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We investigate the influence of a time-varying spacetime background on the vacuum polarization of a
massless quantum field confined to a Casimir cavity. The background is modeled as an anisotropic Bianchi-I
spacetime, in which small time-dependent perturbations around the flat spacetime are vanishing in the far
past and future. The spacetime admits asymptotic Minkowskian regions, thus allowing for an unambiguous
definition of the in- and out-field vacua. Following Schwinger’s proper-time approach, we evaluate the
vacuum polarization inside the Casimir cavity. We show the presence of a small shift in the field vacuum
energy, once the perturbation is over. The time-dependent background has distorted the field modes,
causing a permanent change in the zero-point energy of the field confined to the Casimir apparatus. As an
example, we briefly consider the case of a weak gravitational wave background, which can be locally
identified with the previously employed Bianchi-I spacetime model. The present effect appears as a sort of

gravitational memory of the Casimir effect.
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I. INTRODUCTION

One of the nontrivial features of quantum field theory
is the occurrence of an infinite value of its zero-point
energy—the vacuum energy. In flat spacetime such prob-
lem can be easily circumvented by subtracting the infinite
amount of energy by a suitable renormalizing counterterm,
thus giving the theory a physical meaning. However, in a
curved, time-dependent background this is not generally
possible, since the construction of a well-defined vacuum
state becomes ambiguous. Rigorously speaking, this is
because the Poincaré group is no longer a symmetry group
of the spacetime. As a consequence, also the particle
concept becomes an observer-dependent quantity, being
related to the particular choice of the vacuum state [1].

When the background spacetime admits asymptotically
flat regions in the far past and future, it is still possible to
use the Minkowskian vacuum as the state characterized by
the absence of particles according to all the inertial
observers in those asymptotic regions. With respect to
these asymptotic vacua, it is then possible to explore the
influence of such a time-dependent gravitational back-
ground as regards particle creation and vacuum polarization
effects.

Influence of gravitation on vacuum energy undoubtedly
represents an interesting topic, ranging from subatomic to
cosmological scales. It may also be that a deeper under-
standing of the physics at the microscale could help to shed
light on some unresolved issues plaguing current models of
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our Universe, such as, for example, the cosmological
constant problem [2—4].

In that respect, an interesting arena is offered by the
Casimir effect [5-8], a purely quantum effect, experimen-
tally verified, consisting in a tiny attractive force between
two uncharged conducting plates, placed a short distance L
from each other. The explanation of such effect relies on a
small shift of the vacuum energy of the quantum field.
Roughly speaking, such a shift originates from a distortion
in the modes of a quantum field constrained in a finite
region of space by some boundaries. The latter can be
material as well as due to the geometrical properties of the
background spacetime.

Influence of static as well as stationary gravitoinertial
fields on the vacuum energy in the Casimir effect is indeed
a theoretically relevant issue, which has been extensively
investigated by several authors through the years [9-23].

Generally speaking, a time-varying background geom-
etry can affect the dynamics of a given quantum field,
altering both the vacuum persistence amplitude and the
vacuum polarization. In the first case, we have particle
creation. In the second case, the field modes suffer a
distortion leading to a shift in the vacuum energy.

In the present paper, we will consider in detail the
influence of a time-dependent background spacetime on the
vacuum energy of a massless scalar field confined to a
Casimir cavity. The gravitational background will be
described by a slightly anisotropic Bianchi-I spacetime
model [1,24], admitting asymptotic Minkowskian regions
in the remote past and future.

Being time-dependent, the background is expected to
give rise also to particle creation out of the quantum field
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vacuum inside the cavity [25-31]. Here, however, we will
focus on the gravitational corrections to the vacuum
polarization.

When computing the field vacuum energy, both particle
creation and the polarization effect contribute to the field
stress-energy tensor 7,,, which—on the other hand—
couples to gravity. In order to disentangle the two con-
tributions, we will follow Schwinger’s proper-time
approach [30,32-34]. We will compute the real part of
the effective action W, related to the vacuum polarization
(leading to the static Casimir effect), discarding the
imaginary part of W, describing the particle creation
(not to be confused with the dynamic Casimir effect as
such, in which particle creation is induced by a rapid
motion of the boundaries [35]).

We will manage the divergences arising during the
calculations by means of a renormalization procedure based
on the analytic continuation technique (see, e.g., [36]).

We will show that, once the gravitational perturbation is
over (i.e., in the far future), a small shift in the vacuum
energy is found as a consequence of the interaction. The
time-dependent background has distorted the field modes,
causing a permanent change in the zero-point energy of the
quantum field confined to the cavity. This appears as a sort
of a “gravitational memory” of the Casimir effect.

The paper is organized as follows. In Sec. II we introduce
the time-dependent gravitational background. Then we
solve the Klein-Gordon equation for a massless scalar
field, minimally coupled to the gravitational field and
confined to a Casimir cavity, represented by two large,
perfectly reflecting parallel plates, separated by a small
(proper) distance L. In Sec. III we follow Schwinger’s
proper-time approach, computing the effective action W for
the quantum field. In Sec. IV we first check our compu-
tations, finding the Casimir energy density and the attrac-
tive force between the plates in the flat spacetime case.
Subsequently, we adopt the same procedure in the case of a
slightly perturbed background described by a suitable
model of time-varying Bianchi-I spacetime. In Sec. V
we discuss the emerging divergences, hence obtaining the
Casimir vacuum energy density as a finite, physical
quantity. In Sec. VI we adapt the present model to a
specific case, in which the background spacetime describes
a weak gravitational wave interacting with the Casimir
cavity. In Sec. VII we discuss the results, also in connection
with the weak energy conditions and the quantum energy
inequalities, and give some concluding remarks.

In Appendix A we generalize our results, briefly dis-
cussing the case of a confined electromagnetic field.
Appendix B is devoted to the analysis of the interaction
with a gravitational wave propagating at an arbitrary
direction in the reference frame of the Casimir cavity.

The approach followed in Appendix B can be straight-
forwardly applied to more general spacetime backgrounds
such as, e.g., Bianchi type-IX models.

Throughout the paper, unless otherwise specified, use
has been made of natural geometrized units. Greek indices
take values from O to 3; latin ones take values from 1 to 3.
The metric signature is —2, with determinant g.

