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We investigate the influence of a time-varying spacetime background on the vacuum polarization of a
massless quantum field confined to a Casimir cavity. The background is modeled as an anisotropic Bianchi-I
spacetime, in which small time-dependent perturbations around the flat spacetime are vanishing in the far
past and future. The spacetime admits asymptotic Minkowskian regions, thus allowing for an unambiguous
definition of the in- and out-field vacua. Following Schwinger’s proper-time approach, we evaluate the
vacuum polarization inside the Casimir cavity. We show the presence of a small shift in the field vacuum
energy, once the perturbation is over. The time-dependent background has distorted the field modes,
causing a permanent change in the zero-point energy of the field confined to the Casimir apparatus. As an
example, we briefly consider the case of a weak gravitational wave background, which can be locally
identified with the previously employed Bianchi-I spacetime model. The present effect appears as a sort of
gravitational memory of the Casimir effect.

DOI: 10.1103/PhysRevD.108.104003

I. INTRODUCTION

One of the nontrivial features of quantum field theory
is the occurrence of an infinite value of its zero-point
energy—the vacuum energy. In flat spacetime such prob-
lem can be easily circumvented by subtracting the infinite
amount of energy by a suitable renormalizing counterterm,
thus giving the theory a physical meaning. However, in a
curved, time-dependent background this is not generally
possible, since the construction of a well-defined vacuum
state becomes ambiguous. Rigorously speaking, this is
because the Poincaré group is no longer a symmetry group
of the spacetime. As a consequence, also the particle
concept becomes an observer-dependent quantity, being
related to the particular choice of the vacuum state [1].
When the background spacetime admits asymptotically

flat regions in the far past and future, it is still possible to
use the Minkowskian vacuum as the state characterized by
the absence of particles according to all the inertial
observers in those asymptotic regions. With respect to
these asymptotic vacua, it is then possible to explore the
influence of such a time-dependent gravitational back-
ground as regards particle creation and vacuum polarization
effects.
Influence of gravitation on vacuum energy undoubtedly

represents an interesting topic, ranging from subatomic to
cosmological scales. It may also be that a deeper under-
standing of the physics at the microscale could help to shed
light on some unresolved issues plaguing current models of

our Universe, such as, for example, the cosmological
constant problem [2–4].
In that respect, an interesting arena is offered by the

Casimir effect [5–8], a purely quantum effect, experimen-
tally verified, consisting in a tiny attractive force between
two uncharged conducting plates, placed a short distance L
from each other. The explanation of such effect relies on a
small shift of the vacuum energy of the quantum field.
Roughly speaking, such a shift originates from a distortion
in the modes of a quantum field constrained in a finite
region of space by some boundaries. The latter can be
material as well as due to the geometrical properties of the
background spacetime.
Influence of static as well as stationary gravitoinertial

fields on the vacuum energy in the Casimir effect is indeed
a theoretically relevant issue, which has been extensively
investigated by several authors through the years [9–23].
Generally speaking, a time-varying background geom-

etry can affect the dynamics of a given quantum field,
altering both the vacuum persistence amplitude and the
vacuum polarization. In the first case, we have particle
creation. In the second case, the field modes suffer a
distortion leading to a shift in the vacuum energy.
In the present paper, we will consider in detail the

influence of a time-dependent background spacetime on the
vacuum energy of a massless scalar field confined to a
Casimir cavity. The gravitational background will be
described by a slightly anisotropic Bianchi-I spacetime
model [1,24], admitting asymptotic Minkowskian regions
in the remote past and future.
Being time-dependent, the background is expected to

give rise also to particle creation out of the quantum field*sorge@pd.infn.it
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vacuum inside the cavity [25–31]. Here, however, we will
focus on the gravitational corrections to the vacuum
polarization.
When computing the field vacuum energy, both particle

creation and the polarization effect contribute to the field
stress-energy tensor Tμν, which—on the other hand—
couples to gravity. In order to disentangle the two con-
tributions, we will follow Schwinger’s proper-time
approach [30,32–34]. We will compute the real part of
the effective action W, related to the vacuum polarization
(leading to the static Casimir effect), discarding the
imaginary part of W, describing the particle creation
(not to be confused with the dynamic Casimir effect as
such, in which particle creation is induced by a rapid
motion of the boundaries [35]).
We will manage the divergences arising during the

calculations by means of a renormalization procedure based
on the analytic continuation technique (see, e.g., [36]).
We will show that, once the gravitational perturbation is

over (i.e., in the far future), a small shift in the vacuum
energy is found as a consequence of the interaction. The
time-dependent background has distorted the field modes,
causing a permanent change in the zero-point energy of the
quantum field confined to the cavity. This appears as a sort
of a “gravitational memory” of the Casimir effect.
The paper is organized as follows. In Sec. II we introduce

the time-dependent gravitational background. Then we
solve the Klein-Gordon equation for a massless scalar
field, minimally coupled to the gravitational field and
confined to a Casimir cavity, represented by two large,
perfectly reflecting parallel plates, separated by a small
(proper) distance L. In Sec. III we follow Schwinger’s
proper-time approach, computing the effective actionW for
the quantum field. In Sec. IV we first check our compu-
tations, finding the Casimir energy density and the attrac-
tive force between the plates in the flat spacetime case.
Subsequently, we adopt the same procedure in the case of a
slightly perturbed background described by a suitable
model of time-varying Bianchi-I spacetime. In Sec. V
we discuss the emerging divergences, hence obtaining the
Casimir vacuum energy density as a finite, physical
quantity. In Sec. VI we adapt the present model to a
specific case, in which the background spacetime describes
a weak gravitational wave interacting with the Casimir
cavity. In Sec. VII we discuss the results, also in connection
with the weak energy conditions and the quantum energy
inequalities, and give some concluding remarks.
In Appendix A we generalize our results, briefly dis-

cussing the case of a confined electromagnetic field.
Appendix B is devoted to the analysis of the interaction
with a gravitational wave propagating at an arbitrary
direction in the reference frame of the Casimir cavity.
The approach followed in Appendix B can be straight-

forwardly applied to more general spacetime backgrounds
such as, e.g., Bianchi type-IX models.

Throughout the paper, unless otherwise specified, use
has been made of natural geometrized units. Greek indices
take values from 0 to 3; latin ones take values from 1 to 3.
The metric signature is −2, with determinant g.

II. THE GRAVITATIONAL BACKGROUND
AND THE CASIMIR CAVITY

We are interested in a time-dependent background
spacetime, admitting asymptotic Minkowskian regions in
the far past and future, so that the definitions of in and out
vacua are not ambiguous. On the other hand, time depend-
ence will allow for particle creation as well as vacuum
polarization effects. Considering also the possibility of
anisotropies, we will focus on a Bianchi-I spacetime
background. The Bianchi-I universe has zero intrinsic
curvature but nonzero extrinsic curvature. The general line
element is [1,24]

ds2 ¼ dt2 −
X3
i¼1

a2i ðtÞdx2i ; ð1Þ

namely, the simplest generalization of the homogeneous
spatially flat Friedmann-Lemaître-Robertson-Walker
(FLRW) universe. The functions aiðtÞ represent the direc-
tional scale factors along the axes fx; y; zg in a matter-
comoving coordinate frame (with 4-velocity uμ ¼ δμ0). In
what follows we will suppose that the anisotropies are
small, so that (1) reads

ds2 ¼ dt2 −
X3
i¼1

½1þ hiðtÞ�ðdxiÞ2; ð2Þ

where the condition

lim
t→�∞

hiðtÞ ¼ 0 ð3Þ

accounts for the asymptotic Minkowskian behavior. For
simplicity, we will also impose the following constraints:

max jhiðtÞj ≪ 1; ð4Þ

X3
i¼1

hiðtÞ ¼ 0; ð5Þ

h3ðtÞ≡ hzðtÞ ¼ 0; ð6Þ

(for Bianchi-I type, coordinates can be chosen such that the
spatial metric is diagonal and traceless [37,38]). Assume
that the Casimir cavity is oriented in space so that the
plates, each of (proper) area A, are orthogonal to the z axis,
placed at z ¼ 0 and z ¼ L, respectively, with L represent-
ing the (proper) plate separation. The constraint (6)
guarantees that the proper and the coordinate distance
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between the plates will coincide at any time. This will allow
us to avoid possible complications due to “tidal” effects
[the more general case in which (6) is relaxed will be briefly
considered in Appendix B and discussed in Sec. VII]. We
will consider a massless scalar field ϕðxÞ, satisfying the
Klein-Gordon equation

