. [3]) ignore eccentricity.
However, binaries formed via random encounters in dense
clusters can merge before they can circularize, thereby
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entering the LIGO-Virgo band with a finite eccentricity [9].
Similarly, in hierarchical triple systems, the tidal effect of
the tertiary can excite periodic eccentricity oscillations of
the inner binary [22], resulting in high-eccentricity mergers
in the LIGO-Virgo band [23].
LIGO-Virgo observations can be used to ascertain

whether the assumptions of small eccentricity are valid
and to measure any nonzero eccentricity that may be
present. Therefore, eccentricity measurements and/or upper
limits from GW signals are highly sought after, and several
groups have already analyzed the observed signals to obtain
information on eccentricity [24–31]. As LIGO-Virgo, now
joined by KAGRA [32], continue to improve [33], and with
next-generation ground-based detectors expected in the
2030s [34–37], future observations will enable stronger
constraints on eccentricity.
The case for eccentric signals is stronger for the future

space-based GW observatory Laser Interferometer Space
Antenna (LISA), which will see the earlier inspiral phase of
some of the BH mergers observed by LIGO-Virgo [38–40],
at which point they may still have larger eccentricity.
Furthermore, mergers of supermassive black hole binaries
observed by LISAmay have significant eccentricity if triple
dynamics played a role in overcoming the final parsec
problem [41]. Finally, LISA will observe the mergers of
stellar mass compact objects with supermassive black
holes, the so-called extreme mass ratio inspirals
(EMRIs). EMRIs are expected to primarily be formed
through dynamical capture leading to high eccentricities
when entering the LISA band [39].
Driven by these observational prospects, there has been

an increasing effort to develop waveform models [42–61],
gravitational self-force calculations [62–74], numerical
relativity (NR) simulations [75–81], and source parameter
estimation methods [24–31,40,82–89] that include the
effects of eccentricity. In addition to these efforts, one
important obstacle needs to be overcome in order to reliably
extract eccentricity from GW signals: Eccentricity is not
uniquely defined in general relativity [21], and, therefore,
most waveformmodels and simulations use custom internal
definitions that rely on gauge-dependent quantities like
binary orbital parameters or compact object trajectories. As
a result, the eccentricity inferred from GW signals can be
riddled with ambiguity and can even be incompatible
between different models [87]. Such ambiguities propagate
into any astrophysical applications, including using eccen-
tricity to identify the binary formation mechanism. To
resolve this problem, there is a need for a standardized
definition of eccentricity for GW applications.
In addition to eccentricity, one needs two more param-

eters to fully describe an eccentric orbit—one describing
the current position of the bodies on the orbit relative to
the previous pericenter passage and the other describing the
size of the orbit. Mean anomaly [21,48,90], which is the
fraction of the orbital period (expressed as an angle) that

has elapsed since the last pericenter passage, can be used as
the first parameter.1 The size of the eccentric orbit can be
described, for example, by the semimajor axis a which is
related to the orbital period P as a3 ∝ P2 for a Keplerian
orbit. For general relativistic orbits, the orbital period
decreases as the binary inspirals, while the frequency
increases. While the GW frequency itself can be non-
monotonic for eccentric binaries, as we will discuss in
Sec. II E, one can construct an orbit-averaged frequency
that is monotonically increasing. Using such an orbit-
averaged frequency, one can construct a one-to-one map
between the orbit-averaged frequency and the orbital period
(and, therefore, the semimajor axis). Thus, a reference
frequency like the orbital-averaged frequency can be used
to describe the size of the orbit.
A good definition of eccentricity should have the

following features:
(A) To fully describe an eccentric orbit at a given

reference frequency, two parameters are required:
eccentricity and mean anomaly. Therefore, the
definition should include both eccentricity and mean
anomaly.

(B) To avoid gauge ambiguities, eccentricity and mean
anomaly should be defined using only observables at
future null infinity, like the gravitational waveform.

(C) In the limit of large binary separation, the eccen-
tricity should approach the Newtonian value, which
is uniquely defined.

(D) The standardized definition should be applicable
over the full range of allowed eccentricities for
bound orbits (0–1). It should return zero for quasi-
circular inspirals and limit to one for marginally
bound “parabolic” trajectories.

(E) Because the eccentricity and mean anomaly vary
during a binary’s evolution, one must pick a point in
the evolution at which to measure them. This is
generally taken to be the point where the GW
frequency reaches a certain reference value fref
(typically 20 Hz [3]). However, because eccentricity
causes modulations in the GW frequency, the same
fref can occur at multiple points. Therefore, the
standardized definition should also prescribe how to
select an unambiguous reference point for eccentric
binaries.

(F) As current GW detectors are sensitive to frequencies
only above a certain flow (typically 20 Hz [3]), when
using time-domain waveforms, one typically dis-
cards all times below tlow, chosen so that the
GW frequency crosses 20 Hz at tlow. Once again,
because the GW frequency is nonmonotonic, the

1While mean anomaly is the most convenient choice in our
experience, other choices for the second parameter [91] like the
“true anomaly” are also possible.
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standardized definition should prescribe how to
select tlow for eccentric binaries.

Additionally, the following features, while not strictly
required, can be important for practical applications:
(a) In the limit of large mass ratio, the eccentricity should

approach the test particle eccentricity on a Kerr
geodesic. Since the geodesic eccentricity is not
uniquely defined, it is not strictly required that the
standard definition of eccentricitymatches the geodesic
eccentricity defined in any particular coordinates. As
described in Sec. IVA, the definition adopted in this
work only approximately matches the geodesic eccen-
tricity defined in the Boyer-Lindquist coordinates.

(b) The eccentricity and mean anomaly computation
should be computationally inexpensive and robust
across binary parameter space and be applicable to
a broad range of waveform models and NR simula-
tions. Thus, most models and simulations can continue
to rely on their internal eccentricity definitions, as it is
most convenient to conduct source parameter estima-
tion using the internal definitions. However, if the
computation is cheap and robust, one can convert
posterior samples from the internal definition to the
standardized one as a postprocessing step, thus putting
all models and simulations on the same footing.

In this paper, we adopt a standardized eccentricity and
mean anomaly definition that meets all of the criteria in the
first list of (required) features and also satisfies the criteria
in the second list of (desired but not strictly required)
features to a great extent. Over the past few years, there
have been several attempts to standardize the definition of
eccentricity [48,84,84,88] or map between different defi-
nitions [87], but these approaches either ignore mean
anomaly or do not have the correct limits at large separation
or large mass ratio [77]. More recently, Ref. [77] introduced
a new definition that has the correct limits, which we adopt
in this work. We rigorously test and demonstrate the
robustness of our implementation on eccentric waveforms
spanning the full range of eccentricities and different
origins: post-Newtonian (PN) theory, NR, effective-one-
body (EOB), and EMRIs.
While we focus on eccentric binaries without spin

precession for simplicity, we include a discussion of
how our methods can be extended to spin-precessing
eccentric systems. In addition, we describe how fref and
tlow should be generalized for eccentric binaries, along with
a discussion on the benefit of using dimensionless reference
points [92]. Our computation is very cheap, and our
implementation can be used directly during source para-
meter estimation or as a postprocessing step. We make our
implementation publicly available through an easy-to-use
Python package gw_eccentricity [93].
This paper is organized as follows. In Sec. II, we describe

the standardized eccentricity and mean anomaly defini-
tions, along with a discussion of how to generalize fref and

flow. In Sec. III, we provide implementation details, along
with different choices for capturing the eccentricity mod-
ulations in waveforms. In Sec. IV, we demonstrate the
robustness of our implementation on waveforms of differ-
ent origins and over the full range of eccentricities. We
finish with some concluding remarks in Sec. V.

II. DEFINING ECCENTRICITY

A. Notation and conventions

The component masses of a binary are denoted asm1 and
m2, with m1 ≥ m2, total mass M ¼ m1 þm2, and mass
ratio q ¼ m1=m2 ≥ 1. The dimensionless spin vectors of
the component objects are denoted as χ 1 and χ 2 and have a
maximum magnitude of 1. For binaries without spin
precession, the direction of the orbital angular momentum
L is fixed and is aligned to the z axis by convention. For
these binaries, the spins are constant and are aligned or
antialigned to L, meaning that the only nonzero spin
components are χ1z and χ2z.
The plus (hþ) and cross (h×) polarizations of GWs can

be conveniently represented by a single complex time series
h ¼ hþ − ih×. The complex waveform on a sphere can be
decomposed into a sum of spin-weighted spherical har-
monic modes hlm, so that the waveform along any
direction ðι;φ0Þ in the binary’s source frame is given by

hðt; ι;φ0Þ ¼
Xl¼∞

l¼2

Xm¼l

m¼−l
hlmðtÞ−2Ylmðι;φ0Þ; ð1Þ

where ι and φ0 are the polar and azimuthal angles on the
sky in the source frame, respectively, and −2Ylm are the
spin ¼ −2 weighted spherical harmonics. Unless the total
mass and/or distance are explicitly specified, we work with
the waveform at future null infinity scaled to unit total mass
and distance for simplicity. We also shift the time array of
the waveform such that t ¼ 0 occurs at the peak of the
amplitude of the dominant (2, 2) mode.2 We note, however,
that the implementation in gw_eccentricity [93] handles
waveforms in arbitrary units and time conventions.