II. THE GRAVITATIONAL BACKGROUND
AND THE CASIMIR CAVITY

We are interested in a time-dependent background
spacetime, admitting asymptotic Minkowskian regions in
the far past and future, so that the definitions of in and out
vacua are not ambiguous. On the other hand, time depend-
ence will allow for particle creation as well as vacuum
polarization effects. Considering also the possibility of
anisotropies, we will focus on a Bianchi-I spacetime
background. The Bianchi-I universe has zero intrinsic
curvature but nonzero extrinsic curvature. The general line
element is [1,24]

3
ds® =d* =" a3 (t)dx?, (1)
i=1

namely, the simplest generalization of the homogeneous
spatially ~ flat  Friedmann-Lemaitre-Robertson-Walker
(FLRW) universe. The functions a;(¢) represent the direc-
tional scale factors along the axes {x,y,z} in a matter-
comoving coordinate frame (with 4-velocity u* = ;). In
what follows we will suppose that the anisotropies are
small, so that (1) reads

ds® = di® — i:u + Ry (1) (dx)2, (2)
i=1

where the condition

lim h;(f) = 0 (3)

t—+oo0

accounts for the asymptotic Minkowskian behavior. For
simplicity, we will also impose the following constraints:

max | (1)] < 1, (4)
3

Z hi(t) =0, (5)

hy(1) = h.(1) =0, (6)

(for Bianchi-I type, coordinates can be chosen such that the
spatial metric is diagonal and traceless [37,38]). Assume
that the Casimir cavity is oriented in space so that the
plates, each of (proper) area A, are orthogonal to the z axis,
placed at z = 0 and z = L, respectively, with L represent-
ing the (proper) plate separation. The constraint (6)
guarantees that the proper and the coordinate distance

104003-2



GRAVITATIONAL MEMORY OF CASIMIR EFFECT

PHYS. REV. D 108, 104003 (2023)

between the plates will coincide at any time. This will allow
us to avoid possible complications due to “tidal” effects
[the more general case in which (6) is relaxed will be briefly
considered in Appendix B and discussed in Sec. VII]. We
will consider a massless scalar field ¢(x), satisfying the
Klein-Gordon equation

1
——0,|\/—gd"0,p(x R(x)p(x) =0, 7
= L [V=99"0,$(x)] + ER(x)(x) (7)
where £ is a parameter describing the coupling between the
matter field and the background gravitational field and R(x)
is the scalar curvature. In what follows we will suppose
minimal coupling, so that £ =0. We will also assume
Dirichlet boundary conditions at the confining plates. To
the lowest order, (7) reads

O+ V)¢ =0, (8)
where
V= h(0& +h(0)R =@ -3)  (9)

(throughout the text, a caret will mean that the correspond-
ing quantity has to be regarded as an operator) with A(7) =
h,(t) = —h,(t) [see (5) and (6)].

Spatial translation invariance of Bianchi-I spacetime (1)
is broken by the field confinement along the z direction.
Nevertheless, it is still assured along the transverse direc-
tion x and y, so that we can search for solutions of (8) in the
form

#) = Ner-Ssin TN, (10)
where N = ( (2712)3 -)!/% is an overall normalization constant,

P1 = (PxPy), X1 = (x,y), and the function #(7) satisfies

n(t) - e, h(t) = 0. (11)
In the remote past (¢ - —o0), i.e., on lack of gravitational
perturbation, the spacetime is Minkowskian and (10)

reduces to the usual mode solution inside the cavity,
namely,

#O(x) = Ne'Pr %+ sin <%> e~ior, (12)
Using (10) in (8) yields, to the lowest order in #,

0%n + @?n — (h(t)p} cos20)e~" = 0, (13)

where tan® = p,/p,, and w* = p3 + (nz/L)*. The sol-
ution of (13) is

: o
sin(@(t = ) h(t')p? cos20e"

. t
n(t) = e —|—/ dr
— ap(t)e—iwt + ﬂp(t)ei"”, (14)

where

/ t
a,(1) =1 +2L/ df h(¢)p? cos20,  (15)
@ J -0

— ‘
ﬁp(t):—i / dt’ h(f')p? cos20e~2@"  (16)

iz

$(x) =N(a,(t)e™"" —|—ﬁp(l‘)e"“”)e"ﬁi"?L sin (%) . (17)
In the limit + - +oco0 we also have
n(t) — ape—imt +ﬂp€iwl, (18)

where a, and f, can be regarded as the Bogoliubov
coefficients, connecting the in and out vacua, satisfying
the condition |a,|* —|f,|* = 1. To the present order of
approximation, we have [1]

[ +o0
a, =1 +i/ dth(f)p? cos20,  (19)
A e 2 ~2iwt
p, = ~5 dt h(t)py cos20e ", (20)

III. SCHWINGER’S PROPER-TIME APPROACH

In this section we will follow Schwinger’s proper-time
approach [32-34] in order to derive an expression of the
effective action W for the scalar field inside the Casimir
cavity. In the presence of a time-dependent gravitational
background, the effective action may become complex. In
such case the real part of W describes phenomena related to
the vacuum polarization, as the (static) Casimir effect;
meanwhile the imaginary part is responsible for particle
production. Actually, in the so-called “in-out” formalism
the imaginary part of the effective action is related to the
vacuum persistence amplitude

(Oout|0in) = ™V, (21)
Let us start writing the effective action W,

W = limW(v), (22)

v—0

where [30,32-34]
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W(v) = —élm ds s Tre 1 4 ¢, (23)

and the limit v - 0 has to be taken at the end of
calculations. The additional counterterms (c.t.) are intro-
duced to subtract divergent terms, hence recovering the
required physical normalization. In (23),

H=H,+V
nm\? 5
=—p3+ pt + 7)) - h(t)p7 cos20, (24)
.
where py = id,, p; = —iV | and the total trace

Tre-isf — Id4x<x|e_”g|x) (25)

has to be evaluated all over the continuous as well the
discrete degrees of freedom, including those of spacetime.
Expanding the trace in terms of the eigenvectors |a) =

|po. p1.n) of H, we write

re—isI:I_/d4xida<x|a><a|e—i5(1210+‘7)|a/><a/|x>, (26)

where |x) = z) and
j‘_,da = Z / dpo dpydp.dp',. (27)
Since [p. V] = 0, we have

— e—ispi e—is(nﬂ/L)2

 (pole PO OB (28)

<a| —is H0+V ‘a/>

and, taking into account (13),

e—i.vpzl e—is(mz/L)2 eisw2

X 8,00 (py = pl)o(w o) (29)

(a]e™s (Hy+V) o) =

[notice that the states |@) are normalized according
to the standard Dirac prescription: (a|a’) = &(a, o),
where §(a, @) is the Kronecker symbol 8, if {|a)} is
|

<€Cas >

1 +o0
= ﬁllmﬂie / dss
2(27[) L v—0

a discrete set and the Dirac delta function §(a — o') if it is
continuous].

Replacing (29) in (26) and using |(x|a)|> = |¢(x)|?
get [see (17)]

re—isH — N2 / d4x/ d’p dw2(|ap(t)|2 + |ﬂp(t)|2
+ 291e(a,,(t)ﬂ,,(t)*e‘2"”’))
X sin? <%> e—i.&'pie—is(nﬂ'/L)z eiswz, (30)

The rapidly oscillating term o« e~ appearing in the last

term can be discarded in the evaluation of the action,
since the involved time integration gives a vanishing mean
value (this is known as the rotating-wave approximation).
Performing the integration over the cavity volume (=AL)
we find

2n
Tre=isH = dt de

+o0
Pl dp, / dw
2

X Z |(Z |2 + ‘ﬂp( )| ) —tspLe—m(mt/L) el
(31)
IV. THE STATIC CASIMIR EFFECT

In this section we will discuss the static Casimir effect,
deriving it from the real part of the effective action W. One
could wonder if we are using the word static while
considering a time-varying background. Actually, as we
will see in the following, we are interested in the zero-point
energy of the quantum field in the Casimir apparatus in the
far future, namely, when the time-dependent gravitational
perturbation is over. It is just in this limit that we can
recover the static Casimir effect, thus evaluating possible
shift induced by the gravitational interaction. A naive
reasoning might lead one to expect no shift in the vacuum
energy. As we will see, however, this is not the case.