1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
gμν∂νϕðxÞ� þ ξRðxÞϕðxÞ ¼ 0; ð7Þ

where ξ is a parameter describing the coupling between the
matter field and the background gravitational field and RðxÞ
is the scalar curvature. In what follows we will suppose
minimal coupling, so that ξ ¼ 0. We will also assume
Dirichlet boundary conditions at the confining plates. To
the lowest order, (7) reads

ð□þ V̂Þϕ ¼ 0; ð8Þ

where

V̂ ¼ hxðtÞ∂2x þ hyðxÞ∂2y ¼ hðtÞð∂2x − ∂
2
yÞ ð9Þ

(throughout the text, a caret will mean that the correspond-
ing quantity has to be regarded as an operator) with hðtÞ≡
hxðtÞ ¼ −hyðtÞ [see (5) and (6)].
Spatial translation invariance of Bianchi-I spacetime (1)

is broken by the field confinement along the z direction.
Nevertheless, it is still assured along the transverse direc-
tion x and y, so that we can search for solutions of (8) in the
form

ϕðxÞ ¼ Neip⃗⊥·x⃗⊥ sin

�
nπz
L

�
ηðtÞ; ð10Þ

where N ¼ ð 2
ð2πÞ3LÞ1=2 is an overall normalization constant,

p⃗⊥ ¼ ðpx; pyÞ, x⃗⊥ ¼ ðx; yÞ, and the function ηðtÞ satisfies

ηðtÞ → e−iωt; hðtÞ → 0: ð11Þ

In the remote past (t → −∞), i.e., on lack of gravitational
perturbation, the spacetime is Minkowskian and (10)
reduces to the usual mode solution inside the cavity,
namely,

ϕð0ÞðxÞ ¼ Neip⃗⊥·x⃗⊥ sin

�
nπz
L

�
e−iωt: ð12Þ

Using (10) in (8) yields, to the lowest order in h,

∂
2
t ηþ ω2η − ðhðtÞp2⊥ cos 2θÞe−iωt ¼ 0; ð13Þ

where tan θ ¼ py=px, and ω2 ¼ p2⊥ þ ðnπ=LÞ2. The sol-
ution of (13) is

ηðtÞ ¼ e−iωt þ
Z

t

−∞
dt0

sinðωðt − t0ÞÞ
ω

hðt0Þp2⊥ cos 2θe−iωt
0

¼ αpðtÞe−iωt þ βpðtÞeiωt; ð14Þ

where

αpðtÞ ¼ 1þ i
2ω

Z
t

−∞
dt0 hðt0Þp2⊥ cos 2θ; ð15Þ

βpðtÞ ¼ −
i
2ω

Z
t

−∞
dt0 hðt0Þp2⊥ cos 2θe−2iωt

0
; ð16Þ

and

ϕðxÞ¼NðαpðtÞe−iωtþβpðtÞeiωtÞeip⃗⊥·x⃗⊥ sin

�
nπz
L

�
: ð17Þ

In the limit t → þ∞ we also have

ηðtÞ ¼ αpe−iωt þ βpeiωt; ð18Þ

where αp and βp can be regarded as the Bogoliubov
coefficients, connecting the in and out vacua, satisfying
the condition jαpj2 − jβpj2 ¼ 1. To the present order of
approximation, we have [1]

αp ¼ 1þ i
2ω

Z þ∞

−∞
dt hðtÞp2⊥ cos 2θ; ð19Þ

βp ¼ −
i
2ω

Z þ∞

−∞
dt hðtÞp2⊥ cos 2θe−2iωt: ð20Þ

III. SCHWINGER’S PROPER-TIME APPROACH

In this section we will follow Schwinger’s proper-time
approach [32–34] in order to derive an expression of the
effective action W for the scalar field inside the Casimir
cavity. In the presence of a time-dependent gravitational
background, the effective action may become complex. In
such case the real part ofW describes phenomena related to
the vacuum polarization, as the (static) Casimir effect;
meanwhile the imaginary part is responsible for particle
production. Actually, in the so-called “in-out” formalism
the imaginary part of the effective action is related to the
vacuum persistence amplitude

h0 outj0 ini ¼ eiW: ð21Þ

Let us start writing the effective action W,

W ¼ lim
ν→0

WðνÞ; ð22Þ

where [30,32–34]
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WðνÞ ¼ −
i
2

Z
∞

0

ds sν−1Tre−isĤ þ c:t:; ð23Þ

and the limit ν → 0 has to be taken at the end of
calculations. The additional counterterms (c.t.) are intro-
duced to subtract divergent terms, hence recovering the
required physical normalization. In (23),

Ĥ ¼ Ĥ0 þ V̂

¼ −p̂2
0 þ p̂2⊥ þ

�
nπ
L

�
2

− hðtÞp2⊥ cos 2θ; ð24Þ

where p̂0 ¼ i∂t, p̂⊥ ¼ −i∇!⊥ and the total trace

Tre−isĤ ¼
XZ

d4xhxje−isĤjxi ð25Þ

has to be evaluated all over the continuous as well the
discrete degrees of freedom, including those of spacetime.
Expanding the trace in terms of the eigenvectors jαi≡
jp0; p⊥; ni of Ĥ, we write

Tre−isĤ ¼
Z

d4x
XZ

dαhxjαihαje−isðĤ0þV̂Þjα0ihα0jxi; ð26Þ

where jxi≡ jt; x⊥; zi and
XZ

dα≡X
n;n0

Z
dp0 dp0

0dp⊥dp0⊥: ð27Þ

Since ½ ˆp⃗; V̂� ¼ 0, we have

hαje−isðĤ0þV̂Þjα0i ¼ e−isp
2⊥e−isðnπ=LÞ2

× hp0je−isð−p̂2
0
−hðtÞp2⊥ cos 2θjp0

0i; ð28Þ

and, taking into account (13),

hαje−isðĤ0þV̂Þjα0i ¼ e−isp
2⊥e−isðnπ=LÞ2eisω2

× δn;n0δ
ð2Þðp⊥ − p0⊥Þδðω − ω0Þ ð29Þ

[notice that the states jαi are normalized according
to the standard Dirac prescription: hαjα0i ¼ δðα; α0Þ,
where δðα; α0Þ is the Kronecker symbol δα;α0 if fjαig is

a discrete set and the Dirac delta function δðα − α0Þ if it is
continuous].
Replacing (29) in (26) and using jhxjαij2 ¼ jϕðxÞj2 we

get [see (17)]

Tre−isĤ ¼ N2

Z
d4x

Z
d2p⊥ dω

X
n

�
jαpðtÞj2 þ jβpðtÞj2

þ 2ℜeðαpðtÞβpðtÞ�e−2iωtÞ
�

× sin2
�
nπz
L

�
e−isp

2⊥e−isðnπ=LÞ2eisω2

: ð30Þ

The rapidly oscillating term ∝ e−2iωt appearing in the last
term can be discarded in the evaluation of the action,
since the involved time integration gives a vanishing mean
value (this is known as the rotating-wave approximation).
Performing the integration over the cavity volume (¼AL)
we find