B. Eccentricity definitions used in
PN, EOB, self-force, and NR

Because eccentricity is not uniquely defined in general
relativity, a wide variety of definitions of eccentricity exists.
At Newtonian order, eccentricity can be uniquely defined
as [94]

eNewt ¼
ra − rp

ra þ rp
; ð2Þ

2When generalizing to spin-precessing binaries, this should be
replaced by the total waveform amplitude, defined in Eq. (5) in
Ref. [10].
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where ra and rp are the separations at apocenter (point of
furthest approach) and pericenter (point of closest
approach), respectively. Starting at 1PN order, the
Keplerian parametrization can be extended to the so-called
quasi-Keplerian parametrization where three different
eccentricity parameters are defined: the radial er, temporal
et, and angular eϕ eccentricities, each of which has the
same Newtonian limit [21]. These quantities can be defined
in terms of the conserved energy and angular momentum
but depend on the gauge used [50].
The Bondi energy and angular momentum of a binary

can be accessed from the metric at future null infinity and
are (nearly) gauge invariant. One might, therefore, hope to
formulate a definition of eccentricity based purely on
these two quantities that satisfies all of our requirements.
Unfortunately, this will be challenging for the following
reasons: Suppose we define eccentricity as some function
eðE; JÞ of the Bondi energy E and angular momentum
J. The equation e ¼ 0 will generically define a one-
dimensional subset of the ðE; JÞ plane, which would be
shared by all quasicircular inspirals. However, the track
followed by a quasicircular binary through the ðE; JÞ
plane depends on the mass ratio and the spins (e.g., see
Ref. [95]). Consequently, a definition of eccentricity
based purely on E and J cannot assign zero eccentricity
to all quasicircular inspirals; i.e., it cannot satisfy require-
ment (D) above.
One might further hope to overcome this by adding an

explicit dependence on the mass ratio and spins to the
definition. But this cannot account for the fact that different
inspiral models will, in general, still not agree on the
location of the e ¼ 0 locus. Consequently, whatever
reference model is chosen as the basis for the definition,
it will be unable to assign zero eccentricity to quasicircular
inspirals produced by all models. This is made worse by the
fact that the e ¼ 0 locus represents the edge of the
allowable range of E and J; if the values of E and J for
some model lie outside the range of the reference model
(e.g., see Ref. [77]), analytically inverting the relationship
with e would assign a complex value to e.
Finally, one might hope to cure this behavior by basing

the definition of e on E − Eqc, where Eqc is the energy of
the quasicircular counterpart with same angular momen-
tum (and mass ratio and spins) as the model being
measured. However, Eqc is not something that can be
inferred from observables at null infinity [violating
requirement (B)]. Furthermore, Eqc may not be straight-
forward to obtain in some models (e.g., numerical
relativity), unless one relies on a reference model, which
comes with the problems noted above. We, therefore, do
not take this approach. Similar objections arise with
gauge-invariant definitions of eccentricity based on the
radial and azimuthal periods, as are commonly used to
facilitate gauge-invariant comparisons between self-force
and PN results for eccentric orbits [96–98].

In the EOB formalism, initial conditions for the dynam-
ics are prescribed in terms of an eccentricity parameter
defined within the quasi-Keplerian parametrization
[46,47,99–101]. Thus, the gauge dependency of the eccen-
tricity parameter also extends to the EOB waveforms
[46,47]. In self-force calculations for EMRIs, one typically
uses an eccentricity definition based on the turning points
of the underlying geodesics [42,43,56–60]. This is inher-
ently dependent on the coordinates used for the background
spacetime and picks up further gauge ambiguities at higher
orders in the mass ratio. For NR waveforms, the compact
object trajectories are used to define eccentricity, typically
by fitting to analytical PN (or Newtonian) expressions
[102–105]. This also inherently depends on the gauge
employed in the simulations.

C. Defining eccentricity using the waveform

A more convenient definition of eccentricity that can be
straightforwardly applied to waveforms of all origins was
proposed in Ref. [106]:

eΩorb
ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωp

orbðtÞ
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωa

orbðtÞ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ωp
orbðtÞ

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωa

orbðtÞ
p ; ð3Þ

where Ωp
orbðtÞ is an interpolant through the orbital fre-

quency ΩorbðtÞ evaluated at pericenter passages and like-
wise forΩa

orbðtÞ at apocenter passages. Because eccentricity
causes a burst of radiation at pericenters, the times
corresponding to pericenters are identified as local maxima
in ΩorbðtÞ, while apocenters are identified as local minima.
Equation (3) was used, for example, in Ref. [107] to
analyze generic spin-precessing and eccentric binary BH
waveforms. Unfortunately, because Ωorb is computed using
the compact object trajectories, Eq. (3) is also susceptible to
gauge choices, especially for NR simulations.
Nevertheless, Eq. (3) has the important quality that it can

be applied to waveforms of all origins. Furthermore, Eq. (3)
has the correct Newtonian limit. This is easily seen using
Kepler’s second law Ωorb ∝ 1=r2, where r is the binary
separation [94,108]. Using this relation in Eq. (3), one finds
that eΩorb

matches eNewt from Eq. (2).
The main limitation of Eq. (3) is that Ωorb is gauge

dependent. To remove such dependence, one must turn to
the waveform at future null infinity, which is where our
detectors are approximated to be with respect to the source.
The emitted GWs can be obtained at future null infinity, for
example, by evolving Einstein’s equations along null slices
[109–115]. While the waveform at future null infinity is
unique up to Bondi-Metzner-Sachs (BMS) transformations,
this freedom can be fixed using BMS charges [116]. In the
rest of this paper, we assume this freedom has been fixed,
but our method can also be applied to waveforms specified
in any given frame.

MD ARIF SHAIKH et al. PHYS. REV. D 108, 104007 (2023)

104007-4



For a gauge-independent definition of eccentricity, we
seek an analog of Eq. (3) that depends on only the
waveform hlm. The simplest possible generalization
[46,48,84,88] is to replace the trajectory-dependent orbital
frequency ΩorbðtÞ in Eq. (3) with the frequency of the
dominant (2,2) mode ω22ðtÞ:

eω22
ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp
22ðtÞ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωa
22ðtÞ

pffiffiffiffiffiffiffiffiffiffiffiffiffi
ωp
22ðtÞ

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωa
22ðtÞ

p ; ð4Þ

where ωp
22ðtÞ and ωa

22ðtÞ are interpolants through ω22ðtÞ
evaluated at pericenters and apocenters, respectively. ω22 is
obtained from h22 as follows:

h22ðtÞ ¼ A22ðtÞe−iϕ22ðtÞ; ð5Þ

ω22ðtÞ ¼
dϕ22ðtÞ

dt
; ð6Þ

where A22 is the amplitude and ϕ22 the phase of h22.
In Eq. (4), the pericenter and apocenter times can be

chosen to correspond to local maxima and minima,
respectively, in ω22ðtÞ. This procedure is illustrated in
the bottom-left panel in Fig. 1. It is not guaranteed that the
local extrema of ω22 coincide with the local extrema of
Ωorb. Instead, we can define the local extrema of ω22 to
correspond to pericenters and apocenters. Other choices for
assigning pericenter and apocenter times and their impact
on the eccentricity will be discussed in Sec. III.
Because of its simplicity and gauge-independent nature,

Eq. (4) has been applied to parametrize eccentric

waveforms as well as GW data analysis [46,48,84,88].
However, as shown in Ref. [77], this definition of eccen-
tricity does not have the correct Newtonian limit at large
separations. In particular, in the small eccentricity limit at
Newtonian order, one obtains [77]

lim
et→0

e0PNω22
¼ 3

4
et þOðe3t Þ; ð7Þ

where et is the temporal eccentricity used in PN theory,
which matches the Newtonian eccentricity at Newtonian
order [21].
This discrepancy can be resolved by using the following

transformation [77]:

egw ¼ cosðΨ=3Þ −
ffiffiffi
3

p
sinðΨ=3Þ; ð8Þ

where

Ψ ¼ arctan

�
1 − e2ω22

2eω22

�
: ð9Þ

Equation (8) has the correct Newtonian limit over the full
range of eccentricities [77], and we adopt this definition in
this work. As we will show in Sec. IVA, egw also
approximately matches the geodesic eccentricity in the
extreme mass ratio limit, while eω22

does not.
The top-left panel in Fig. 1 shows an example evaluation

of egwðtÞ for an NR simulation produced using the Spectral
Einstein Code [117,118] (SpEC), developed by the
Simulating eXtreme Spacetimes (SXS) Collaboration
[119]. As expected, egw monotonically decreases as the

FIG. 1. Eccentricity and mean anomaly measured using the waveform from an equal-mass nonspinning eccentric NR simulation
(SXS:BBH:2312 [48,117]). Left: time evolution of the eccentricity egw (upper panel) and frequency of the (2, 2) waveform mode ω22

(lower panel). ωp
22ðtÞ and ωa

22ðtÞ are interpolants through ω22ðtÞ evaluated at the pericenters (blue circles) and apocenters (pink squares),
respectively. Equation (8) is used to compute egwðtÞ given ωp

22ðtÞ and ωa
22ðtÞ. Right: time evolution of the mean anomaly lgw (upper

panel) and ω22 (lower panel). The vertical dashed gray lines denote the pericenter times. lgwðtÞ grows linearly in time from 0 to 2π
between successive pericenters [Eq. (10)].
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binary approaches the merger (t ¼ 0). However, while the
waveform itself covers the full range of times shown, egwðtÞ
does not. This is because egwðtÞ depends on the ωp

22ðtÞ and
ωa
22ðtÞ interpolants in Eq. (4), which do not span the full time

range, as shown in the bottom-left panel in Fig. 1. ωp
22ðtÞ is

defined only between the first and last available pericenters,
andωa

22ðtÞ is defined only between the first and last available
apocenters. Therefore, the first available time for egwðtÞ is
the maximum of the times of the first pericenter and first
apocenter. Similarly, the last available time for egwðtÞ is the
minimum of the times of the last pericenter and last
apocenter.
Furthermore, we find that egwðtÞ near the merger can

become nonmonotonic, which is not surprising as it
becomes hard to define an orbit in this regime. To avoid
this nonmonotonic behavior, we discard the last two orbits
of the waveform before computing egw. As a result, the last
available time for egw is the minimum of the times of the
last pericenter and last apocenter in the remaining wave-
form, which falls at about two orbits before the peak
amplitude. In addition, to successfully build the ωp

22ðtÞ and
ωa
22ðtÞ interpolants in Eq. (4), we require at least two orbits

in the remaining waveform. Therefore, the full waveform
should include at least ∼4–5 orbits to reliably compute egw.