Following Schwinger’s proper-time approach, we have

1 0
——Ilim| lim —NeW

AL v~0 Lm 5 eW (v )] (32)

<€Cas> =

From (23) and (31) we obtain

2n +o0 +o0 . . 2
v—1 |:/ d&/ pLdPL/ da)Z(l + 2|ﬁp|2)e—zspie—zs(nn/L)“ezme:| }’ (33)
0 0 —o0 n

where use has also been made of the relation |a,|* —[8,|* = 1, and §, = lim,_ ., f8,(¢) is given by (20).
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A. Flat spacetime background

As a consistence check, let us evaluate (33) in the flat
spacetime background, i.e., #,, = 0. The integrations in the
square brackets can be readily performed, giving

i \/; e v—3—1 ,—is(2z)?
<€Cas>0:1111—1>%me{167r3/21,zn:A dssv— e is(7) }

(34)

The remaining integral can be converted into a Gamma
function and the infinite sum yields a Riemann {-function

—()Y [\ 23
(€cas)o :l]'i—r’%me{l&(r?/zL <L> §(2y—3)l—‘(u—3/2)}.

(35)

Performing the analytic continuation (v — 0) we finally
get [34]

71.2

T —— 36
1440L4" (36)

<€Cas>0 =

<5€Cas >

Notice that, in (38), n, @, and p | have to be considered as
independent degrees of freedom. Before we go on, we need
an explicit expression for the quantity $,. For computa-
tional convenience let us assume the metric perturbation to
have a Gaussian profile

h(t) = He™", (39)

where H (with |H| < 1) represents the amplitude of the
perturbation and 1/c gives a rough estimate of the time
duration of the perturbation. Notice that lim,_, ., A(¢) = 0,
thus guaranteeing that the in and out spacetime regions are
Minkowskian, so that the asymptotic definition of the corre-
sponding vacuum state is unambiguous. Using (20) we have

iH\/7
B,=— 202({ ple (@9 cos 20, (40)

Combining (38) and (40), and performing the integration over
the variables s and 0, we obtain

2

H
S€cas) = ——s—
< €Cas> 167[0‘2L

+oo da [+ e—2(02/62
— dp . p) —5——5—¢, (41
x;/) a)zl PPy (Qz_wz)y} ( )

lim‘ﬁe{ i'"T(v)

v—0

the well-known result for the Casimir energy density of a
massless scalar field. We point out that, when f§, =0,
the quantity in curly brackets appearing in (33) is in
itself real. In other words, the effective action W has no
imaginary part. This means that—as previously recalled—
we do not expect particle creation in a flat spacetime
background.

We can also find the attractive force between the plates
(per unit surface), obtaining

0 (0
fg)) — F(Ca)s _ _laECa)s

A A oL
laAL <€Cas>0 _ ”2 (37)
A OL © 480L4

B. Bianchi-I spacetime background

Let us now consider the case 8, # 0, corresponding to
the anisotropic background we have introduced in Sec. II.
Looking at (33) we see that the correction to the flat
Casimir result (36) reads

! i [ - 2ﬂ e e —isp? ,—is(nz is@
:2(2n)3Ll‘33%{’/0 dss* '[/0 d9/0 mdpl/_m da)zn:2|ﬂp|ze spd g=is(nn/L)? i ]} (38)

|
where Q* = p% + (“£)2. The last integral in (41) can be
solved recalling that [39,40]

v ghdg  T(EH(e -1
/ 2 AV —l—p - (42)
o (¢©+C) 2I'(v)C

Hence

v—0

H> . L\ -6
(S€cas) = mhm?ﬁe{ﬂ‘”F(u -3) <;> I(y)},
(43)
where we have put
oo da) 202 /62 1
_ 7 2w o
0= | e

I(v) is potentially plagued by singularities. However, in (43)
we may replace /(v) with

~ +oo dw 20/ 2 1
1(v) = = e 2e’l/o - (45
W= [T e @)

2

which obviously coincides with /(v), since w €R. The
following change of variable
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(46)

yields

n+(

_2-(ute)?| 1
DY
( u+e)? L2>V 3°
n

(47)

Notice that in (47) u is a purely imaginary quantity, ranging
from O through +-ic0. In order to getrid of the poles of (47), we
have also introduced—as usual—a small quantity € > 0
whose limit ¢ — 0 we will take at the end of calculations.
We see that the poles of (47) lie at u = —e and (as long as
v>3)at u=—-e+ neN-{0}, iec, to the left of
the imaginary axis in the u complex plane. Hence, none of
those poles is encountered in the (0;+ico) integration
involved in (47). Consider now the integral I(v) extended
to the whole u# complex plane along a closed path
I'=(0;+i0) Uye U (—00;0), with y,, being a curve
placed at infinity in the u plane. There being no poles enclosed
by I, the integrand is a holomorphic function in the considered
domain. Taking into account that the contribution along y ., is
vanishing, we can write

7 ‘oo dy _2wee? 1
Iv)=i 7 48
(V) l[) (u—l—e)Ze ;( (u+€)2L2>” 3 ( )

n?+

where we have made the replacement |—(u + €)?| —
(u + €)?, since u is now running along the real axis. We also
recognize that the infinite sum in (48) represents a inhomo-
geneous Epstein-Hurwitz {-function {gy (s, ¢?), which can be
analytically continued to give [36,41]

Cen(s.q%) = Z(”z +q7)
n=1

2s
q VT 2541
=L | VT i _q2)gt
5 +2F() ['(s=1/2)q
2 S
F 2 S K (Gang), (49)
F(S) n=1

wheres =v—3,q = (”“) , and the rapidly converging sum

involves the modified Bessel functions K .(2). Use of (49)
allows to explicitly perform the u integration in (48). After a
tedious but straightforward calculation we find that I(v) is
made of three contributions, stemming from the three pieces
composing (49). Correspondingly, the correction to the
Casimir energy density (43) can be written as

<5€Cas> = <5€Cas>l + <5€Cas>2 + <5€Cas>3’ (50)

where, in the limit ¢ — 0,

2 6—2y+5 5
(O€cas)) = 3702 l{%%e{l Iy - )WF (‘V + 5) } (51)
H2 \/E 7 0.—21/+6
(decas)r = — 76— lggﬂ?e{z‘” 5 F(v - E) S T=v 3)}, (52)
H2
<5€Cas>3 = _1671'621_1/1—1;%916{ % 3( > va 7/2.1 } (53)

having defined in (53)

+0o0 u
J(v) :/ due 2, 2K, (2nLu).  (54)
0

V. HANDLING THE DIVERGENCES

When working in a flat spacetime background, analytic
continuation [36] often allows one to get rid of the
divergences usually appearing in the evaluation of the
vacuum energy, thus straightforwardly leading to the physi-
cal result one is looking for. This is just what happened in
Sec. IV B, when computing the Casimir energy density.

However, in the presence of a time-dependent background,
such a mathematical tool is generally not enough, and further
physical considerations are required in order to remove the
emerging infinities.

