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We show that the present-day dark matter abundance can be produced through a novel mechanism that
involves a very rapid thermal freeze-out caused by inhomogeneous heating and successive fast cooling of
small fireballs in the early Universe. The fireballs can be produced from energy deposited in small scale
structure growth induced by Yukawa interactions in certain particle species. Yukawa interactions are known
to cause growth of halos even during a radiation dominated era, and the same interactions facilitate cooling
and collapse of the halos by the emission of scalars. Energy deposited in the Standard Model plasma at the
locations of the halo collapse can heat the plasma, re-establishing thermal equilibrium. The subsequent
expansion and cooling of plasma fireballs leads to freeze-out of dark matter on timescales much shorter
than the Hubble time. This mechanism can produce the right abundance of dark matter for masses and
annihilation cross sections previously thought to be ruled out.
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The weakly interacting massive particle (WIMP) is a
well-motivated dark matter (DM) candidate. The most
commonly assumed production scenario is based on
freeze-out: the DM abundance is frozen at the temperature
at which the WIMP annihilation rate becomes slower than
the expansion rate of the Universe. Thus, it is the Hubble
rate that determines the WIMP abundance.
However, there may be another relevant timescale

affecting freeze-out. A recently discovered phenomenon
of halo formation in some particle species during the
radiation dominated era [1–6] can create inhomogeneous
heating of plasma, with subsequent cooling of the produced
fireballs, which introduces a new timescale, much shorter
than the Hubble timescale. The WIMP freeze-out is then
determined by this shorter timescale, rather than the Hubble
rate, leading to a different dependence of the DM abun-
dance on the annihilation cross sections. In this paper we
will explore the implications of defrosting and blast-
freezing plasma for WIMP abundance. We will show that
this possibility opens a new range of WIMP parameters,
which has important implications for direct and indirect
DM searches.

The traditional DM formation scenario involves a heavy
particle X which is weakly coupled to the Standard Model
(SM) early in the evolution of the Universe. At high
temperatures, the X population is initially in thermal
equilibrium with the SM. As the Universe expands, the
DM abundance is diluted until XX ↔ SM interactions
occur slowly compared to the Hubble rate. Once inter-
actions become rare, the comoving number density of X
particles remains fixed to the present day. This “freeze-out”
process is described by the Boltzmann equation,

ṅX þ 3HnX ¼ −hσannviðn2X − ðneqX Þ2Þ; ð1Þ
where hσannvi is the thermally averaged cross section times
the relative particle velocity. The temperature at which the
final DM abundance is frozen out, TX

FO, can be approxi-
mated by solving

ΓannðTX
FOÞ≡ hσannvineqX ðTX

FOÞ ¼ HðTX
FOÞ: ð2Þ

The present-day X abundance is given by [7]

ΩX ≃ 5.2 × 10−2
xXFOffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðMXÞ

p
�
10−8 GeV−2

hσannvi
�
; ð3Þ

where xXFO ¼ mX=TX
FO. The above result is insensitive to the

mass of the heavy particle, and primarily determined by the
cross section. The fact that the observed DM particle
density is reproduced if
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσannvi

p
∼ 0.1

ffiffiffiffiffiffiffi
GF

p
; ð4Þ

where GF is the Fermi four-interaction strength, is referred
to as the WIMP miracle.
Simultaneously, Eq. (3) illustrates the fact that larger

cross sections can lead to an underabundance of DM. The
principle goal of this paper is to introduce a scenario which
can produce the proper DM abundance, particularly in the
high-annihilation cross section parameter space where the
traditional freeze-out formalism produces too little DM,
thus failing to generate the abundance observed today.
This scenario relies on the recently explored principle of

early structure formation. The generation of overdensities
by long-range forces, like Yukawa interactions, has been
examined in many contexts [1–6]. Yukawa forces are
generally stronger than gravity, thus allowing for the
formation of structure during both the matter and radiation
dominated eras. The growth of overdensities through
Yukawa forces can lead to bound states [8–10], or in the
presence of radiative cooling via the same Yukawa inter-
action, collapse and formation of primordial black holes
[3,11]. Alternatively, an overdensity may evaporate due to
annihilation of its constituent particles. However, if these
particles couple to the SM, the formation, collapse, and
annihilation of an overdense region can locally heat the SM
plasma. This inhomogeneous, local heating has proven
useful when applied to either the matter antimatter asym-
metry of the Universe [12,13] or the generation of pri-
mordial magnetic fields [14].
Following Ref. [3] we consider a dark (sub)sector with a

heavy fermion ψ and a light scalar χ interacting via Yukawa
coupling:

L ⊃
1

2
m2

χχ
2 þ yχψ̄ψ þ LY−SM: ð5Þ

This sector, which we will refer to as the Yukawa sector
throughout, is introduced in addition to the SM and the
WIMP X (which may be accompanied by some additional
new physics). The interactions in the Yukawa sector of
Eq. (5) are designed to create the inhomogeneous heating.
The Yukawa sector is weakly coupled to the SM via the
cross terms in LY−SM and is not directly linked to the
WIMP sector. A schematic of the individual sectors can be
found in Fig. 1. We will parametrize the strength of the
SM-to-Yukawa sector coupling below, when we discuss
the energy transfer from the Yukawa fireballs to the SM
plasma.
We require that the fermions ψ are either stable or have a

total decay width Γ ≪ m2
ψ=MPl where MPl is the reduced

Planck mass with numerical value, MPl ≈ 2.4 × 1018 GeV.
This ensures there is a cosmological epoch where the ψ
particles can become nonrelativistic, decoupled from equi-
librium, and interact via the long-range force mediated by
the χ field.

The strength of the Yukawa interaction is generally much
larger than gravity. This is demonstrated by comparing the
strength of each force, i.e., through β≡ yMPl=mψ ≫ 1. It
should also be briefly noted that another key difference
between Yukawa interactions and gravity is the fact that
Yukawa interactions couple to the number density of ψ
rather than its energy density.
The presence of additional long-range scalar forces

generically leads to the rapid development of structure
as the overdensities Δ≡ ðnψ − n̄ψ Þ=n̄ψ grow considerably
fast. In particular, it has be demonstrated that [1–5]

Δ ∝ aβ; β ≫ 1; ð6Þ

where a is the scale factor, even during radiation domina-
tion. For reference, matter perturbations under the influence
of gravity grow as δ ∝ ln a during radiation domination and
δ ∝ a during matter domination. The rapid growth of
structures is generally faster than the Hubble rate, implying
that the overdensities become nonlinear within a Hubble

FIG. 1. Schematic diagram of the sectors utilized in our
scenario. Here, ξs is the efficiency of energy transfer from the
Yukawa sector to the SM [see discussion below Eq. (17)], and αX
is the WIMP to SM coupling.

FIG. 2. A visualization of ψ halo collapse which leads to
inhomogeneous heating.
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time. This is followed by the formation of virializied ψ
halos comprised of ψ particles.
The details of this early structure formation have been

explored both analytically and numerically in Ref. [6]. In
this study, the quartic terms in the χ potential are included.
Both analytical results and N-body simulations point to the
possibility of a rapid structure formation in the presence of
the background dynamics of the scalar field χ.
For the formation of overdensities to occur, we require

that ψ̄ψ ↔ χχ interactions freeze out so that a fixed
population of ψ particles can be captured into ψ halos.
To do so, we will use a similar framework as described
above and define the ψ freeze-out temperature as the
solution to the following equation:

ΓðTψ
FOÞ

HðTψ
FOÞ

¼ 1 for ΓðTÞ ≃ y4

4πðT2 þm2
ψÞ

neqψ ðTÞ: ð7Þ

Once the temperature of the ψ fluid reaches Tψ
FO, scalar

forces can begin to coalesce material into ψ halos, as
previously described.
Before calculating this temperature we must note that

unlike with gravitational forces, the binding energy of the
Yukawa interactions can contribute to the total energy
budget in a nontrivial fashion. To accommodate for this
possibility, we include an additional energy component
into the equation describing the evolution of the Hubble
parameter,

3M2
PlH

2 ¼ ρrad þ ρψ þ ρy; ð8Þ

where ρy accounts for the energy density of Yukawa
potential energy. The length scale of the scalar force
m−1

χ requires that we consider two regimes, namely when
H−1 < m−1

χ or H−1 > m−1
χ . When the horizon is smaller

than the Compton wavelength of the mediator, the entire
Hubble volume is subject to influence from the scalar
interaction. Alternatively, when the horizon grows beyond
m−1

χ only subhorizon regions can communicate via the
Yukawa force. In this case the number of regions subject to
scalar interactions within the horizon is Nh ¼ ðmχ=HÞ3.
The relationship between the horizon size and the mediator
mass gives two expressions for the Yukawa energy density,