1. Extending to spin-precessing and
frequency-domain waveforms

Equations (4) and (8) use only the (2, 2) mode, as it is the
dominant mode of radiation [120–122], at least for binaries
without spin precession in which the direction of the orbital
angular momentum is fixed (taken to be along ẑ by
convention). On the other hand, for spin-precessing bina-
ries, the orbital angular momentum direction varies, and the
power of the (2, 2) mode leaks into the other l ¼ 2 modes,
meaning that there need not be a single dominant mode of
radiation. For this reason, we restrict ourselves to binaries
without spin precession in this work. We expect that our
method can be generalized to spin-precessing binaries by
using h22 in the coprecessing frame [118,123,124], which
is a noninertial frame that tracks the binary’s spin pre-
cession so that ẑ is always along the instantaneous orbital
angular momentum. Alternatively, one could replace ω22 in
Eq. (4) with a frame-independent angular velocity [125]
that incorporates information from all available wave-
form modes.
We also restrict ourselves to time-domain waveforms in

this work. One main difficulty for frequency-domain
waveforms [54,55] is the identification of the frequencies
at which pericenters and apocenters occur. This is com-
plicated by the fact that, even for the (2, 2) mode,
eccentricity excites higher harmonics that make it difficult
to identify local extrema in the frequency domain (see,
e.g., Fig. 3 in Ref. [54]). Alternatively, one could simply
apply an inverse Fourier transform to first convert the

frequency-domain waveform to time-domain, although this
can be computationally expensive for long signals.

D. Defining mean anomaly using the waveform

To fully describe an eccentric orbit at a given reference
frequency, two parameters are required: eccentricity and
mean anomaly [21,48,90], which is the fraction of the
orbital period (expressed as an angle) that has elapsed since
the last pericenter passage. Similar to egw, we seek a
definition of mean anomaly that depends only on the
waveform at future null infinity. This can be achieved
by generalizing the Newtonian definition of mean anomaly
to [48,77,84,90]

lgwðtÞ ¼ 2π
t − tpi

tpiþ1 − tpi
; ð10Þ

defined over the interval tpi ≤ t < tpiþ1 between any two
consecutive pericenter passages tpi and tpiþ1. lgw grows
linearly in time over the range ½0; 2πÞ between t ¼ tpi and
t ¼ tpiþ1. In Newtonian gravity, the period of the orbit T ¼
tpiþ1 − tpi remains constant, while, in general relativity,
radiation reaction cause T to decrease over time, making
lgwðtÞ a stepwise linear function whose slope increases as
the binary approaches the merger. As the times correspond-
ing to pericenter passages are already determined when
calculating egw, computing lgw is straightforward. This
procedure is illustrated in the right panel in Fig. 1.
We stress that the mean anomaly cannot be absorbed into

a time or phase shift [48] and is, instead, an intrinsic
property of the binary like the component masses, spins,
and egw. This can be seen from the bottom-right panel in
Fig. 1, showing ω22ðtÞ. Consider the first pericenter
occurring at t ≃ −8500M, for which lgw ¼ 0. First, because
ω22 is insensitive to phase shifts, one cannot apply a phase
shift to change the mean anomaly at t ≃ −8500M away
from lgw ¼ 0. Similarly, one cannot apply a time shift so
that the mean anomaly at t ≃ −8500M is changed without
simultaneously also changing the frequency at that time
[because the time shift also applies to ω22ðtÞ]. In other
words, to change the mean anomaly at a fixed time before
the merger, one also needs to change the frequency at a
fixed time before the merger, which results in a different
physical system. Ignoring mean anomaly in waveform
models and/or parameter estimation can result in systematic
biases in the recovered source parameters [48,91,126].

E. Generalizing the reference frequency f ref
Binary parameters like the component spin directions

and orientation with respect to the observer, as well as
eccentricity and mean anomaly, can vary during a binary
evolution. Therefore, when measuring binary parameters
from a GW signal, one needs to specify at which point of
the evolution the measurement should be done. This is
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typically chosen to be the point at which the GW frequency
crosses a reference frequency fref, with a typical choice of
fref ¼ 20 Hz [3] as that is approximately where the
sensitivity band of current ground-based detectors begins.
For quasicircular binaries without spin precession, the

GW frequency increases monotonically, and fref can be
uniquely associated with a reference time tref . For
spin-precessing, quasicircular binaries, while ω22 in the
inertial frame can be nonmonotonic, one can use the
frequency computed in the coprecessing frame, which is
always monotonically increasing [10,118]. Unfortunately,
no such frame exists for eccentric binaries, and ω22

becomes nonmonotonic if eccentricity is sufficiently high
(see Fig. 1).
Therefore, unique specification of a reference point via a

frequency fref requires a generalization of ω22 that is
monotonically increasing and approaches ω22 in the qua-
sicircular limit. In the following, we discuss two different
ways to accomplish this and point out why the second is
superior.

1. Mean of ωp
22ðtÞ and ωa

22ðtÞ
A simple method to compute a monotonically increasing

frequency for eccentric binaries is to take the mean of the
interpolants through the frequencies at pericenters [ωp

22ðtÞ]
and apocenters [ωa

22ðtÞ], both of which are monotonically
increasing functions of time:

ωmean
22 ðtÞ ¼ 1

2
½ωp

22ðtÞ þ ωa
22ðtÞ�; ð11Þ

with the reference time defined as ωmean
22 ðtrefÞ ¼ 2πfref .

As ωp
22ðtÞ and ωa

22ðtÞ are already constructed when
computing egw, there is no additional computational cost.
Furthermore, as ωp

22 and ωa
22 approach ω22 in the quasi-

circular limit, so does ωmean
22 . This method was used to set

the reference frequency in Ref. [88]. Figure 2 shows
examples of ωmean

22 ðtÞ for waveforms produced using the
SEOBNRv4EHM [46] eccentric EOB model, for three
different values of the model’s internal eccentricity param-
eter eeob, defined at a time t0 ¼ −4.93 s before the peak
amplitude.

2. Orbit-averaged ω22

Alternatively, one can use the orbit average of ω22 in
fixing the reference point. Between any two consecutive
pericenters tpi and tpiþ1, we define

hω22ipi ¼
1

tpiþ1 − tpi

Z
tpiþ1

tpi

ω22ðtÞdt

¼ ϕ22ðtpiþ1Þ − ϕ22ðtpi Þ
tpiþ1 − tpi

ð12Þ

and associate hω22ipi with the midpoint between tpi and t
p
iþ1:

htipi ¼
1

2
ðtpi þ tpiþ1Þ: ð13Þ

Applying this procedure to all consecutive pairs of
pericenter times, we obtain the set fðhtipi ; hω22ipi Þg.
Similarly, using all consecutive pairs of apocenter times
tai and taiþ1, we obtain the set fðhtiai ; hω22iai Þg. Taking the
union of these two datasets, we build a cubic spline
interpolant in time to obtain hω22iðtÞ.
The resulting orbit-averaged frequency hω22iðtÞ is also

monotonically increasing and reduces to ω22ðtÞ in the
quasicircular limit. The reference time associated with a
reference frequency is now determined via

hω22iðtrefÞ ¼ 2πfref : ð14Þ

This method was used in Refs. [77,126]. Compared to
ωmean
22 ðtÞ, hω22iðtÞ has the added costs of computing orbit

FIG. 2. Different methods to construct a monotonically in-
creasing frequency to replace ω22ðtÞ, in order to set the reference
frequency fref for eccentric binaries. We consider two different
approaches: (i) ωmean

22 ðtÞ, the mean of ωp
22ðtÞ and ωa

22ðtÞ, and
(ii) hω22iðtÞ, an interpolant through the orbit-averaged ω22

[Eq. (12)]. We show SEOBNRv4EHM waveforms with three
different eccentricities; the binary parameters are given in the
figure text. While the two approaches agree for small eccen-
tricities, they deviate significantly at large eccentricities. We
adopt hω22iðtÞ as it captures the correct frequency scale in an
orbit-averaged sense (Sec. II E).

DEFINING ECCENTRICITY FOR GRAVITATIONAL WAVE … PHYS. REV. D 108, 104007 (2023)

104007-7



averages and constructing a new interpolant. The orbit
averages are very cheap to compute, as they can be written
in terms of phase differences [Eq. (12)]. The cost of the
interpolant scales with the number of orbits, but it is
generally also cheap to construct.
Figure 2 also shows hω22iðtÞ for the same

SEOBNRv4EHM waveforms. While ωmean
22 ðtÞ and

hω22iðtÞ agree at small eccentricities, they deviate signifi-
cantly at large eccentricities. Unlike ωmean

22 ðtÞ, hω22iðtÞ has
the additional property, albeit only in an orbit-averaged
sense, that at the time tref , where hω22iðtrefÞ ¼ 2πfref , one
GW cycle occurs over a timescale of 1=fref . This also
explains why, for the high-eccentricity case in Fig. 2
(bottom panel), hω22i follows the general trend of ω22

more closely than ωmean
22 . For these reasons, we will adopt

hω22i and Eq. (14) in the rest of the paper.

F. Selecting a good reference point

Given a reference frequency fref, Sec. II E describes how
that can be used to pick a reference time tref in the binary’s
evolution. Another important choice is what frequency to
use for fref. Most current analyses for ground-based
detectors use fref ¼ 20 Hz [3], but we argue that this
may not be suitable for eccentric binaries. Setting fref ¼
20 Hz means that the reference time is chosen to be the
point where the observed GW frequency (or its orbit
average) at the detector crosses 20 Hz. However, the
observed GW signals are redshifted because of cosmologi-
cal expansion, and the observed GW frequency depends on
the distance between the source and detector. Two identical
binaries placed at different distances would, therefore,
reach an observed frequency of 20 Hz at different points
in their evolution. Because the eccentricity varies during
the evolution, the measured eccentricities for these binaries
will be different when they reach fref ¼ 20 Hz at the
detector. This is particularly problematic for applications
like constraining the astrophysical distribution of eccen-
tricities of GW sources, as the same source can be mistaken
to have two different eccentricities.
All binary parameters that vary during a binary’s

evolution, like spin directions, could be prone to this
problem. However, because spin tilts vary over spin-
precession timescales spanning many orbits, this has not
been a significant issue so far when constraining the
astrophysical spin distribution [127], with the exception
of Ref. [128], where this effect was found to be important
when modeling the full 6D spin distribution. Eccentricity,
on the other hand, can change rapidly on an orbital
timescale, especially in the late stages near the merger
(see Fig. 1).
One way to avoid this problem is to use the GW

frequency defined in the source frame instead of the
detector frame. However, this requires assuming a cosmo-
logical model to compute the redshift between the two
frames. This can be problematic for applications like