Let us consider in some detail the various contributions
(51)—(53) to the Casimir energy density in the v — O limit.
The first one is manifestly divergent, due to the I'(v — 3)
pole. Such a term gives an infinite contribution to the
Casimir energy, Ec,s = AL(S€c,s) Which is proportional to
A, without any reference to the plate separation L.
Following Schwinger’s argument [33], such energy has
to be normalized to zero, so there must be a term in the
additional counterterm appearing in (23) that removes it.
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The second contribution (52) represents a uniform
spatial density of vacuum energy, independent of L.
Since we are interested in vacuum energy dependence
on the plate separation, we can discard this term, again
absorbing it in the counterterms appearing in (23).

All we are left with is the last term in (50). Handling this
term requires some care. Consider the following slightly
modified form of the integral appearing in (53):

+oo 2 /
J(v, V) :/ due_za_zu_””+3/2Ky—7/2(2”L”)7 (55)
0

<5€Cas> = <5€Cas>3

which obviously reduces to J(v) in the v/ — 0 limit. The

above integral converges provided the following inequality
holds:

Re(—v+ 1V +3/2) > [Re(v=7/2)| -1 =V >v, (56)

and can be solved [40] in terms of Whittaker functions
W, (z). We perform the integral (55) assuming that (56) is
satisfied. Subsequently, we exploit analytic continuation,
placing J(v,7) in (53) and taking both v — 0 and v/ — 0,
thus obtaining

H2 L\ v-5/2 X2
=———— lim Neqi™2z73(= IRy
16762L {v,/}-0 ' {l d <ﬂ'> ; . (l/ l/)

H’ o)
T 215/d ;41727 9]2 ; n-ite

Equation (57) is our main result. Being related to the
real part of the effective action W, (Sec,) represents
a correction to the static Casimir energy density. In other
words, it is a correction to the so-called ‘“‘vacuum
polarization.”

Inspection of (57) shows that (Sec,,), induced by the
chosen time-dependent perturbation (39) of the spacetime
background is positive, while the Casimir energy density is
(usually) negative.

We are thus in presence of a sort of “memory effect” in
the Casimir energy, since the vacuum polarization retains
trace of the gravitational perturbation at  — +oo0, when the
perturbation has left the cavity. Furthermore, the correction
(Secqs) gives rise to a reduction of the absolute value of
the Casimir energy. Hence, we expect a tiny reduction of
the Casimir force (37) acting between the plates once the
gravitational perturbation is over.

Equations (36) and (37) differ by a factor of 2 from the
results obtained by Casimir [5] considering an electromag-
netic field. This is usually ascribed to the presence of two
polarization photon states. We will briefly analyze the
electromagnetic field case in Appendix A, finding that,
indeed, also the above discussed memory effect comes with
a factor of 2, as naively expected.

VI. THE GRAVITATIONAL WAVE CASE

Equation (57) can find application in the interesting case
in which the background spacetime is that of an incoming
gravitational wave, depicted as a short perturbation propa-
gating along the z direction. In such a case g, = 1, + hy,,
and once the transverse traceless gauge has been employed,
the spacetime line element reads

(oLn? (oLn)?
W (T . (57)

I
ds*> =dr* — (1 + hy(u))dx* — (1 — h(u))dy?
—2h, (u)dxdy — dz?, (58)

with h,(u) and h,(u) being the two physical states of
polarization of the wave and u = ¢ — z. Let us assume, for
the sake of simplicity, that the wave has the form of a
linearly polarized, short Gaussian pulse (the more general
case of a gravitational pulse, propagating at an arbitrary
direction and with both polarization states will be discussed
in Appendix B), so that A, (u) = 0 and

ho(u)=h(t—z) = He™o 0=, (59)

where H can now be interpreted as the gravitational
“strain,” while ¢ gives a rough estimate of the time duration
of the pulse. If 6L < 1, we may expand h(z — z) around
z = 0 (one of the plate locations), considering i(t — z) as a
function of time ¢ only. So we put

h(t—z) ~h(t) = He ™" (60)

inside the Casimir cavity. This implies that we can study the
interaction of the confined quantum field with the gravi-
tational wave just employing the Bianchi-I spacetime
model we introduced in Sec. II [42].

Exploiting the rapid convergence of the sum appearing in
(57), we expand (Sec,s) around the small parameter oL
obtaining, to the leading order in (¢Ln),

15H?

P R —
Ocu) > ol

(61)
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So, once the perturbation due to the gravitational wave
pulse is over (at t - +o0), the total Casimir energy inside
the cavity can be written as [recall (36)]

372
- 675¢’H ’ (62)
2219263 L3

where we have restored, for clarity, SI units. Notice that

=~ ﬁpm, with Az, being the typical time duration of the

gravitational pulse. Looking at (62) it might seem that a
sufficiently long gravitational pulse could cause the com-
plete vanishing of the Casimir energy, or even a change in
its sign, turning the Casimir force in a repulsive one.
Although suggestive, such an occurrence cannot be con-
sidered too seriously, since our calculations have been
carried on following a perturbative approach [see, e.g., the
solution of the field equations, (14) and (17)], based on the
smallness of the perturbation %(f) in the background
spacetime. So, in order our results can be considered
predictive, it is likely that

Ahcr?
<ECas> = <

144013

675¢3H?
e I 63
2\/§ﬂ5/ 25313 ( )
which, in turn, implies
Atyer < H7L ns. (64)

For example, considering a Casimir cavity whose plate
separation is L = 107® m and a gravitational wave pulse
having a strain H = 1072!, the above constraint would
give Aty < 107" s,

VII. CONCLUDING REMARKS

In this paper we have studied the corrections to the
vacuum energy density of a massless scalar field confined
to a Casimir cavity in an anisotropic, time-dependent
Bianchi-I background spacetime. We have modeled the
background introducing small perturbations around flat
spacetime, requiring them to vanish in the remote past and
future, thus allowing for asymptotically Minkowskian
regions. This, in turn, has guaranteed an unambiguous
definition of the in- and out-field vacua.

Following Schwinger’s proper-time approach, we have
computed the real part of the effective action W for the field
in the cavity, evaluating fte(W) in the far future, once the
gravitational interaction was over. After a renormalization
procedure, required to get rid of unphysical divergences,
we have recovered the zero-point energy of the field,
finding a permanent shift with respect to the vacuum
energy density obtained in the flat spacetime case.

As an application of our result, in Sec. VI we have
considered the case of the interaction with a weak gravi-
tational wave, whose metric, in the small region occupied

by the Casimir apparatus, looks just like that of the Bianchi-
I spacetime model previously employed.

The main outcome of the present analysis is that, generally
speaking, the gravitationally induced shift in the vacuum
energy acts in order to reduce the absolute value of the
negative Casimir energy density. Hence, also a tiny reduction
in the attractive force between the Casimir plates is expected.

At a first sight, the result could sound odd. Actually,
while (nonlocal) particle creation out of the field vacuum is
expected as a result of the past interaction with a time-
varying background geometry (and such latter effect is
indeed encoded in the imaginary part of the action we have
computed), distortions in the (local) vacuum polarization
are usually considered to appear during the interaction.

However, we have shown that vacuum polarization effects
can also exhibit a nonlocal behavior, thus yielding a
permanent shift in the vacuum energy, once the spacetime
perturbation is over. In that respect, we can consider the
present result as a sort of gravitational memory of the Casimir
effect.