Tre−isĤ ¼ A
ð2πÞ3

Z
dt

Z
2π

0

dθ
Z þ∞

0

p⊥ dp⊥
Z þ∞

−∞
dω

×
X
n

ðjαpðtÞj2 þ jβpðtÞj2Þe−isp2⊥e−isðnπ=LÞ2eisω2

:

ð31Þ
IV. THE STATIC CASIMIR EFFECT

In this section we will discuss the static Casimir effect,
deriving it from the real part of the effective action W. One
could wonder if we are using the word static while
considering a time-varying background. Actually, as we
will see in the following, we are interested in the zero-point
energy of the quantum field in the Casimir apparatus in the
far future, namely, when the time-dependent gravitational
perturbation is over. It is just in this limit that we can
recover the static Casimir effect, thus evaluating possible
shift induced by the gravitational interaction. A naive
reasoning might lead one to expect no shift in the vacuum
energy. As we will see, however, this is not the case.
Following Schwinger’s proper-time approach, we have

hϵCasi ¼ −
1

AL
lim
ν→0

�
lim

t→þ∞

∂

∂t
ℜeWðνÞ

�
: ð32Þ

From (23) and (31) we obtain

hϵCasi ¼
1

2ð2πÞ3L lim
ν→0

ℜe

	
i
Z þ∞

0

dssν−1
�Z

2π

0

dθ
Z þ∞

0

p⊥dp⊥
Z þ∞

−∞
dω

X
n

ð1þ 2jβpj2Þe−isp2⊥e−isðnπ=LÞ2eisω2

�

; ð33Þ

where use has also been made of the relation jαpj2 − jβpj2 ¼ 1, and βp ¼ limt→þ∞ βpðtÞ is given by (20).
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A. Flat spacetime background

As a consistence check, let us evaluate (33) in the flat
spacetime background, i.e., βp ¼ 0. The integrations in the
square brackets can be readily performed, giving

hϵCasi0 ¼ lim
ν→0

ℜe

	 ffiffi
i

p

16π3=2L

X
n

Z þ∞

0

dssν−
3
2
−1e−isðnπL Þ2



:

ð34Þ

The remaining integral can be converted into a Gamma
function and the infinite sum yields a Riemann ζ-function

hϵCasi0¼ lim
ν→0

ℜe

	
−ðiÞ−ν
16π3=2L

�
π

L

�
2ν−3

ζð2ν−3ÞΓðν−3=2Þ


:

ð35Þ

Performing the analytic continuation (ν → 0) we finally
get [34]

hϵCasi0 ¼ −
π2

1440L4
; ð36Þ

the well-known result for the Casimir energy density of a
massless scalar field. We point out that, when βp ¼ 0,
the quantity in curly brackets appearing in (33) is in
itself real. In other words, the effective action W has no
imaginary part. This means that—as previously recalled—
we do not expect particle creation in a flat spacetime
background.
We can also find the attractive force between the plates

(per unit surface), obtaining

fð0ÞCas ¼
Fð0Þ
Cas

A
¼ −

1

A
∂Eð0Þ

Cas

∂L

¼ −
1

A
∂ALhϵCasi0

∂L
¼ −

π2

480L4
: ð37Þ

B. Bianchi-I spacetime background

Let us now consider the case βp ≠ 0, corresponding to
the anisotropic background we have introduced in Sec. II.
Looking at (33) we see that the correction to the flat
Casimir result (36) reads

hδϵCasi ¼
1

2ð2πÞ3L lim
ν→0

ℜe

	
i
Z þ∞

0

dssν−1
�Z

2π

0

dθ
Z þ∞

0

p⊥dp⊥
Z þ∞

−∞
dω

X
n

2jβpj2e−isp2⊥e−isðnπ=LÞ2eisω2

�

: ð38Þ

Notice that, in (38), n, ω, and p⊥ have to be considered as
independent degrees of freedom. Before we go on, we need
an explicit expression for the quantity βp. For computa-
tional convenience let us assume the metric perturbation to
have a Gaussian profile

hðtÞ ¼ He−σ
2t2 ; ð39Þ

where H (with jHj ≪ 1) represents the amplitude of the
perturbation and 1=σ gives a rough estimate of the time
duration of the perturbation. Notice that limt→�∞ hðtÞ ¼ 0,
thus guaranteeing that the in and out spacetime regions are
Minkowskian, so that the asymptotic definition of the corre-
sponding vacuum state is unambiguous. Using (20) we have

βp ¼ −
iH

ffiffiffi
π

p
2ωσ

p2⊥e−ðω=σÞ
2

cos 2θ: ð40Þ

Combining (38) and (40), andperforming the integration over
the variables s and θ, we obtain

hδϵCasi¼
H2

16πσ2L
lim
ν→0

ℜe

	
i1−νΓðνÞ

×
X
n

Z þ∞

0

dω
ω2

Z þ∞

0

dp⊥p5⊥
e−2ω

2=σ2

ðΩ2−ω2Þν


; ð41Þ

where Ω2 ¼ p2⊥ þ ðnπL Þ2. The last integral in (41) can be
solved recalling that [39,40]

Z þ∞

0

qμdq
ðq2 þ C2Þν ¼

Γð1þμ
2
ÞΓðν − 1þμ

2
Þ

2ΓðνÞC2ν−1−μ : ð42Þ

Hence

hδϵCasi ¼
H2

16πσ2L
lim
ν→0

ℜe

	
i1−νΓðν − 3Þ

�
L
π

�
2ν−6

IðνÞ


;

ð43Þ

where we have put

IðνÞ ¼
Z þ∞

0

dω
ω2

e−2ω
2=σ2

X
n

1

ðn2 − ω2L2

π2
Þν−3 : ð44Þ

IðνÞ is potentially plagued by singularities. However, in (43)
we may replace IðνÞ with

ĨðνÞ ¼
Z þ∞

0

dω
ω2

e−2jω2j=σ2X
n

1

ðn2 − ω2L2

π2
Þν−3 ; ð45Þ

which obviously coincides with IðνÞ, since ω∈R. The
following change of variable
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ω ¼ −iu; u∈C; ð46Þ

yields

ĨðνÞ ¼
Z þi∞

0

idu
ðuþ ϵÞ2 e

−2j−ðuþϵÞ2 j
σ2

X
n

1�
n2 þ ðuþϵÞ2L2

π2

�
ν−3 :

ð47Þ

Notice that in (47) u is a purely imaginary quantity, ranging
from0 throughþi∞. Inorder to get rid of thepoles of (47),we
have also introduced—as usual—a small quantity ϵ > 0
whose limit ϵ → 0 we will take at the end of calculations.
We see that the poles of (47) lie at u ¼ −ϵ and (as long as
ν > 3) at u ¼ −ϵ� inπ

L ; n∈N − f0g, i.e., to the left of
the imaginary axis in the u complex plane. Hence, none of
those poles is encountered in the ð0;þi∞Þ integration
involved in (47). Consider now the integral ĨðνÞ extended
to the whole u complex plane along a closed path
Γ ¼ ð0;þi∞Þ ∪ γ∞ ∪ ð−∞; 0Þ, with γ∞ being a curve
placed at infinity in theu plane. There being nopoles enclosed
byΓ, the integrand is aholomorphic function in the considered
domain. Taking into account that the contribution along γ∞ is
vanishing, we can write

ĨðνÞ¼ i
Z þ∞

0

du
ðuþ ϵÞ2 e

−2ðuþϵÞ2
σ2

X
n

1�
n2þðuþϵÞ2L2

π2

�
ν−3 ; ð48Þ

where we have made the replacement j−ðuþ ϵÞ2j →
ðuþ ϵÞ2, since u is now running along the real axis. We also
recognize that the infinite sum in (48) represents a inhomo-
geneousEpstein-Hurwitz ζ-function ζEHðs; q2Þ,which canbe
analytically continued to give [36,41]