independently extracting cosmological parameters like
the Hubble parameter from GW signals [129].
Alternatively, one can use a dimensionless reference
frequency Mfref or time tref=M as proposed by
Ref. [92], where M is the total mass in the detector frame.
Both of these choices have the benefit of not depending on
the distance to the source, as the total mass measured in the
detector frame is also redshifted and exactly cancels out the
redshift of fref and tref . Reference [92] proposed reference
points of tref=M ¼ −100 (where t ¼ 0 is at the peak of the
GW amplitude) and Mfref ¼ 6−3=2 [the Schwarzschild
innermost-circular-orbit (ISCO) frequency], as these
always occur close to the merger for comparable mass
binaries, and certain spin parameters like the orbital-plane
spin angles are best measured near the merger. For
measuring eccentricity, an earlier dimensionless time or
frequency may be more appropriate, as eccentricity can be
radiated away before the binary approaches merger.
A more straightforward approach could be to set the

reference point at a fixed number of orbits before a fixed
dimensionless time (tref=M) or dimensionless orbit-
averaged frequency (Mhω22i). Here, we define one orbit
as the period between two pericenter passages, as mea-
sured from the waveform. As the number of orbits defined
with respect to a dimensionless time or frequency is also
unaffected by the redshift, this serves the same purpose as a
dimensionless time or frequency. The number of orbits also
scales more naturally to EMRI systems, while dimension-
less time and frequency may not. A similar approach was
recently adopted by Ref. [86].
Another advantage of using a fixed number of orbits

before a dimensionless time or frequency is that, by using
pericenters to define the number of orbits, we can always
measure eccentricity at a fixed mean anomaly of lgw ¼ 0.
This can make it simpler to report posteriors for eccentric
GW signals by reducing the dimensionality by one.
Similarly, this can make it easier to connect GW obser-
vations to astrophysical predictions for GW populations,
as the predictions would just need to be made at a single
mean anomaly value. However, we stress that mean
anomaly would still need to be included as a parameter
in waveform models and parameter estimation, and it is
only when computing the eccentricity from the waveform
predictions in postprocessing that this simplification
occurs.
In summary, while the most appropriate choice will need

to be determined by analyzing eccentric GW signals in a
manner similar to Ref. [92], we propose that the reference
point be chosen to be a fixed number of orbits (e.g., 10)
before a fixed dimensionless time (e.g., tref=M ¼ −100) or
a fixed dimensionless orbit-averaged frequency (e.g.,
Mhω22i ¼ 2π6−3=2, the Schwarzschild ISCO frequency).
While not all GW signals will enter the detector frequency
band with ∼10 orbits to go before the merger, this can be
achieved by always generating GW templates with at least
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ten orbits when analyzing the GW signals. One important
question that remains is whether using a reference point
that falls outside the detector band leads to systematic
biases or complications during parameter estimation. We
expect that, as long as the number of orbits by which the
reference point falls outside the band is small, such effects
should be small, but we leave this investigation to
future work.

G. Truncating eccentric time-domain waveforms

GW detectors are most sensitive over certain frequency
bands (∼20 to ∼103 Hz for LIGO-Virgo), and waveform
predictions need to include all physical GW frequencies
present in this region. For frequency-domain waveform
models, this is achieved by evaluating the model starting at
initial frequency flow ¼ 20 Hz. On the other hand, time-
domain waveform models need to be evaluated starting at
an initial time tlow, chosen so that the GW signal at earlier
times does not contain any frequencies above flow. In other
words, the part of the time-domain waveform that is not
included (t < tlow) does not contribute to the GW signal in
the detector frequency band.
For quasicircular waveform models with only the (2, 2)

mode, tlow can be chosen to be the time when

ω22ðtlowÞ ¼ 2πflow: ð15Þ

Because ω22ðtÞ is a monotonically increasing function for
quasicircular binaries, frequencies > flow occur only at
times > tlow. This is no longer the case for eccentric

binaries, as ω22ðtÞ can be nonmonotonic. An example is
shown in Fig. 3, where we see that ω22ðtÞ=ð2πÞ crosses
flow ¼ 20 Hz at several different times. One could choose
the earliest of these crossings as tlow, but this works only if
the original waveform is long enough to include all such
crossings. If the original waveform includes only a subset
of the crossings, this approach cannot guarantee that the
discarded waveform contains only frequencies < flow. To
ensure all frequencies above flow are included, we need to
generalize Eq. (15) to eccentric binaries.
A seemingly natural choice is to replace ω22ðtÞ in

Eq. (15) with the monotonically increasing hω22iðtÞ from
Eq. (12):

hω22iðtlowÞ ¼ 2πflow: ð16Þ

The pink dashed line in Fig. 3 shows hω22i=ð2πÞ, and the
frequencies retained when setting tlow using Eq. (16) are
also marked in pink. However, in this approach, the section
colored in blue is discarded, even though it still includes
some frequencies above flow ¼ 20 Hz.
Instead, we propose that tlow should be set using the

interpolant through pericenter frequencies, ωp
22ðtÞ, which is

already constructed when evaluating Eqs. (4) and (8):

ωp
22ðtlowÞ ¼ 2πflow: ð17Þ

Because ωp
22ðtÞ represents the upper envelope of ω22ðtÞ,

this approach guarantees that the discarded waveform
(t < tlow) does not contain any frequencies > flow. This
is demonstrated in Fig. 3, where we see that the blue section
is included if Eq. (17) is used to set tlow.
So far, we considered only the (2, 2) mode when

determining tlow. The frequency of the ðl; mÞ waveform
mode [Eq. (1)] can be approximated during the inspiral as
ωlmðtÞ ∼ ðm=2Þω22ðtÞ [21]. Therefore, for models contain-
ing higher modes, Eq. (17) should be replaced with

ωp
22ðtlowÞ ¼

�
2

mmax

�
2πflow; ð18Þ

where mmax is the largest m among all included modes.

H. Summary

Our procedure to compute the eccentricity and mean
anomaly from the waveform can be summarized as follows:
(1) Find the times corresponding to the pericenters and

apocenters, which we denote as ftpi g and ftaig,
respectively. In the example in Fig. 1, ftpi g and
ftaig are identified as the local maxima and minima,
respectively, of ω22, but other methods for locating
these times will be discussed in Sec. III.

(2) Evaluate ω22ðtÞ at ftpi g and ftaig to get the frequen-
cies at pericenters and apocenters and construct

FIG. 3. How to truncate time-domain eccentric waveforms
while retaining all frequencies above flow ¼ 20 Hz. The orange,
blue, and pink curves show different sections of ω22ðtÞ for an
eccentric SEOBNRv4EHM waveform (with binary parameters
shown in the title). If we discard all times below the point where
the orbit-averaged frequency hf22i≡ hω22i=ð2πÞ (pink dashed
curve) crosses flow ¼ 20 Hz, only the pink section is retained,
and the blue section is discarded even though it contains some
frequencies above 20 Hz. On the other hand, using fp22 ≡
ωp
22=ð2πÞ (blue dashed curve) to pick this time ensures that

the discarded region (orange) contains no frequencies
above 20 Hz.

DEFINING ECCENTRICITY FOR GRAVITATIONAL WAVE … PHYS. REV. D 108, 104007 (2023)

104007-9



interpolants in time, ωp
22ðtÞ and ωa

22ðtÞ, using these
data. We use cubic splines for interpolation.3

(3) Obtain eω22
ðtÞ using ωp

22ðtÞ and ωa
22ðtÞ in Eq. (4).

Finally, apply the transformation in Eq. (8) to obtain
the eccentricity egwðtÞ.

(4) Use the pericenter times ftpi g in Eq. (10) to compute
the mean anomaly lgwðtÞ.

(5) To get the eccentricity and mean anomaly at a
reference frequency fref, first use the orbit-averaged
frequency hω22iðtÞ [Eq. (12)] to get the correspond-
ing tref . However, instead of using a fixed fref in
hertz, a fixed dimensionless frequency or time or a
fixed number of orbits before a dimensionless
frequency or time might be a better choice for
eccentric binaries (Sec. II F).

(6) Use ωp
22ðtÞ [Eq. (18)] to truncate time-domain

signals at a given start frequency flow so that the
discarded waveform does not contain any frequen-
cies above flow.

III. METHODS TO LOCATE
PERICENTERS AND APOCENTERS

In Sec. II and Fig. 1, the pericenter and apocenter times
are taken to correspond to local extrema in ω22ðtÞ.
Identifying these times is a crucial step in our definitions
of eccentricity and mean anomaly, as well as the general-
izations of fref and flow. In this section, we explore several
different alternatives for identifying the pericenter and
apocenter times and their benefits and drawbacks.
Instead of ω22ðtÞ, these methods set extrema in various
other waveform quantities (like the amplitude) as the
pericenter and apocenter times. Therefore, the pericenter
and apocenter times can depend on the method used, and
each of these alternatives should be viewed as a new
definition of eccentricity and mean anomaly. However, all
of these methods satisfy the criteria listed in Sec. II for a
good definition of eccentricity, and as we will show in
Sec. IV the differences between the different methods are
generally small. We denote the waveform quantity whose
extrema are used as UðtÞ. Given UðtÞ, we use the
find_peaks routine within SciPy [130] to locate the extrema.

A. Frequency and amplitude

The most straightforward choice for UðtÞ is

UðtÞ ¼ ω22ðtÞ; ð19Þ

as considered in Fig. 1. The local maxima in UðtÞ are
identified as the pericenters while the local minima are

identified as apocenters. We refer to this method as the
frequency method.
Becauseω22ðtÞ relies on a time derivative—see Eq. (6)—

it can be noisy in some cases, especially for NR waveforms.
Such noise can lead to spurious extrema in ω22ðtÞ that can
be mistaken for pericenters and apocenters. Such problems
can be avoided by locating the extrema of the amplitude of
the (2, 2) mode, i.e.,

UðtÞ ¼ A22ðtÞ: ð20Þ

We refer to this method as the amplitude method and
recommended it over the frequency method.
The simplicity of the frequency and amplitude methods

comes with the drawback that these methods fail for small
eccentricities, as illustrated in Fig. 4. The top two rows
show ω22 and A22 for an eccentric SEOBNRv4EHM [46]
waveform. While local extrema can be found at early times,
as eccentricity is radiated away, the prominence of the
extrema decreases until local extrema cease to exist. The
onset of this breakdown is signaled by the pericenters and
apocenters converging toward each other, as seen in the
figure insets. This occurs because, at small eccentricity, the
secular growth in ω22 and A22 dominates the modulations
due to eccentricity. We find that, for eccentricities egw ≲
10−2…10−3 (see Sec. IV), the frequency and amplitude
methods can fail to measure the eccentricity. This break-
down point can be approximately predicted by the follow-
ing order-of-magnitude estimate.