Indeed, when computing the field vacuum energy,
any renormalization procedure implies—more or less
explicitly—a mode cutoff, which eventually captures the
global spacetime structure through the long wavelength
field modes [30]. So, also local quantities, such as those
related to the vacuum polarization, after renormalization,
can carry physically measurable information on the whole
story of the gravitational interaction.

Some further comments are in order.

(1) While the present analysis has been carried out
taking into account a massless scalar field, a more
realistic study should involve the electromagnetic
field. It is often stated that in this latter case the
Casimir energy is doubled with respect to the scalar
case, due to the presence of two polarization states.
In Appendix A we have briefly considered the
electromagnetic case, showing how the Schwinger
approach offers a clear, beautiful explanation of such
a naively expected result. Indeed, the evaluation of
the total trace picks up all the degrees of freedom of
the physical system, including the polarization
states. A similar result is also found in Appendix B,
where the interaction with a gravitational wave pulse
carrying both the polarization states is considered.

(2) The constraints (4) and (5) adopted in Sec. II are
those usually employed in cosmology when describ-
ing a small departure from the isotropic, homo-
geneous FLRW universe (see, e.g., [1,38]). Here,
they have been adopted in order to keep as clear as
possible the analysis of the gravitational influence
on the Casimir effect. Relaxing such conditions
would require a specific choice of the gravitational
background in order to obtain definite results.

(3) As regards the constraint (6), this has been imposed
to avoid further complications stemming from tidal

104003-8



GRAVITATIONAL MEMORY OF CASIMIR EFFECT

PHYS. REV. D 108, 104003 (2023)

“

®

(©)

effects induced by the time-varying gravitational
field on the boundaries (i.e., the cavity plates). Up to
the present order of approximation, it is likely that
tidal contributions simply add to the correction we
found in the Casimir energy. On the other hand, tidal
effects can also be analyzed (basically by virtue of
the equivalence principle) considering a cavity with
moving plates. In that respect, this mimics the
dynamical Casimir effect [35], whose analysis sug-
gests that the shift in the vacuum energy is propor-
tional to (v/c)?, with v being the plate velocity (see,
e.g., [43] and references cited therein). In the present
case the gravitationally induced fluctuation between
the plates is roughly AL = h(t)L. Using, e.g., (60)
we find (v/c)>~ (h(t)L/c)* = (LZtHe o),
Hence, tidal effects are expected to become negli-
gible when compared to the correction (Sec,,) we
found, as the latter scales with an inverse power of L
(in a typical cavity we could have L ~ 107 m,
or less).

Removal of the constraint (6) becomes nevertheless
unavoidable in the case of a gravitational wave
propagating at an arbitrary direction with respect
to the reference frame of the Casimir cavity. Now,
the polarization states of the wave involve the z
direction too, and we need to transform the gravi-
tational pulse to the cavity frame. A thorough
analysis of such a case has been presented in
Appendix B. The proposed approach can obviously
be employed also when considering more general
Bianchi spacetimes (e.g., type IX).

As pointed out in Sec. VI, the shift in the vacuum
energy shows a divergence in the ¢ — 0 limit [see
(57)]. Namely, (Sec,s) seems to increase without any
upper bound, as the typical duration of the back-
ground perturbation increases. However, as dis-
cussed at the end of Sec. VI, this behavior must
be considered with care, mainly because our calcu-
lations rely upon a perturbative approach.

Notice also that, in some respect, the present
divergence represents the analog, in the time do-
main, of the divergence appearing in the flat Casimir
effect [see (36)], as L — 0. Consequently, the
correction (Sec,,) to the polarization effect can be
considered reasonably meaningful as far as the
ratio (Secqs)/(€cas) < 1.

On the other hand, the existence of an upper bound
on the time duration of the perturbation, related to
the discussed memory effect, could also have a
different, deeper origin. Leaving aside the issues
related to the perturbative approach, the increase of
(6ecqs) as the time duration Ar of the gravitational
perturbation increases, is suggestive of an upper
limit for Az which, in the case of the gravitational
pulse discussed in Sec. VI, is about At~ LH™2/3

[see (63) and (64)]. In such a limiting case, we
should observe the Casimir energy to vanish.

In any case, the effect of the gravitational perturbation is
to reduce the absolute value of the (negative) Casimir
energy. Such a behavior could recall (or even represent) a
manifestation of the quantum energy inequalities (QEISs),
first pioneered by Ford et al. [44], which dictate bounds on
the duration of negative energy, hence almost preserving
the weak energy conditions (WECs), which are violated
in the Casimir effect. Differently stated, QEIs require that
WEC violations are either small in magnitude or (as in our
case) short-lived [45].

The discussed effect, being a correction to the Casimir
effect (already tiny in itself), is too small to be detected in
the case of any realistic gravitational wave amplitude.
However, it could become relevant in some (maybe
astrophysical) scenarios, in which the gravitational ampli-
tude, although small, is not so small.

The employed weak field approximation seems to
suggest that—under extreme conditions—the gravitational
background could make the vacuum energy to vanish or
even change its sign, turning the Casimir force into an
attractive one. All this is probably only a signal of the
breakdown of the perturbative approach. In that respect,
investigation of higher-order corrections and/or use of
nonperturbative techniques could shed further light on
the effect.

Such a deeper analysis is clearly beyond the scope of
the present paper. We hope this will be the subject of a
future study.
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APPENDIX A: THE ELECTROMAGNETIC CASE

Although in most of the literature the study of the
Casimir effect (and its possible modifications) is usually
performed considering—for sake of simplicity—a scalar
field, just as we did in the present paper, in his original
seminal work (1948) Casimir considered an electromag-
netic field confined to a cavity [5,6]. For completeness, in
this appendix we propose a short analysis of the studied
memory effect in the electromagnetic case, also comparing
the results to the scalar one.

As in Sec. II, we will take the Casimir cavity oriented in
space so that the confining plates, orthogonal to the z axis,
are placed at z =0 and z = L.

In the linearized theory, the Lagrangian of a given
physical system is usually written as a sum of various
contributions stemming from the possible couplings among
the matter fields and between matter fields and gravity.
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Here, we are interested in the coupling between gravity and
the electromagnetic field confined to a small cavity.

The Lagrangian density can be split into two contribu-
tions [hereafter, a super- or subscript (0) will mean that the
corresponding quantity is evaluated in a flat spacetime
background]

L=LO+L, (A1)
where £ is the electromagnetic Lagrangian density in flat
spacetime and L, is the O(h) gravitational contribution. We
will use the following Lagrangian density:

1
£0 = — 5 0uAYOA,, (A2)
first proposed by Fermi [46]. It is straightforward to check
that (A2) yields indeed the same equations of motion for
the 4-potential (LJA# = 0), provided the Lorentz gauge
d,A* = 0 is imposed as a subsidiary condition.
The gravitational contribution £, reads

1
£, = ~Lpr®

g _5 (A3)

with T,(,(,),) being the electromagnetic stress-energy tensor

evaluated in the flat spacetime

oL
— az/A/) - ’1;411[:(0)'

" 0(00A,) (A4)

We point out that, at the present O(h) order of approxi-
mation, T,(,(y is independent of 7, so that it satisfies the
ordinary conservation conditions, namely, dﬂT’(‘(')’) =0.

