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In this work, we wish to address the question—whether the quasinormal modes, the characteristic
frequencies associated with perturbed black hole spacetimes, central to the stability of these black holes,
are themselves stable. Though the differential operator governing the perturbation of black hole
spacetimes is self-adjoint, the boundary conditions are dissipative in nature, so that the spectral theorem
becomes inapplicable, and there is no guarantee regarding the stability of the quasinormal modes.
Following Jaramillo et al. [Phys. Rev. X 11, 031003 (2021)], we have provided a general method of
transforming to the hyperboloidal coordinate system, for both asymptotically flat and asymptotically de
Sitter spacetimes which neatly captures the dissipative boundary conditions, and the differential operator
becomes non-self-adjoint. Employing the pseudospectrum analysis and numerically implementing the
same through Chebyshev’s spectral method, we present how the quasinormal modes will drift away from
their unperturbed values under external perturbation of the scattering potential. Intriguingly, for strong
enough perturbation, even the fundamental quasinormal mode, associated with gravitational perturba-
tions, drifts away from its unperturbed position for asymptotically de Sitter black holes, in stark contrast to
the case of asymptotically flat black holes. Besides presenting several other interesting results, specifically
for asymptotically de Sitter black holes, we also discuss the implications of the instability of the
fundamental quasinormal mode on the strong cosmic censorship conjecture.
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I. INTRODUCTION

The historic detection of gravitational waves from the
merger of binary black holes [1–3], as well as the
observation of the black hole shadow [4,5], has made it
possible to study the nature of gravity in the strong field
regime. These observations have enabled us to probe the
physics of gravitational interaction near the photon circular
orbits, which are either confined to a spherical surface,
known as the photon sphere (for static and spherically
symmetric spacetime) or are confined within a certain
region of spacetime, known as the photon region (for
stationary and axisymmetric spacetime). By and large,
these observations suggest that the spacetime geometry till
the photon region is well described by black hole (BH)
solutions in general relativity. Black holes are the simplest
objects in our universe and those in general relativity are
characterized by only three hairs—mass, charge and
angular momentum. Gravitational waves, as well as black

hole shadow measurements, can not only extract informa-
tion about these hairs but can also constrain additional
hairs for black hole solutions in modified theories of
gravity [6–14]. The most important property of a black
hole, as far as classical physics is concerned, is its stability
under external perturbations. Unlike mechanical systems,
the quasinormal modes of black holes, associated with
excitation under external perturbations, have both real and
imaginary parts, hence the name quasinormal modes
(QNMs). The real part of the QNMs leads to an oscillatory
behavior, characteristic of the quasinormal modes,
whereas the imaginary part with an appropriate sign, leads
to an exponentially damped part, and is the reason behind
the stability of black holes [15–17]. Astonishingly, the
stability of black holes has a one-to-one correspondence
with the existence of the photon region, where the effective
potential experienced by the perturbing field becomes
maximum (these effective potentials are often referred
to as scattering potentials). Moreover, the instability time-
scale associated with the maxima in the effective potential
is related to the timescale associated with the exponential
decay of the quasinormal modes. This is why probing the
spacetime geometry till the photon region is sufficient to
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comment on the stability of the black holes. It should be
emphasized that, by assuming the spacetime geometries to
depict black holes, one tacitly assumes the nonexistence of
structure beyond the photon region, even though several
possibilities regarding the existence of structure beneath
the photon region exist and the study of the stability of
these non-black-hole compact objects is another story
altogether (see Refs. [18–27] for further details). The
gravitational wave signals from coalescing black hole
binaries have neatly captured the fundamental and in some
cases, one of the higher overtones, though with a small
signal-to-noise ratio, exactly following an oscillatory
behavior modulated by an exponential damping, signalling
the observational verification of the stability of black holes
under perturbations [17,28–30]. With future generations of
ground and space-based gravitational wave detectors, we
will be able to detect more overtones with a higher signal-
to-noise ratio and we shall acquire a better understanding
of the spectroscopy of black hole QNMs [31–33].
Having established the fundamental role played by these

QNMs in black hole physics, the fact that we hope to
observe a large number of these modes in future gravita-
tional wave detectors begs the following question to be
asked and answered: how stable are these modes under a
small perturbation of the scattering potential from which the
modes are themselves generated? The importance of this
question lies in the simple fact that no astrophysical object
in our universe is isolated, and hence the scattering potential
is bound to be perturbed by nearby gravitating objects.
Thus, such small perturbations are always present and hence
the stability of the QNMs is an important avenue to explore.
Such explorations in asymptotically flat spacetimes started
from the seminal works in [34–36]: in [34] it was shown that
all of these modes, excluding the fundamental mode, are
unstable1 but [35,36] argued that the instability extended to
the fundamental mode as well. The detection of gravita-
tional waves has sparked a renewed interest in this area,
given the central role that quasinormal modes play in black
hole spectroscopy [38–47]. In particular, motivated by
issues in determining the onset of turbulence in hydro-
dynamics [48], novel methods of finding spectral instability
were obtained [38–42] and then applied, for the first time in
gravitational systems, to the study of the stability of the
QNMs of the Pöschl-Teller potential and (asymptotically
flat) Schwarzschild black holes [38,39]. These set of
pioneering works [38–42] were rapidly followed up by
exploring the stability of the QNM spectrum of Reissner-
Nordström black holes [44] and non-black-hole compact
objects in asymptotically flat spacetimes [45]. The key
conclusion, in the context of black holes, being that the
fundamental mode is stable, whereas the higher overtones

are unstable under small perturbations of the scattering
potential. No such systematic attempt at determining the
stability of these modes for black holes in asymptotically de
Sitter spacetime has been made (except for [49] where the
authors focused exclusively on near-extremal spacetimes)
and will form the main focus of this work. The motivation
for working with the asymptotically de Sitter spacetime is
two-fold, in addition to the fact that our universe is
asymptotically de Sitter. First of all, the inclusion of a
cosmological constant introduces interesting limiting geom-
etries, e.g., the Nariai solution, which is obtained by taking
the limit in which the black hole event horizon almost
coincides with the cosmological horizon, and it would
interesting to see how these instabilities affect the QNMs
of a Nariai spacetime. The inclusion of charge in turn leads
to an even richer class of geometries, as it introduces the
near-extermal solutions in the picture. In the presence of a
cosmological constant, a new class of modes also emerges,
e.g., besides the well-known photon sphere modes, there are
purely imaginary de Sitter modes for Schwazrschild-de
Sitter black holes [50–52]. Moreover, Reissner-Nordström-
de Sitter black holes exhibit a new mode, known as the near-
extremal mode, in addition to the two aforementioned
modes, with the inclusion of the charge parameter [51].
It will be worthwhile to study the stability properties of each
of these modes under small perturbations.
Secondly, the presence of a positive cosmological con-

stant greatly modifies the late-time behavior of the QNMs,
and results in a violation of the strong cosmic censorship
conjecture, which has no resolution within the purview of
classical physics [51,53]. It is certainly possible that the
introduction of a small perturbation will force the modes to
migrate to a different region in the complex frequency plane,
such that the strong cosmic censorship conjecture will be
restored in a purely classically setting, an exciting prospect
that was briefly suggested in [38]. As we shall demonstrate,
except for some specific situations, the above hope can be
realized through the instability of the QNMs.
The instability of the quasinormal modes is not confined

to black holes alone, rather it exists in a broad range of
physical systems, starting from hydrodynamics to quan-
tum mechanics [54]. Just as theoretical estimations regard-
ing the onset of turbulent flow in a hydrodynamic system
do not match with experimental outcomes, the eigenspec-
trum of non-Hermitian operators in quantum mechanics
does not provide a complete description of such a quantum
system. In both cases, the failure of the eigenspectrum to
describe the system completely arises from the non-self-
adjoint nature of the relevant differential operator [55–57].
For black holes as well, the boundary conditions imposed
on the perturbations are dissipative in nature (black holes
absorb everything that falls into it) and hence require a
non-self-adjoint operator to describe the eigenvalue prob-
lem associated with the quasinormal modes. Thus the
origin of the instability of the modes can be traced back to

1For a personal recollection of the discovery of quasinormal
modes and comments on this issue in particular, the readers are
requested to refer to [37].
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the existence of a non-self-adjoint operator governing the
QNM spectrum. For self-adjoint operators, on the other
hand, the spectral theorem asserts that for a small pertur-
bation, the eigenvalues of the self-adjoint operator will also
be perturbed, but the perturbed eigenvalues will be con-
fined within a small region, whose size is comparable to
the strength of the perturbation. But for non-self-adjoint
operators, as is the case for black holes, the QNMs migrate
to regions of the complex frequency plane, over a distance
that is at least a few orders of magnitude larger than the
scale of the perturbation [38,44,58], signaling the exist-
ence of instability. The migration of quasinormal modes is
extremely sensitive to the frequency of perturbations.
Particularly, in the case of asymptotically flat black holes,
such drifting is present for all higher overtones when
subjected to high-frequency (“small-scale”) perturbations,
potentially rendering these modes unstable. Conversely,
these overtones are stable against low-frequency (“large-
scale”) perturbations. Interestingly, the fundamental mode
does not drift away and hence remains stable under
external perturbation of the scattering potential, irrespec-
tive of the perturbation frequency [37,38].
In this work, we wish to extend the above result for

asymptotically de Sitter black holes and wish to explore if
the fundamental mode still remains stable. In case, the
fundamental mode demonstrates instability, there will be
significant implications for the strong cosmic censorship
conjecture, or, in other words, regularity of the perturbation
at the Cauchy horizon. If the fundamental QNM drifts in
the complex frequency plane toward a smaller imaginary
value, the perturbations will no longer be regular at the
Cauchy horizon, thus respecting the strong cosmic censor-
ship conjecture. Through this analysis, we also hope to
point out other nontrivial features associated with the
instability of the QNMs for asymptotically de Sitter black
holes.
The paper is organized as follows: We begin by con-

structing a hyperboloidal coordinate system for asymptoti-
cally de Sitter spacetimes in Sec. II that is capable of
handling the boundary conditions of the scattering prob-
lems in a purely geometric manner. Along the way, we also
review the situation for asymptotically flat black holes. In
the following section, that is, Sec. III, we write down the
wave equation governing the behavior of the perturbing
field in the hyperboloidal coordinate system. We then
proceed to motivate and define a novel probe recently
introduced to examine the spectral stability of gravitational
systems, the pseudospectrum, and the associated energy
norm in Sec. IV. In Sec. V, we have laid down the numerical
procedure used in this work, that is, Chebyshev’s spectral
method. We then embark on a thorough investigation of the
spectral stability of asymptotically de Sitter black holes in
Sec. VI. We finally end at Sec. VII with a brief discussion
of our results and concluding remarks.

Notations and conventions: We set the fundamental
constants G and c to unity. Throughout this paper, we will
use mostly positive signature convention, such that the
Minkowski spacetime will have the metric diagð−1; 1; 1; 1Þ.

II. HYPERBOLOIDAL COORDINATE SYSTEM
FOR ASYMPTOTICALLY DE SITTER

SPACETIMES

In this section, we will extensively discuss and delineate
a novel and useful coordinate system, known as the
hyperboloidal coordinate system [59], through which
the boundary conditions, associated with the determination
of the QNMs of black holes, get automatically incorpo-
rated into the differential equations governing the pertur-
bations [60,61]. The idea of using a hyperboloidal foliation
to study QNMs was first suggested by Schmidt [62]. While
the explicit relationship between the hyperboloidal coor-
dinate transformation and the Regge-Wheeler-Zerilli wave
functions governing the probe field (and hence its utility in
computing the QNMs) was expounded by Zenginoglu
in [60]. Furthermore, a hyperboloidal foliation constructed
using a particular gauge choice (called the minimal
gauge [63,64]) that is extremely well adapted for the
numerical computation of the QNMs of asymptotically flat
black holes was introduced and put to use in a set of works
by Macedo and his collaborators [61,63–67]. Recently,
the aforementioned “numerically efficient” hyperboloidal
approach has been used to compute the QNMs of a Kerr
black hole [68] and the techniques used therein have also
been extended to study the stability of ultracompact
horizonless spacetimes [69]. In the context of asymptoti-
cally de Sitter spacetimes, certain hyperboloidal coordi-
nate systems have been used, but in a very different setting,
e.g., in the study of black hole thermodynamics [70–73];
however, these coordinate systems were not constructed
keeping in mind the question of investigating spectral
stability and calculating QNMs. In this regard, this work
presents the first attempt to arrive at the hyperboloidal
coordinate system in the minimal gauge, for asymptoti-
cally de Sitter spacetimes that is suitable for black hole
perturbation theory and gives a precise geometrical context
behind its utility in studying QNMs and their stability.2 It is
also worth highlighting the application of other hyper-
boloidal coordinate systems as well: this includes inves-
tigating the dynamics of a Yang-Mills field in various
geometries [76,77], as well as the study of QNMs in
asymptotically anti–de Sitter (AdS) spacetimes, where one
can construct a “regular” coordinate system that shares the
usefulness of the hyperboloidal coordinate systems. Even
though these regular coordinates are geometrically quite

2Coordinate systems conceptually related to one we will derive
here, have also been used to study the QNMs of pure two-
dimensional de Sitter space [74] and small Schwarzschild
de Sitter black holes [75].
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different, such coordinates, known as the Kerr-Star coor-
dinates [78], have been elucidated in [79,80] for AdS BHs
and, notably, they have been used to address the issue of
strong cosmic censorship in Kerr-AdS black holes [81]
(see also [82,83]).
The hyperboloidal foliation of the spacetime is necessary

since the differential equation for the perturbations in the
standard coordinate system is self-adjoint, it is the dis-
sipative boundary condition at the horizon, which makes
the problem non-self-adjoint. Thus to present this issue
more explicitly, we need to incorporate the boundary
conditions within the differential operator itself, describing
the perturbations, such that the non-self-adjoint nature of
the operator becomes evident. This is precisely what the
hyperboloidal coordinate system achieves.
Therefore, the hyperboloidal coordinate system is a

natural one to address the evolution of the perturbations
associated with the black hole spacetimes, such that the
boundary conditions get automatically incorporated. For
asymptotically flat spacetimes, the boundary conditions are
imposed on the perturbations at the horizon and at future
null infinity. These two null surfaces are connected by a
hyperboloid, which is related to the coordinate time by the
so-called “height function.” On the other hand, for asymp-
totically de Sitter spacetimes, the boundary conditions are
imposed, on the perturbations, at the black hole horizon, and
at the cosmological horizon. Both of these boundary
conditions are imposed on null surfaces and hence the
hyperboloidal coordinate system is natural for asymptoti-
cally de Sitter spacetimes as well. In what follows, we will
first demonstrate how such a hyperboloidal coordinate
system can be defined, for a generic static and spherically
symmetric spacetime. We will subsequently demonstrate
how the above analysis will lead to hyperboloidal coor-
dinate system in the context of asymptotically flat space-
times, before extending it to the case of asymptotically de
Sitter spacetimes. We start by writing down the line element
for a generic static and spherically symmetric black hole
spacetime as,

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð2:1Þ

where, dΩ2 ≡ dθ2 þ sin2 θdϕ2, is the line element on a
unit two-sphere. It is instructive to introduce a dimension-
less, as well as compactified coordinate σ, in place of the
radial coordinate r, through the following coordinate
transformation,

r
λ
≡ ρðσÞ

σ
; ð2:2Þ

where λ is a characteristic length scale associated with
the problem of interest. Besides redefining the radial

coordinate, we also define the dimensionless null coordi-
nates v and u as,

v¼ tþ r�
λ

; u¼ t− r�
λ

¼ v−
2r�
λ

; dr� ¼
dr
fðrÞ ; ð2:3Þ

where r� is the tortoise coordinate, related to the radial
coordinate, as in the above expression. In terms of the new
coordinates ðv; σ; θ;ϕÞ, the above static and spherically
symmetric line element becomes,

ds2 ¼ −λ2fdv2 − 2λ2
�
βðσÞ
σ2

�
dvdσ þ λ2

ρ2

σ2
dΩ2: ð2:4Þ

Here, we have defined a new function β of the compactified
radial coordinate σ as,

β≡ ρ − σρ0; ð2:5Þ

where “prime” denotes the derivative with respect to the
compactified radial coordinate σ. Hence we can read off
the following nonzero components of the metric and of the
inverse metric as follows,

gvv ¼−λ2f; gvσ ¼−
λ2

σ2
β; gθθ ¼

gϕϕ
sin2θ

¼ λ2
ρ2

σ2
; ð2:6Þ

gvσ ¼ −
σ2

λ2β
; gσσ ¼ σ4f

β2λ2
; gθθ ¼ sin2θgϕϕ ¼ σ2

λ2ρ2
:

ð2:7Þ

These metric elements will be used to raise and lower the
indices of any tensorial quantity living in this spacetime.
Since the hyperboloidal coordinate system connects two
null surfaces, it is natural to connect the null vectors
associated with these null surfaces to the hyperboloidal
coordinate system. Further, the only null vectors that can
be associated with any null surface are the null normals
associated with them. In the present context, these two
relevant null vectors are given by,

lα ¼ −A∇αu; kα ¼ −B∇αv; ð2:8Þ

where A and B are arbitrary normalization factors and
these two null vectors must satisfy the following condition,
kαlα ¼ −1. In the ðv; σ; θ;ϕÞ coordinate system, we obtain
the following components for the vector kα,

kα ¼ ð−B; 0; 0; 0Þ; kα ¼
�
0;