ζEHðs;q2Þ¼
X∞
n¼1

ðn2þq2Þ−s

¼−
q2s

2
þ

ffiffiffi
π

p
2ΓðsÞΓðs−1=2Þq−2sþ1

þ 2πs

ΓðsÞ q1=2−s
X∞
n¼1

ns−1=2Ks−1=2ð2πnqÞ; ð49Þ

where s ¼ ν − 3, q ¼ ðuþϵÞL
π , and the rapidly converging sum

involves the modified Bessel functions KμðzÞ. Use of (49)
allows to explicitly perform the u integration in (48). After a
tedious but straightforward calculation we find that IðνÞ is
made of three contributions, stemming from the three pieces
composing (49). Correspondingly, the correction to the
Casimir energy density (43) can be written as

hδϵCasi ¼ hδϵCasi1 þ hδϵCasi2 þ hδϵCasi3; ð50Þ

where, in the limit ϵ → 0,

hδϵCasi1 ¼
H2

32πσ2L
lim
ν→0

ℜe

	
i−νΓðν − 3Þ σ

−2νþ5

2−νþ7=2 Γ
�
−νþ 5

2

�

; ð51Þ

hδϵCasi2 ¼ −
H2

16πσ2
lim
ν→0

ℜe

	
i−ν

ffiffiffi
π

p
2

Γ
�
ν −

7

2

�
σ−2νþ6

2−νþ4
Γð−νþ 3Þ



; ð52Þ

hδϵCasi3 ¼ −
H2

16πσ2L
lim
ν→0

ℜe

	
i−ν2πν−3

�
L
π

�
ν−5=2X

n

nν−7=2JðνÞ


; ð53Þ

having defined in (53)

JðνÞ ¼
Z þ∞

0

due−
2u2

σ2 u−νþ3=2Kν−7
2
ð2nLuÞ: ð54Þ

V. HANDLING THE DIVERGENCES

When working in a flat spacetime background, analytic
continuation [36] often allows one to get rid of the
divergences usually appearing in the evaluation of the
vacuum energy, thus straightforwardly leading to the physi-
cal result one is looking for. This is just what happened in
Sec. IV B, when computing the Casimir energy density.

However, in the presence of a time-dependent background,
such amathematical tool is generally not enough, and further
physical considerations are required in order to remove the
emerging infinities.
Let us consider in some detail the various contributions

(51)–(53) to the Casimir energy density in the ν → 0 limit.
The first one is manifestly divergent, due to the Γðν − 3Þ
pole. Such a term gives an infinite contribution to the
Casimir energy, ECas ¼ ALhδϵCasi which is proportional to
A, without any reference to the plate separation L.
Following Schwinger’s argument [33], such energy has
to be normalized to zero, so there must be a term in the
additional counterterm appearing in (23) that removes it.
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The second contribution (52) represents a uniform
spatial density of vacuum energy, independent of L.
Since we are interested in vacuum energy dependence
on the plate separation, we can discard this term, again
absorbing it in the counterterms appearing in (23).
All we are left with is the last term in (50). Handling this

term requires some care. Consider the following slightly
modified form of the integral appearing in (53):

Jðν; ν0Þ ¼
Z þ∞

0

due−
2u2

σ2 u−νþν0þ3=2Kν−7=2ð2nLuÞ; ð55Þ

which obviously reduces to JðνÞ in the ν0 → 0 limit. The
above integral converges provided the following inequality
holds:

ℜeð−νþ ν0 þ 3=2Þ > jℜeðν − 7=2Þj − 1 ⇒ ν0 > ν; ð56Þ

and can be solved [40] in terms of Whittaker functions
Wμ;λðzÞ. We perform the integral (55) assuming that (56) is
satisfied. Subsequently, we exploit analytic continuation,
placing Jðν; ν0Þ in (53) and taking both ν → 0 and ν0 → 0,
thus obtaining

hδϵCasi≡ hδϵCasi3
¼ −

H2

16πσ2L
lim

fν;ν0g→0
ℜe

	
i−ν2πν−3

�
L
π

�
ν−5=2X∞

n¼1

nν−7=2Jðν; ν0Þ



¼ H2

215=4πσ1=2L9=2

X∞
n¼1

n−9=2e
ðσLnÞ2

4 W−3
4
;−7

4

�ðσLnÞ2
2

�
: ð57Þ

Equation (57) is our main result. Being related to the
real part of the effective action W, hδϵCasi represents
a correction to the static Casimir energy density. In other
words, it is a correction to the so-called “vacuum
polarization.”
Inspection of (57) shows that hδϵCasi, induced by the

chosen time-dependent perturbation (39) of the spacetime
background is positive, while the Casimir energy density is
(usually) negative.
We are thus in presence of a sort of “memory effect” in

the Casimir energy, since the vacuum polarization retains
trace of the gravitational perturbation at t → þ∞, when the
perturbation has left the cavity. Furthermore, the correction
hδϵCasi gives rise to a reduction of the absolute value of
the Casimir energy. Hence, we expect a tiny reduction of
the Casimir force (37) acting between the plates once the
gravitational perturbation is over.
Equations (36) and (37) differ by a factor of 2 from the

results obtained by Casimir [5] considering an electromag-
netic field. This is usually ascribed to the presence of two
polarization photon states. We will briefly analyze the
electromagnetic field case in Appendix A, finding that,
indeed, also the above discussed memory effect comes with
a factor of 2, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Equation (57) can find application in the interesting case
in which the background spacetime is that of an incoming
gravitational wave, depicted as a short perturbation propa-
gating along the z direction. In such a case gμν ¼ ημν þ hμν,
and once the transverse traceless gauge has been employed,
the spacetime line element reads

ds2 ¼ dt2 − ð1þ hþðuÞÞdx2 − ð1 − hþðuÞÞdy2
− 2h×ðuÞdxdy − dz2; ð58Þ

with hþðuÞ and h×ðuÞ being the two physical states of
polarization of the wave and u ¼ t − z. Let us assume, for
the sake of simplicity, that the wave has the form of a
linearly polarized, short Gaussian pulse (the more general
case of a gravitational pulse, propagating at an arbitrary
direction and with both polarization states will be discussed
in Appendix B), so that h×ðuÞ ¼ 0 and

hþðuÞ≡ hðt − zÞ ¼ He−σ
2ðt−zÞ2 ; ð59Þ

where H can now be interpreted as the gravitational
“strain,” while σ gives a rough estimate of the time duration
of the pulse. If σL ≪ 1, we may expand hðt − zÞ around
z ¼ 0 (one of the plate locations), considering hðt − zÞ as a
function of time t only. So we put

hðt − zÞ ≃ hðtÞ ¼ He−σ
2t2 ð60Þ

inside the Casimir cavity. This implies that we can study the
interaction of the confined quantum field with the gravi-
tational wave just employing the Bianchi-I spacetime
model we introduced in Sec. II [42].
Exploiting the rapid convergence of the sum appearing in

(57), we expand hδϵCasi around the small parameter σL
obtaining, to the leading order in ðσLnÞ,

hδϵCasi ≃
15H2

64
ffiffiffiffiffiffi
2π

p
σ3L7

: ð61Þ
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So, once the perturbation due to the gravitational wave
pulse is over (at t → þ∞), the total Casimir energy inside
the cavity can be written as [recall (36)]

hECasi ¼ −
Aℏcπ2

1440L3

�
1 −

675c3H2

2
ffiffiffi
2

p
π5=2σ3L3

�
; ð62Þ

where we have restored, for clarity, SI units. Notice that
σ ≃ 1

Δtpert
, with Δtpert being the typical time duration of the

gravitational pulse. Looking at (62) it might seem that a
sufficiently long gravitational pulse could cause the com-
plete vanishing of the Casimir energy, or even a change in
its sign, turning the Casimir force in a repulsive one.
Although suggestive, such an occurrence cannot be con-
sidered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equations, (14) and (17)], based on the
smallness of the perturbation hðtÞ in the background
spacetime. So, in order our results can be considered
predictive, it is likely that

675c3H2

2
ffiffiffi
2

p
π5=2σ3L3

≪ 1; ð63Þ

which, in turn, implies

Δtpert ≪ H−2
3L ns: ð64Þ

For example, considering a Casimir cavity whose plate
separation is L ¼ 10−6 m and a gravitational wave pulse
having a strain H ¼ 10−21, the above constraint would
give Δtpert ≪ 10−1 s.