1. Estimating the breakdown point
of the frequency method

The inspiral rate of a binary in quasicircular orbit at
Newtonian order is given by (e.g., [21])

dωcirc
22

dt
¼ 192

5
ν

1

M2

�
Mωcirc

22

2

�
11=3

; ð21Þ

where ν ¼ q=ð1þ qÞ2 is the symmetric mass ratio.
For small eccentricities, eccentricity induces an oscil-

latory component to the frequency,

ω22ðtÞ ≈ ωcirc
22 ðtÞ þ A sinðωrtÞ; ð22Þ

where ωr denotes the radial oscillation frequency. The
amplitude A of the oscillations can be related to eccentricity
by substituting into Eq. (4) and expanding to first order in
A, yielding A ¼ 2eω22

ωcirc
22 . For a given short time interval,

we take A to be constant.
Extrema in ω22ðtÞ correspond to zeros of the time

derivative

dω22

dt
≈
dωcirc

22

dt
þ Aωr cosðωrtÞ: ð23Þ

3When the number of pericenters or apocenters in not
sufficient to build a cubic spline, the order of the spline is
reduced accordingly.
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Such zeros exist only if the oscillatory component domi-
nates over the inspiral part, Aωr ≳ dωcirc

22 =dt, i.e., for
sufficiently large eccentricities:

eω22
≳ 48

5
ν

�
Mω22

2

�
5=3 ω22

2ωr
: ð24Þ

Here, we have dropped the subscript “circ,” as ωcirc
22 ≈ ω22

at leading order in the assumed small eccentricity.

Neglecting pericenter advance, i.e., setting ω22=ð2ωrÞ¼1
and noting that, for small eccentricity, eω22

≈ ð3=4Þegw
[Eq. (7)], we find that local extrema in ω22ðtÞ are present
only if

egw ≳ 192

15
ν

�
Mω22

2

�
5=3

: ð25Þ

The systems considered in this paper have ω22 ∼
0.02=M…0.1=M (e.g., Fig. 1 or 4), so that, for comparable
mass binaries, Eq. (25) predicts a breakdown of the
frequency method for egw ∼ 10−3…10−2.
This motivates us to consider alternative methods to

detect local extrema that also work for small eccentricities.
In the following, we will consider different methods that
first subtract the secular growth in ω22 or A22 and use the
remainder as UðtÞ.

B. Residual frequency and residual amplitude

We begin with a simple extension of the frequency
method, which we refer to as the residual frequency
method:

UðtÞ ¼ Δω22ðtÞ≡ ω22ðtÞ − ωcirc
22 ðtÞ; ð26Þ

and likewise the residual amplitude method:

UðtÞ ¼ ΔA22ðtÞ≡ A22ðtÞ − Acirc
22 ðtÞ; ð27Þ

where ωcirc
22 and Acirc

22 are the frequency and amplitude,
respectively, of the (2, 2) mode for a quasicircular
counterpart of the eccentric binary. We define the quasi-
circular counterpart as a binary with the same component
masses and spins but with zero eccentricity. The time
array of the quasicircular waveform is shifted so that its
peak time coincides with that of the eccentric waveform.
Once again, the local maxima in UðtÞ are identified as the
pericenters, while the local minima are identified as
apocenters.
Equations (26) and (27) are motivated by the observation

[48] that the quasicircular counterpart waveform captures
the secular trend of the eccentric waveform, when the peak
times of the waveforms are aligned. This is demonstrated
for an example eccentric SEOBNRv4EHM waveform in
Fig. 5. The quasicircular counterpart falls approximately at
the midpoint between the peaks and troughs of amplitude
and frequency of the eccentric waveform. We find this to be
the case for the full range of eccentricities and waveforms
of all origins.
For an eccentric waveform model, the quasicircular

counterpart can be easily generated by evaluating the
model with eccentricity set to zero while keeping the other
parameters fixed. For eccentric NR waveforms, such a
quasicircular NR waveform may not exist and one can use a
quasicircular waveform model to generate the quasicircular

FIG. 4. Limitations of the amplitude and frequency methods in
identifying pericenters (blue circles) and apocenters (pink
squares) for a low eccentricity waveform. These methods (top
two rows) detect only the first few pericenters or apocenters and
fail once sufficient eccentricity is radiated away. On the other
hand, the residual amplitude and residual frequency methods
(bottom two rows) can detect all of the pericenters or apocenters
present. The waveform is generated using SEOBNRv4EHM, and
the binary parameters are given in the title.
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counterpart. In this paper, we use the IMRPhenomT [14]
quasicircular waveform model to generate quasicircular
counterparts of NR waveforms and IMRPhenomT is
currently set as the default choice in gw_eccentricity
[93], as it supports a wide range of values for the binary
parameters. One can also use more accurate models like
the NR surrogate model NRHybSur3dq8 [131] whenever
the parameters fall within the regime of validity of the
surrogate model. Similarly to how the different methods to
locate extrema are part of the eccentricity definition, the
choice of quasicircular model should also be considered to
be a part of the definition. The impact of the choice of the
quasicircular model on eccentricity is generally small and
will be explored further in Sec. IV D.
By first subtracting the secular growth in the eccentric

waveform, the residual frequency and residual amplitude
methods can detect local extrema even for small eccen-
tricities. The bottom two rows in Fig. 4 show an example
where these methods succeed while the frequency and
amplitude methods fail. Once again, between residual
frequency and residual amplitude, we recommend residual
amplitude, as it is less prone to numerical noise for NR
waveforms. While the residual frequency and residual
amplitude are robust and straightforward to implement,
their main drawback is that they require the evaluation of a
quasicircular waveform, which increases the computa-
tional expense. We consider the next set of methods to
model the secular trend without relying on additional
waveform evaluations.

C. Frequency fits and amplitude fits

The residual amplitude and residual frequency methods
described in Sec. III B have the disadvantage that they
require a quasicircular reference waveform for subtraction.
Such a reference waveform may not be available, or
deviations in the reference waveform may lead to
differences in the recovered eccentricity (see Sec. IV D).
The frequency fits method avoids the need for a

reference waveform by self-consistently fitting the enve-
lopes ωp

22ðtÞ (for pericenters) and ωa
22ðtÞ (for apocenters)

that appear in Fig. 1, an idea introduced in Lewis et al.
[107]. To simplify the explanation, we will first describe
this method when applied to locate pericenters. The idea
lies in considering a local stretch of data ω22ðtÞ for
t∈ ½tL; tR�, in which we identify the times Tα (labeled by
α) as local maxima of the envelope-subtracted frequency
[Eq. (28)] while self-consistently constructing the envelope
fit ωfit;p

22 ðtÞ through ω22ðtÞ evaluated at Tα. The fit ω
fit;p
22 ðtÞ,

the local maxima times Tα, and the interval ½tL; tR� are
iteratively refined, and the central Tα is identified as a
pericenter time.
To make this idea precise, we start by choosing a

time t̂, which will roughly correspond to the middle of the
fitting interval. We now seek to determine a fitting
function ωfit;p

22 ðtÞ through the pericenter frequencies, valid
in a time interval ½tL; tR� encompassing t̂, as well as times
Tα ∈ ½tL; tR�, α ¼ 0;…; 2N [with N ¼ 3, as explained after
Eq. (31)]. These quantities are determined in a self-
consistent manner such that the following conditions
are all satisfied:
(1) Tα are local maxima of the envelope-subtracted

frequency UðtÞ given by

UðtÞ ¼ ω22ðtÞ − ωfit;p
22 ðtÞ: ð28Þ

(2) ωfit;p
22 ðtÞ is a fit through the 2N þ 1 evaluations of

ω22ðtÞ at times Tα, i.e., ðTα;ω22ðTαÞÞ in the interval
½tL; tR�,

ωfit;p
22 ðTαÞ ≈ ω22ðTαÞ; α ¼ 0;…; 2N: ð29Þ

(3) The time interval ½tL; tR� contains precisely 2N þ 1
local maxima of UðtÞ where the first N are before t̂
and the others after.

If these conditions are met, then the extremum in the
middle, ðTN;ω22ðTNÞÞ, will be identified as a pericenter
passage and included in the overall list of pericenters for the
inspiral.
This procedure is illustrated in Fig. 6. The top panel

shows ω22ðtÞ in orange, for a configuration with eccen-
tricity so small that ω22ðtÞ does not have extrema. The
locations of the identified local maxima ðTα, ω22ðTαÞÞ are
indicated by blue circles, with the middle one

FIG. 5. Comparison of the amplitude (top) and the frequency
(bottom) of an eccentric SEOBNRv4EHM waveform to those of
its quasicircular counterpart. The binary parameters are shown in
the figure text. Both waveforms are aligned so that t ¼ 0 occurs at
the peak of A22. The quasicircular counterpart captures the
secular growth in the amplitude and frequency of the eccentric
waveform.
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(corresponding to TN) being filled. The lower panel shows
the envelope subtracted function, whose maxima determine
the Tα.
In practice, the fitting function is chosen to have the

functional form

ωfit;p
22 ðt;A; n; tmergÞ ¼ Aðtmerg − tÞn; ð30Þ

with fit parameters fA; n; tmergg. The form of Eq. (30) is
inspired by the leading-order PN behavior of a quasicir-
cular binary inspiral, which has the form of Eq. (30) with
exponent −3=8 [21]. In addition, Eq. (30) ensures monot-
onicity by construction. To reduce correlations between the
parameters A and n, the fitting function is reparametrized
by ff0; f1; tmergg, where f0 and f1 represent the function
value and first time derivative at a time tmid, respectively:

f0 ¼ Aðtmerg − tmidÞn; ð31aÞ

f1 ¼ −nAðtmerg − tmidÞn−1 ¼ −n
f0

tmerg − tmid
: ð31bÞ

Equation (31) are readily inverted to yield

n ¼ −
f1ðtmerg − tmidÞ

f0
; ð32aÞ

A ¼ f0ðtmerg − tmidÞ−n: ð32bÞ

The fit for ff0; f1; tmergg is performed with the curve_fit
routine of the SciPy [130] library. Because there are three

free parameters, at least three local maxima are needed to
perform the fit; we choose 2N þ 1 ¼ 7 maxima for
increased robustness. The concrete choice for tmid is found
to be not critical; we choose the time in the middle of the
entire waveform to be analyzed.
To analyze an entire waveform, we proceed from the start

of the waveform toward the merger. At the first, “cold”
initialization at the start of the waveform, we choose tL to
be the start of the waveform, t̂ to beN orbits later (as judged
by the accumulated ϕ22), and tR to be 2N orbits later. We
initialize a first guess for ωfit;p