σ2

λ2β
B; 0; 0

�
; ð2:9Þ

and similarly, the components of the other null vector
lα read,
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lα ¼
�
−A;−A

2β

σ2f
;0;0

�
; lα ¼

�
2A
λ2f

;−A
σ2

λ2β
;0;0

�
:

ð2:10Þ

Therefore, we obtain the following inner product between
these two null vectors: kαlα ¼ −ð2AB=λ2fÞ, which should
be set to the value −1. Therefore, we immediately obtain,

AB ¼ λ2f
2

: ð2:11Þ

Therefore, the two normalization factors are not indepen-
dent, rather one can be expressed in terms of the other.
Hence the two null vectors take the following form,

kα ¼ ζð−1; 0; 0; 0Þ; kα ¼ ζ
σ2

λ2β
δμσ; ð2:12Þ

lα ¼
�
−
λ2f
2ζ

;−
λ2β

ζσ2
; 0; 0

�
; lα ¼ 1

ζ

�
δμv −

σ2f
2β

δμσ

�
;

ð2:13Þ

Let us now make another coordinate transformation, by
defining a new time coordinate τ, through the following
relation,

τ≡ vþ h0ðσÞ; ð2:14Þ

where, as of now h0ðσÞ is an arbitrary function of the
compactified radial coordinate σ. In this new coordinate
system ðτ; σ; θ;ϕÞ, the line element becomes,

ds2 ¼ −λ2fdτ2 þ 2λ2
�
fh00 −

β

σ2

�
dτdσ

þ λ2
�
2h00

β

σ2
− fh020

�
dσ2 þ λ2

ρ2

σ2
dΩ2 ð2:15Þ

Under this coordinate transformation, to the new coordi-
nate system, the components of the null vectors become,

k̄α¼
�
σ2h00
λ2β

ζ;
σ2

λ2β
ζ;0;0

�
; lα¼

�
1

ζ
−
σ2fh00
2ζβ

;−
σ2f
2ζβ

;0;0

�
;

ð2:16Þ

where, ζ is an arbitrary normalization constant, which we
fix by imposing the following condition on the null vector
field kα: kα∂ατ ¼ 1, and that yields,

ζ ¼ λ2β

σ2h00
: ð2:17Þ

Thus, for the above choice of the normalization parameter
ζ, the null vectors become,

k̄α ¼
�
1;

1

h00
; 0; 0

�
¼ δατ þ

1

h00
δασ ;

lα ¼ σ2h00
λ2β

�
1 −

σ2fh00
2β

�
δμτ −

σ4h00f
2λ2β2

δμσ: ð2:18Þ

As of now, we have two unknown functions ρðσÞ and
h0ðσÞ. As we will demonstrate below, the function h0ðσÞ
can be determined given ρðσÞ, since will satisfy a differ-
ential equation, depending on the choice of the unknown
function ρðσÞ. For this purpose, we consider σ ¼ constant
surface, then the norm of the normal to this surface
becomes, gσσ ∝ σ4. Thus, σ ¼ 0 is a null surface. If we
now try to construct a Gaussian null coordinate system
around this σ ¼ 0 null surface, then it follows that lτ ∝
ðσ2=λ2Þ [84–86]. Thus from the expression of the null
vector lα in (2.18), it is evident that h00 must satisfy the
following algebraic equation,

h00
λ2β

�
1 −

σ2fh00
2β

�
¼ CðσÞ; ð2:19Þ

where, CðσÞ is a function of the coordinate σ, which
becomes constant in the σ → 0 limit. The above algebraic
equation can then be expressed as a quadratic equation in
h00, which reads,

�
σ2f
2λ2β2

�
h020 −

h00
λ2β

þ C ¼ 0; ð2:20Þ

with the following solution for h00,

h00 ¼
β

σ2f

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Cσ2fλ2

q �
: ð2:21Þ

Thus, near σ ¼ 0, the function h0ðσÞ satisfies the following
first order differential equation,

h00ðσÞ ¼
2βðσÞ
σ2fðσÞ − βðσÞCðσÞλ2 þOðσ2Þ: ð2:22Þ

To solve the above differential equation we need to know
the functional form for βðσÞ, as well as of fðσÞ, which
we determine subsequently, first for the asymptotically
flat spacetimes and then for the asymptotically de Sitter
spacetimes.
At this outset, let us introduce a modified height function

hðσÞ by the following coordinate transformation between
the old time coordinate t and the new time coordinate τ, and
also we introduce a new function gðσÞ, through the tortoise
coordinate r� as,
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τ ¼ t
λ
þ hðσÞ; r�

λ
¼ gðσÞ: ð2:23Þ

Such that, the relation between the functions h0 and h is
given by,

h ¼ h0 þ g: ð2:24Þ

Thus given any background spacetime, one can determine
the function fðrÞ, from which it is possible to compute
the tortoise coordinate r� and hence using (2.2), we can
determine the function gðσÞ. The function h0 can be
determined by imposing a regularity condition for the null
vectors, which boils down to the differential equation
presented in (2.22). This in turn requires knowledge about
the function ρðσÞ. We elaborate below on the steps of
deriving the function ρðσÞ and hence the determination of
both gðσÞ and h0ðσÞ, leading to the estimation of the height
function hðσÞ.

A. Warm up: Hyperboloidal coordinate for
asymptotically flat spacetime

Let us briefly describe and review the case of asymp-
totically flat spacetime [67], which will guide us in
generalizing the same to the case of asymptotically de
Sitter spacetime. For asymptotically flat spacetime, let us
identify the asymptotic point r ¼ ∞ with σ ¼ 0 and the
event horizon r ¼ rþ with σ ¼ 1, such that the region
r∈ ½rþ;∞� translates into the compactified region
σ ∈ ½1; 0�. Thus we may expand βðσÞ about the asymptotic
infinity as,

βðσÞ ¼ β0 þ β1σ þ β2σ
2 þOðσ3Þ; ð2:25Þ

where, β0, β1 and β2 are constants, to be determined later.
Given the above expansion for βðσÞ, it is evident from (2.5)
that the function ρðσÞ appearing in the definition of the
radial function, satisfies the following differential equation,

d
dσ

�
ρ

σ

�
¼ −

β0
σ2

−
β1
σ
− β2: ð2:26Þ

Integration of the above differential equation yields the
following expression for the function ρðσÞ,

ρðσÞ ¼ β0 þ ρ1σ − β1σ ln σ − β2σ
2: ð2:27Þ

Note that, ρðσÞ involves a term Oðσ ln σÞ and hence for
ρðσÞ to be well behaved at σ ¼ 0, we must impose the
condition β1 ¼ 0. Thus, to the leading order, we obtain,

βðσÞ ¼ β0 þOðσ2Þ≡ ρ0 þOðσ2Þ;
ρðσÞ ¼ ρ0 þ ρ1σ þOðσ2Þ; ð2:28Þ

such that, from (2.2) it follows that the coordinate trans-
formation between the radial coordinate r and the com-
pactified radial coordinate σ becomes,

r
λ
¼ ρ0 þ ρ1σ

σ
: ð2:29Þ

It is to be emphasized that the above choice of the functions
βðσÞ and ρðσÞ are for asymptotically flat spacetimes, while
for asymptotically de Sitter spacetimes the above relation
will be different. The fact that r ¼ ∞ maps to σ ¼ 0 is
evident from (2.29), while from (2.29), the mapping of the
outer horizon r ¼ rþ, to σ ¼ 1, yields, rþ ¼ λðρ0 þ ρ1Þ.
This fixes the constant ρ0 to the value: ρ0 ¼ ðrþ=λÞ − ρ1.
Thus, finally the relation between the radial coordinate r
with the dimensionless coordinate σ becomes,

r
λ
¼ σþ þ ρ1ðσ − 1Þ

σ
; ð2:30Þ

where, for notational convenience, we have defined,
ðrþ=λÞ ¼ σþ, which becomes unity for the choice:
λ ¼ rþ. As evident, the constant ρ1 remains undetermined,
fixing of which corresponds to different gauge choices, as
discussed in [67]. In what follows, we will keep λ arbitrary.

1. Hyperbolic coordinate for Schwarzschild black hole

As an illustration of the above analysis, let us explicitly
determine the functions h0ðσÞ and gðσÞ for Schwarzschild
black hole, which is asymptotically flat. The first step is to
solve for the differential equation of h0ðσÞ, which requires
casting the metric function fðrÞ in terms of the compacti-
fied radial coordinate σ. Using (2.30), we obtain,

fðσÞ ¼ 1−
2M
λ

σ

ρðσÞ ¼ 1−
σσþ

ρ0 þ ρ1σ
≃ 1−

σþ
ρ0

σ þOðσ2Þ;

ð2:31Þ

where, σþ ≡ ð2M=λÞ. In the subsequent calculations, we
shall ignore all theOðσ2Þ terms as in the above expression.
This corresponds to making a gauge choice which has been
called the minimal gauge in [63,64]. Geometrically speak-
ing, there are several possible hyperboloidal slices (in fact,
any arbitrary line) connecting the future event horizon Hþ

E
and the future cosmological horizon Hþ

C [see Fig. 1(c)3],
the minimal gauge is one such choice which has been
demonstrated to be extremely well suited for numerical
computations [61,63–67]. Given the above expression for
the metric function in terms of the compactified radial

3The final figures were drawn using the TikZ package in
LaTeX after the data was generated in Python and is adapted from
a publicly available code snippet shared by Anıl Zenginoğlu for
asymptotically flat spacetimes [60].
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coordinate σ, from (2.22), we obtain the following differ-
ential equation satisfied by h0ðσÞ,

h00ðσÞ ¼
2ρ0
σ2

�
1þ σþ

ρ0
σ

�
þOð1Þ; ð2:32Þ

which integrates to,

h0ðσÞ ¼ −
2ρ0
σ

þ 2σþ ln σ: ð2:33Þ

Thus, we have derived the modified height function h0ðσÞ
and let us now determine the function gðσÞ. For that
purpose, we first write down the tortoise coordinate in
terms of the radial coordinate r and then convert the same
to the dimensionless and compactified coordinate σ as,

r�
λ
¼ r

λ
þ 2M

λ
ln

���� r
2M

− 1

����
¼ ρ0 þ ρ1σ

σ
þ σþ ln

���� ρ0 þ ρ1σ

σσþ
− 1

����: ð2:34Þ

Substituting, ρ0 ¼ σþ − ρ1, we obtain the following func-
tional dependence of the function gðσÞ as,

gðσÞ ¼ ρ1 þ
σþ − ρ1

σ
þ σþ ln

���� σþ − ρ1 þ ðρ1 − σþÞσ
σσþ

����
¼ ρ1 þ

σþ − ρ1
σ

þ σþ lnðσþ − ρ1Þ
þ σþ lnð1 − σÞ − σþ ln ðσσþÞ

≃
σþ − ρ1

σ
þ σþ lnð1 − σÞ − σþ ln σ þOð1Þ ð2:35Þ

Having derived both h0ðσÞ and gðσÞ, the height function
hðσÞ becomes,

hðσÞ ¼ gðσÞ þ h0ðσÞ ¼ σþ lnσ −
σþ − ρ1

σ
þ σþ lnð1− σÞ;

ð2:36Þ
where, we have ignored all the terms which are independent
of the compactified radial coordinate σ. This is because, as
we will see later, only derivative of these functions with
respect to σ will be of relevance for the purpose of this work.
Using these two functions hðσÞ and gðσÞ, provides the
necessary transformation from the Schwarzschild coordi-
nates to hyperboloidal coordinates. We will now demon-
strate the same for the Reissner-Nordström spacetime,
another asymptotically flat spacetime.

2. Hyperbolic coordinate for Reissner-Nordström
black hole

The second example of deriving the hyperboloidal
coordinate for asymptotically flat spacetime corresponds
to that of a charged black hole, also known as the Reissner-
Nordström black hole (for details, see Ref. [67]). In this
case, the metric function can be expressed in terms of the
radial coordinate as,

fðrÞ ¼ 1−
2M
r

þQ2

r2
¼ r2− 2MrþQ2

r2
¼ ðr− rþÞðr− r−Þ

r2
;

ð2:37Þ

where, r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
are the event and the Cauchy

horizons respectively. Transforming the radial coordinate to
the dimensionless compactified coordinate σ, we obtain,

FIG. 1. Conformal diagrams showing constant t (right panel), constant v (middle panel), constant τ foliations the Schwarzschild
de Sitter spacetime withM ¼ 0.5 and Λ ¼ 0.2. In these figures,Hþ

E and H−
E are the future and past event horizons, Hþ

C and H−
C are the

future and past cosmological horizons, BE and BC are the bifurcation spheres at the (intersections of the two) event horizons and
cosmological horizons, iþ and i− are the future and past timelike infinity, Iþ and I− are future and past null infinity, respectively, and
r ¼ 0 represent the curvature singularities. The figure on the extreme right shows the hyperboloidal slicing of a Schwarzschild de Sitter
black hole which is emerging as a natural arena for studying perturbations in various black hole spacetimes. The constant time slices
were generated using the transformation equations involved in obtaining the conformal compactification of the spacetime metric under
consideration. The characteristic length scale λ has been set to unity [see (2.2)].
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fðσÞ ¼
�
1 −

rþ
λ

σ

σþ − ρ1 þ ρ1σ

��
1 −

r−
λ

σ

σþ − ρ1 þ ρ1σ

�

¼ fσþ − ρ1 þ ðρ1 − σþÞσgfσþ − ρ1 þ ðρ1 − r−
λ Þσg

ðσþ − ρ1 þ ρ1σÞ2

≃ 1 −
�

rþ þ r−
λðσþ − ρ1Þ

�
σ þOðσ2Þ: ð2:38Þ

Note that the OðσÞ term does not depend on the electric
charge and the effect of the charge only arises in the Oðσ2Þ
term. Thus at the leading order, the solution for h0 is given
by (2.33), irrespective of the existence of electric charge in
the spacetime. Expressed in detail, we obtain,

h0ðσÞ ¼ −
2ðσþ − ρ1Þ

σ
þ 2

�
σþ þ r−

λ

�
ln σ: ð2:39Þ

The corrections due to the presence of electric charge will
keep pouring in as we write down the tortoise coordinate in
terms of the compactified radial coordinate σ and hence

the function gðσÞ will be significantly modified. Given the
metric function of the Reissner-Nordström black hole
in (2.37), the tortoise coordinate becomes,

r� ¼ r −
1

2jκ−j
ln

�
r
r−

− 1

�
þ 1

2κþ
ln

�
r
rþ

− 1

�
; ð2:40Þ

where, κþ and κ− are the surface gravities at the event and
the Cauchy horizon, respectively, with the following
expressions,

κþ ¼ 1

2
f0ðrþÞ ¼

rþ − r−
2r2þ

; κ− ¼ 1

2
f0ðr−Þ ¼ −

rþ − r−
2r2−

:

ð2:41Þ

Note that κþ is positive, but κ− is a negative quantity.
Transforming the tortoise coordinate, as presented above,
to the compactified radial coordinate σ, we obtain the
function gðσÞ, central to the hyperboloidal coordinate as,

gðσÞ ¼ σþ − ρ1 þ ρ1σ

σ
−

σþ
2rþjκ−j

ln

�
σþ − ρ1 þ ρ1σ

σσþ

rþ
r−

− 1

�
þ σþ
2rþκþ

ln

�
σþ − ρ1 þ ρ1σ

σσþ
− 1

�
:

¼ ρ1 þ
σþ − ρ1

σ
þ σþ
2rþκþ

½ln ðσþ − ρ1Þ þ ln ð1 − σÞ − ln σ − ln σþ�

−
σþ

2rþjκ−j
ln

�
σþ − ρ1 þ ρ1σ

σσþ

rþ
r−

− 1

�
: ð2:42Þ

In the above form, the limit of the function gðσÞ to the Schwarzschild case is not a straightforward one. For this purpose, we
define,

q2 ¼ r−
rþ

: ð2:43Þ

In terms of this quantity q2, we can express a few geometrical entities as: rþκþ ¼ fð1 − q2Þ=2g, and
rþκ− ¼ −fð1 − q2Þ=2q4g. Therefore, the function gðσÞ becomes,

gðσÞ ¼ ρ1 þ
σþ − ρ1

σ
þ σþ
1 − q2

½ln ðσþ − ρ1Þ þ ln ð1 − σÞ − ln σ − ln σþ� −
σþq4

1 − q2
ln

�
σþ − ρ1 þ ρ1σ

q2σσþ
− 1

�

¼ ρ1 þ
σþ − ρ1

σ
þ σþ ln ðσþ − ρ1Þ

1 − q2
þ σþ ln ð1 − σÞ

1 − q2
− ð1þ q2Þσþ ln ðσσþÞ

−
σþq4

1 − q2
ln ½σþ − ρ1 þ ðρ1 − σþq2Þσ� þ

σþq4

1 − q2
ln q2

¼ σþ − ρ1
σ

þ σþ ln ð1 − σÞ
1 − q2

− ð1þ q2Þσþ ln σ −
σþq4

1 − q2
ln ½σþ − ρ1 þ ðρ1 − σþq2Þσ�: ð2:44Þ

Here also we have ignored terms which are independent
of the compactified radial coordinate σ. Note that the
parameter ρ1, present in the above expression for gðσÞ,
needs to be fixed. There are two possible choices for
this parameter, depending on the possible location of

the Cauchy horizon. Since our main interest is in
asymptotically de Sitter spacetime, we will not discuss
the above gauge choices any further. Finally, using
h0ðσÞ from (2.39), we obtain, the height function
to yield,
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hðσÞ ¼ −
σþ − ρ1

σ
þ σþ lnð1 − σÞ

1 − q2
þ σþð1þ q2Þ ln σ

−
σþq4

1 − q2
ln½σþ − ρ1 þ ðρ1 − σþq2Þσ�: ð2:45Þ

Thus, we have derived the necessary functions to trans-
form the Reissner-Nordström coordinate system to the
hyperboloidal coordinate system. Having demonstrated
the procedure for asymptotically flat spacetime, we will
now derive the respective functions for asymptotically
de Sitter spacetimes.