Furthermore, (A3) is gauge invariant with respect to gauge
transformations of the coordinates

X = X = xS (xY), (AS5)
causing a change in the gravitational potentials
hy, = hy, = hy, —0,&, — 0,8, (A6)

Actually, the corresponding variation in £, reads, up to first
order in A,

1

3Ly =~5 (6h,,)T g,
= 0,5, (g = =£.0,T ) + 0.(&,Tg))
= 0,(&T). (A7)

being aﬂT%) =0, as stated. £, is gauge invariant, since

adding a 4-divergence does not alter the action. From (A2)
we get the (flat spacetime) stress-energy tensor

1
T, =—0,A,0,A” + EnﬂbdaAl,a”A”. (A8)
Plugging (A8) in (A3) yields
L,= ! h 1h”” 0,A,0,A”
9= "5 |\~ + 5 M | OultpOu
1 D
= 5h"”aﬂA ,0,A7, (A9)
where we have introduced the reduced potentials
- 1
h = v — Ehn"’“. (A10)

The full electromagnetic Lagrangian (A1) thus reads

1 1
L= =3 0,A"FA, +1"0,A,0,4.

5O (A11)

and the corresponding equations of motion for A# are
derived from the Euler-Lagrange equations
CA? — 9,047 — (0,h")0,A? = 0.  (Al2)
Exploiting the above recalled gauge invariance, we
may impose—as usual—the “harmonic” gauge d,#*" = 0.
Besides, from (2) and (5) we see that ##¥ = h*, so hereafter
we will drop the overline. We finally obtain the (gravita-
tionally corrected) Maxwell equations for the 4-potential A¥,
CJA? — h#*9,0,A” = 0. (A13)
Notice that (A13) is formally equivalent to the scalar case (8)
discussed in the text. In particular, given the metric (2) and the
constraints (5) and (6), we have
(O + V)A?(x) =0,

r=1,2, (A14)

where

V = h ()02 + hy(x)0? = h(t)(? — %), (A15)
just as in the scalar case [see (9)].

It is well known that the Lorentz gauge d,A* = 0 does
not fix uniquely A,. There remains a residual gauge
freedom so that, if A, satisfies the Lorentz condition, so
will A, = A, + 9,A(x) as long as [JA(x) = 0. Choosing
A(x) to satisfy 9,A = —A°, we get A = 0, hence (from
0,A* = 0) V . A’ = 0. Potentials satisfying this additional

condition, namely, AY =0, 6) - A = 0 are said to belong to
the radiation (or Coulomb) gauge. So to say, the gauge
shoots twice, hence reducing from four to two the number
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of independent components of A,. These two remaining
degrees of freedom have to be identified with the two
physical polarization states of the radiation field.

In such a gauge E=- % and ? x A, being E and B the
electric and magnetic fields which must satisfy the boun-
dary conditions at the cavity plates

Ejl.—o=El.-, =0 (A16)

BL|2:0 = Bllz:L =0, (A17)

where E| is the electric field component parallel to the
cavity plates, while B, is the magnetic field component
normal to the plates.

In the flat spacetime case (h** = 0) the corresponding
modes read

0)

Al (x) = N, fi(n, 2)elerfiemion. r =172 (Al8)

where repeated hatted indices (j = {x,y, z}) are meant to
be not summed and

sin(nzz/L)
fi(n,z) = | sin(naz/L) (A19)
—icos(nnz/L)
Also, N, are normalization constants, k = (kx,ky),

X, = (x,y), and €, (r =1, 2) represent the two physical
transverse polarization states of the electromagnetic field,
obeying €, - €, =6,, and €, - k=0 (r,s = 1,2).

In the time-varying spacetime (2) the corresponding field
modes are similar to (10),

Alx) = N, fl(n,2)ele™Tig(s), r=1.2,  (A20)

where N, = (ﬁ

tion constant, and 7(¢) is still given by (14) (with the p — &
replacement). From here on, calculations are basically the
same as those carried out in Sec. III, with a few obvious
changes in the notation. The only relevant point to raise is
that in the evaluation of the total trace (25) an extra
summation over the two polarization states is now implied.
In particular, (27) becomes

Z:da = Z / dkodk)ydk | dk', ,

nnr

)1/ 2 (r=1,2) is an overall normaliza-

(A21)

with » = 1, 2. The total trace reads

emisH = / dt / dPx / do / k,dk, / dw

XZ| x|a |2 zskz —lS (nm/L)? elsw (A22)

>, |A%(x)[2. Using (A20) we find

=Y [ axaswiino) 5l
- 2(2’%)3|n<t>|2

In(0). (A23)

where |(x|a),|* =

Z/d3x| (x|a), |

Recalling (14) and making use, as in the scalar field case, of
the rotating-wave approximation, we get

A 27 too too
2W/d[A d@A dekL/—oo dw
3l (1)2 + |Be(r)])eisk gmis(na/ L gise?,

(A24)

Tre~s# =

Comparing (A24) and (31) we see appearance of an extra
factor of 2, ultimately due to the two polarization states of
the electromagnetic field. Such a factor propagates to all the
main results obtained in the scalar field case. So, for
example, in the flat spacetime case, the Casimir energy and
force [see (36) and (37)] now read

2

0 T
<€Cas>(err)t = - 720L4 s (AZS)

em(0) n?
fCas - 240L4 ’ (A26)

namely, the Casimir result for the -electromagnetic
field case.

The above results support (at least in the present case) the
naive assumption that to obtain the energy density the force
due to electromagnetic field fluctuations between two
parallel conducting plates it suffices to multiply by a factor
of 2 the corresponding scalar field result, accounting for the
two photon polarization states.

The above extra factor of 2 obviously appears also in our
main result, Eq. (57) and, e.g., in (62), as regards the
gravitational case. So—at least to the present order of
approximation—in the electromagnetic case we basically
observe (for each polarization state) the very same effects
discussed in the scalar case.
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APPENDIX B: A MORE GENERAL CASE OF
GRAVITATIONAL WAVE INTERACTION

It is possible, although a bit tricky, to examine the
more general situation in which the gravitational perturba-
tion does not propagate along the z direction of the
cavity reference frame. Consider a gravitational (plane)
wave, propagating along an arbitrary direction Q=
(cos @ sin 9, sin ¢ sin 9, cos 9) with respect to the reference
frame of the Casimir cavity, {x,y, z}. Let {X,¥,Z} be the
“wave frame,” namely, the reference frame with respect to
which the gravitational wave is described [in the transverse
traceless (TT) gauge] by the metric

ds* = g, d¥dx* = —d* + d%* + h,,d¥d%,  (Bl)

where

hy =Y Helh(i-7).
J=+.x

(B2)

In (B2) the index A runs over the two physical polarization
states (plus and cross) of the wave, H, are the amplitudes of
the two polarizations, and

00 0 O 0000
é+:01oo EX:OOIO (B3)
e 00 -1 0 - 0100

00 0 O 0000

are the corresponding polarization tensors. Let us define
R(p.9) =R, (—¢)R,(9), (0 < ¢ <27, 0 <9 < 7), where