VII. CONCLUDING REMARKS

In this paper we have studied the corrections to the
vacuum energy density of a massless scalar field confined
to a Casimir cavity in an anisotropic, time-dependent
Bianchi-I background spacetime. We have modeled the
background introducing small perturbations around flat
spacetime, requiring them to vanish in the remote past and
future, thus allowing for asymptotically Minkowskian
regions. This, in turn, has guaranteed an unambiguous
definition of the in- and out-field vacua.
Following Schwinger’s proper-time approach, we have

computed the real part of the effective actionW for the field
in the cavity, evaluating ℜeðWÞ in the far future, once the
gravitational interaction was over. After a renormalization
procedure, required to get rid of unphysical divergences,
we have recovered the zero-point energy of the field,
finding a permanent shift with respect to the vacuum
energy density obtained in the flat spacetime case.
As an application of our result, in Sec. VI we have

considered the case of the interaction with a weak gravi-
tational wave, whose metric, in the small region occupied

by the Casimir apparatus, looks just like that of the Bianchi-
I spacetime model previously employed.
Themain outcome of the present analysis is that, generally

speaking, the gravitationally induced shift in the vacuum
energy acts in order to reduce the absolute value of the
negative Casimir energy density. Hence, also a tiny reduction
in the attractive force between the Casimir plates is expected.
At a first sight, the result could sound odd. Actually,

while (nonlocal) particle creation out of the field vacuum is
expected as a result of the past interaction with a time-
varying background geometry (and such latter effect is
indeed encoded in the imaginary part of the action we have
computed), distortions in the (local) vacuum polarization
are usually considered to appear during the interaction.
However, we have shown that vacuum polarization effects

can also exhibit a nonlocal behavior, thus yielding a
permanent shift in the vacuum energy, once the spacetime
perturbation is over. In that respect, we can consider the
present result as a sort of gravitationalmemory of theCasimir
effect.
Indeed, when computing the field vacuum energy,

any renormalization procedure implies—more or less
explicitly—a mode cutoff, which eventually captures the
global spacetime structure through the long wavelength
field modes [30]. So, also local quantities, such as those
related to the vacuum polarization, after renormalization,
can carry physically measurable information on the whole
story of the gravitational interaction.
Some further comments are in order.
(1) While the present analysis has been carried out

taking into account a massless scalar field, a more
realistic study should involve the electromagnetic
field. It is often stated that in this latter case the
Casimir energy is doubled with respect to the scalar
case, due to the presence of two polarization states.
In Appendix A we have briefly considered the
electromagnetic case, showing how the Schwinger
approach offers a clear, beautiful explanation of such
a naively expected result. Indeed, the evaluation of
the total trace picks up all the degrees of freedom of
the physical system, including the polarization
states. A similar result is also found in Appendix B,
where the interaction with a gravitational wave pulse
carrying both the polarization states is considered.

(2) The constraints (4) and (5) adopted in Sec. II are
those usually employed in cosmology when describ-
ing a small departure from the isotropic, homo-
geneous FLRW universe (see, e.g., [1,38]). Here,
they have been adopted in order to keep as clear as
possible the analysis of the gravitational influence
on the Casimir effect. Relaxing such conditions
would require a specific choice of the gravitational
background in order to obtain definite results.

(3) As regards the constraint (6), this has been imposed
to avoid further complications stemming from tidal
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effects induced by the time-varying gravitational
field on the boundaries (i.e., the cavity plates). Up to
the present order of approximation, it is likely that
tidal contributions simply add to the correction we
found in the Casimir energy. On the other hand, tidal
effects can also be analyzed (basically by virtue of
the equivalence principle) considering a cavity with
moving plates. In that respect, this mimics the
dynamical Casimir effect [35], whose analysis sug-
gests that the shift in the vacuum energy is propor-
tional to ðv=cÞ2, with v being the plate velocity (see,
e.g., [43] and references cited therein). In the present
case the gravitationally induced fluctuation between
the plates is roughly ΔL ¼ hðtÞL. Using, e.g., (60)
we find ðv=cÞ2 ∼ ðḣðtÞL=cÞ2 ¼ ð2Lσ2tc He−σ

2t2Þ2.
Hence, tidal effects are expected to become negli-
gible when compared to the correction hδϵCasi we
found, as the latter scales with an inverse power of L
(in a typical cavity we could have L ∼ 10−6 m,
or less).

(4) Removal of the constraint (6) becomes nevertheless
unavoidable in the case of a gravitational wave
propagating at an arbitrary direction with respect
to the reference frame of the Casimir cavity. Now,
the polarization states of the wave involve the z
direction too, and we need to transform the gravi-
tational pulse to the cavity frame. A thorough
analysis of such a case has been presented in
Appendix B. The proposed approach can obviously
be employed also when considering more general
Bianchi spacetimes (e.g., type IX).

(5) As pointed out in Sec. VI, the shift in the vacuum
energy shows a divergence in the σ → 0 limit [see
(57)]. Namely, hδϵCasi seems to increase without any
upper bound, as the typical duration of the back-
ground perturbation increases. However, as dis-
cussed at the end of Sec. VI, this behavior must
be considered with care, mainly because our calcu-
lations rely upon a perturbative approach.
Notice also that, in some respect, the present

divergence represents the analog, in the time do-
main, of the divergence appearing in the flat Casimir
effect [see (36)], as L → 0. Consequently, the
correction hδϵCasi to the polarization effect can be
considered reasonably meaningful as far as the
ratio hδϵCasi=hϵCasi ≪ 1.

(6) On the other hand, the existence of an upper bound
on the time duration of the perturbation, related to
the discussed memory effect, could also have a
different, deeper origin. Leaving aside the issues
related to the perturbative approach, the increase of
hδϵCasi as the time duration Δt of the gravitational
perturbation increases, is suggestive of an upper
limit for Δt which, in the case of the gravitational
pulse discussed in Sec. VI, is about Δt ∼ LH−2=3

[see (63) and (64)]. In such a limiting case, we
should observe the Casimir energy to vanish.