B. Hyperbolic coordinate for asymptotically
de Sitter spacetime

In the case of asymptotically de Sitter spacetime, the
region of interest is bounded by two finite values of the
radial coordinate, the cosmological horizon rc and the outer
event horizon rþ. In this case if we want to convert the
above range of radial coordinates to the following range of
σ: σ ∈ ½0; 1�. Then we need to set β0 ¼ 0 in (2.25) (note that
well-behaved ρðσÞ has already demanded β1 ¼ 0 as well),
and hence we will obtain,

βðσÞ ¼ β2σ
2; ρðσÞ ¼ ρ1σ − β2σ

2; ð2:46Þ

such that the transformation between the radial coordinate r,
with the compactified and dimensionless radial coordinate
σ reads,

r
λ
¼ ρ1σ − β2σ

2

σ
¼ ρ1 − β2σ: ð2:47Þ

As evident from (2.47), if we want to map the cosmological
horizon to σ ¼ 0, then wewill obtain, rc ¼ λρ1. Similarly, if
we map the outer event horizon to σ ¼ 1, then we obtain
another condition: rþ ¼ λðρ1 − β2Þ. Defining, as in the case
of asymptotically flat spacetime: σþ ¼ ðrþ=λÞ, we must
have from the above conditions: ρ1 ¼ σþ þ β2 and
ρ1 ¼ σþðrc=rþÞ. Note that, unlike the case of asymptoti-
cally flat spacetime, here both the parameters ρ1 and β2 get
fixed. Thus, finally the relation between radial coordinate r
with the dimensionless coordinate σ yields,

r
λ
¼ σþσ þ rc

rþ
σþð1 − σÞ: ð2:48Þ

Wewould like to emphasize that the above transformation is
very different from that of asymptotically flat spacetimes.
Further, given the above expression for βðσÞ, with β2 ¼
ρ1 − σþ, from (2.22), the differential equation satisfied by
h0 reads,

h00ðσÞ ¼
2ðρ1 − σþÞ

fðσÞ þOðσ2Þ: ð2:49Þ

Thus, given the metric function fðrÞ, expressed in terms of
the compactified radial coordinate σ, the above differential
equation can be solved yielding the function h0ðσÞ. This in
turn will help in determining the height function hðσÞ
through the tortoise coordinate.

1. Hyperbolic coordinate for Schwarzschild
de Sitter black hole

We start our examples of the asymptotically de Sitter
spacetimes from the Schwarzschild de Sitter black hole, for
which the metric function fðrÞ, in the standard radial
coordinate reads,

fðrÞ ¼ 1 −
2M
r

−
Λr2

3
;

Λ
3
¼ 1

L2
dS

: ð2:50Þ

Here, LdS corresponds to the de Sitter length scale, which
becomes larger, the smaller the cosmological constant is.
The above metric function can further be expressed in the
following manner,

fðrÞ ¼ −
1

rL2
dS

ðr3 − L2
dSrþ 2ML2

dSÞ

¼ −
1

rL2
dS

ðr − rþÞðr − rcÞðrþ r0Þ; ð2:51Þ

where, rþ is the event horizon, rc is the cosmological
horizon and r0 ¼ rþ þ rc. We need to transform the above
functional dependence of the metric function on the radial
coordinate r, to the compactified radial coordinate σ,
which yields,

fðσÞ ¼ −
λ2

ðr=λÞL2
dS

�
r
λ
−
rþ
λ

��
r
λ
−
rc
λ

��
r
λ
þ r0

λ

�

¼ −
λ2

ðρ1 − β2σÞL2
dS

�
ρ1 − β2σ −

rþ
λ

��
ρ1 − β2σ −

rc
λ

��
ρ1 − β2σ þ r0

λ

�

¼ −
λ2

ρ1L2
dS

�
ρ1 −

rþ
λ

��
ρ1 −

rc
λ

��
ρ1 þ

r0
λ

��
1 − β2σ

�
1

ðρ1 − rþ
λ Þ

þ 1

ðρ1 − rc
λ Þ

þ 1

ðρ1 þ r0
λ Þ

−
1

ρ1

�
þOðσ2Þ

�
: ð2:52Þ
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For the choices of the parameters presented above,
ρ1 ¼ σþðrc=rþÞ, and β2 ¼ ρ1 − σþ, we observe that the
term involving fρ1 − ðrc=λÞg, identically vanishes and
hence the metric function will be proportional to the
compactified radial coordinate σ, such that,

fðσÞ ¼ β2
rþσþλ2

rcL2
dS

σ

�
rc
rþ

− 1

��
rc
rþ

þ r0
rþ

�

¼ rþσ2þλ2

rcL2
dS

�
rc
rþ

− 1

�
2
�
2
rc
rþ

þ 1

�
σ: ð2:53Þ

The same expansion can also be obtained from the direct
substitution of rðσÞ in the metric function, as one can check
in a straightforward manner, by using the results that
fðrcÞ ¼ 0 ¼ fðrþÞ and λρ1 ¼ rc.
Having derived the metric function in terms of the

rescaled and compactified radial coordinate σ, the differ-
ential equation for h0, as presented in (2.49), takes the
following form,

h00ðσÞ ¼
2rcσþL2

dS

r3þ

1

ðrcrþ − 1Þð2 rc
rþ
þ 1Þ

1

σ
: ð2:54Þ

The above differential equation for h0ðσÞ can be integrated,
yielding,

h0ðσÞ ¼
2rcσþL2

dS

r3þ

1

ðrcrþ − 1Þð2 rc
rþ
þ 1Þ ln σ; ð2:55Þ

where, any constant contributions to the function h0ðσÞ
have been ignored. This result will be used in determining
the height function subsequently.
It turns out that the above expression for h0ðσÞ, as well as

the expression for the tortoise coordinate simplifies sig-
nificantly if expressed in terms of the surface gravities
associated with these horizons. Given the above metric
function, the following three surface gravity expressions
can be obtained,

κþ ¼ −
1

2rþL2
dS

ðrþ − rcÞðrþ þ r0Þ

¼ 1

2rþL2
dS

ðrc − rþÞð2rþ þ rcÞ; ð2:56Þ

κc ¼ −
1

2rcL2
dS

ðrc − rþÞðrc þ r0Þ

¼ −
1

2rcL2
dS

ðrc − rþÞð2rc þ rþÞ; ð2:57Þ

κ0 ¼
1

2r0L2
dS

ðr0 þ rþÞðr0 þ rcÞ

¼ 1

2r0L2
dS

ðrc þ 2rþÞðrþ þ 2rcÞ: ð2:58Þ

Note that both κþ and κ0 are positive quantities, while κc is
negative. In terms of these expressions for surface gravity,
the simplified expression for h0ðσÞ becomes,

h0ðσÞ ¼
σþ

jκcjrþ
ln σ: ð2:59Þ

The next task, in determining the hyperboloidal coordinate
system, is to express the tortoise coordinate in terms of the
compactified radial coordinate σ. To this end, we first
express the tortoise coordinate in terms of the radial
coordinate r as,

r� ¼
1

2κþ
ln

�
r
rþ

− 1

�
−

1

2jκcj
ln

���� rrc− 1

����þ 1

2κ0
ln

�
r
r0
þ 1

�
;

ð2:60Þ

and then express the radial coordinate r in terms of the
compactified coordinate σ using (2.48). Therefore, the
function gðσÞ, which is simply the tortoise coordinate
expressed in terms of the compactified coordinate σ reads,

gðσÞ ¼ σþ
2κþrþ

ln

�
σ þ rc

rþ
ð1 − σÞ − 1

�

−
σþ

2jκcjrþ
ln

��
σ þ rc

rþ
ð1 − σÞ

�
rþ
rc

− 1

�

þ σþ
2κ0rþ

ln

��
σ þ rc

rþ
ð1 − σÞ

�
rþ
r0

þ 1

�

¼ σþ
2κþrþ

lnð1 − σÞ − σþ
2jκcjrþ

ln σ

þ σþ
2κ0rþ

ln

��
1þ rc

r0

�
þ σ

�
rþ
r0

−
rc
r0

��
: ð2:61Þ

Here we have discarded all the terms which are independent
of σ since we shall only be concerned with the derivatives
of gðσÞ and hðσÞ in this work. Hence the height function
hðσÞ in the Schwarzschild de Sitter black hole spacetime
becomes,

hðσÞ ¼ σþ
2κþrþ

lnð1 − σÞ þ σþ
2jκcjrþ

ln σ

þ σþ
2κ0rþ

ln

��
1þ rc

r0

�
þ σ

�
rþ
r0

−
rc
r0

��
: ð2:62Þ

Note that unlike the case of asymptotically flat spacetime,
where terms Oð1=σÞ were present in the height function,
for asymptotically de Sitter spacetime, the divergences in
the height function solely arises from the logarithmic terms.
Moreover, there are no free parameters in the above
expressions for the height function hðσÞ and the tortoise
coordinate gðσÞ, implying the absence of any residual
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gauge freedom in the choice of hyperbolic coordinates in
the minimal gauge. We will now demonstrate that this
feature is a generic one and appears in the presence of
electric charge as well.

2. Hyperbolic coordinate for Reissner-Nordström-de
Sitter black hole

In this final example, we will derive the height function
necessary to make a transition to hyperboloidal coordinate
system for Reissner-Nordström-de Sitter black hole. This
will be the generalization of the Reissner-Nordström black
hole to asymptotically de Sitter spacetimes. The metric
function associated with the above spacetime reads,

fðrÞ ¼ 1 −
2M
r

þQ2

r2
−
Λr2

3
;

Λ
3
¼ 1

L2
dS

; ð2:63Þ

where, the last relation defines the de Sitter length scale
LdS, as in the previous section. The metric element can be
expressed as,

fðrÞ ¼ −
1

r2L2
dS

ðr4 − L2
dSr

2 þ 2ML2
dSr −Q2L2

dSÞ

¼ −
1

r2L2
dS

ðr − rþÞðr − r−Þðr − rcÞðrþ r0Þ ð2:64Þ

where, rþ is the event horizon, r− is the Cauchy horizon
and rc is the cosmological horizon, with r0 ¼ rþþ
rc þ r−. In this case, with the same parameter choices as
in the Schwarzschild de Sitter black hole, we obtain,

fðσÞ ¼ r4þ
r2cL2

dS

�
rc
rþ

− 1

�
2
�
2
rc
rþ

þ r−
rþ

þ 1

��
rc
rþ

−
r−
rþ

�
σ

ð2:65Þ

Having derived the metric function in terms of the rescaled
radial coordinate σ, the differential equation for h0 takes the
following form,

h00ðσÞ ¼
2σþr2cL2

dS

r4þ

1�
rc
rþ
− 1

	�
2 rc
rþ
þ r−

rþ
þ 1

	�
rc
rþ
− r−

rþ

	 1

σ

ð2:66Þ

which integrates to,

h0ðσÞ ¼
2σþr2cL2

dS

r4þ

1�
rc
rþ
− 1

	�
2 rc
rþ
þ r−

rþ
þ 1

	�
rc
rþ
− r−

rþ

	 ln σ:

ð2:67Þ

This will be used in determining the height function.

Next task is to find out the tortoise coordinate. For which
we need to define the following three surface gravity
expressions,

κþ ¼ −
1

2r2þL2
dS

ðrþ − rcÞðrþ þ r0Þðrþ − r−Þ

¼ 1

2r2þL2
dS

ðrc − rþÞð2rþ þ rc þ r−Þðrþ − r−Þ ð2:68Þ

κ− ¼ −
1

2r2−L2
dS

ðr− − rcÞðr− þ r0Þðr− − rþÞ

¼ −
1

2r2−L2
dS

ðrc − r−Þð2r− þ rc þ rþÞðrþ − r−Þ ð2:69Þ

κc ¼ −
1

2r2cL2
dS

ðrc − rþÞðrc þ r0Þðrc − r−Þ

¼ −
1

2r2cL2
dS

ðrc − rþÞð2rc þ rþ þ r−Þðrc − r−Þ ð2:70Þ

κ0 ¼
1

2r20L
2
dS

ðr0 þ rþÞðr0 þ rcÞðr0 þ r−Þ

¼ 1

2r20L
2
dS

ðrc þ 2rþ þ r−Þðrþ þ 2rc þ r−Þ

× ðrc þ rþ þ 2r−Þ ð2:71Þ

In terms of these expressions for surface gravity, the
expression for h0ðσÞ can be further simplified, yielding,

h0ðσÞ ¼ −
σþ
κcrþ

ln σ ð2:72Þ

Note that both κþ and κ0 are positive quantities, while κc
and κ− are negative, therefore, h0ðσÞ reads,

h0ðσÞ ¼
σþ

jκcjrþ
ln σ ð2:73Þ

Thus, we obtain, the tortoise coordinate as,

r� ¼
1

2κþ
ln

�
r
rþ

− 1

�
þ 1

2κc
ln

���� rrc − 1

����þ 1

2κ0
ln

�
r
r0

þ 1

�

þ 1

2κ−
ln

�
r
r−

− 1

�
ð2:74Þ

Therefore, gðσÞ reads,
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gðσÞ ¼ σþ
2κþrþ

ln

�
σ þ rc

rþ
ð1 − σÞ − 1

�
−

σþ
2jκcjrþ

ln

��
σ þ rc

rþ
ð1 − σÞ

�
rþ
rc

− 1

�

þ σþ
2κ0rþ

ln

��
σ þ rc

rþ
ð1 − σÞ

�
rþ
r0

þ 1

�
−

σþ
2jκ−jrþ

ln

��
σ þ rc

rþ
ð1 − σÞ

�
rþ
r−

− 1

�

¼ σþ
2κþrþ

ln

�
ð1 − σÞ

�
1 −

rc
rþ

��
−

σþ
2jκcjrþ

ln

�
σ

�
rþ
rc

− 1

��

þ σþ
2κ0rþ

ln
��

1þ rc
r0

�
þ σ

�
rþ
r0

−
rc
r0

��
−

σþ
2jκ−jrþ

ln
��

rc
r−

− 1

�
þ σ

�
rþ
r−

−
rc
r−

��

¼ σþ
2κþrþ

ln ð1 − σÞ − σþ
2jκcjrþ

ln σ þ σþ
2κ0rþ

ln

��
1þ rc

r0

�
þ σ

�
rþ
r0

−
rc
r0

��

−
σþ

2jκ−jrþ
ln

��
rc
r−

− 1

�
þ σ

�
rþ
r−

−
rc
r−

��
: ð2:75Þ

Here, we have ignored terms which are independent of the compactified radial coordinate σ. Therefore, using this
expression for gðσÞ and the one for h0ðσÞ, derived earlier, the height function becomes,

hðσÞ ¼ σþ
2κþrþ

ln ð1 − σÞ þ σþ
2jκcjrþ

ln σ þ σþ
2κ0rþ

ln

��
1þ rc

r0

�
þ σ

�
rþ
r0

−
rc
r0

��
−

σþ
2jκ−jrþ

ln

��
rc
r−

− 1

�
þ σ

�
rþ
r−

−
rc
r−

��
:

ð2:76Þ

Again, the above expression for the height function does
not depend on any free parameters, except for σþ, and
hence there are no residual gauge freedom associated with
the above expressions, unlike the case of asymptotically flat
spacetimes.
Having extended the derivation of the hyperboloidal

coordinate system for asymptotically de Sitter spacetime,
we have also applied them in two examples, namely
Schwarzschild de Sitter and Reissner-Nordström de
Sitter spacetimes. In the subsequent sections, we will
express the wave equations satisfied by perturbations in
these backgrounds in the hyperboloidal coordinates, which
will help in studying the pseudo-spectrum of the QNM
frequencies.