1 0 0 0
0 cos® O sind
rRO=|, 00 T @
0 —sind 0O cosd
1 0 0 0
0 cos —sin 0
R.(~p) = s e (BS)
0 sing cosep O
0 0 0 1

Using R(¢, 9), we transform (B2) from the TT frame to the
Casimir cavity frame. Noticing that ¢* = (RTé*R), we get
(a superscript T means matrix transposition) [47]

hy =Y Hielyh(t—Q-%).
A=+,%

(B6)

Expanding (B6) near X =0 and neglecting the spatial
dependence (thanks to the smallness of the cavity size,

compared to the typical gravitational wavelength), we may
approximate

hy =h(t) Y Hé,,. (B7)

A=+,x

Using (B7) in the Klein-Gordon equation (7), we obtain
(O + V)¢ = 0, where

V="h(t) Y He{"0,0,
J=+,x

(B8)

Searching for solutions in the form (10) leads to the
following equation:

R+ wn—h(t) Y Helpipje =0, (B9
A=4+,X%

where  p = {p*.p’.p'} ={p..(nz/L)} and ’=

p3 + (nm/L)?. Looking at (33) we see that all we need
is |, 2, namely, the squared modulus of the Bogoliubov
coefficient

B, = _%/_ dth(t)e2e" Z Hejpp;.

A=+,x

(B10)

Using (60) and assuming, for simplicity, H, = H, = H,
we find, after some tedious algebra,

H? A
BoP? = 42z e/ F(Q pion). (BI1)
where
~ .. 2
F(Q.py.n)= ( > e”pipj)
I=t.x
AL 4 A (2, A (nmr\4
:A(Q)PL‘FB(Q) T PL"’C(Q) )
(B12)
and
A 1
A(Q) = » (41 + 20 cos(29) 4 3 cos(49)
+ 24 cos(4¢) sin* 9), (B13)

A 1
B(Q) = 3 [10 4+ 6 cos(29) + 3 cos(29 — 4¢) — 6. cos(4g)

+ 3 cos(28 + 4¢)] sin? 9, (B14)

C(Q) = 4cos?(2¢) sin* 9. (B15)

Substituting (B11) in (38) (do not confuse d with 6, the
latter defining p* = p, cos@ and p” = p, sin@ in the
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reference frame of the cavity) we get, after integration over
the variables s and 0, the correction to the Casimir effect
due to the gravitational pulse propagating along the
direction Q,

H? % todw _ 0?62
<5€Cas> :Wll—%%e{ 1= F( )/0 Ee 207/
x [A(Q)15 +B(Q)13+C(Q)Il]}, (B16)

where the quantities ; (k= {1,3,5}) are defined as
follows:

oo (nz/L)>*
Iy = dp, p* . (B17
=3 G g B
Using ([39]) we find
Fv-3) 2 _ 213w
Is = =0 ;[(mz/L) - P, (BIS)
while it can be easily checked that
I'(v-3) nx 3
I;= - , (B19
3T \L ZZ o’ (B19)
INOZS 3) nx v
I, = ) QZ -w*| . (B20)
Using (B18)—(B20) we rewrite (B16) as
g -
————1limY d)
(0ecas) = 16762L 10" le{ (v=3)
+oodw 202 T\ 2v—6 5 w?L*]3-v
XA Ee HZD(%>;<Z> |:l’l - 71'2 :| },
(B21)
where D,/ represents the following operator:
N 1 /a\2 .. 0
D =AQ)—= (-] B(Q
o = A0~ (7) 500 5
1 <7r>4 A ?
+2 () CQ) 753 (B22)
2\L a((1)%)?

Carrying out the same procedure developed in Sec. IV B,
we convert (B21) in an expression involving the Epstein-
Hurwitz {-function,

H? oo da w2
7hmi}{e{ “T(v— 3)/ —C;)e =
0

16762 L v—~0 w

2u—6 w?L*]3-v
XD(”/L)Z<L> |:n2+ 71-2:| } (B23)

n

<5€Cas > =

By means of the expansion (49), we perform again the
analysis of the emerging divergences, finding once more
that the only surviving contribution is the one involving the
last term in (49). We get [compare with (53)]

H2
(S€cys) = hm‘Re{ 273

" 167262L v—0

L\ v=5/2
X D(ﬂ/L) Z <;> ny_7/2‘](’/) } > (B24)

where J(v) is given by (54). In the case of a gravitational
pulse whose characteristic wavelength is large when
compared with the size of the Casimir cavity, we can
assume oL < 1 and expand J(v) to the lowest order, thus
obtaining (in the limit v — 0)

1522 1-1/2,-7/2

J~—
160

(B25)

Taking into account the rapid convergence of the sum in
(B24), we retain the n = 1 term only, hence finding

15H?

Seey) —2 D, (L6
(O¢cs) 64276’ L /) (E77)
15H? AL 3 A A
=———F— | A(Q)—=B(Q)+3C(2) |]. (B26
(4@ =35 @ 4 3c@). (829

The result (B26) represents the generalization of (61) to the
case of a gravitational pulse propagating at an arbitrary

direction Q with respect to the reference frame of the
Casimir cavity. Notice that, in the case 9 = ¢ = 0, (B26)
yields [see (B13)—(B15)]

15H?

0€Cas) = ——F——=—= »
(decas) 32\276°L’

(B27)

e.g., just twice the result we found in (61). This is due to the
fact that we are considering a gravitational wave charac-
terized by two polarization states, H, and H, (with equal
amplitudes). This confirms once more what was pointed
out in Appendix A. Namely, each polarization state makes
its own contribution to the Casimir vacuum energy, just as
in the electromagnetic case.

The result (B26) has been obtained assuming H, = H.,..
Such a constraint can be relaxed (H, # H,) and the
calculations are almost the same, although the final
expression is rather cumbersome and not particularly
appealing.

Finally, we point out that the present approach can be
straightforwardly applied also in the case of more general
background spacetimes as, e.g., in Bianchi type-IX models.

104003-13



FRANCESCO SORGE

PHYS. REV. D 108, 104003 (2023)

[1] N.D. Birrell and P.C.W. Davies, Quantum Fields in
Curved Space (Cambridge University Press, Cambridge,
England, 1982).

[2] G.FE.R. Ellis, Gen. Relativ. Gravit. 46, 1619 (2014).

[3] G.R. Bengochea, G. Leoén, E. Okon, and D. Sudarsky, Eur.
Phys. J. C 80, 18 (2020).

[4] U. Leonhardt, Phil. Trans. R. Soc. A 378, 20190229 (2020).

[5] H. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).

[6] H. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).

[7]1 K. A. Milton, The Casimir Effect: Physical Manifestations
of Zero-Point Energy (World Scientific, Singapore, 2001).

[8] Casimir Physics, edited by D. Dalvit, P. Milonni, D.
Roberts, and F. da Rosa (Springer, Heidelberg, 2011).
[9] E. Calloni, L. Di Fiore, G. Esposito, L. Milano, and L. Rosa,

Phys. Lett. A 297, 328 (2002).

[10] E. Calloni, L. Di Fiore, G. Esposito, L. Milano, and L Rosa,
Int. J. Mod. Phys. A 17, 804 (2002).