In any case, the effect of the gravitational perturbation is
to reduce the absolute value of the (negative) Casimir
energy. Such a behavior could recall (or even represent) a
manifestation of the quantum energy inequalities (QEIs),
first pioneered by Ford et al. [44], which dictate bounds on
the duration of negative energy, hence almost preserving
the weak energy conditions (WECs), which are violated
in the Casimir effect. Differently stated, QEIs require that
WEC violations are either small in magnitude or (as in our
case) short-lived [45].
The discussed effect, being a correction to the Casimir

effect (already tiny in itself), is too small to be detected in
the case of any realistic gravitational wave amplitude.
However, it could become relevant in some (maybe
astrophysical) scenarios, in which the gravitational ampli-
tude, although small, is not so small.
The employed weak field approximation seems to

suggest that—under extreme conditions—the gravitational
background could make the vacuum energy to vanish or
even change its sign, turning the Casimir force into an
attractive one. All this is probably only a signal of the
breakdown of the perturbative approach. In that respect,
investigation of higher-order corrections and/or use of
nonperturbative techniques could shed further light on
the effect.
Such a deeper analysis is clearly beyond the scope of

the present paper. We hope this will be the subject of a
future study.
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APPENDIX A: THE ELECTROMAGNETIC CASE

Although in most of the literature the study of the
Casimir effect (and its possible modifications) is usually
performed considering—for sake of simplicity—a scalar
field, just as we did in the present paper, in his original
seminal work (1948) Casimir considered an electromag-
netic field confined to a cavity [5,6]. For completeness, in
this appendix we propose a short analysis of the studied
memory effect in the electromagnetic case, also comparing
the results to the scalar one.
As in Sec. II, we will take the Casimir cavity oriented in

space so that the confining plates, orthogonal to the z axis,
are placed at z ¼ 0 and z ¼ L.
In the linearized theory, the Lagrangian of a given

physical system is usually written as a sum of various
contributions stemming from the possible couplings among
the matter fields and between matter fields and gravity.
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Here, we are interested in the coupling between gravity and
the electromagnetic field confined to a small cavity.
The Lagrangian density can be split into two contribu-

tions [hereafter, a super- or subscript (0) will mean that the
corresponding quantity is evaluated in a flat spacetime
background]

L ¼ Lð0Þ þ Lg; ðA1Þ

where Lð0Þ is the electromagnetic Lagrangian density in flat
spacetime andLg is theOðhÞ gravitational contribution. We
will use the following Lagrangian density:

Lð0Þ ¼ −
1

2
∂μAν

∂
μAν; ðA2Þ

first proposed by Fermi [46]. It is straightforward to check
that (A2) yields indeed the same equations of motion for
the 4-potential (□Aμ ¼ 0), provided the Lorentz gauge
∂μAμ ¼ 0 is imposed as a subsidiary condition.
The gravitational contribution Lg reads

Lg ¼ −
1

2
hμνTð0Þ

μν ; ðA3Þ

with Tð0Þ
μν being the electromagnetic stress-energy tensor

evaluated in the flat spacetime

Tð0Þ
μν ¼ ∂Lð0Þ

∂ð∂μAρÞ
∂νAρ − ημνLð0Þ: ðA4Þ

We point out that, at the present OðhÞ order of approxi-

mation, Tð0Þ
μν is independent of hμν, so that it satisfies the

ordinary conservation conditions, namely, ∂μT
μν
ð0Þ ¼ 0.

Furthermore, (A3) is gauge invariant with respect to gauge
transformations of the coordinates

xμ → x0μ ¼ xμ þ ξμðxνÞ; ðA5Þ

causing a change in the gravitational potentials

hμν → h0μν ¼ hμν − ∂μξν − ∂νξμ: ðA6Þ

Actually, the corresponding variation in Lg reads, up to first
order in h,

δLg ¼ −
1

2
ðδhμνÞTμν

ð0Þ

¼ ∂μξνT
μν
ð0Þ ¼ −ξν∂μT

μν
ð0Þ þ ∂μðξνTμν

ð0ÞÞ
¼ ∂μðξνTμν

ð0ÞÞ; ðA7Þ

being ∂μT
μν
ð0Þ ¼ 0, as stated. Lg is gauge invariant, since

adding a 4-divergence does not alter the action. From (A2)
we get the (flat spacetime) stress-energy tensor

Tμν ¼ −∂μAρ∂νAρ þ 1

2
ημν∂αAρ∂

αAρ: ðA8Þ

Plugging (A8) in (A3) yields

Lg ¼ −
1

2

��
−hμν þ 1

2
hημν

�
∂μAρ∂νAρ

�

¼ 1

2
h̄μν∂μAρ∂νAρ; ðA9Þ

where we have introduced the reduced potentials

h̄μν ¼ hμν −
1

2
hημν: ðA10Þ

The full electromagnetic Lagrangian (A1) thus reads

L ¼ −
1

2
∂μAν

∂
μAν þ

1

2
h̄μν∂μAρ∂νAρ; ðA11Þ

and the corresponding equations of motion for Aμ are
derived from the Euler-Lagrange equations

□Aρ − h̄μν∂μ∂νAρ − ð∂μh̄μνÞ∂νAρ ¼ 0: ðA12Þ

Exploiting the above recalled gauge invariance, we
may impose—as usual—the “harmonic” gauge ∂μh̄μν ¼ 0.
Besides, from (2) and (5) we see that h̄μν ¼ hμν, so hereafter
we will drop the overline. We finally obtain the (gravita-
tionally corrected) Maxwell equations for the 4-potentialAμ,

□Aρ − h̄μν∂μ∂νAρ ¼ 0: ðA13Þ

Notice that (A13) is formally equivalent to the scalar case (8)
discussed in the text. In particular, given themetric (2) and the
constraints (5) and (6), we have

ð□þ V̂ÞAρðxÞ ¼ 0; r ¼ 1; 2; ðA14Þ

where

V̂ ¼ hxðtÞ∂2x þ hyðxÞ∂2y ¼ hðtÞð∂2x − ∂
2
yÞ; ðA15Þ

just as in the scalar case [see (9)].
It is well known that the Lorentz gauge ∂μAμ ¼ 0 does

not fix uniquely Aμ. There remains a residual gauge
freedom so that, if Aμ satisfies the Lorentz condition, so
will A0

μ ¼ Aμ þ ∂μΛðxÞ as long as □ΛðxÞ ¼ 0. Choosing
ΛðxÞ to satisfy ∂tΛ ¼ −A0, we get A00 ¼ 0, hence (from

∂μAμ ¼ 0) ∇! · A⃗0 ¼ 0. Potentials satisfying this additional

condition, namely, A0 ¼ 0, ∇! · A⃗ ¼ 0 are said to belong to
the radiation (or Coulomb) gauge. So to say, the gauge
shoots twice, hence reducing from four to two the number
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of independent components of Aμ. These two remaining
degrees of freedom have to be identified with the two
physical polarization states of the radiation field.

In such a gauge E⃗ ¼ − ∂A0

∂t and ∇!× A⃗, being E⃗ and B⃗ the
electric and magnetic fields which must satisfy the boun-
dary conditions at the cavity plates

Ekjz¼0 ¼ Ekjz¼L ¼ 0; ðA16Þ

B⊥jz¼0 ¼ B⊥jz¼L ¼ 0; ðA17Þ

where Ek is the electric field component parallel to the
cavity plates, while B⊥ is the magnetic field component
normal to the plates.
In the flat spacetime case (hμν ¼ 0) the corresponding

modes read

Aj
ð0Þ

rðxÞ ¼ Nrfĵðn; zÞϵĵreik⃗⊥·x⃗⊥e−iωt; r ¼ 1; 2; ðA18Þ

where repeated hatted indices (j ¼ fx; y; zg) are meant to
be not summed and

fjðn; zÞ ¼

0
B@

sinðnπz=LÞ
sinðnπz=LÞ

−i cosðnπz=LÞ

1
CA: ðA19Þ

Also, Nr are normalization constants, k⃗⊥ ¼ ðkx; kyÞ,
x⃗⊥ ¼ ðx; yÞ, and ϵ⃗r (r ¼ 1, 2) represent the two physical
transverse polarization states of the electromagnetic field,
obeying ϵ⃗r · ϵ⃗s ¼ δrs and ϵ⃗r · k⃗ ¼ 0 ðr; s ¼ 1; 2Þ.
In the time-varying spacetime (2) the corresponding field

modes are similar to (10),

Aj
rðxÞ ¼ Nrfĵðn; zÞϵĵreik⃗⊥·x⃗⊥ηðtÞ; r ¼ 1; 2; ðA20Þ

where Nr ¼ ð 2
ð2πÞ3LÞ1=2, (r ¼ 1, 2) is an overall normaliza-

tion constant, and ηðtÞ is still given by (14) (with the p → k
replacement). From here on, calculations are basically the
same as those carried out in Sec. III, with a few obvious
changes in the notation. The only relevant point to raise is
that in the evaluation of the total trace (25) an extra
summation over the two polarization states is now implied.
In particular, (27) becomes