III. WAVE EQUATION FOR PERTURBATIONS
OF ASYMPTOTICALLY DE SITTER SPACETIMES

Having introduced the hyperboloidal coordinate system
for asymptotically de Sitter spacetimes, let us now deter-
mine the wave equation governing the perturbations in this
coordinate system.4 In general, owing to the static and
spherical symmetry of the background spacetimes, any
perturbation can be decomposed into a factor of e−iωt, a
radial function ϕlmðrÞ and angular functions. The angular
functions are given by Ylmðθ;ϕÞ for scalar perturbation,
and derivatives of Ylmðθ;ϕÞ for electromagnetic and

gravitational perturbations. The radial function ϕlmðrÞ,
in general, satisfy the following wave equation:

�
∂
2

∂t2
−

∂
2

∂r2�
þ Vl

�
ϕlm ¼ 0; ð3:1Þ

where, Vl will depend on the nature of the perturbation,
the frequency ω, the angular indices, and the geometry of the
background spacetime. The above wave equation is in the
ðt; r; θ;ϕÞ coordinate system. For our purpose, we need to
transform the above to the hyperboloidal coordinate system
devised in the previous section. For asymptotically flat
spacetimes, transforming the above wave equation to the
hyperboloidal coordinate system has already been per-
formed, here we do the same, but for asymptotically de
Sitter spacetimes. First, we discuss the general result and
then shall specialize on both the examples discussed above.
To start with, we transform the above wave equation

to the hyperboloidal ðτ; σ; θ;ϕÞ coordinate system, using
the transformations: τ ¼ ðt=λÞ þ hðσÞ and ðr�=λÞ ¼ gðσÞ,
where λ is an arbitrary length scale associated with the
problem. Therefore, we obtain the following results, using
the chain rule for partial differentiation,

∂

∂t
¼ 1

λ

∂

∂τ
;

∂

∂r�
¼ 1

λg0
∂

∂σ
þ h0

λg0
∂

∂τ
: ð3:2Þ

Note that, the time evolution vector ð∂=∂tÞ is simply scaled
by λ under this coordinate transformation, or, in other
words, ð∂=∂τÞ also generates time translation. Hence one
can define the quasinormal mode frequency as conjugate to

4In the ensuing general discussion about the wave operator
describing perturbations, we will closely follow the notations and
conventions introduced in [38] before specializing to the de Sitter
case from (3.10).
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the redefined time coordinate τ as well, except for the fact
that the quasinormal mode frequencies defined using τ will
scale by λ compared to the quasinormal mode frequencies
defined using t. This is another reason for the introduction
of the hyperboloidal coordinate since it simply rescales
the quasinormal mode frequencies by a constant factor.
Substituting the above relations between ð∂=∂tÞ and
ð∂=∂r�Þ with ð∂=∂τÞ and ð∂=∂σÞ, the above wave equation
for the radial part of the perturbation reduces to,

1

λ2
ϕ̈lm −

�
1

λg0
∂

∂σ
þ h0

λg0
∂

∂τ

��
1

λg0
∂ϕlm

∂σ
þ h0

λg0
∂ϕlm

∂τ

�

þ Vlϕlm ¼ 0; ð3:3Þ

where “prime” denotes the derivative with respect to the
rescaled radial coordinate σ and “dot” denotes the deriva-
tive with respect to τ. Simplifying further, we obtain,

1

λ2

�
1 −

h02

g02

�
ϕ̈lm −

�
2

λ2
h0

g02
∂σ þ

1

λ2g0
∂σ

�
h0

g0

��
ϕ̇lm

−
1

λ2
1

g0
∂σ

�
1

g0
∂σϕlm

�
þ Vlϕlm ¼ 0: ð3:4Þ

Multiplying the above equation throughout by λ2, as well as
by the combination fg02=ðg02 − h02Þg along with an overall
negative sign, the above wave equation can be rewritten as,

− ϕ̈lmþ
�
2

�
h0

g02−h02

�
∂σ þ

�
g0

g02−h02

�
∂σ

�
h0

g0

��
ϕ̇lm

þ
�

g0

g02−h02

�
∂σ

�
1

g0
∂σϕlm

�
−
�

g02

g02−h02

�
λ2Vlϕlm ¼ 0:

ð3:5Þ

Note that, the above equation is invariant under the trans-
formation g0 → −g0, and hence we can replace every g0 by
jg0j. Therefore, it follows that, we can reexpress the above
equation as,

− ϕ̈lm þ 1

wðσÞ ½2γðσÞ∂σ þ ð∂σγÞ�ϕ̇lm

þ 1

wðσÞ ½∂σfpðσÞ∂σg − qlðσÞ�ϕlm ¼ 0; ð3:6Þ

where, we have introduced the following four functions of
the rescaled radial coordinate σ:

wðσÞ≡ g02 − h02

jg0j ; γðσÞ≡ h0

jg0j ;

pðσÞ≡ 1

jg0j ; qlðσÞ≡ λ2jg0jVl: ð3:7Þ

It turns out that at the boundaries, located at σ ¼ �1, jg0j
diverges and hence the quantity pðσÞ identically vanishes.
On the other hand, all the other quantities, namely wðσÞ,
γðσÞ, and qlðσÞ remain finite and positive at the black hole
and cosmological horizons. Moreover, it follows that ∂σp is
positive at the cosmological horizon (located at σ ¼ 0), but
becomes negative at the event horizon (located at σ ¼ 1). As
a consequence, the above differential equation will have no
∂
2
σ term. The vanishing of the coefficient ∂2σ term at the
boundaries renders the above equation to be a singular
second-order differential equation, one in which no boun-
dary conditions are allowed if we demand regular solutions.
This amounts to the fact that the outgoing/ingoing boundary
conditions are already incorporated into the (bulk) operator.
Further, we can rewrite the differential equation

as presented in (3.6), by introducing ψlm ¼ ϕ̇lm and
constructing a second rank column vector using ϕlm
and ψlm as,

u̇lm ¼ iLulm; ulm ¼
�
ϕlm

ψlm

�
; ð3:8Þ

where, L is a ð2 × 2Þ square matrix, whose entries are
functions and differential operators involving σ:

L ¼ 1

i

�
0 1

L1 L2

�
; L1 ¼

1

wðσÞ ½∂σfpðσÞ∂σg− qlðσÞ�;

L2 ¼
1

wðσÞ ½2γðσÞ∂σ þ ð∂σγÞ�: ð3:9Þ

Since the differential operator L is solely dependent on the
rescaled radial function σ, it follows that one can integrate
(3.8) and obtain ulmðτ; σÞ ¼ expðiLτÞulmð0; σÞ. Thus the
operator L is like the time evolution operator, generating
time translation along σ. Moreover, the evolution by the
time coordinate t and τ are related by a constant rescaling
factor λ, and hence it follows that we can expand the mode
function as ϕðτ; σÞ ¼ expðiωτÞϕðσÞ, for each of the qua-
sinormal modes. Thus the determination of the QNMs
reduces the following eigenvalue problem:

Lun;lm ¼ ωn;lmun;lm: ð3:10Þ

The spectral theorem would guarantee the stability of the
eigenvalues ωn;lm, provided the differential operator L is
hermitian. However, as evident from our previous analysis,
it follows that pðσ ¼ 0Þ ¼ 0 ¼ pðσ ¼ 1Þ, i.e., the function
pðσÞ vanishes at the boundaries. As a consequence, the
Sturm–Liouville operator L1 becomes singular at the
boundaries and the operator L ceases to be self-adjoint.
Therefore, the stability of the QNMs is not guaranteed, since
the spectral theorem does not apply. In order to cure this
singular behavior certain regularity conditions for the
perturbation must be imposed on the eigenmodes un;lm,
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which in turn ensures that appropriate boundary conditions
are taken at the two boundaries. This is how the hyper-
boloidal coordinate system makes the non-self-adjoint
nature of the eigenvalue problem for black hole perturbation
theory explicit.
Having spelled out all the necessary ingredients to

turn the wave equation into an eigenvalue problem for
the QNMs, we will now determine the functions defined
in (3.7) for Schwarzschild de Sitter spacetime. We will not
present an explicit form of these functions for the Reissner-
Nordström de Sitter spacetime due to the complicated nature
of these functions. Using the expressions for the height
function and the tortoise coordinate for Schwarzschild de
Sitter spacetime from (2.62) and (2.61), respectively, we
obtain:

pðσÞ ¼
�
2r2þκþjκcj
σþκ0r0

� σð1 − σÞ½ð2rcþrþ
rc−rþ

Þ − σ�
1 − ðrc−rþrc

Þσ ð3:11Þ

γðσÞ ¼ 1 −
2rþjκcj
κ20r0

�
σ

1 − ðrc−rþrc
Þσ
��

κþ þ κ0

�
2rc þ rþ
rc − rþ

�

− ðκ0 þ κþÞσ
�

ð3:12Þ

wðσÞ ¼ 2σþ
κ20r0

½κþ þ κ0ð2rcþrþ
rc−rþ

Þ − ðκ0 þ κþÞσ�
1 − ðrc−rþrc

Þσ ð3:13Þ

ql ¼ λ2
�

σþκ0r0
2r2þκþjκcj

�
1 − ðrc−rþrc

Þσ
σð1 − σÞ½ð2rcþrþ

rc−rþ
Þ − σ�Vl ð3:14Þ

where, the potential VlðrÞ reads,

VlðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
þ ð1 − s2Þ

�
2M
r3

−
4 − s2

6
Λ
��

:

ð3:15Þ

Here, s ¼ 0 corresponds to scalar perturbations, s ¼ 1 is
associated with the electromagnetic perturbations, and the
axial gravitational perturbations are connected to s ¼ 2. For
Λ ¼ 0, we get back the potential experienced by the
perturbations in Schwarzschild spacetime. One striking
difference between the asymptotically de Sitter spacetimes
with asymptotically flat spacetimes must be noted here. For
both Schwarzschild and Reissner-Nordström spacetimes, the
function pðσÞ had a double root at σ ¼ 0 and a single root at
σ ¼ 1, which translates to the existence of an essential
singularity at future null infinity and a removable singularity
at the horizon. While in the case of Schwarzchild-de Sitter as
well as for Reissner-Nordström-de Sitter spacetimes, the
function pðσÞ vanishes at σ ¼ 0 and at σ ¼ 1 linearly. Thus
in asymptotically de Sitter spacetimes, both the singularities
of the Sturm–Liouville operator L1 are removable. We will

now move on to the discussion involving the stability of the
QNMs under external perturbations.

IV. PSEUDOSPECTRUM AND ENERGY NORM

The spectral stability of an eigenvalue problem is tightly
linked with the nature of the underlying system, in
particular, whether the system is conservative or not.
Conservative systems are generically associated with
self-adjoint operators whose eigenvalues are real, and
the eigenfunctions form a complete orthonormal basis.
Since we will need properties of such operators, it is a good
place to pause for a while and provide a formal definition
of such operators. For this purpose, we may consider a
Hilbert space H with a scalar product h·; ·i and norm k · k.
If L is a bounded and linear operator acting on vectors in
the Hibert space H, then Riesz’s representation theorem
guarantees the existence of a unique bounded operator L†

called the adjoint operator of L, which satisfies the
relation: hL†u; vi ¼ hu; Lvi for all u; v∈H [87]. The
existence of an adjoint operator does not guarantee that
the eigenfunctions of this operator L will form a complete
orthogonal basis, for which L must be normal, i.e., it must
commute with its adjoint (½L;L†� ¼ 0) [58]. The self-
adjoint operators are a subclass of the normal operators,
satisfying the condition L† ¼ L. For normal operators,
there exists a spectral theorem that ensures that the
spectrum of L, which corresponds to the set of all possible
eigenvalues of L, and denoted by σðLÞ—is stable against
perturbation of the operator L. By stability, we mean that
the shift in the spectrum of L due to the perturbation of the
operator L is bounded by the order of the perturbation, see
Refs. [38,58] for more details.
For nonconservative or, open systems, the situation

becomes complicated. Consider black holes as an example,
for which any energy going through the event horizon
cannot be extracted by any classical process, which is also
true for the energy crossing future null infinity. Thus energy
is dissipated into the event horizon and at infinity, and
hence operators associated with black holes must be non-
self-adjoint, which is characteristic of any open system. As
a consequence, their eigenfunctions are referred to as
quasinormal modes with complex eigenvalues. The com-
plex eigenvalues are as such not a problem, actually, the
existence of such complex eigenvalues stabilizes black
holes under external perturbations. The problematic feature
being the eigenfunctions are, in general, not orthogonal and
do not form a complete set [88]. Consequently, a small
perturbation of the operator L can produce an unbounded
shift in the spectrum, thereby rendering the spectrum
unstable. In other words, the spectral analysis fails to
capture the whole picture of the spectral problem associated
with non-self-adjoint operators. In the following, we
discuss methods to circumvent these difficulties associated
with non-self-adjoint operators and an appropriate defini-
tion of a norm in this context.
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A. Pseudospectrum

In this section, we will briefly review the concept of the
pseudospectrum, a powerful mathematical tool to study the
spectral problem associated with the non-self-adjoint
operators. Consider a non-self-adjoint operator L∈MnðCÞ
(the space of complex n × n matrices), whose spectrum is
given by σðLÞ. Note that σðLÞ is a set of complex numbers.
If we consider now a real number ϵ > 0, then the set of all
complex numbers that are eigenvalues of the perturbed
operator Lþ δL for some kδLk < ϵ is referred to as the ϵ-
pseudospectrum and is denoted by σϵðLÞ. Mathematically,
the pseudospectrum is defined as [38,58]:

σϵðLÞ ¼ fω∈C; ∃δL∈MnðCÞ;kδLk< ϵ∶ω∈σðLþ δLÞg:
ð4:1Þ

For a stable spectral configuration, it is expected that the
perturbed spectrum σϵðLÞ resides in close vicinity (of order
∼ϵ) to the unperturbed spectrum. However, if the perturbed
spectra drift away from the unperturbed ones at a distance
that is a few orders of magnitude larger than ϵ, it signals
spectral instability, as the eigenvalues of L are extremely
sensitive to external perturbations. Moreover, the pseudo-
spectrum associated with different ϵ values are just nested
sets around the spectrum σðLÞ in the complex frequency
plane, such that σϵ1ðLÞ ⊆ σϵ2ðLÞ for 0 < ϵ1 ≤ ϵ2.
A mathematically equivalent definition of the pseudo-

spectrum can be arrived at by considering the resolvent of
the operator L, defined as: RLðωÞ ¼ ðωI − LÞ−1, which
becomes singular when ω is an eigenvalue of L. Intuitively,
it is expected that when ω is close to the spectrum σðLÞ, the
norm of the resolvent kRLðωÞk will be large. However, for
the non-self-adjoint operators, the resolvent norm can be
large even when ω is far away from the eigenvalue. This is
because the resolvent satisfies the following relation,
kRLðωÞk2 ≤ κ=dist:ðω; σðLÞÞ, where the subscript 2 sig-
nifies that the above is a L2 norm, κ is the condition
number and dist:ðω; σðLÞÞ is the distance between a point
ω to the set σðLÞ in the complex plane [58]. For a normal
operator κ ¼ 1; thus, the resolvent norm is large only in the
close vicinity of the spectrum σðLÞ. However, for the non-
normal operators, the condition number can be very large
and hence the resolvent norm can have large values even
at distances far away from the spectrum. Therefore, the
region in the complex plane, where the resolvent kRLðωÞk
is large provides another definition of the pseudospectrum
σϵðLÞ of the non-self-adjoint operator L under perturbation
as [38,44,58]:

σϵðLÞ ¼ fω∈C∶kRLðωÞk≡kðωI−LÞ−1k> 1=ϵg: ð4:2Þ

In words, the above mathematical statement implies that
the pseudospectrum is the region of the complex plane,
which is bounded by the 1=ϵ level curve (contour lines) of

the norm of the resolvent. Thus one can conclude that
determining the resolvent is the best way of checking the
stability of the spectrum of any non-self-adjoint operator
L. If one plots the resolvent norm as a function of
frequency on the complex plane, it will demonstrate
how the perturbation in the operator results in the drifting
of the QNM frequencies. In particular, if the pseudospec-
trum σϵðLÞ extends far away from σðLÞ, it signals strong
non-normality of the operator L and poor analytic behavior
of the resolvent RLðωÞ [38].

B. Energy norm

The stability of the QNM frequencies of black holes is
related to the shift in the spectrum of the perturbation
operator L, defined in (3.9), in the complex frequency plane
under the perturbation δL (induced by the perturbation of
the potential ql). A large shift in the spectrum under a small
perturbation indicates spectral instability. However, it is
important to specify what is meant by “small” or “large”
perturbations, and for this purpose, we need to provide a
choice for the operator norm k · k, along with the choice for
the scalar product h·; ·i [41]. It may be plausible that the
perturbation perceived as small for a given choice of
operator norm can become large for a different choice.
In that regard, the energy norm provides a natural way to
define the scale of the perturbation. Note that (3.6)
describes the dynamics of a perturbing field mode ϕlm
(the perturbation can be of scalar, electromagnetic, or,
gravitational origin) with scattering potential Vl in (1þ 1)
dimensions. Following [38,41], we define the energy norm
in terms of the energy associated with the field modes as,

kuk2E ¼





�
ϕ

ψ

�




2

E

≔ Eðϕ;ψÞ

¼ 1

2

Z
1

0

dσ½wðσÞjψ j2 þ pðσÞj∂σϕj2 þ qlðσÞjϕj2�:

ð4:3Þ

Here, we have dropped the subscripts lm in ϕlm and ψlm
for brevity and improved readability. The integration limit
in the above equation corresponds to the boundary of the
rescaled spatial parameter σ ∈ ½0; 1�. In this setting, the
operator energy norm of the perturbed operator kδLkE is
related to the energy concentrated near the peaks of the
perturbation energy distribution [41]. With the definition of
energy norm in (4.3), we can introduce the definition of the
energy scalar product as [38,41]

hu1; u2iE ¼
��

ϕ1

ψ1

�
;

�
ϕ2

ψ2

��
E

¼ 1

2

Z
1

0

dσ½wðσÞψ̄1ψ2 þ pðσÞ∂σϕ̄1∂σϕ2

þ qlðσÞϕ̄1ϕ2�: ð4:4Þ
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Note that, for u1 ¼ u2, (4.4) reduces to (4.3), as it should.
With the definition of the scalar product, we can calculate
the adjoint operator L† [38], which turns out to be
L† ¼ Lþ Lδ, with

Lδ ¼
�
0 0

0 Lδ
2

�
; ð4:5Þ

where Lδ
2 is given by the following expression

L†
2 ¼ 2

γðσÞ
wðσÞ ½δðσ − 0Þ þ δðσ − 1Þ�: ð4:6Þ

Here, δðσÞ denotes the Dirac delta function. The above
expression explicitly indicates the non-self-adjointness of
the operator L defined in (3.9), since L ≠ L† and the
difference occurs precisely at the boundaries with dissipa-
tive boundary conditions. In the following we elaborate on
the numerical techniques for determining the resolvent
using the energy norm, defined above, which in turn will
tell us about the stability of the QNM frequencies for
asymptotically de Sitter spacetime.