[11] G. de A. Marquez and V. B. Bezerra, Classical Quantum
Gravity 19, 985 (2002).

[12] G. de A. Marquez and V.B. Bezerra, Phys. Rev. D 66,
105011 (2002).

[13] G. de A. Marquez and V. B. Bezerra, Mod. Phys. Lett. A 19,
49 (2004).

[14] G. de A. Marquez, S. G. Fernandez, and V. B. Bezerra, Braz.
J. Phys. 35, 1110 (2005).

[15] F. Sorge, Classical Quantum Gravity 22, 5109 (2005).

[16] S. A. Fulling, K. A. Milton, P. Parashar, A. Romeo, K. V.
Shajesh, and J. Wagner, Phys. Rev. D 76, 025004 (2007).

[17] K. A. Milton, S. A. Fulling, P. Parashar, A. Romeo, K. V.
Shajesh, and J. Wagner, J. Phys. A 41, 164052 (2008).

[18] G. Bimonte, E. Calloni, G. Esposito, and L. Rosa, Phys.
Rev. D 74, 085011 (2006).

[19] G. Bimonte, E. Calloni, G. Esposito, and L. Rosa, Phys.
Rev. D 77, 109903(E) (2008).

[20] F. Sorge, Classical Quantum Gravity 26, 235002 (2009).

[21] F. Sorge, Phys. Rev. D 90, 084050 (2014).

[22] F. Sorge, Classical Quantum Gravity 36, 235006 (2019).

[23] F. Sorge, Classical Quantum Gravity 38, 025009 (2021).

[24] C.B. Collins, S. W. Hawking, and D. W. Sciama, Mon. Not.

R. Astron. Soc. 162, 307 (1973).
[25] L. Parker, Phys. Rev. Lett. 21, 562 (1968).

[26] L. Parker, Phys. Rev. 183, 1057 (1969).

[27] S. A. Fulling, Phys. Rev. D 7, 2850 (1973).

[28] P.C. W. Davies, J. Phys. A 8, 609 (1975).

[29] W. G. Unruh, Phys. Rev. D 14, 870 (1976).

[30] F. Sorge and J.H. Wilson, Phys. Rev. D 100, 105007
(2019).

[31] J. H. Wilson, F. Sorge, and S. A. Fulling, Phys. Rev. D 101,
065007 (2020).

[32] J. Schwinger, Phys. Rev. 82, 664 (1951).

[33] J. Schwinger, Lett. Math. Phys. 24, 59 (1992).

[34] M. V. Cougo-Pinto, C. Farina, and A.J. Segui-Santonja,
Lett. Math. Phys. 30, 169 (1994).

[35] V. Dodonov, Physics 2, 67 (2020).

[36] E. Elizalde, Ten Physical Applications of Spectral Zeta
Functions (Springer, Heidelberg, 2012).

[37] D. Kramer, H. Stephani, M. MacCallum, and E. Herlt, Exact
Solutions of Einstein’s Field Equations (VEB Deutscher
Verlag der Wissenschaften, Berlin, 1980).

[38] B.-L. B. Hu and E. Verdaguer, Semiclassical and Stochastic
Gravity. Quantum Filed Effects on Curved Spacetime,
Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England, 2020).

[39] M. Kaku, Quantum Field Theory (Oxford University Press,
Oxford, 1993).

[40] L S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series
and Products (Elsevier Academic Press, Burlington, USA,
2007).

[41] E. Elizalde, J. Math. Phys. (N.Y.) 31, 170 (1990).

[42] F. Sorge, Classical Quantum Gravity 17, 4655 (2000).

[43] V. V. Dodonov, Adv. Chem. Phys. 119, 309 (2001).

[44] L. H. Ford, M. J. Pfenning, and T. A. Roman, Phys. Rev. D
57, 4839 (1998).

[45] C.J. Fewster and C.J. Smith, Ann. Henri Poincaré 9, 425
(2008).

[46] E. Fermi, Rend. Fis. Acc. Lincei 9, 881 (1929).

[47] B. Allen, Relativistic gravitation and gravitational radiation,
in Proceedings Les Houches School of Physics: Astrophysical
Sources of Gravitational Radiation, Cambridge, England,
edited by J.-A. Marck and J.-P. Lasota (Haute Savoie,
Les Houches, 1997), p. 373, https://api.semanticscholar
.org/CorpusID:117235270.

104003-14


https://doi.org/10.1007/s10714-013-1619-5
https://doi.org/10.1140/epjc/s10052-019-7554-1
https://doi.org/10.1140/epjc/s10052-019-7554-1
https://doi.org/10.1098/rsta.2019.0229
https://doi.org/10.1103/PhysRev.73.360
https://doi.org/10.1016/S0375-9601(02)00445-0
https://doi.org/10.1142/S0217751X02010157
https://doi.org/10.1088/0264-9381/19/5/310
https://doi.org/10.1088/0264-9381/19/5/310
https://doi.org/10.1103/PhysRevD.66.105011
https://doi.org/10.1103/PhysRevD.66.105011
https://doi.org/10.1142/S021773230401237X
https://doi.org/10.1142/S021773230401237X
https://doi.org/10.1590/S0103-97332005000700025
https://doi.org/10.1590/S0103-97332005000700025
https://doi.org/10.1088/0264-9381/22/23/012
https://doi.org/10.1103/PhysRevD.76.025004
https://doi.org/10.1088/1751-8113/41/16/164052
https://doi.org/10.1103/PhysRevD.74.085011
https://doi.org/10.1103/PhysRevD.74.085011
https://doi.org/10.1103/PhysRevD.77.109903
https://doi.org/10.1103/PhysRevD.77.109903
https://doi.org/10.1088/0264-9381/26/23/235002
https://doi.org/10.1103/PhysRevD.90.084050
https://doi.org/10.1088/1361-6382/ab4def
https://doi.org/10.1088/1361-6382/abc666
https://doi.org/10.1093/mnras/162.4.307
https://doi.org/10.1093/mnras/162.4.307
https://doi.org/10.1103/PhysRevLett.21.562
https://doi.org/10.1103/PhysRev.183.1057
https://doi.org/10.1103/PhysRevD.7.2850
https://doi.org/10.1088/0305-4470/8/4/022
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1103/PhysRevD.100.105007
https://doi.org/10.1103/PhysRevD.100.105007
https://doi.org/10.1103/PhysRevD.101.065007
https://doi.org/10.1103/PhysRevD.101.065007
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1007/BF00430003
https://doi.org/10.1007/BF00939704
https://doi.org/10.3390/physics2010007
https://doi.org/10.1063/1.528856
https://doi.org/10.1088/0264-9381/17/22/306
https://doi.org/10.1002/0471231479
https://doi.org/10.1103/PhysRevD.57.4839
https://doi.org/10.1103/PhysRevD.57.4839
https://doi.org/10.1007/s00023-008-0361-0
https://doi.org/10.1007/s00023-008-0361-0
https://doi.org/10.1007/s00023-008-0361-0
https://api.semanticscholar.org/CorpusID:117235270
https://api.semanticscholar.org/CorpusID:117235270
https://api.semanticscholar.org/CorpusID:117235270