XZ
dα≡ X

n;n0;r

Z
dk0dk00dk⊥dk0⊥; ðA21Þ

with r ¼ 1, 2. The total trace reads

Tre−isĤ ¼
Z

dt
Z

d3x
Z

2π

0

dθ
Z þ∞

0

k⊥dk⊥
Z þ∞

−∞
dω

×
X
n;r

jhxjαirj2e−isk2⊥e−isðnπ=LÞ2eisω2

; ðA22Þ

where jhxjαirj2 ¼
P

j jAj
rðxÞj2. Using (A20) we find

X
r

Z
d3xjhxjαirj2 ¼

X
r

Z
dxdyN2

r jηðtÞj2
L
2
jϵrj2

¼
X
r

A
ð2πÞ3 jηðtÞj

2

¼ 2
A

ð2πÞ3 jηðtÞj
2: ðA23Þ

Recalling (14) and making use, as in the scalar field case, of
the rotating-wave approximation, we get

Tre−isĤ ¼ 2 ·
A

ð2πÞ3
Z

dt
Z

2π

0

dθ
Z þ∞

0

k⊥dk⊥
Z þ∞

−∞
dω

×
X
n

ðjαkðtÞj2 þ jβkðtÞj2Þe−isk2⊥e−isðnπ=LÞ2eisω2

:

ðA24Þ

Comparing (A24) and (31) we see appearance of an extra
factor of 2, ultimately due to the two polarization states of
the electromagnetic field. Such a factor propagates to all the
main results obtained in the scalar field case. So, for
example, in the flat spacetime case, the Casimir energy and
force [see (36) and (37)] now read

hϵCasið0Þem ¼ −
π2

720L4
; ðA25Þ

femð0Þ
Cas ¼ −

π2

240L4
; ðA26Þ

namely, the Casimir result for the electromagnetic
field case.
The above results support (at least in the present case) the

naive assumption that to obtain the energy density the force
due to electromagnetic field fluctuations between two
parallel conducting plates it suffices to multiply by a factor
of 2 the corresponding scalar field result, accounting for the
two photon polarization states.
The above extra factor of 2 obviously appears also in our

main result, Eq. (57) and, e.g., in (62), as regards the
gravitational case. So—at least to the present order of
approximation—in the electromagnetic case we basically
observe (for each polarization state) the very same effects
discussed in the scalar case.
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APPENDIX B: A MORE GENERAL CASE OF
GRAVITATIONAL WAVE INTERACTION

It is possible, although a bit tricky, to examine the
more general situation in which the gravitational perturba-
tion does not propagate along the z direction of the
cavity reference frame. Consider a gravitational (plane)
wave, propagating along an arbitrary direction Ω̂ ¼
ðcosφ sinϑ; sinφ sin ϑ; cosϑÞ with respect to the reference
frame of the Casimir cavity, fx; y; zg. Let fx; ȳ; z̄g be the
“wave frame,” namely, the reference frame with respect to
which the gravitational wave is described [in the transverse
traceless (TT) gauge] by the metric

ds2 ¼ gμνdx̄μdx̄ν ¼ −dt̄2 þ d ⃗x̄2 þ h̄μνdx̄μdx̄ν; ðB1Þ

where

h̄μν ¼
X
λ¼þ;×

Hλēλμνhðt̄ − z̄Þ: ðB2Þ

In (B2) the index λ runs over the two physical polarization
states (plus and cross) of the wave,Hλ are the amplitudes of
the two polarizations, and

ēþμν ¼

0
BBB@

0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

1
CCCA; ē×μν ¼

0
BBB@

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

1
CCCA ðB3Þ

are the corresponding polarization tensors. Let us define
Rðφ; ϑÞ≡ Rzð−φÞRyðϑÞ, (0 ≤ φ ≤ 2π, 0 ≤ ϑ ≤ π), where

RyðϑÞ ¼

0
BBB@

1 0 0 0

0 cosϑ 0 sin ϑ

0 0 1 0

0 − sinϑ 0 cosϑ

1
CCCA; ðB4Þ

Rzð−φÞ ¼

0
BBB@

1 0 0 0

0 cosφ − sinφ 0

0 sinφ cosφ 0

0 0 0 1

1
CCCA: ðB5Þ

Using Rðϕ; ϑÞ, we transform (B2) from the TT frame to the
Casimir cavity frame. Noticing that eλ ¼ ðRTēλRÞ, we get
(a superscript T means matrix transposition) [47]

hμν ¼
X
λ¼þ;×

Hλeλμνhðt − Ω̂ · x⃗Þ: ðB6Þ

Expanding (B6) near x⃗ ¼ 0 and neglecting the spatial
dependence (thanks to the smallness of the cavity size,

compared to the typical gravitational wavelength), we may
approximate

hμν ¼ hðtÞ
X
λ¼þ;×

Hλeλμν: ðB7Þ

Using (B7) in the Klein-Gordon equation (7), we obtain
ð□þ V̂Þϕ ¼ 0, where

V̂ ¼ hðtÞ
X
λ¼þ;×

Hλe
μν
λ ∂μ∂ν: ðB8Þ

Searching for solutions in the form (10) leads to the
following equation:

∂
2
t ηþ ω2η − hðtÞ

X
λ¼þ;×

Hλe
ij
λ pipje−iωt ¼ 0; ðB9Þ

where p⃗ ¼ fpx; py; pzg ¼ fp⃗⊥; ðnπ=LÞg and ω2 ¼
p2⊥ þ ðnπ=LÞ2. Looking at (33) we see that all we need
is jβpj2, namely, the squared modulus of the Bogoliubov
coefficient

βp ¼ −
i
2ω

Z þ∞

−∞
dthðtÞe−2iωt

X
λ¼þ;×

Hλe
ij
λ pipj: ðB10Þ

Using (60) and assuming, for simplicity, Hþ ¼ H× ≡H,
we find, after some tedious algebra,

jβpj2 ¼
πH2

4ω2σ2
e−2ω

2=σ2FðΩ̂; p⊥; nÞ; ðB11Þ

where

FðΩ̂;p⊥;nÞ¼
� X

λ¼þ;×

eijpipj

�
2

¼AðΩ̂Þp4⊥þBðΩ̂Þ
�
nπ
L

�
2

p2⊥þCðΩ̂Þ
�
nπ
L

�
4

;

ðB12Þ

and

AðΩ̂Þ ¼ 1

32
ð41þ 20 cosð2ϑÞ þ 3 cosð4ϑÞ

þ 24 cosð4φÞ sin4 ϑÞ; ðB13Þ

BðΩ̂Þ ¼ 1

2
½10þ 6 cosð2ϑÞ þ 3 cosð2ϑ − 4φÞ − 6 cosð4φÞ

þ 3 cosð2ϑþ 4φÞ� sin2 ϑ; ðB14Þ

CðΩ̂Þ ¼ 4 cos2ð2φÞ sin4 ϑ: ðB15Þ

Substituting (B11) in (38) (do not confuse ϑ with θ, the
latter defining px ¼ p⊥ cos θ and py ¼ p⊥ sin θ in the
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reference frame of the cavity) we get, after integration over
the variables s and θ, the correction to the Casimir effect
due to the gravitational pulse propagating along the
direction Ω̂,

hδϵCasi ¼
H2

16πσ2L
lim
ν→0

ℜe

	
i1−νΓðνÞ

Z þ∞

0

dω
ω2

e−2ω
2=σ2

× ½AðΩ̂ÞI5 þ BðΩ̂ÞI3 þ CðΩ̂ÞI1�


; ðB16Þ

where the quantities Ik (k ¼ f1; 3; 5g) are defined as
follows:

Ik ¼
X
n

Z þ∞

0

dp⊥pk⊥
ðnπ=LÞ5−k

ðp2⊥ þ ðnπ=LÞ2 − ω2Þν : ðB17Þ

Using ([39]) we find

I5 ¼
Γðν − 3Þ
ΓðνÞ

X
n

½ðnπ=LÞ2 − ω2�3−ν; ðB18Þ

while it can be easily checked that

I3¼−
Γðν−3Þ
2ΓðνÞ

�
π

L

�
2 ∂

∂ðπLÞ2
X
n

��
nπ
L

�
2

−ω2

�
3−ν

; ðB19Þ

I1¼
Γðν−3Þ
2ΓðνÞ

�
π

L

�
4 ∂

2

∂ððπLÞ2Þ2
X
n

��
nπ
L

�
2

−ω2

�
3−ν

: ðB20Þ

Using (B18)–(B20) we rewrite (B16) as

hδϵCasi¼
H2

16πσ2L
lim
ν→0

ℜe

	
i1−νΓðν−3Þ

×
Z þ∞

0

dω
ω2

e−
2ω2

σ2 DðπLÞ
X
n

�
π

L

�
2ν−6

�
n2−

ω2L2

π2

�
3−ν



;

ðB21Þ
where Dðπ=LÞ represents the following operator:

Dðπ=LÞ ¼ AðΩ̂Þ − 1

2

�
π

L

�
2

BðΩ̂Þ ∂

∂ðπLÞ2

þ 1

2

�
π

L

�
4

CðΩ̂Þ ∂
2

∂ððπLÞ2Þ2
: ðB22Þ

Carrying out the same procedure developed in Sec. IV B,
we convert (B21) in an expression involving the Epstein-
Hurwitz ζ-function,

hδϵCasi ¼ −
H2

16πσ2L
lim
ν→0

ℜe

	
i−νΓðν − 3Þ

Z þ∞

0

dω
ω2

e−
2ω2

σ2

×Dðπ=LÞ
X
n

�
π

L

�
2ν−6

�
n2 þ ω2L2

π2

�
3−ν



: ðB23Þ

By means of the expansion (49), we perform again the
analysis of the emerging divergences, finding once more
that the only surviving contribution is the one involving the
last term in (49). We get [compare with (53)]

hδϵCasi ¼ −
H2

16πσ2L
lim
ν→0

ℜe

	
i−ν2πν−3

×Dðπ=LÞ
X
n

�
L
π

�
ν−5=2

nν−7=2JðνÞ


; ðB24Þ

where JðνÞ is given by (54). In the case of a gravitational
pulse whose characteristic wavelength is large when
compared with the size of the Casimir cavity, we can
assume σL ≪ 1 and expand JðνÞ to the lowest order, thus
obtaining (in the limit ν → 0)

J ≃ −
15π

ffiffiffi
2

p

16σ
L−7=2n−7=2: ðB25Þ

Taking into account the rapid convergence of the sum in
(B24), we retain the n ¼ 1 term only, hence finding

hδϵCasi≃
15H2

64
ffiffiffiffiffiffi
2π

p
σ3L

Dðπ=LÞðL−6Þ

¼ 15H2

64
ffiffiffiffiffiffi
2π

p
σ3L7

�
AðΩ̂Þ−3

2
BðΩ̂Þþ3CðΩ̂Þ

�
: ðB26Þ

The result (B26) represents the generalization of (61) to the
case of a gravitational pulse propagating at an arbitrary
direction Ω̂ with respect to the reference frame of the
Casimir cavity. Notice that, in the case ϑ ¼ φ ¼ 0, (B26)
yields [see (B13)–(B15)]

hδϵCasi ¼
15H2

32
ffiffiffiffiffiffi
2π

p
σ3L7

; ðB27Þ

e.g., just twice the result we found in (61). This is due to the
fact that we are considering a gravitational wave charac-
terized by two polarization states, Hþ and H× (with equal
amplitudes). This confirms once more what was pointed
out in Appendix A. Namely, each polarization state makes
its own contribution to the Casimir vacuum energy, just as
in the electromagnetic case.
The result (B26) has been obtained assuming Hþ ¼ H×.

Such a constraint can be relaxed (Hþ ≠ H×) and the
calculations are almost the same, although the final
expression is rather cumbersome and not particularly
appealing.
Finally, we point out that the present approach can be

straightforwardly applied also in the case of more general
background spacetimes as, e.g., in Bianchi type-IX models.
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(2008).
[46] E. Fermi, Rend. Fis. Acc. Lincei 9, 881 (1929).
[47] B. Allen, Relativistic gravitation and gravitational radiation,

inProceedingsLesHouches School ofPhysics: Astrophysical
Sources of Gravitational Radiation, Cambridge, England,
edited by J.-A. Marck and J.-P. Lasota (Haute Savoie,
Les Houches, 1997), p. 373, https://api.semanticscholar
.org/CorpusID:117235270.

FRANCESCO SORGE PHYS. REV. D 108, 104003 (2023)

104003-14

https://doi.org/10.1007/s10714-013-1619-5
https://doi.org/10.1140/epjc/s10052-019-7554-1
https://doi.org/10.1140/epjc/s10052-019-7554-1
https://doi.org/10.1098/rsta.2019.0229
https://doi.org/10.1103/PhysRev.73.360
https://doi.org/10.1016/S0375-9601(02)00445-0
https://doi.org/10.1142/S0217751X02010157
https://doi.org/10.1088/0264-9381/19/5/310
https://doi.org/10.1088/0264-9381/19/5/310
https://doi.org/10.1103/PhysRevD.66.105011
https://doi.org/10.1103/PhysRevD.66.105011
https://doi.org/10.1142/S021773230401237X
https://doi.org/10.1142/S021773230401237X
https://doi.org/10.1590/S0103-97332005000700025
https://doi.org/10.1590/S0103-97332005000700025
https://doi.org/10.1088/0264-9381/22/23/012
https://doi.org/10.1103/PhysRevD.76.025004
https://doi.org/10.1088/1751-8113/41/16/164052
https://doi.org/10.1103/PhysRevD.74.085011
https://doi.org/10.1103/PhysRevD.74.085011
https://doi.org/10.1103/PhysRevD.77.109903
https://doi.org/10.1103/PhysRevD.77.109903
https://doi.org/10.1088/0264-9381/26/23/235002
https://doi.org/10.1103/PhysRevD.90.084050
https://doi.org/10.1088/1361-6382/ab4def
https://doi.org/10.1088/1361-6382/abc666
https://doi.org/10.1093/mnras/162.4.307
https://doi.org/10.1093/mnras/162.4.307
https://doi.org/10.1103/PhysRevLett.21.562
https://doi.org/10.1103/PhysRev.183.1057
https://doi.org/10.1103/PhysRevD.7.2850
https://doi.org/10.1088/0305-4470/8/4/022
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.100.105007
https://doi.org/10.1103/PhysRevD.100.105007
https://doi.org/10.1103/PhysRevD.101.065007
https://doi.org/10.1103/PhysRevD.101.065007
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1007/BF00430003
https://doi.org/10.1007/BF00939704
https://doi.org/10.3390/physics2010007
https://doi.org/10.1063/1.528856
https://doi.org/10.1088/0264-9381/17/22/306
https://doi.org/10.1002/0471231479
https://doi.org/10.1103/PhysRevD.57.4839
https://doi.org/10.1103/PhysRevD.57.4839
https://doi.org/10.1007/s00023-008-0361-0
https://doi.org/10.1007/s00023-008-0361-0
https://doi.org/10.1007/s00023-008-0361-0
https://api.semanticscholar.org/CorpusID:117235270
https://api.semanticscholar.org/CorpusID:117235270
https://api.semanticscholar.org/CorpusID:117235270