V. NUMERICAL IMPLEMENTATION:
CHEBYSHEV’S SPECTRAL METHOD

In the previous section, we have elaborated on the
mathematical definitions of pseudospectrum and the asso-
ciated energy norm suitable for our purpose. In this section
we will provide the numerical technique to determine the
pseudospectrum arising from the differential operator L
governing the behavior of the perturbation with the black
hole event horizon and the cosmological horizon. We start
by employing the Chebyshev’s spectral method to dis-
cretize the differential operator L, defined in (3.9) and
convert the task of computing the (pseudo)spectrum into a
linear algebra problem [38,89,90] that can be implemented
on a computer in a straightforward manner. We begin by
sampling N þ 1 points from a Chebyshev-Gauss-Lobatto
(CGL) grid,

σj ¼
1

2
þ 1

2
cos

�
jπ
N

�
; j ¼ 0; 1;…; N; ð5:1Þ

where σj ∈ ½0; 1�.5 We then approximate the differential
operators using the corresponding Chebyshev differentia-
tion matrices [89,91–93]. This leaves us with a square
matrix whose dimension is 2ðN þ 1Þ. We can now compute
the QNM frequencies directly by finding out the eigenval-
ues of the aforementioned matrix.

The reason behind using the spectral method on a CGL
grid is motivated by the fact that our problem involves a
nonperiodic domain, and we would like to sample more
points near the horizons to avoid Runge’s phenomenon.
Furthermore, if the eigenfunctions are smooth, then the
Chebyshev collocation method is guaranteed to converge
exponentially. However this approach yields dense matrices
which makes the problem much more difficult to solve
unless one employs suitable matrix decomposition schemes.
We also have to accurately compute matrix norms in

order to calculate the pseudospectra and study explicit
perturbations to the operator L. Therefore, we have to use
the discretized version of the energy scalar product to
evaluate various inner products. The expression of the inner
product [38] is the following

hujviE ¼ ðu†ÞiGE
ijv

j ¼ u† ·GE · v; u; v∈CNþ1; ð5:2Þ

where u† is the Hermitian conjugate of u, and GE is the
Gram matrix. The adjoint of the operator L is then given
by [38]

L† ¼ ðGEÞ−1 · L� ·GE: ð5:3Þ

The computation of the gram matrix GE is rather subtle and
one must employ a suitable interpolation scheme to ensure
the accuracy of the scalar product whenever the order of the
product hujviE becomes greater than the resolution of the
collocation grid N. We have employed the strategy detailed
in Appendix A of [38].
Having discussed the basic ingredients for the numerical

scheme, let us turn our attention to the determination of the
pseudospectrum. For this purpose, it is useful to employ
the following characterization for the pseudospectrum in
the energy norm,

σϵEðLÞ ¼ fω∈C∶smin
E ðωI − LÞ < ϵg; ð5:4Þ

where smin
E is the smallest generalized singular value

obtained by performing a singular value decomposition
which takes into account the energy norm, viz.,

smin
E ðMÞ¼minf ffiffiffiffi

ω
p

∶ω∈σðM†MÞg; M¼ωI−L: ð5:5Þ

However, it is important to note that this path involves
computing the full eigenspectrum of ðωI − LÞ over the
entire region of the complex plane under investigation. This
step is computationally expensive since the time complexity
of the algorithm grows as Oðn3Þ at each point of the
complex plane, where n ¼ 2ðN þ 1Þ [94,95]. We, therefore,
take advantage of the fact that the gram matrix GE is a
positive-definite Hermitian matrix, i.e., G�

E ¼ GE, and
perform a Cholesky decomposition to obtain

GE ¼ W� ·W; ð5:6Þ

5Note that this convention gives us σ0 ¼ 1 and σN ¼ 0,
corresponding to the locations of the event and cosmological
horizons, respectively, and the grid points are ordered in reverse
fashion.
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where W is an upper-triangular matrix. We can then
compute the energy norm of a vector u as follows,

kuk2E ¼ hujW�Wjui ¼ hWujWui ¼ kWuk22; ð5:7Þ

where k:kE is the energy norm and k:k2 is the L2 norm. The
above decomposition, as in (5.6) further enables us to write
the adjoint L† of the operator L as,

L† ¼ ðW� ·WÞ−1 · L� · ðW� ·WÞ: ð5:8Þ

Following the above result in terms of the upper-triangular
matrix W, it follows that we can introduce another operator
L̃, such that L̃≡W · L ·W−1 and following [96], we obtain
the following connection between the energy norm and the
L2 norm,

kfðLÞkE ¼ kfðL̃Þk2; ð5:9Þ

for any function f. The above equation, namely (5.6)
enables us to perform subsequent computations in the L2

norm using the matrix L̃, rather then the energy norm using
the matrix L. In particular, with the L2 norm we can
compute the standard singular value decomposition to
determine the minimum singular value, and hence, the
pseudospectrum. In fact, before performing the singular
value decomposition, one can transform the matrix L̃ into an

upper Hessenberg matrix H [94,95] so that the singular
value calculation can make use of more efficient algorithms.
It follows that all the entries below the first subdiagonal of
H are zero by definition and hence H has the same
eigenspectrum as L and L̃. Note that, we can also write:
L̃� ¼ W · L† ·W−1. Hence the minimum singular value smin

2

of H can be obtained using,

smin
2 ðM̃Þ ¼ minf ffiffiffiffi

ω
p

∶ω∈ σðM̃�M̃Þg; M̃ ¼ ωI −H;

ð5:10Þ

and construct the pseudospectrum through,

σϵ2ðHÞ ¼ fω∈C∶smin
2 ðωI −HÞ < ϵg; ð5:11Þ

which is equivalent to (5.4). Since we are interested in
estimating the minimum singular value, we can use Arnoldi
iteration (or, rather Lanczos iteration since M̃�M̃ is
Hermitian). Assuming that the cost of performing one-time
Cholesky and Hessenberg decompositions are negligible
compared to performing the full singular value decompo-
sition, the task of computing the pseudospectrum can now
be performed using an algorithm with a time complexity
Oðn2Þ at each point of the complex plane [94,95], thereby
providing a significant speed-up. There is one notable
aspect related to the computation of (pseudo)spectra of

FIG. 2. The ϵ− pseudospectra of a Schwarzschild de Sitter black hole with M ¼ 1 and Λ ¼ 0.01 have been presented for scalar and
gravitational perturbations. The unperturbed QNMs (filled red circles) for the scalar and gravitational perturbations have been indicated
for reference. The solid black contour levels correspond to various choices of log10 ϵ, ranging from −65 (top level) to −5 (bottom level)
in steps of 5 in both the figures. The calculations have been carried out using N ¼ 230 collocation points with an internal precision
corresponding to roughly 10× machine precision, and a step size of 0.05 along both the axes on the complex frequency plane. The
characteristic length scale in the problem has been set to λ ¼ 2rþ.
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black holes that deserves mentioning: the operator L is
highly non-normal and hence if the computation is carried
out using machine precision, then the (pseudo)spectrum is
likely to be contaminated by spurious eigenvalues resulting
from round-off errors in floating point operations. Such
numerical artifacts can severely hinder one from drawing
tangible conclusions using numerical studies. Hence it is
essential to carry out intermediate computations using
extended precision. We have typically used 10 times the
machine precision, thereby keeping track of ∼160 digits in
the intermediate calculations. We shall also discuss issues
related to numerical convergence in greater detail in the
next section. Lastly, the computation of the pseudospectra is
well suited for parallelization since the calculation of the
smallest singular value at each point of the two-dimensional
grid is independent of one another. We found Wolfram
Mathematica to be a suitable computational tool for our
purpose since it can easily implement the numerical require-
ments discussed so far.

VI. (IN)STABILITY OF THE QNM SPECTRA
OF ASYMPTOTICALLY DE SITTER SPACETIMES

After providing all the necessary details regarding the
construction of the hyperboloidal coordinate system as well
as the numerical techniques to be used, we devote this
section to the analysis of the QNM instability for asymp-
totically de Sitter black holes. The ϵ-pseudospectrum of a
black hole can be read as a topographic map that character-
izes the stability of the quasinormal mode spectrum. As we
have already stressed, if the spectrum were stable against
external perturbations then the pseudospectrum would
have had a “flat” structure, and the contour lines around
a particular eigenvaluewould then resemble circles of radius
ϵ, corresponding to the “strength” of the perturbation. One
could interpret the stability of an eigenvalue as being
indicated by extremely steep throats around that particular
eigenvalue which rapidly decay and become flat as one
moves away from the eigenvalue further into the complex
plane. Therefore, any nontrivial topographic structure
extending far into the complex plane as one moves away
from the eigenspectrum would be the hallmark of instability.
The pseudospectra of asymptotically flat black holes [38,44]
and exotic compact objects [45] show highly nontrivial
topographic structure, indicating instability of the corre-
sponding QNM spectra. It turns out that asymptotically de
Sitter black holes are no exceptions, as evident from Fig. 2,
the pseudospectra of these black holes also depict similar
inverted ridgelike topographic structures. However, unlike
the case of asymptotically flat black holes, in the present
situation the contour lines associated with the pseudospec-
trum of the lowest lying QNMs open up into the complex
plane even for modest values of ϵ (see Fig. 2). Furthermore,
Fig. 2 also demonstrates that for the overtones the contours
open up for very small values of ϵ, indicating that instability
increases as one “moves up” the spectrum. We would like to

emphasize that these features are generic and hold for both
scalar and (axial) gravitational perturbations.
The predictive power of the ϵ-pseudospectra has been

highlighted in [38]: the key idea being that the pseudospec-
trum of a black hole may give us an opportunity estimate
how the QNM spectrum of a black hole could possibly
change under the influence of a perturbation δV to the
scattering potential experienced by a perturbing field on
the black hole background. In particular, one must determine
the strength of the perturbation kδVk≲ ϵ and locate the
corresponding log10 ϵ contour line on the pseudospectrum,
like the ones shown in Fig. 2. The predicted change in the
spectrum would then be the following: the portion of the
spectra below log10 ϵ contour will remain untouched, but
there is a possibility that the eigenvalues lying above this
particular contour line could be significantly modified
(depending upon the nature of the perturbing source). If
the nature of the perturbation is indeed capable of modifying
the spectrum then, what is truly remarkable is that (most of)
the new perturbed eigenvalues (which we shall refer to as the
perturbed QNMs) will settle along one of the contour lines
lying close to (but always above) the log10 ϵ contour.

6 To put
it differently, the perturbed QNMs will migrate to new
branches following the boundaries of the pseudospectrum.
These branches have been referred to as the Nollert-Price
branches [38] since it was first observed in [35,36].
Alternatively, if we are able to detect several (perturbed)
overtones along with the fundamental mode, and discover
that the detected modes are spread in an orderly fashion that
closely follows the contours of the pseudospectrum then we
can gain valuable insight into the nature of the perturbing
source based on the strength of the perturbation (that can be
read off the pseudospectrum). The notion of the pseudo-
spectra is therefore a definitive and robust culmination of
the idea that was first foreseen in [34], viz., black hole
spectroscopy will be able to probe the environment in the
vicinity of the black hole; depending on the severity of the
instability, it can also in principle help us probe near horizon
quantum effects. Besides holding information about the
ambient environment, our findings indicate that the pseu-
dospectrum encodes information about the asymptotic
structure of the black hole spacetime as well, i.e., the
behavior of the perturbed QNMs of asymptotically flat
and de Sitter black holes have crucial differences.

6We stress that the pseudospectrum can only inform us
whether the spectrum of a nonconservative system like a black
hole is inherently unstable. The pseudospectrum cannot tell us
what kind of perturbations to the black hole potential can lead to
an instability of the QNM spectrum. Hence, to understand the
possible physical origin of the QNM instability, the pseudospec-
trum analysis should be complemented by studying explicit
perturbations to the potential, a task that is explored in detail
in the subsequent section of the present work. Furthermore,
before assessing the predictive power of the pseudospectra, there
are certain functional analysis issues that need to be thoroughly
addressed (we refer the reader to [38] for further discussion).
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To put the above claim on firmer grounds and draw
conclusions that are relevant to asymptotically de Sitter
black holes, we shall now explicitly study the perturbed
QNM spectra of a Schwarzschild de Sitter black hole. For
this purpose, let us briefly discuss the structure of the
perturbation δL that we add to the operator L by modifying
the same. The perturbation δL is taken to have the
following form:

δL ¼ 1

i

�
0 0

λ2δVðσÞ=wðσÞ 0

�
: ð6:1Þ

The operator δL should also be normalized with respect to
the energy norm such that kδLk ¼ ϵ. Such a choice ensures
two things: (a) the structure of δL inflicts modifications
exclusively on the black hole potential since δVðσÞ=wðσÞ is
a diagonal matrix by design and it is added to the submatrix
of L that contains L1 [cf. (3.9)], and (b) by specifying the
norm we can apply specific meaning to the “size” of
the perturbation. The functional form of δVðσÞ depends on
the physical phenomena we are trying to model. For
example, to simulate both high and low-frequency pertur-
bations, we can choose,

δVdðσÞ ∼ cosð2πkσÞ; ð6:2Þ

where k is the inverse length scale associated with the
perturbation; in [38] such generic oscillatory perturbations
were labeled as “deterministic perturbations.”
One can also consider adding random perturbations

δVrðσÞ to the scattering potential VðσÞ: this amounts to
drawingN random samples from a Gaussian distribution and
adding each of them to a point on the collocation grid of size
N. This array of N þ 1 points is then converted to a diagonal
matrix δVrðσÞ and added to L after being normalized using
the energy norm. Such perturbations correspond to high-
frequency perturbations by design. Random perturbations
are routinely used to investigate the spectral properties of
matrices [58]. However, their utility is severely restricted in
asymptotically flat spacetimes due to the presence of non-
converging branch cut modes along the imaginary axis. The
branch-cut modes manifest themselves as the ubiquitous
Price’s tails in the late-time decay profile of the scattered
fields. But the spectra of asymptotically de Sitter black holes
do not face this “limitation,” the modes which lie on the
imaginary axis correspond to the so-called de Sitter modes
and are convergent. Hence one can make full use of random
perturbations as well to investigate the spectral stability of
such spacetimes.
It is also interesting to note that while usual investigations

into the spectral stability of matrices make modifications to
the whole operator, we restrict ourselves to modifications to
the black hole potential (similar to [38,45]). Although the
pseudospectrum indicates the presence of overall spectral
instability, it does not contain any information about the

nature of the perturbations that could trigger those insta-
bilities, and it most certainly does not indicate that the
spectrum will be unstable under a perturbation of the form
as in (6.1). In this respect, the behavior of the perturbed
QNMs in the presence of the perturbative probes likely
corresponds to a physical effect and therefore complements
the study of black hole pseudospectra.

A. Deterministic perturbations to the scattering
potential of a Schwarzschild de Sitter black hole

We first describe the effect of deterministic oscillatory
perturbations to the l ¼ 1 scalar (s ¼ 0) potential of a
Schwarzschild de Sitter black hole with Λ ¼ 0.01: the
results have been summarized in Fig. 3. We note that for
a fixed ϵ, increasing the wave number k intensifies the
instability of the QNM spectrum. For example, in the first
row of Fig. 3 corresponding to kδVd ¼ 10−10k, we see that
for a low value of k, the spectrum is essentially unperturbed,
but as we increase k, a wave of instability begins to travel
down the spectrum, and for k ¼ 60, it reaches the second set
of the photon sphere modes. The new perturbed QNMs also
line up in an orderly fashion along the aforementioned
Nollert-Price branches and from Fig. 9(a) we can confirm
that these branches closely track the pseudospectral contour
lines. This behavior is perfectly analogous to what is
observed in asymptotically flat black holes. However, this
instability is not expected to reach the fundamental mode
since it lies well below the log10 ϵ ¼ −10 contour. We have
observed this effect numerically to a limited degree since
increasing k further makes it extremely difficult to compute
the perturbed QNMs with the resolution that we have used.
However, one witnesses a rather curious behavior as one

increases the strength of the perturbation. Consider the
second row of Fig. 3, for an intermediate value of k ¼ 20,
we progressively increase the strength of the perturbation ϵ
and observe the gradual intensification of the spectral
instability. It is extremely interesting to note that for the
largest reasonable perturbation, that is, ϵ ¼ 10−1, the
fundamental mode itself is destabilized. This situation is
markedly different from what has been observed for
asymptotically flat black holes in [38], where the funda-
mental mode was always found to be spectrally stable and
could only be dislodged by an Oð1Þ modification to the
scattering potential. Therefore one can conclude that the
perturbed QNMs and the pseudospectra have the ability
to capture the asymptotic structure of spacetime in addition
to describing the near-horizon physics of black holes.
However it should be noted that the spectral instability of
the fundamental mode is by no means a definitive
signature of asymptotically de Sitter black holes: in exotic
compact objects as well, the fundamental mode is prone to
destabilization against strong (ϵ ∼ 10−2) high-frequency
perturbations [45]. But the pseudospectra of an exotic
compact object and a Schwarzschild de Sitter black hole
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are evidently different and hence the structure of the
Nollert-Price branches are different as well.
Furthermore, in asymptotically flat spacetimes, pertur-

bations with a low wave number k ∼ 1 are considered to be
benign in the sense that their presence leaves the spectrum
unchanged [38]. But for asymptotically de Sitter black
holes, we observe that deterministic perturbations with
k ¼ 1 can modify the spectrum and the degree of the
destabilization increases with ϵ. However, such perturba-
tions do not dramatically alter the fundamental mode.
The corresponding results for l ¼ 2 (axial) gravitational

(s ¼ 2) perturbations have been summarized in Fig. 4. In
this case as well, for large deterministic perturbation with
k ¼ 60, the fundamental QNM frequency gets shifted from
its unperturbed position. Moreover for such large a pertur-
bation with k ¼ 1, the frequency overtones get significantly
disturbed, though the fundamental mode remains stable.
Lastly, Fig. 4 also nicely demonstrates how the instability
progress to lower and lower modes with the increases in the
strength of the perturbation. This trend remains for all
choices of the inverse perturbation length scale k. Thus
instability of the fundamental QNM frequency for large

perturbation is a generic feature of asymptotically de Sitter
spacetime as it holds for scalar as well as for gravitational
perturbation.