22 through a fit to ω22ðtÞ during
the first ten orbits of the waveform.
In order to satisfy conditions 1–3 self-consistently, an

iterative procedure is applied: Local maxima of UðtÞ are
calculated using find_peaks, and the interval ½tL; tR� is
adjusted to achieve the desired number of extrema on either
side of t̂.4 Now an improved ωfit;p

22 is computed by fitting to
the extrema [Eq. (29)], and the procedure is iterated until
the changes in the extrema Tα and fitting parameters
ff0; f1; Tg fall below a tolerance, typically 10−8. At the
initial cold start, this typically takes 3–5 iterations.
We then shift the analyzed region by one pericenter

passage at a time, i.e., t̂ → t̂ ¼ ðTN þ TNþ1Þ=2,
tL → ðT0 þ T1Þ=2, tR → T2N þ 1.5 × ðT2N − T0Þ=ð2NÞ,
and repeat the iterative procedure to satisfy conditions
1–3, using the current ωfit;p

22 as the initial guess. Because of
the improved guess for ωfit;p

22 , each successive pericenter

FIG. 6. Illustration of the frequency fits method. Left: the blue circles indicate the 2N þ 1 ¼ 7 extrema through which the fitting
function Eq. (30) passes. The lower panel shows the envelope-subtracted data from which the extrema Tα are determined. The solid blue
circle indicates the central extremum, whose parameters are used for the eccentricity definition. The pink square and the pink dashed line
show the analogous construction for the apocenter passages. Right: enlargement of the region around the solid markers in the upper
panel on the left. The waveform is generated using SEOBNRv4EHM, and the binary parameters are given in the title.

4For the very first application of this procedure at the start of
the waveform, tL cannot be reduced to before the start of the
waveform, so if needed we increase t̂ instead.
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passage needs only 2–3 iterations to converge. We stop the
procedure when tL reaches the end of the waveform or
when all three conditions can no longer be simultaneously
satisfied. For instance, in rare cases, the iterative procedure
settles into a limiting cycle, which switches between two
different results for the interval ½tL; tR�, the extrema Tα, and
the fit ωfit;p

22 .
Equation (28) identifies local maxima of ω22ðtÞ−

ωfit;p
22 ðtÞ, i.e., pericenter passages. To identify apocenter

passages, we change the sign of the right-hand side of
Eq. (28) while keeping the remainder of the algorithm
unchanged. The algorithm will then generate a fit to the
apocenter points, ωfit;a

22 , as indicated in pink in Fig. 6.
The procedure outlined above also works if we fit the

amplitude A22 in place of ω22, since, at leading post-
Newtonian order, the amplitude also has the form of
Eq. (30) with exponent −1=4 [21]. We refer to the method
of finding the pericenters and apocenters by fitting to A22 as
amplitude fits. Once again, frequency fits is more prone to
numerical noise as it relies on ω22. Therefore, we recom-
mend amplitude fits over frequency fits.

IV. ROBUSTNESS TESTS

In this section, we check the robustness of our eccen-
tricity definition and the different methods to locate peri-
centers and apocenters by putting our implementation
through various tests.

A. The large mass ratio limit of egw
In Sec. I, we noted that one of the desired but not strictly

required features of an ideal eccentricity definition is that,
in the limit of large mass ratio, it should approach the test
particle eccentricity on a Kerr geodesic. The geodesic
eccentricity egeo typically used for EMRI calculations
[132,133] is given by

egeo ¼
ra − rp

ra þ rp
; ð33Þ

where rp and ra are the pericenter and apocenter separations,
respectively, along the geodesic in Boyer-Lindquist coordi-
nates. To test the test particle limit ofegw,we compareegw and
egeo for an EMRI waveform with q ¼ ∞ and nonspinning
BHs but with varying eccentricities in the range
egeo ∈ ½0; 0.5�. In the q → ∞ limit, there is no orbital
evolution, and thewaveform is that of a test particle following
a geodesic. For our comparisons, we use the waveforms
computed within this framework in Ref. [77] using a
frequency-domain Teukolsky code. Because there is no
orbital evolution, thesewaveforms each have a constant value
of eccentricity egeo and orbit-averaged frequency hω22i.
Figure 7 shows the differences jegeo − egwj and

jegeo − eω22
j, evaluated at different values of egeo and

hω22i. While egw does not exactly match egeo in the test

particle limit, the differences for egw lie in the range
∼½10−6; 6 × 10−3�, whereas the differences for eω22

lie in
the range ∼½5 × 10−4; 10−1�. Therefore, egw is an improve-
ment over eω22

in two ways: egw has the correct Newtonian
limit (as shown by Ref. [46]) and is closer to egeo in the test
particle limit, by about 2 orders of magnitude.

B. Applicability for waveforms of different origins

Another criteria for the eccentricity definition identified
in Sec. I that is desired but not strictly required is that it
should be robust and applicable for waveforms of different
origins, such as analytical PN waveforms [50–55], numeri-
cal waveforms from NR [48,75–80] simulations, semi-
analytical EOB waveforms calibrated to NR [44–47], and
EMRI [42,43,56–60,62–74] waveforms obtained by solv-
ing the Teukolsky equation.
In Fig. 8, we show examples of our egw implementation in

gw_eccentricity [93] applied to waveforms of four different
origins: PN (EccentricTD [52]), EOB (SEOBNRv4EHM
[46]), NR (SpEC [48,117]), and EMRI (Ref. [77]). The
binary parameters are arbitrarily chosen to cover a wider
parameter space and are shown in the figure text. In each of
the four subplots in Fig. 8, the lower panel shows the real part
of h22, and the upper panel shows the measured egw. We
consider three different methods to locate the pericenter and
apocenter amplitude, residual amplitude, and amplitude fits,
and egw is consistent between the three methods. For the
residual amplitude method, for the PN, EOB, and EMRI
cases, we use the same model evaluated at zero eccentricity
for the quasicircular counterpart. For NR, we use the
IMRPhenomT [14] model.

FIG. 7. Comparison of egw and eω22
to the geodesic eccentricity

egeo in the q → ∞ limit, as a function of the orbit-averaged
frequency hω22i. In the left panel, the colors show the absolute
difference between egeo and egw measured using Eq. (8) with the
amplitude method. The right panel shows the same for eω22

. egeo
is closer to egw than eω22

by about 2 orders of magnitude.
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In addition to Fig. 8, we have tested our implementation
in gw_eccentricity [93] against eccentric SpEC NR wave-
forms from Refs. [48,77]. When testing against eccentric
NR simulations from the RIT catalog [78,134], we are able
to compute egw whenever the waveform contains at least
∼4–5 orbits before the merger, for reasons explained in
Sec. II C. Finally, we have conducted extensive robustness
tests using the SEOBNRv4EHMmodel in different regions
of the parameter space, including converting eeob posterior
samples to egw samples in a postprocessing step after
parameter estimation.

C. Smoothness tests

In this section, we demonstrate that our implementation
of egw varies smoothly as a function of internal definitions

of eccentricity used by waveform models. Specifically, we
generate 50 waveforms using the SEOBNRv4EHM model
[46], with the model’s internal eccentricity parameter
varying from eeob ¼ 10−7 to eeob ¼ 0.9,5 while keeping
the other parameters fixed at q ¼ 4 and χ1z ¼ χ2z ¼ −0.6.
The eccentricity eeob refers to the start of each waveform,
which we choose to be at t0 ¼ −20000M before the peak
waveform amplitude.6 In addition to testing whether egw
varies smoothly, this test also demonstrates that our

FIG. 8. Demonstration of the measurement of eccentricity using the gw_eccentricity [93] package for waveforms of different origins:
PN, EOB, NR, and EMRI. The binary parameters are indicated in the figure text. In each subplot, the lower panel shows the real part of
h22, and the upper panel shows the measured eccentricity. We consider three different methods for identifying the pericenters and
apocenters: amplitude, residual amplitude, and amplitude fits.

5The upper limit of eeob ¼ 0.9 is chosen based on the regime of
validity of the SEOBNRv4EHM model [46], but some tests at
higher eccentricity are included in Sec. IV E.

6To achieve the desired length of the inspiral, we adjust the
start frequency of the SEOBNRv4EHM model accordingly.
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implementation in gw_eccentricity [93] works over a wide
range of eccentricities. Both of these features are important
for applications like converting posterior samples for eeob to
the standardized egw.
For simplicity, we restrict our consideration to the three

preferred methods from Sec. III: amplitude, residual
amplitude, and amplitude fits. The frequency, residual
frequency, and frequency fits methods perform similarly
to amplitude, residual amplitude, and amplitude fits meth-
ods, respectively, but can be prone to numerical noise.

1. egw vs eeob at initial time

We first compare eeob (which is defined at
t0 ¼ −20000M) to egw at its first available time (which
we denote as t̂0). As described in Sec. II C, the first
available time for egwðtÞ is the maximum of the times of
the first pericenter and first apocenter, as starting at this
time both ωp

22ðtÞ and ωa
22ðtÞ interpolants in Eq. (4) can be

defined. For our dataset of SEOBNRv4EHM waveforms,
this time varies from t̂0 ¼ −19250M for eeob ¼ 10−7 to
t̂0 ¼ −15250M for eeob ¼ 0.9. However, because the dif-
ference between t̂0 and t0 is always within an orbit, and
eccentricity does not change significantly over one orbit,
comparing egw at t̂0 to eeob at t0 is reasonable.7 The ideal
outcome for this test is that the eccentricity measured from
the waveform egw matches the model’s eccentricity defi-
nition eeob.