B. Salient features of the perturbed QNM spectrum
of a Schwarzschild de Sitter black hole

The preceding discussion provides the link between the
pseudospectra of an asymptotically de Sitter black hole and
the nature of the perturbations triggering spectral instabil-
ities. Following this we present some observations solely
based on studying the spectra of perturbed scattering
potentials in the asymptotically de Sitter black hole space-
times. Our aim is to explore the wide parameter space of de
Sitter black holes and sniff out those regions which may
prove to be interesting avenues for current and future
investigations.
We start by asking what is the effect of the magnitude of

the cosmological constant on the spectral properties of the
spacetime (keeping the BHmass fixed). In particular, noting
that a deterministic perturbation of the order ϵ ¼ 10−1 and
k ¼ 60 can potentially destabilize the fundamental mode,

FIG. 3. The spectra for perturbed QNM frequencies associated with deterministic perturbations with norm kδVdk ¼ ϵ for l ¼ 1 scalar
modes (s ¼ 0) of a Schwarzschild de Sitter black hole with M ¼ 1 and Λ ¼ 0.01 have been presented, superimposed over the
unperturbed QNM frequencies (indicated by red dots). The characteristic length scale has been set to λ ¼ 2rþ.
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we wish to explore how this result depends on the
cosmological constant. It turns out that indeed the cosmo-
logical constant Λ has an important effect on the instability
of the fundamental mode. As evident from Fig. 5, it follows
that reducing the value of Λ intensifies the spectral
instability of Schwarzschild de Sitter black holes, as in
these cases the lowest-lying mode corresponds to a de Sitter
mode, which has no analog in the case of asymptotically flat
black hole spacetimes. This effect can be clearly seen for the
l ¼ 1 mode of scalar perturbation when we compare the
plots in the first and second columns of Fig. 5. Since ϵ ¼
10−1 is indeed a large perturbation to the perturbing
potential, we have also depicted the QNM migration for
perturbation with strength ϵ ¼ 10−2 and ϵ ¼ 10−3, respec-
tively. As evident, the migration of the fundamental QNM
becomes smaller as ϵ decreases. Moreover, the Nollert-Price
branch comes closer to the real axis as one decreases Λ.
Since we expect the Nollert-Price branch to follow the
contours of the pseudospectra, we conclude that a smaller Λ
will make the perturbed QNM drift toward smaller imagi-
nary values and hence the spectrum becomes more unstable.
On the other hand, increasing the cosmological constant Λ

has the opposite effect, and in particular, we see that for
Λ ¼ 1, the fundamental mode is stable (cf. the plots in the
third column of Fig. 5) and it is a photon sphere mode. This
feature can be explained as follows: in order to have two
distinct horizons, the massM of the Schwarzschild de Sitter
black hole and the cosmological constant Λ must satisfy
Λ < ð1=9M2Þ; with our chosen set of parameters, this
means Λ < 1.111. In the limit Λ → ð1=9M2Þ, the two
horizons coalesce, which is the so-called Nariai limit. In
this limiting case, one can approximate the black hole
potential with the Pöschl-Teller potential [97], and it has
been shown that the fundamental mode of the Pöschl-Teller
potential is stable against such high-frequency perturbations
[38]. Thus our findings are consistent with results previ-
ously reported in the literature.
Furthermore, the departure of the fundamental de Sitter

mode from its unperturbed position, for scalar perturbation,
with small Λ and ϵ ∼ 10−1, is small and is of the same order
as ϵ. Therefore, the migration of the fundamental scalar
mode is consistent with the large perturbation and hence
may not be linked to instability. Thus, as far as scalar
perturbation is concerned, the fundamental mode of the

FIG. 4. The QNM spectra for deterministic perturbations of norm kδVdk ¼ ϵ for l ¼ 2 gravitational perturbation (s ¼ 2) of a
Schwarzschild de Sitter black hole with M ¼ 1 and Λ ¼ 0.01 have been superimposed over the unperturbed QNM values (indicated in
red). The characteristic length scale has been set to λ ¼ 2rþ.
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Schwarzschild de Sitter black hole spacetime appears to
be stable.
However, the situation regarding stability is very differ-

ent for the fundamental mode associated with gravitational
perturbation. Just like the case of scalar perturbation, the
cosmological constant affects the stability of the funda-
mental modes for gravitational perturbations as well. A
decrease in the cosmological constant indeed makes the
instability of the fundamental QNM frequency worse, since
not only do the perturbed QNMs drift further away from the
fundamental mode, but they also tend to have smaller
imaginary parts. This is evident from the plots in the first
two columns of Fig. 6. Hence regardless of the nature of the
perturbing field, we note that a smaller cosmological
constant enhances the instability of the fundamental mode.
For larger cosmological constant, the connection with the
Pöschl-Teller potential makes the fundamental mode stable,
even for gravitational perturbation, as highlighted in the
plots in the third column of Fig. 6. But, for gravitational
perturbation, in the presence of a small cosmological
constant, the fundamental de Sitter mode is unstable even

for perturbations with ϵ ∼ 10−3. The migrated and the
unperturbed QNMs are separated by an amount that is at
least one order of magnitude larger than the strength of the
perturbation. Thus, for asymptotically de Sitter spacetimes,
the fundamental QNM associated with the gravitational
perturbation becomes unstable for small values of the
cosmological constant. This feature is exclusive to asymp-
totic de Sitter spacetimes and does not exist for asymp-
totically flat black holes. It also gives a hope to rescue the
strong cosmic censorship conjecture for asymptotically de
Sitter black holes, at least for gravitational perturbations.
Lastly, we consider the effect of the angular number l

(cf. Fig. 7 for scalar perturbation and Fig. 8 for gravita-
tional perturbation) on the instability of the QNM frequen-
cies. It turns out that increasing the angular number l does
not affect the qualitative nature of the Nollert-Price
branches, and hence does not drastically alter the spectral
properties of the operator governing the perturbations. This
is true for both scalar and gravitational perturbations.
However, there is one intriguing feature worth highlight-
ing: for the l ¼ 0 mode, which exists only for the scalar

FIG. 5. Stability/instability of the fundamental scalar mode (s ¼ 0) for l ¼ 1 of a Schwarzschild de Sitter black hole has been
presented withM ¼ 1 for three choices of the cosmological constant: Λ ¼ 0.001 (left column), Λ ¼ 0.01 (middle column) and Λ ¼ 0.1
(right column) and the norm of the deterministic perturbations has been taken to be kδVdk ¼ 10−3 (top row), kδVdk ¼ 10−2 (middle
row), kδVdk ¼ 10−1 (bottom row) with k ¼ 60. The unperturbed QNM values are indicated in red and the characteristic length scale has
been set to λ ¼ 2rþ.
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perturbation, the QNM spectrum is extremely stable for a
high-frequency perturbation of significant strength, e.g., it
is stable even for deterministic perturbation with norm
ϵ ∼ 10−1. This intriguing aspect merits further investiga-
tion, but we have found that the computation of the
pseudospectrum for the l ¼ 0 mode to be exceptionally

difficult, since the ð1=r2Þ term in the potential completely
disappears, rendering the resultant matrix L, governing the
scattering potential experienced by the perturbations,
highly ill conditioned. This feature appears to impose
several numerical difficulties and we shall attempt the
computation again elsewhere.

FIG. 7. The perturbed, as well as unperturbed QNM spectra for deterministic perturbations of norm kδVdk ¼ 10−1 with k ¼ 60 has
been presented for different choices of the angular number—l ¼ 0 (left panel), l ¼ 1 (middle panel) and l ¼ 2 (right panel). In these
plots, the perturbation is due to scalar modes in the background of a Schwarzschild de Sitter black hole withM ¼ 1 and Λ ¼ 0.01. The
unperturbed QNM frequencies have been indicated in red and the characteristic length scale has been set to λ ¼ 2rþ.

FIG. 6. Stability/instability of the fundamental gravitational mode (s ¼ 2) for l ¼ 2 of a Schwarzschild de Sitter black hole has been
presented withM ¼ 1 for three choices of the cosmological constant: Λ ¼ 0.001 (left column), Λ ¼ 0.01 (middle column), and Λ ¼ 0.1
(right column) and the norm of the deterministic perturbations has been taken to be kδVdk ¼ 10−3 (top row), kδVdk ¼ 10−2 (middle
row), kδVdk ¼ 10−1 (bottom row) with k ¼ 60. The unperturbed QNM values are indicated in red and the characteristic length scale has
been set to λ ¼ 2rþ.
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C. Random perturbation and the QNM frequencies in
Schwarzschild de Sitter spacetime

The overall behavior of the spectral instability is further
corroborated by the inclusion of random perturbations as

well. The results have been compiled together in Fig. 9 for
the benefit of the reader. On an operational level, the
inclusion of a random perturbation translates to adding a
set of random numbers to the scattering potential. It is

FIG. 8. The QNM spectra for both perturbed and unperturbed modes have been presented under deterministic perturbations of norm
kδVdk ¼ 10−1 with k ¼ 60 for different angular numbers—l ¼ 2 (left panel), l ¼ 3 (middle panel) and l ¼ 4 (right panel). The modes
are for gravitational scattering potential in the background of a Schwarzschild de Sitter black hole with M ¼ 1 and Λ ¼ 0.01. The
perturbed modes have been superimposed over the unperturbed QNM frequencies, indicated in red. The characteristic length scale has
been set to λ ¼ 2rþ.

FIG. 9. Nollert-Price branches and destabilization of the QNM spectra versus the ϵ pseudospectra have been depicted for a
Schwarzschild de Sitter black hole with M ¼ 1 and Λ ¼ 0.01. In both the figures, the solid black contour lines correspond to log10 ϵ,
which range from −65 (top level) to −5 (bottom level) in steps of 5, whereas the dashed red contour lines range from −29 (top level) to
−16 (bottom level) in steps of 1. The QNMs (filled red circles) have also been indicated for reference.
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designed to mimic a high-frequency sinusoidal perturbation
and its strength is controlled purely by the energy norm of
the probe field. With reference to Fig. 9, we observe that
high-frequency random perturbations of the order kδVrk ¼
ϵ to the black hole potential destabilizes the QNM spectra
lying above the log10 ϵ contour level of the pseudospectrum,
but the spectra below the said contour level remain
unaffected, as expected. In particular, a large high-frequency
perturbation of the order ϵ ∼ 10−1 is able to destabilize the
fundamental mode(s) (indicated by dashed blue circles in
Fig. 9). Lastly, the perturbed QNM spectra follow an orderly
arrangement in the complex plane that approximately
mimics the pseudospectral contour lines. This migration
of the perturbed QNMs (arising from explicit perturbations
to the BH potential) along the so-called Nollert-Price
branches establishes how the pseudospectra (a property
of the unperturbed potential) is able to capture the spectral
instabilities underlying scattering phenomena in black hole
spacetimes. In [38], it was noted that the pseudospectrum of
the Pöschl-Tellers potential under random perturbations has
a high degree of spectral stability and this paradoxically
regularizing effect of random perturbations improved with
increasing the strength of the perturbation. The behavior
was the consequence of certain theorems, which states that
this behavior is connected to a Weyl law for the QNMs (see
Ref. [38] and the references there in for further details).
Even though random perturbations proved to be limited in
probing the pseudospectrum of asymptotically flat black
holes, nevertheless a Weyl law for black hole QNMs has
been formulated, based on several mathematical results, to
probe the geometry of black holes in gravitational wave
signals [40,43]. These interesting questions have not been
explored in the context of asymptotically de Sitter space-
times. Therefore developing an equivalent Weyl law for
asymptotically de Sitter black holes and forging a con-
nection with the pseudospectrum of the perturbed operator
will be discussed elsewhere.

D. Convergence of the perturbed and unperturbed
QNMs for Schwarzschild de Sitter black hole

Let us now focus on the issues related to the convergence
of the QNMs associated with the unperturbed scattering
potential, as well as the convergence of the perturbed QNMs
related to the perturbed scattering potentials. The accurate
computation of quasinormal modes, especially the over-
tones, has been a challenging enterprise for the community.
The need to use extended precision in intermediate steps
of the computation is well known [38,98–101] and this
numerical difficulty is a manifestation of the spectral
instability of the underlying eigenvalue problem [38].
There are also issues related to the appearance of spurious
eigenvalues when one approximates an operator with a
matrix [90,91]. These problems also arise in the computation
of the perturbed QNMs, which are essentially the eigenval-
ues of the perturbed potential. However, there is an added

layer of subtlety in their computation, an issue prominently
emphasized in [38]. If one does not use sufficient precision
while computing the eigenvalues, then the internal rounding-
off errors will accumulate and give rise to a spectrum
contaminated with numerical artifacts that will surprisingly
be arranged along the Nollert-Price branches, that is, along
the contours of the pseudospectra. Therefore it is crucial to
determine that the spectra of perturbed QNMs reported here
are indeed (physical) eigenvalues of the perturbed potential
through rigorous convergence tests.
In the present work, we have validated the convergence

of our results in the following ways: At the very outset, we
set the internal precision to a very high value (∼10 times
the machine precision). We then compute the spectrum of
the unperturbed potential for N ¼ 150; 160;…; 390, 400
where N is the size of the CGL grid [cf. (5.1)]. Taking the
eigenvalues obtained forN ¼ 400 as our reference, we then
compute the relative error between the corresponding
eigenvalues for all the other values of N, viz.,

EN
n ¼

����1 − ωN
n

ωN¼400
n

����; ð6:3Þ

where N ¼ 150; 160;…; 380, 390 are the sizes of the CGL
grid and n ¼ 1; 2; 3;… are the eigenfrequencies. While
studying the eigenvalues ωn of the unperturbed potential,
that is, the QNM frequencies, we have restricted ourselves
to the range 0 ≤ ImðωnÞ ≤ 4 since we are able to recover a
sufficient number of overtones in that range with our
choice of characteristic length scale λ ¼ 2rþ. We have then
plotted the logarithm of the relative errors, δerr for each n
against N in the first panel of Fig. 10 for l ¼ 1 mode of
scalar perturbation, and Fig. 11 for l ¼ 2 (axial) gravita-
tional QNMs for a Schwarzschild de Sitter black hole with
M ¼ 1 and Λ ¼ 0.01. We observe a nice exponential
convergence, where the relative error for the unperturbed
QNM frequencies drops by at least ∼80 orders of magni-
tude as one increases the grid size from N ¼ 150 to
N ¼ 400. After taking into account our choice of scaling
and sign convention for the Fourier modes, we have also
confirmed that our results match those that have been
reported previously [98,102,103].
We have performed the same convergence test for various

deterministic oscillatory perturbations to the black hole
potential. In the second and third panel of Fig. 10 we have
plotted δerr for the pseduoQNMs resulting from a deter-
ministic perturbation of norm kδVdk ¼ 10−10 with k ¼ 20

and kδVdk ¼ 10−1 with k ¼ 60, respectively, for l ¼ 1
scalar modes. The same for l ¼ 2 (axial) gravitational
modes are shown in the second and third panels of Fig. 11.
In all of these cases, we have focused our attention on the
first few modes lying on the respective Nollert-Price
branches near the imaginary axis and a couple of purely
imaginary modes that appear just above the respective
Nollert-Price branches. We note that on changing the grid
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size from N ¼ 150 to N ¼ 400, the drop in relative error is
close to at least 10 orders of magnitude for small low-
frequency perturbations (second panel of Figs. 10 and 11),
and close to at least 6 orders of magnitude for large high-
frequency perturbations (third panel of Figs. 10 and 11). The
convergence is poorer when we compare it to the unper-
turbed case, and a possible reason for this behavior might lie
in the fact that the eigenfunctions of the perturbed operators
are less smooth than those of the unperturbed QNMs (recall
that the convergence of Chebyshev’s spectral method is
exponential only if the functions are smooth [89,90]).
Lastly, the methodology that we have described above is
a computationally expensive affair. Moreover, the conver-
gence of the modes lying far away from the imaginary axis
but on the Nollert-Price is rather poor. So, after establishing
the convergence of a few perturbed QNMs arising from
deterministic perturbations to the BH potential, we have
performed the following test for the entire spectrum of all
deterministic perturbations reported here: we have chosen
two values of N, viz., N ¼ 230 and N ¼ 300, and calcu-
lated the spectra of the perturbed potential for these two
values of N. We have then compared all the corresponding
modes for two values of N lying in the region of interest
(−3 ≤ ReðωnÞ ≤ 3; 0 ≤ ImðωnÞ ≤ 4) and reported only
those modes whose relative difference is less than 10−2

in all the plots presented in this work.

E. Deterministic perturbation to the scattering potential
of a Reissner Nordström de Sitter black hole

We conclude with some exploratory analysis of the
instabilities in the scalar QNM spectrum of a Reissner-
Nordström de Sitter black hole. In this case, there are three
horizons: (a) the cosmological horizon, where a purely
outgoing boundary condition has been imposed, (b) the
outer event horizon, where a purely ingoing boundary
condition has been imposed, and finally (c) the Cauchy
horizon. In the asymptotically flat case, there are gauge
degrees of freedom to fix certain properties of the Cauchy
horizon, which is not available in the case of asymptoti-
cally de Sitter spacetime. Also in the case of Reissner-
Nordström de Sitter black hole, there are two possible
limits: (a) the Nariai limit, where the cosmological and
the outer event horizon come closer to each other, and
(b) the near-extremal limit, in which the outer event
horizon and the Cauchy horizon comes on top of each
other. As we will observe the behavior of the perturbed
QNMs in the Nariai limit remains identical to that of the
Schwarzschild de Sitter black hole, but the near-extremal
limit of Reissner-Nordström de Sitter black hole depicts
unique features. Like before, we consider deterministic
perturbations, with δVd ¼ cosð2πkσÞ, and consider vari-
ous possible choices of its norm kδVdk and the wave

FIG. 11. Convergence of the unperturbed (left panel), and perturbed QNM spectra for deterministic perturbations of norm kδVdk ¼
10−10 with k ¼ 20 (middle panel) and kδVdk ¼ 10−1 with k ¼ 60 (right panel) have been presented for the l ¼ 2mode of gravitational
perturbation of a Schwarzschild de Sitter black hole withM ¼ 1 and Λ ¼ 0.01. The convergence is assured as the relative error δerr goes
over to smaller vales as the grid size N becomes larger. The characteristic length scale has been set to λ ¼ 2rþ.

FIG. 10. Convergence of the unperturbed (left panel), and perturbed QNM spectra for deterministic perturbations of norm kδVdk ¼
10−10 with k ¼ 20 (middle panel) and kδVdk ¼ 10−1 with k ¼ 60 (right panel) for l ¼ 1 scalar modes of a Schwarzschild de Sitter
black hole withM ¼ 1 and Λ ¼ 0.01 has been presented. Here δerr corresponds to the relative error between the complex frequencies of
the modes at particular value of CGL grid size N with respect to a reference value corresponding to N ¼ 400.
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vector k which corresponds to inverse length scale
associated with the perturbation.
Taking a cue from the analysis done in the context of

Schwarzschild de Sitter black hole, here we present the
perturbed QNM frequencies due to a deterministic pertur-
bation of a fixed norm and also with a definite k, for various
choices of the charge, and the cosmological constant. The
result of such an analysis has been presented in Fig. 12 for
the l ¼ 1 modes of scalar perturbation. Since our main
interest is in assessing the stability of the fundamental
QNM, we consider the largest reasonable perturbation, i.e.,
we take the norm of the deterministic perturbation to be
kδVdk ¼ 10−1 and the wave vector as k ¼ 60. As expected,
for smaller values of the cosmological constant and a
smaller value of the electric charge Q, the fundamental
QNM indeed migrates to smaller imaginary values of the
frequency. However, the amount of migration is of the same
order as the perturbing potential and hence is most likely not
an instability. Moreover, the migration of the fundamental
QNM remains even when the electric charge is increased.
On the other hand, the fundamental QNM becomes more
stable when Λ becomes large, i.e., in the Nariai limit. This

behavior is qualitatively similar to what has been observed
in the context of Schwarzschild de Sitter black holes. It is
worth reiterating the surprising fact that the charge of the
black hole has no bearing on the instability of the funda-
mental QNM frequency. This is because, for a fixed
cosmological constant, we observe the same general behav-
ior for the perturbed QNMs for diverse choices of the
electric charge, viz.,Q ¼ 0.3 toQ ¼ 0.9., and it can be seen
in Fig. 12 by moving vertically along any of the columns.
While the variation with the cosmological constant for a
fixed electric charge can be observed in Fig. 12 by moving
horizontally across any of the rows. One could speculate
that the large perturbation has washed out any effect of
varying the charge of the black hole, but this issue needs to
be investigated further. Also, implications of such deter-
ministic perturbation of gravitational origin on the funda-
mental QNM of Reissner-Nordström-de Sitter black hole
spacetime will be discussed in future work.
Finally, we also present how the nature of the instability

varies with the angular number l, again for scalar
perturbation modes in Fig. 13. We consider fixed values
for all the black hole hairs, namely mass, charge, and

FIG. 12. We have presented the QNM spectra associated with deterministic perturbations to the scattering potential of norm kδVdk ¼
10−1 and k ¼ 60 for l ¼ 1 scalar modes of a Reissner-Nordström de Sitter black hole with M ¼ 1 and for various different choices of
the cosmological constant Λ and electric charge Q. The unperturbed QNM values (indicated in red) have also been superimposed over
the perturbed ones. The characteristic length scale (2.2) has been set to λ ¼ 2rþ.
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cosmological constant, but vary the angular number l. We
have also fixed the strength of the high-frequency pertur-
bation to be large (kδVdk ¼ 10−1) Once again, we find that
for l ¼ 0, the QNM spectrum is stable against large high-
frequency deterministic perturbations. The stability is not
just restricted to the fundamental modes, but it is rather
remarkable that all the higher overtones are also stable
under such a large perturbation, an aspect worth exploring
further. However, for l > 0, all the modes are unstable
under such a large perturbation. This behavior is similar to
what we have seen in the case of the Schwarzschild de
Sitter black holes. Most importantly, except for the l ¼ 0
case, the perturbed QNM frequencies have lower values
for their imaginary parts, even when the black hole is
electrically charged, which implies that the violation of the
strong cosmic censorship conjecture could be avoided.
Since perturbations to the scattering potential arising from
the neighboring gravitating systems are generic, possibly
the imaginary part of the fundamental QNM frequency will
be smaller than the unperturbed ones. This will reduce the
regularity of the fundamental mode at the Cauchy horizon,
possibly ensuring that Christodoulou’s version of the
strong cosmic censorship conjecture is respected. Hence
the validity of the strong cosmic censorship conjecture
may not require a quantum field to exist, rather it demands
a large perturbation by the neighboring gravitating system
near the event horizon. We hope to address this question in
more detail in the future.

VII. DISCUSSION AND CONCLUDING REMARKS

Probing the ringdown spectrums from the merger of
binary black holes have been one of the key observational
frontiers in gravitational wave astrophysics. The timescale
associated with the characteristic exponential decay along
with the frequency of sinusoidal oscillations in the ringdown
phase is a unique testimonial regarding the nature of the
central supermassive compact object. An understanding of
the fundamental QNM in the ringdown spectrum can be
used to test the no-hair theorems, as well as it may provide

us hint for the existence of physics beyond general relativity
in the vicinity of the photon region. Detecting higher
overtones open up further avenues of exploration, ranging
from the nature of the central compact object (e.g., whether
the object is a classical black hole, a black hole with
quantum corrections, or, an exotic compact object) to
imposing tight constraints on the physics beyond general
relativity. Therefore the importance of studying the spec-
trum of the QNM frequencies cannot be overemphasized.
On the other hand, the stability of the QNM spectrum

itself is an intriguing avenue to explore. Normally one
would expect the QNM spectrum to be stable owing to the
spectral theorem. However, the spectral theorem applies
only to self-adjoint operators. Even though the perturba-
tions in the black hole background are governed by self-
adjoint operators, the boundary conditions satisfied by
these perturbations are dissipative. As a consequence,
the spectral problem associated with finding the QNMs
of a black hole cannot be described by a self-adjoint
operator and hence the spectral theorem is no longer
applicable. Therefore, the study regarding the stability of
the QNM spectrum is performed by invoking the notion of
the black hole’s pseudospectrum, which we have elaborated
on in the previous sections. These ideas have been applied
to studying the stability of the QNM spectra of asymp-
totically flat spacetimes, and it was demonstrated that for
large perturbations most of the overtones are unstable,
however, the fundamental mode remains stable. Motivated
by this result, we have studied the corresponding situation
for asymptotically de Sitter spacetime in the present work.
We summarize below the main results obtained in our
analysis regarding the stability of QNMs in asymptotically
de Sitter spacetimes.

(i) The construction of a hyperboloidal coordinate sys-
tem for asymptotically de Sitter spacetimes, which
neatly captures the boundary conditions satisfied by
the perturbations near the horizon and the cosmo-
logical horizon, has been worked out, within the
minimal gauge prescription [67]. There is one crucial

FIG. 13. We have plotted the QNM frequencies of the perturbed scattering potential for deterministic perturbations of norm kδVdk ¼
10−1 with k ¼ 60 for various choices of the angular number associated with scalar modes. In particular, we consider three possible
choices of the angular number: l ¼ 0 (left panel), l ¼ 1 (middle panel), and l ¼ 2 (right panel), in the background a Reissner-Nordström
de Sitter black hole withM ¼ 1,Q ¼ 0.9 andΛ ¼ 0.01. We have also superimposed the unperturbed QNM frequencies (indicated in red)
over the perturbed ones to explicitly demonstrate the drifting. The characteristic length scale has been set to be λ ¼ 2rþ.
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difference between the hyperboloidal coordinate
system of an asymptotically de Sitter spacetime from
that of an asymptotically flat spacetime—after the
minimal gauge choice has been imposed, there is no
residual gauge freedom in the hyperboloidal coor-
dinate system for asymptotically de Sitter spacetimes,
and hence the transformation from the ðt; r; θ;ϕÞ to
ðτ; σ; θ;ϕÞ coordinate system does not involve any
free parameter and is unique.

(ii) The differential operator determining the behavior of
the perturbing field between the event horizon and
the cosmological horizon of an asymptotically de
Sitter spacetime, in the hyperboloidal coordinate
system, contains a Sturm–Liouville operator which
is singular at the boundaries. However, the nature of
singularity is different from that of asymptotically
flat spacetimes, since in the present context, the
singularities at the boundaries are removable. While,
in asymptotically flat spacetimes, the null infinity is
an essential singularity of the differential operator.
Therefore, the structure of the differential operator
governing the perturbation is different in the pres-
ence of a positive cosmological constant and hence
one expects the pseudospectrum to also depart from
that of the asymptotically flat black holes.

(iii) One of the most striking results, in the context of
asymptotically de Sitter spacetime is that, unlike the
case of asymptotically flat spacetime, for large
enough perturbation with kδVdk ¼ 10−1 and for
k ¼ 60, the fundamental mode itself gets dislodged
for both gravitational and scalar perturbations pro-
vided that the cosmological constant has a small
value. Though, for scalar perturbation, the migration
of the fundamental QNM is of the same order as that
of the perturbing potential, and hence is probably
stable, but the migration for gravitation perturbation
is at least an order of magnitude larger, and thus
unstable. This result is seemingly true for both
Schwarzschild de Sitter and Reissner-Nordström de
Sitter spacetimes. Thus, the fundamental QNM as-
sociated with the gravitational perturbation is unsta-
ble in asymptotic de Sitter spacetimes with a small
cosmological constant. Moreover, even for random
perturbations with magnitude kδVrk ¼ 10−1, the
fundamental QNM is unstable in the presence of a
small positive cosmological constant.

(iv) We must emphasize another intriguing result derived
here—a singular behavior when the cosmological
constant goes to zero. For the case depicting Λ ¼ 0,
which corresponds to the asymptotically flat
Schwarzschild spacetime, [38] has demonstrated
the stability of the fundamental mode, whereas in
the asymptotically de Sitter spacetime, we find an
instability for the gravitational quasinormal modes,
which becomes worse for smaller cosmological

constant, i.e., as Λ → 0. This singular behavior of
the Λ → 0 limit arises due to the emergence of the
additional de Sitter modes in the asymptotically de
Sitter spacetimes, which are absent in the asymp-
totically flat case. The above singular limit can also
be understood in the following manner: it is not the
same, on the one hand, to take first the limit Λ → 0
for the spacetime and then consider the QNM
spectrum (leading to stability of the fundamental
QNM [38]) and, on the other hand, to calculate the
QNM spectrum for small, but nonzero Λ and then
take the limit Λ → 0 (leading to an enhanced
instability of the fundamental QNM).

(v) For asymptotically de Sitter spacetime, it turns out
that deterministic and large perturbations with k ¼ 1
can affect the QNM spectrum significantly, except
for the fundamental mode. While for asymptotically
flat spacetime, deterministic perturbation with k ¼ 1
has very little to no influence on the QNM spectrum
—another crucial difference between the pseudo-
spectrum of asymptotically flat and asymptotically
de Sitter spacetimes.

(vi) The behavior of the l ¼ 0 mode for scalar pertur-
bation is another intriguing result that has been
churned out by our analysis. It turns out that, for
both Schwarzschild de Sitter and Reissner-Nord-
ström de Sitter spacetimes, there is very little effect
on the unperturbed QNM spectrum even when the
scattering potential is perturbed by Oð10−1Þ terms.
Thus it seems that in the presence of a positive
cosmological constant, the l ¼ 0 mode of the scalar
perturbation becomes highly stable against external
perturbations.

(vii) Finally in the presence of a small postive cosmo-
logical constant, it turns out that for l > 0, large
enough perturbations, whether they are deterministic
or, random, can dislodge the fundamental QNM, and
the imaginary part of the perturbed QNM becomes
smaller. Thus the decay timescale of the perturbed
fundamental QNM is larger. This holds for Reissner-
Nordström de Sitter spacetime as well and possibly
provides a way to reinforce the strong cosmic
censorship conjecture purely classically. This is
because, the regularity at the Cauchy horizon is
determined by the ratio ðImωmin=κCauchyÞ, where
ωmin is the fundamental QNM frequency and
κCauchy is the surface gravity at the Cauchy horizon.
Since under external perturbation, Imωmin becomes
smaller, the above ratio decreases, thereby increas-
ing the irregularity at the Cauchy horizon. This in
turn can rescue the strong cosmic censorship con-
jecture, classically, for a Reissner-Nordström de
Sitter black hole.

Having summarized the results derived in this paper, let
us briefly touch upon the future directions to explore. First

PERTURBING THE PERTURBED: STABILITY OF … PHYS. REV. D 108, 104002 (2023)

104002-29



of all, our results provide a preliminary indication that the
violation of the strong cosmic censorship conjecture for
Reissner-Nordström de Sitter black hole can be avoided,
classically, for gravitational perturbation. However, one
needs to present a more thorough analysis, e.g., the
following questions need to be answered—what is the
change in the imaginary part of the fundamental QNM
frequency, will the change be enough to restore the strong
cosmic censorship conjecture, etc.? It will be worth
exploring whether the destabilization of the fundamental
mode holds for exotic compact objects as well in an
asymptotically de Sitter spacetime and implications for
their stability. The reason behind the surprising stable
nature of the l ¼ 0 QNM modes for scalar perturbation
of asymptotically de Sitter spacetime needs further inves-
tigation. Moreover, it will be interesting to explore how
generic the destabilization of the fundamental QNM is,
with respect to the nature of the deterministic perturbation
potential. We hope to return to these issues in the future.
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[40] J. L. Jaramillo, R. Panosso Macedo, and L. A. Sheikh,
Gravitational wave signatures of black hole quasinormal
mode instability, Phys. Rev. Lett. 128, 211102 (2022).

[41] E. Gasperin and J. L. Jaramillo, Energy scales and
black hole pseudospectra: The structural role of the
scalar product, Classical Quantum Gravity 39, 115010
(2022).

[42] J. L. Jaramillo, Pseudospectrum and binary black hole
merger transients, Classical Quantum Gravity 39, 217002
(2022).

[43] J. L. Jaramillo, R. P. Macedo, O. Meneses-Rojas, B.
Raffaelli, and L. A. Sheikh, AWeyl’s law for black holes,
arXiv:2212.05570.

[44] K. Destounis, R. P. Macedo, E. Berti, V. Cardoso, and J. L.
Jaramillo, Pseudospectrum of Reissner-Nordström black
holes: Quasinormal mode instability and universality,
Phys. Rev. D 104, 084091 (2021).

[45] V. Boyanov, K. Destounis, R. Panosso Macedo, V.
Cardoso, and J. L. Jaramillo, Pseudospectrum of horizon-
less compact objects: A bootstrap instability mechanism,
Phys. Rev. D 107, 064012 (2023).

[46] M. H.-Y. Cheung, K. Destounis, R. P. Macedo, E. Berti,
and V. Cardoso, Destabilizing the fundamental mode of
black holes: The elephant and the flea, Phys. Rev. Lett.
128, 111103 (2022).

[47] R. A. Konoplya and A. Zhidenko, First few overtones
probe the event horizon geometry, arXiv:2209.00679.