Figure 9 shows how egw at t̂0 varies with eeob at t0, for the
amplitude, residual amplitude, and amplitude fits methods.
For sufficiently high eccentricities (eeob ≳ 5 × 10−3), all
three methods follow the expected trend of egw ¼ eeob.
However, the amplitude method starts to deviate from this
trend for smaller eccentricities, before completely breaking
down for eeob ≲ 10−3. This is expected as local extrema do
not exist in A22 for such low eccentricities (see Sec. III).
By contrast, the residual amplitude and amplitude fits

method follow the egw ¼ eeob trend all the way down to
eeob ¼ 10−5. For smaller eeob, the SEOBNRv4EHM model
itself ceases producing waveforms for which the modu-
lations due to eccentricity decrease with decreasing eeob.
For most practical applications, this is not problematic for
SEOBNRv4EHM as eeob ¼ 10−5 is very small. However,
this exercise highlights how (in addition to testing our
implementation) tests like this can help identify the
limitations of eccentric waveform models.
In this spirit, we repeat this test for several different

eccentric waveform models in Fig. 10. For an equal-
mass nonspinning binary, we show how egw at t̂0 varies
with the internal definitions of eccentricity (defined at
t0 ¼ −20000M) used by the SEOBNRv4EHM [46],
TEOBResumS-DALI [47,135], SEOBNRE [44,45], and
EccentricTD [52] models. For simplicity, we consider only
the residual amplitude method, where the quasicircular
counterpart is obtained by evaluating the same model at
zero eccentricity.
Figure 10 also shows the dependence of egw on the

internal definition of eccentricity for a few eccentric equal-
mass nonspinning NR simulations produced with the SpEC
code [48,76,117] (with SXS IDs 2267, 2270, 2275, 2280,
2285, 2290, 2294, and 2300). In this case, we use the
IMRPhenomT model [14] for the quasicircular counterpart.

FIG. 9. egw vs eeob at the initial time, for SEOBNRv4EHM
waveforms with varying eeob, but keeping the other binary
parameters fixed (given in figure title). eeob is the model’s internal
eccentricity, specified at t0 ¼ −20000M. egw is evaluated at its
first available time t̂0. We consider three different methods for
locating pericenters and apocenters: amplitude, residual ampli-
tude, and amplitude fits. The amplitude method breaks down for
small eccentricities (eeob ≲ 10−3), while the residual amplitude
and amplitude fits method follow the expected egw ¼ eeob trend
down to eeob ¼ 10−5.

FIG. 10. egw vs the internal definition of eccentricity, for
waveforms of different origin, for equal-mass nonspinning
binaries with varying eccentricity. For the NR waveforms
(SpEC), we compute the internal eccentricity at t0 ¼ 1500M
after the start of the simulation, while for the rest we use t0 ¼
−20000M before peak waveform amplitude. In both cases, bt0 is
the first available time for egwðtÞ. The inset shows the same but on
a linear scale and focuses on the egw ≤ 0.4 region.

7This assumption breaks down at very high eccentricity; see
Sec. IV E.
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The internal eccentricity for these simulations is computed
using the orbital trajectories, following the method in
Refs. [102,103]; we refer to this as the “SpEC metadata
eccentricity” as the same method is used to report eccen-
tricity in the metadata files accompanying the simulations
[76,117]. However, because the publicly available SpEC
metadata files [117] report eccentricity at different times for
different simulations, we recompute the eccentricity at a
fixed time t0 using the same methods as Refs. [102,103].
Because the NR simulations are typically short, we choose
t0 ¼ 1500M after the start of the simulations, and t̂0 (where
egw is plotted) is once again the first available time for
egwðtÞ. Before computing egwðtÞ, the initial parts of the NR
waveforms (t < t0) are discarded to avoid spurious tran-
sients due to imperfect NR initial data.
In agreement with Fig. 9, we find that the

SEOBNRv4EHM model follows the egw ¼ eeob trend for
eeob ≳ 10−5 in Fig. 10. While TEOBResumS-DALI follows
the same trend at higher eccentricities, it deviates signifi-
cantly from this trend at eeob ≲ 5 × 10−3 and breaks down at
eeob ≲ 10−4. This behavior of TEOBResumS-DALI was
also noted in Ref. [87] and suggests that the model may need
improvement in this region. Next, both SEOBNRE and
EccentricTDmodels fall away from the y ¼ x line in Fig. 10,
suggesting that the internal definitions of these models may
need modifications. Finally, the SpEC metadata eccentricity
has a scatter around the y ¼ x line. This behavior is not
surprising, as the SpEC metadata eccentricity is not meant to
be precise and is known to be sensitive to factors like the
length of the time window used when fitting the orbital
trajectories to PN expressions [76,102,103]. Furthermore,
because the orbital trajectories in NR simulations are gauge
dependent, the eccentricity reported in the SpEC metadata
can also be gauge dependent. To get a precise and gauge-
independent eccentricity estimate from NR, one must use
waveform-defined quantities like egw.
Figure 10 also shows that, for the same egw, different

models have different internal values of eccentricity.
Therefore, the eccentricity inferred from GW signals via
Bayesian parameter estimation using two different models
can also be different, highlighting the need for using a
waveform-defined eccentricity like egw. In particular,
posterior samples obtained using different models can be
put on the same footing by evaluating egw and lgw using the
model’s waveform prediction. This approach was recently
taken in Ref. [88], albeit restricted to only egw.

2. Smoothness of the time evolution of egw
We now consider a more stringent smoothness test:

Using the same dataset of 50 SEOBNRv4EHMwaveforms,
we test whether the time evolution of egw changes smoothly
when varying eeob at t0 ¼ −20000M. Figure 11 shows
egwðtÞ for the amplitude, residual amplitude, and amplitude
fits methods. Even though the waveform data start at

t0 ¼ −20000M, the egwðtÞ is available only for t ≥ t̂0,
the maximum of the times of the first pericenter and
apocenter. In Fig. 9, only eccentricities at the first available
time egwðt̂0Þ are considered, while in Fig. 11 we consider
the full time evolution.
In Fig. 11, we once again find that the amplitude method

breaks down for small eccentricities egw ≲ 10−3…10−2,
especially as one approaches the merger as eccentricity is
continuously radiated away. The amplitude method fails
when the local extrema in A22 cease to exist, which is why
the curves with smaller initial egw are shorter. By contrast,
the residual amplitude and amplitude fits methods continue
to compute the eccentricity until egw ∼ 10−5. While the
residual amplitude method successfully computes egwðtÞ
up to the last available orbit (we discard the last two orbits
before the merger as explained in Sec. II C), the amplitude

FIG. 11. egwðtÞ for SEOBNRv4EHM waveforms with varying
eeob but keeping the other binary parameters fixed (given in the
figure title). The method used to locate pericenters and apocenters
is indicated in the figure text. The colors indicate the value of eeob,
defined at t0 ¼ −20000M. The amplitude method breaks down
for small eccentricities egw ≲ 10−3…10−2, especially as one
approaches the merger. The residual amplitude and amplitude
fits methods continue to compute the eccentricity until
egw ∼ 10−5. The features at egw ∼ 10−5 arise from the waveform
model itself (see Fig. 12).
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fits method misses some extrema near the merger, espe-
cially when the eccentricity becomes small. However, as
we will see below, the residual amplitude method can
depend on the choice of the quasicircular waveform in the
same region.
In most regions in Fig. 11, we find that the time evolution

of egw varies smoothly with eeob. However, for the residual
amplitude and amplitude fits methods, for small eccen-
tricities and near the merger, we find that egwðtÞ can be
noisy. Rather than a limitation of these methods, this
behavior arises from the SEOBNRv4EHM model itself.
Figure 12 focuses on one of the noisy egwðtÞ curves from
the middle panel in Fig. 11. The bottom panel in Fig. 12
shows the corresponding Δω22ðtÞ from Eq. (26), which
helps highlight the modulations due to eccentricity. The fall
in egwðtÞ is associated with an abrupt fall in the amplitude
of the eccentricity modulations in Δω22ðtÞ.
Such jumps in Δω22ðtÞ at small eccentricities arise from

a transition function in SEOBNRv4EHM [46] that orbit
averages the dynamical variables entering the nonquasicir-
cular (NQC) corrections of the waveform. The orbit
average is carried out between the local maxima of the
oscillations in ṗr� (see Appendix B in Ref. [46] for details).
After the last available maximum, a window is applied to
transition from the orbit-averaged variables to the plunge
dynamics [see Eq. (B2) in Appendix B in Ref. [46]]. This
transition causes the jump inΔω22 shown in Fig. 12, as well
as the noisy features at small eccentricity in Fig. 11.

Because the last available maximum occurs at earlier times
for smaller eccentricities—analogous to Eq. (25)—these
features also start at earlier times for smaller eccentricities
in Fig. 11. While this behavior is noticeable in our studies,
Ref. [126] shows that this causes no significant biases in
parameter estimation and can be addressed in future
versions of SEOBNRv4EHM. Nevertheless, Fig. 11 once
again highlights the importance of such smoothness tests,
not only to check our implementation of egw but also to
identify potential issues in waveform models.

D. Dependence of egw on extrema-finding methods

For the final robustness test, we consider how strongly
egw depends on the method used to locate extrema. We will
consider only the residual amplitude and amplitude fits
methods for simplicity. From Figs. 9 and 11, we already see
that egw is broadly consistent between different methods.
We now quantify the differences in Fig. 13, for the same
dataset of 50 SEOBNRv4EHMwaveforms from Sec. IV C.
The top-left panel in Fig. 13 shows egwðtÞ for these

waveforms when using the residual amplitude method and
the colors represent the instantaneous absolute difference
with respect to the egwðtÞ obtained from the amplitude fits
method. Here, we use SEOBNRv4EHM evaluated at zero
eccentricity for the quasicircular counterpart required for
residual amplitude. The gray region represents the parts
where residual amplitude can compute egwðtÞ, but ampli-
tude fits cannot. However, we note that this occurs only for
small eccentricities egw ≲ 5 × 10−3 and close to the merger.
This region also coincides with the region where
SEOBNRv4EHM exhibits the noisy behavior discussed
in Fig. 12.
Next, the top-right panel in Fig. 13 illustrates the

difference in egwðtÞ between different choices of quasi-
circular counterpart for the residual amplitude method.
The curves once again represent egwðtÞ evaluated using
residual amplitude with the quasicircular counterpart
obtained from SEOBNRv4EHM (the same model used
to produce the eccentric waveforms). The colors represent
the instantaneous absolute difference with respect to
the egwðtÞ obtained from the residual amplitude method
with the quasicircular counterpart obtained from the
IMRPhenomT model instead. The gray region represents
the parts where residual amplitude using SEOBNRv4EHM
for the quasicircular counterpart can compute egwðtÞ, but
residual amplitude using IMRPhenomT cannot. Once
again, this occurs only for small eccentricities and near
the merger. In this regime, the small differences between
SEOBNRv4EHM (in the quasicircular limit) and
IMRPhenomT, especially near the merger, become impor-
tant, and IMRPhenomT does not accurately capture the
secular growth in SEOBNRv4EHM.
In the regions where both residual amplitude and

amplitude fits methods successfully compute egwðtÞ in

FIG. 12. Tracing the noisy features in Fig. 11 to the behavior of
the SEOBNRv4EHMmodel at small eccentricities. The top panel
shows egw for the case with eeob ¼ 1.05 × 10−5 at
t0 ¼ −20000M, from the middle panel in Fig. 11. The bottom
panel shows the corresponding Δω22 [Eq. (26)], which helps
highlight the modulations due to eccentricity. The drop in egw
occurs at the same time as an abrupt drop in the eccentricity
modulations inΔω22 that arises from a transition function applied
to the dynamical variables entering the NQC corrections in
SEOBNRv4EHM [46].
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the top-left panel in Fig. 13, the biggest differences are of
the order of 10−2. These differences occur either for small
eccentricities near the merger or for very large eccen-
tricities (egw ∼ 0.9). At such high eccentricities, the
waveform is characterized by sharp bursts at pericenter
passages alternating with wide valleys that include the
apocenter passages (see the bottom panel in Fig. 2, for
example). As a result, it is easy to identify the pericenter
times but not the apocenter times for these waveforms.
This can be resolved by only identifying the pericenter
times and defining the apocenter times to be the mid-
points between consecutive pericenters. The assumption
employed here is that the radiation reaction is not strong
enough that the times taken for the first and second halves
of an orbit are significantly different. While this
assumption is broken near the merger, we already discard
the last two orbits before the merger when computing egw
(Sec. II C).
The bottom panels in Fig. 13 show the same as the top

panels but when identifying the midpoints between peri-
centers as apocenters. We find that the largest differences

between residual amplitude and amplitude fits, as well as
the largest differences between residual amplitude with
different quasicircular counterparts, are now an order of
magnitude smaller. This suggests that identifying the
midpoints between pericenters as apocenters may be a
more robust choice than directly locating apocenters,
especially for large eccentricities. We provide this as an
option in gw_eccentricity [93].
In summary, the different choices for locating extrema in

Fig. 13 lead to broadly consistent results for egwðtÞ, with the
only notable differences occurring for (i) small eccen-
tricities (egw ≲ 5 × 10−3) and near the merger, where the
SEOBNRv4EHM model also has known issues (see
Fig. 12), and (ii) large eccentricities (egw ∼ 0.9), where
locating apocenters is problematic. As discussed in Sec. III,
such differences are expected, and the different methods to
locate extrema should be regarded as different definitions
of eccentricity. However, identifying the midpoints
between pericenters as apocenters, rather than directly
locating apocenters, can lead to more consistent results
between different methods.

FIG. 13. Differences in egwðtÞ due to different methods used to locate pericenters and apocenters, for the same SEOBNRv4EHM
waveforms as Fig. 11. Top left: the curves show egwðtÞ obtained using the residual amplitude method with the quasicircular counterpart
also obtained from SEOBNRv4EHM. The colors represent the absolute difference with respect to the egwðtÞ obtained using the
amplitude fits method, and the gray region shows the parts where the second method fails to compute egwðtÞ. Top right: the same, but
now the colors show the difference with respect to the egwðtÞ obtained with residual amplitude method with the quasicircular counterpart
obtained from the IMRPhenomT model. In both top panels, the different choices for locating pericenters and apocenters lead to broadly
consistent results for egwðtÞ, with the only notable differences occurring for (i) small eccentricities (egw ≲ 5 × 10−3) and near the merger,
where the SEOBNRv4EHM model also has known issues (see Fig. 12), and (ii) large eccentricities (egw ∼ 0.9), where locating
apocenters is problematic. The bottom panels show the same as the top panels but when identifying the midpoints between pericenters as
apocenters. This leads to more consistent results between different methods, and the largest differences in egw decrease by an order of
magnitude.

DEFINING ECCENTRICITY FOR GRAVITATIONAL WAVE … PHYS. REV. D 108, 104007 (2023)

104007-19



E. Applicability for the high-eccentricity regime

The tests we have conducted so far have been restricted
to egw ≤ 0.9. In this section, we focus on testing our
implementation in the high-eccentricity regime, egw > 0.9.
While the eccentricity definition adopted in this work is, in
principle, valid at all eccentricities in the range (0 − 1), high
eccentricity comes with additional challenges:

(i) As egw → 1, the separation in time between peri-
centers increases (see Fig. 2), making it challenging
to produce waveforms with enough extrema to
construct the ωp

22ðtÞ and ωa
22ðtÞ interpolants required

in Eq. (4). This limits the practical applicability of
egw for high-eccentricity NR simulations like those
in Ref. [78]. However, as we will see below, if
sufficiently long waveforms can be produced, this
definition of eccentricity and our implementation
still work at high eccentricities.

(ii) The first available time t̂0 for egwðtÞ is the maximum
of the times of the first pericenter and first apocenter
(Sec. II C), which occurs up to an orbit after the start
of the waveform, t0. As the duration of orbits
increases with eccentricity, so does the difference
between t0 and t̂0. As eccentricity also evolves
during this time, a non-negligible amount of eccen-
tricity may be radiated away before the first available
time for the egwðtÞ measurement (see an exam-
ple below).

(iii) As discussed in Sec. IV D, locating apocenters
becomes challenging at high eccentricities. There-
fore, in the test below, we identify the midpoints
between pericenters as apocenters rather than di-
rectly locating apocenters.

To test our implementation at high eccentricities,
we construct a new dataset of SEOBNRv4EHM
waveforms with eccentricities 0.9 ≤ eeob ≤ 0.999 defined
at t0 ¼ −5 × 106M,8 for a system with parameters q ¼ 1,
and χ1z ¼ χ2z ¼ 0. For this dataset, the waveforms include
154 (672) pericenters before merger for eeob ¼ 0.999
(eeob ¼ 0.9) at t0, allowing us to easily measure egwðtÞ
even for such high eccentricities. Figure 14 shows the
eccentricities egwðtÞ measured using these waveforms; as
expected, egwðtÞ varies smoothly with varying eeob even for
high eccentricities. For the waveform with eeob ¼ 0.999 at
t0, the measured eccentricity at the first available time t̂0 ≈
−2 × 106M is egw ≈ 0.99. Because the gap between t̂0 and
t0 is very large (∼3 × 106M) for this case, it is unsurprising
that the eccentricity decays to egwðt̂0Þ ¼ 0.99. The choice
of t0 ¼ −5 × 106M was made for this dataset so that t0
occurs early in the inspiral, where this decay is less drastic.

V. CONCLUSION

We present a robust implementation of standardized
definitions of eccentricity (egw) and mean anomaly (lgw)
that are computed directly from the gravitational waveform
(Sec. II). Our method is free of gauge ambiguities, has the
correct Newtonian limit, and is applicable for waveforms of
all origins, over the full range of allowed eccentricities for
bound orbits. However, as our method relies on computing
the frequency at pericenter and apocenter passages, it
requires waveforms with at least ∼4–5 orbits.
Our method can be applied directly during source

parameter estimation or as a postprocessing step to convert
posterior samples from the internal definitions used by
models and simulations to the standardized ones. This puts
all models and simulations on the same footing while also
helping connect GW observations to astrophysical predic-
tions for GW populations. Finally, we propose how the
reference frequency fref and start frequency flow, that are
used in GW data analysis, should be generalized for
eccentric binaries (Secs. II E–II G).
One key aspect of computing egw and lgw is identifying

the times of pericenter and apocenter passages from the
waveform. We provide different methods for this purpose
that should be treated as different variants of the eccen-
tricity definition. Among the provided methods (see
Sec. III), the amplitude method is applicable when eccen-
tricity is sufficiently high (egw ≳ 10−3…10−2), while
residual amplitude and amplitude fits are applicable for
smaller eccentricities as well.
We demonstrate the robustness of our implementation by

testing against waveforms of different origins, including
PN, EOB, EMRIs, and NR (Sec. IV B). We further conduct
smoothness tests that have the added benefit of identifying
noisy features in waveform models (Sec. IV C). Our tests

FIG. 14. A smoothness test for egwðtÞ at very high eccen-
tricities. The curves show the time evolution of egw for
SEOBNRv4EHM waveforms with initial eccentricities 0.9 ≤
eeob ≤ 0.999 at t0 ¼ −5 × 106M. The colors represent eeob at
t0. The binary parameters are shown in the figure title. We use the
residual amplitude method to locate pericenters and identify the
midpoints between pericenters as apocenters.

8Once again, we achieve the desired length of the inspiral by
adjusting the start frequency of the SEOBNRv4EHM model
accordingly.
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include waveforms with eccentricities ranging from 10−5 to
0.999. We discuss the limitations of our approach for very
high eccentricities (Sec. IV E), especially for NR simu-
lations where including ∼4–5 orbits can be challenging
when eccentricity is high.
We make our implementation publicly available through

an easy-to-use Python package, gw_eccentricity [93]. This
work focuses on systems without spin precession, and the
most important next step is to generalize our methods to
spin-precessing eccentric binaries. We leave this to future
work but discuss potential approaches (Sec. II C 1).
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