[48] L. N. Trefethen, A. E. Trefethen, S. C. Reddy, and T. A.
Driscoll, Hydrodynamic stability without eigenvalues,
Science 261, 578 (1993).

[49] H. Yang and J. Zhang, Spectral stability of near-extremal
spacetimes, Phys. Rev. D 107, 064045 (2023).

[50] A. Lopez-Ortega, Quasinormal modes of D-dimensional
de Sitter spacetime, Gen. Relativ. Gravit. 38, 1565 (2006).

[51] V. Cardoso, J. a. L. Costa, K. Destounis, P. Hintz, and
A. Jansen, Quasinormal modes and strong cosmic censor-
ship, Phys. Rev. Lett. 120, 031103 (2018).

[52] R. A. Konoplya and A. Zhidenko, Nonoscillatory gravi-
tational quasinormal modes and telling tails for Schwarzs-
child–de Sitter black holes, Phys. Rev. D 106, 124004
(2022).

[53] S. Hollands, R. M. Wald, and J. Zahn, Quantum insta-
bility of the Cauchy horizon in Reissner–Nordström–
deSitter spacetime, Classical Quantum Gravity 37,
115009 (2020).

[54] Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics,
Adv. Phys. 69, 249 (2021).

PERTURBING THE PERTURBED: STABILITY OF … PHYS. REV. D 108, 104002 (2023)

104002-31

https://doi.org/10.1103/PhysRevD.94.084031
https://doi.org/10.1103/PhysRevLett.116.171101
https://doi.org/10.1103/PhysRevLett.116.171101
https://doi.org/10.1103/PhysRevD.96.082004
https://doi.org/10.1103/PhysRevD.102.064053
https://doi.org/10.1103/PhysRevD.102.064053
https://doi.org/10.1103/PhysRevD.106.024041
https://doi.org/10.1103/PhysRevD.106.024041
https://doi.org/10.1103/PhysRevD.105.124051
https://doi.org/10.1103/PhysRevD.105.124051
https://doi.org/10.1103/PhysRevD.103.084019
https://doi.org/10.1103/PhysRevD.103.084019
https://doi.org/10.1103/PhysRevD.101.104014
https://doi.org/10.1103/PhysRevD.104.044045
https://doi.org/10.1103/PhysRevD.104.044045
https://doi.org/10.1007/s10714-018-2372-6
https://doi.org/10.1007/s10714-018-2372-6
https://doi.org/10.1103/PhysRevD.99.123029
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevD.90.124032
https://doi.org/10.1103/PhysRevD.90.124032
https://doi.org/10.1103/PhysRevD.102.084052
https://doi.org/10.1103/PhysRevD.103.124043
https://doi.org/10.1103/PhysRevD.103.124043
https://doi.org/10.1016/0375-9601(95)00937-X
https://doi.org/10.1016/0375-9601(95)00937-X
https://doi.org/10.1103/PhysRevD.53.4397
https://doi.org/10.1063/1.532698
https://doi.org/10.1063/1.532698
https: //www.jstor.org/stable/24098553
https: //www.jstor.org/stable/24098553
https: //www.jstor.org/stable/24098553
https: //www.jstor.org/stable/24098553
https://doi.org/10.1103/PhysRevX.11.031003
https://doi.org/10.1103/PhysRevLett.128.211102
https://doi.org/10.1088/1361-6382/ac5054
https://doi.org/10.1088/1361-6382/ac5054
https://doi.org/10.1088/1361-6382/ac8ddc
https://doi.org/10.1088/1361-6382/ac8ddc
https://arXiv.org/abs/2212.05570
https://doi.org/10.1103/PhysRevD.104.084091
https://doi.org/10.1103/PhysRevD.107.064012
https://doi.org/10.1103/PhysRevLett.128.111103
https://doi.org/10.1103/PhysRevLett.128.111103
https://arXiv.org/abs/2209.00679
https://doi.org/10.1126/science.261.5121.578
https://doi.org/10.1103/PhysRevD.107.064045
https://doi.org/10.1007/s10714-006-0335-9
https://doi.org/10.1103/PhysRevLett.120.031103
https://doi.org/10.1103/PhysRevD.106.124004
https://doi.org/10.1103/PhysRevD.106.124004
https://doi.org/10.1088/1361-6382/ab8052
https://doi.org/10.1088/1361-6382/ab8052
https://doi.org/10.1080/00018732.2021.1876991


[55] L. N. Trefethen, A. E. Trefethen, S. C. Reddy, and T. A.
Driscoll, Hydrodynamic stability without eigenvalues,
Science 261, 578 (1993).

[56] T. A. Driscoll and L. N. Trefethen, Pseudospectra for the
wave equation with an absorbing boundary, J. Comput.
Appl. Math. 69, 125 (1996).

[57] D. Krejcirik, P. Siegl, M. Tater, and J. Viola, Pseudospectra
in non-Hermitian quantum mechanics, J. Math. Phys.
(N.Y.) 56, 103513 (2015).

[58] L. N. Trefethen and M. Embree, Spectra and Pseudospec-
tra (Princeton University Press, Princeton, NJ, 2005).

[59] A. Zenginoglu, Hyperboloidal foliations and scri-fixing,
Classical Quantum Gravity 25, 145002 (2008).

[60] A. Zenginoglu, A geometric framework for black hole
perturbations, Phys. Rev. D 83, 127502 (2011).

[61] R. Panosso Macedo, Comment on “Some exact quasinor-
mal frequencies of a massless scalar field in Schwarzschild
spacetime”, Phys. Rev. D 99, 088501 (2019).

[62] B. G. Schmidt, On relativistic stellar oscillations, Gravity
Research Foundation essay (1993), https://inspirehep.net/
literature/2691517.

[63] D. Schinkel, R. Panosso Macedo, and M. Ansorg,
Axisymmetric constant mean curvature slices in the
Kerr space-time, Classical Quantum Gravity 31, 075017
(2014).

[64] R. Panosso Macedo, Hyperboloidal framework for the
Kerr spacetime, Classical Quantum Gravity 37, 065019
(2020).

[65] D. Schinkel, M. Ansorg, and R. Panosso Macedo, Initial
data for perturbed Kerr black holes on hyperboloidal slices,
Classical Quantum Gravity 31, 165001 (2014).

[66] M. Ansorg and R. Panosso Macedo, Spectral decomposi-
tion of black-hole perturbations on hyperboloidal slices,
Phys. Rev. D 93, 124016 (2016).

[67] R. Panosso Macedo, J. L. Jaramillo, and M. Ansorg,
Hyperboloidal slicing approach to quasi-normal mode
expansions: The Reissner-Nordström case, Phys. Rev. D
98, 124005 (2018).

[68] J. L. Ripley, Computing the quasinormal modes and
eigenfunctions for the Teukolsky equation using horizon
penetrating, hyperboloidally compactified coordinates,
Classical Quantum Gravity 39, 145009 (2022).

[69] Z. Zhong, V. Cardoso, and E. Maggio, Instability of
ultracompact horizonless spacetimes, Phys. Rev. D 107,
044035 (2023).

[70] R. Gregory, D. Kastor, and J. Traschen, Black hole
thermodynamics with dynamical lambda, J. High Energy
Phys. 10 (2017) 118.

[71] R. Gregory, D. Kastor, and J. Traschen, Evolving black
holes in inflation, Classical Quantum Gravity 35, 155008
(2018).

[72] P. R. Anderson and J. Traschen, Horizons and correlation
functions in 2D Schwarzschild-de Sitter spacetime, J. High
Energy Phys. 01 (2022) 192.

[73] P. R. Anderson, Z. P. Scofield, and J. Traschen, Linear
growth of the two-point function for the Unruh state in
1þ 1 dimensional black holes, The Sixteenth Marcel
Grossmann Meeting (World Scientific, Singapore, 2023).

[74] P. Bizoń, T. Chmaj, and P. Mach, A toy model of hyper-
boloidal approach to quasinormal modes, Acta Phys. Pol.
B 51, 1007 (2020).

[75] P. Hintz and Y. Xie, Quasinormal modes of small
Schwarzschild–de Sitter black holes, J. Math. Phys.
(N.Y.) 63, 011509 (2022).

[76] P. Bizon, A. Rostworowski, and A. Zenginoglu, Saddle-
point dynamics of a Yang-Mills field on the exterior
Schwarzschild spacetime, Classical Quantum Gravity
27, 175003 (2010).

[77] P. Bizoń and P. Mach, Global dynamics of a Yang-Mills
field on an asymptotically hyperbolic space, Trans. Am.
Math. Soc. 369, 2029 (2017).

[78] M. Dafermos and I. Rodnianski, Lectures on black holes
and linear waves, Clay Math. Proc. 17, 97 (2013), https://
arxiv.org/abs/ 0811.0354.

[79] G. Holzegel and J. Smulevici, Decay properties of Klein-
Gordon fields on Kerr-AdS spacetimes, Commun. Pure
Appl. Math. 66, 1751 (2013).

[80] C. M. Warnick, On quasinormal modes of asymptotically
anti-de Sitter black holes, Commun. Math. Phys. 333, 959
(2015).

[81] C. Kehle, Diophantine approximation as cosmic censor for
Kerr–AdS black holes, Inventiones Mathematicae 227,
1169 (2022).

[82] D. Arean, D. Garcia-Fariña, and K. Landsteiner, Pseudo-
spectra of holographic quasinormal modes, arXiv:2307
.08751.

[83] F. Ficek and C. Warnick, Quasinormal modes of Reissner-
Nordström-AdS: The approach to extremality, arXiv:2308
.16035.

[84] K. Parattu, S. Chakraborty, B. R. Majhi, and T.
Padmanabhan, A boundary term for the gravitational action
with null boundaries, Gen. Relativ. Gravit. 48, 94 (2016).

[85] K. Parattu, S. Chakraborty, and T. Padmanabhan, Varia-
tional principle for gravity with null and non-null boun-
daries: A unified boundary counter-term, Eur. Phys. J. C
76, 129 (2016).

[86] S. Chakraborty, Boundary terms of the Einstein–Hilbert
action, Fundam. Theor. Phys. 187, 43 (2017).

[87] S. J. Axler, Linear Algebra Done Right, Undergraduate
Texts in Mathematics (Springer, New York, 1997).

[88] E. S. C. Ching, P. T. Leung, A. Maassen van den Brink,
W.M. Suen, S. S. Tong, and K. Young, Quasinormal-mode
expansion for waves in open systems, Rev. Mod. Phys. 70,
1545 (1998).

[89] L. N. Trefethen, Spectral Methods in MATLAB (Society for
Industrial and Applied Mathematics, USA, 2000).

[90] O. J. C. Dias, J. E. Santos, and B. Way, Numerical methods
for finding stationary gravitational solutions, Classical
Quantum Gravity 33, 133001 (2016).

[91] Boyd, Chebyshev and Fourier Spectral Meth, 2 ed., Dover
Books on Mathematics (Dover Publications, Mineola, NY,
2001).

[92] C. Markakis, M. F. O’Boyle, P. D. Brubeck, and L. Barack,
Discontinuous collocation methods and gravitational self-
force applications, Classical Quantum Gravity 38, 075031
(2021).

SARKAR, RAHMAN, and CHAKRABORTY PHYS. REV. D 108, 104002 (2023)

104002-32

https://doi.org/10.1126/science.261.5121.578
https://doi.org/10.1016/0377-0427(95)00021-6
https://doi.org/10.1016/0377-0427(95)00021-6
https://doi.org/10.1063/1.4934378
https://doi.org/10.1063/1.4934378
https://doi.org/10.1088/0264-9381/25/14/145002
https://doi.org/10.1103/PhysRevD.83.127502
https://doi.org/10.1103/PhysRevD.99.088501
https://inspirehep.net/literature/2691517
https://inspirehep.net/literature/2691517
https://inspirehep.net/literature/2691517
https://doi.org/10.1088/0264-9381/31/7/075017
https://doi.org/10.1088/0264-9381/31/7/075017
https://doi.org/10.1088/1361-6382/ab6e3e
https://doi.org/10.1088/1361-6382/ab6e3e
https://doi.org/10.1088/0264-9381/31/16/165001
https://doi.org/10.1103/PhysRevD.93.124016
https://doi.org/10.1103/PhysRevD.98.124005
https://doi.org/10.1103/PhysRevD.98.124005
https://doi.org/10.1088/1361-6382/ac776d
https://doi.org/10.1103/PhysRevD.107.044035
https://doi.org/10.1103/PhysRevD.107.044035
https://doi.org/10.1007/JHEP10(2017)118
https://doi.org/10.1007/JHEP10(2017)118
https://doi.org/10.1088/1361-6382/aacec2
https://doi.org/10.1088/1361-6382/aacec2
https://doi.org/10.1007/JHEP01(2022)192
https://doi.org/10.1007/JHEP01(2022)192
https://doi.org/10.5506/APhysPolB.51.1007
https://doi.org/10.5506/APhysPolB.51.1007
https://doi.org/10.1063/5.0062985
https://doi.org/10.1063/5.0062985
https://doi.org/10.1088/0264-9381/27/17/175003
https://doi.org/10.1088/0264-9381/27/17/175003
https://doi.org/10.1090/tran/6807
https://doi.org/10.1090/tran/6807
https://arxiv.org/abs/ 0811.0354
https://arxiv.org/abs/ 0811.0354
https://arxiv.org/abs/ 0811.0354
https://arxiv.org/abs/ 0811.0354
https://doi.org/10.1002/cpa.21470
https://doi.org/10.1002/cpa.21470
https://doi.org/10.1007/s00220-014-2171-1
https://doi.org/10.1007/s00220-014-2171-1
https://doi.org/10.1007/s00222-021-01078-6
https://doi.org/10.1007/s00222-021-01078-6
https://arXiv.org/abs/2307.08751
https://arXiv.org/abs/2307.08751
https://arXiv.org/abs/2308.16035
https://arXiv.org/abs/2308.16035
https://doi.org/10.1007/s10714-016-2093-7
https://doi.org/10.1140/epjc/s10052-016-3979-y
https://doi.org/10.1140/epjc/s10052-016-3979-y
https://doi.org/10.1007/978-3-319-51700-1_5
https://doi.org/10.1103/RevModPhys.70.1545
https://doi.org/10.1103/RevModPhys.70.1545
https://doi.org/10.1088/0264-9381/33/13/133001
https://doi.org/10.1088/0264-9381/33/13/133001
https://doi.org/10.1088/1361-6382/abdf27
https://doi.org/10.1088/1361-6382/abdf27


[93] C. Markakis, S. Bray, and A. Zenginoğlu, Symmetric
integration of the 1þ 1 Teukolsky equation on hyper-
boloidal foliations of Kerr spacetimes, arXiv:2303.08153.

[94] S. H. Lui, Computation of pseudospectra by continuation,
SIAM J. Sci. Comput. 18, 565 (1997).

[95] T. G. Wright and L. N. Trefethen, Large-scale computation
of pseudospectra using arpack and eigs, SIAM J. Sci.
Comput. 23, 591 (2001).

[96] L. N. Trefethen, Computation of pseudospectra, Acta
Numer. 8, 247 (1999).

[97] V. Cardoso and J. P. S. Lemos, Quasinormal modes of the
near extremal Schwarzschild-de Sitter black hole, Phys.
Rev. D 67, 084020 (2003).

[98] A. Jansen, Overdamped modes in Schwarzschild-de Sitter
and a Mathematica package for the numerical computation
of quasinormal modes, Eur. Phys. J. Plus 132, 546 (2017).

[99] K. Lin and W.-L. Qian, The matrix method for black hole
quasinormal modes *, Chin. Phys. C 43, 035105 (2019).

[100] S. Fortuna and I. Vega, Bernstein spectral method for
quasinormal modes and other eigenvalue problems,
arXiv:2003.06232.

[101] L. A. H. Mamani, A. D. D. Masa, L. T. Sanches, and V. T.
Zanchin, Revisiting the quasinormal modes of the
Schwarzschild black hole: Numerical analysis, Eur. Phys.
J. C 82, 897 (2022).

[102] A. Zhidenko, Quasinormal modes of Schwarzschild de
Sitter black holes, Classical Quantum Gravity 21, 273
(2004).

[103] H. T. Cho, A. S. Cornell, J. Doukas, and W. Naylor,
Black hole quasinormal modes using the asymptotic
iteration method, Classical Quantum Gravity 27, 155004
(2010).

PERTURBING THE PERTURBED: STABILITY OF … PHYS. REV. D 108, 104002 (2023)

104002-33

https://arXiv.org/abs/2303.08153
https://doi.org/10.1137/S1064827594276035
https://doi.org/10.1137/S106482750037322X
https://doi.org/10.1137/S106482750037322X
https://doi.org/10.1017/S0962492900002932
https://doi.org/10.1017/S0962492900002932
https://doi.org/10.1103/PhysRevD.67.084020
https://doi.org/10.1103/PhysRevD.67.084020
https://doi.org/10.1140/epjp/i2017-11825-9
https://doi.org/10.1088/1674-1137/43/3/035105
https://arXiv.org/abs/2003.06232
https://doi.org/10.1140/epjc/s10052-022-10865-1
https://doi.org/10.1140/epjc/s10052-022-10865-1
https://doi.org/10.1088/0264-9381/21/1/019
https://doi.org/10.1088/0264-9381/21/1/019
https://doi.org/10.1088/0264-9381/27/15/155004
https://doi.org/10.1088/0264-9381/27/15/155004