ρyðTÞ ¼
3y2

4πm2
ψH−3

�
M2

hor=H
−1 H−1 < m−1

χ

NhM2
hal=m

−1
χ H−1 > m−1

χ

; ð9Þ

where

�
Mhor

Mhal

�
¼ 4π

3
mψn

eq
ψ ðTÞ

�
HðTÞ−3
m−3

χ

�
: ð10Þ

Depending on the selection of fmψ ; y; mχg we have three
relevant temperatures. The Universe originally begins from

a radiation dominated era which eventually transitions to
Yukawa domination at TRD→YD

eq . After this, the horizon size
grows to exceed m−1

χ at Tmχ¼H. Later on as the Universe
keeps expanding, the number density of the ψ fluid rapidly
decreases as the temperature falls belowmψ. This allows for
the reestablishment of radiation domination at TYD→RD

eq .
This leads to an evolution of the Hubble parameter given by

HðTÞ2 ¼

8>>>>><
>>>>>:

π2

90
g� T4

M2
Pl

T ≲ TYD→RD
eq & T ≳ TRD→YD

eq

2π1=2

3MPl
yneqψ ðTÞ Tmχ¼H ≲ T ≲ TRD→YD

eq

4π
9M2

pl

y2neqψ ðTÞ2
m2

χ
TYD→RD
eq ≲ T ≲ Tmχ¼H:

ð11Þ

Our choice of parameters might lead to the situation where
TYD→RD
eq > Tmχ¼H. In this case the evolution of the Hubble

parameter instead follows

HðTÞ2 ¼
8<
:

π2

90
g� T4

M2
Pl

T ≲ TYD→RD
eq & T ≳ TRD→YD

eq

2π1=2

3MPl
yneqψ ðTÞ TYD→RD

eq ≲ T ≲ TRD→YD
eq :

ð12Þ

Having determined the Hubble rate in this general frame-
work, we can now determine when the ψ̄ψ ↔ χχ freeze out
using Eq. (7).
Before discussing scalar radiation, wewill briefly reiterate

the thermal history up to this point. The Yukawa sector is
lightly coupled to the SM, for example, through high-
dimensional operators which result from a higher energy,
UV complete theory. At some temperature T ≳ Tψ

FO, the
Yukawa sector and the SM decouple. Once T ≲ Tψ

FO, early
structure formation and collapse can proceed.
The statement that theSMand theYukawa sector decouple

for T ≳ Tψ
FO can be understood as follows. Firstly, the

smallness of the SM to Yukawa sector coupling may lead
to early freeze-out of ψ̄ψ ↔ SM interactions simply by
weakness of this interaction strength. However, we only
require that ψ̄ψ ↔ SM interactions are frozen out once
T ∼ Tψ

FO. As is usual for freeze-out calculations,
Tψ
FO ∼Oð0.1 − 0.01Þmψ , implying that the equilibrium

number density neqψ ðTψ
FOÞ is within the regime of

Boltzmann suppression. This fact, and the smallness of
the SM-Yukawa sector coupling imply that these two sectors
should decouple at a temperature for T ≳ Tψ

FO. The exact
details of this decoupling process will require an exact
specification of the SM-Yukawa coupling, which we will
leave to future work.
Without energy dissipation the formation of virialized ψ

halos through Yukawa interactions would be the end of the
story, with the newly formed halos either remaining stable
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or evaporating once the constituent particles decay.However,
the sameYukawa interaction allows for the emission of scalar
radiation much in the same way as electromagnetic inter-
actions between charged particles allow for energy dissipa-
tion. Initially the energy is carried away primarily through ψ
pair interactions, i.e., through free-free or bremsstrahlung
emission. As the halo continues collapsing, it becomes
optically thick to the scalar mediator χ, and radiation
becomes trapped. This restricts radiation to be emitted only
from the surface. Given that surface cooling is the least
efficient channel of energy removal, its associated timescale
determines whether radiative cooling is rapid enough to
facilitate collapse within a Hubble time. The characteristic
timescale associated with the energy loss during the surface
radiation stage is

τcool ≡ E
jdE=dtj ∼ Rh ≪ H−1; ð13Þ

thus implying that radiative collapse is swift.
For our exploration of DM generation, we assume that

the formation and collapse of the ψ halos occur quickly
after ψ̄ψ ↔ χχ freeze out. Specifically, we assume that the
formation and collapse occur rapidly so the change in
average background temperature outside of the collapsing
halos is negligible. Therefore, we will set the background
temperature Tbg equal to the ψ freeze-out temperature Tψ

FO.
At formation, we will assume that the halos initially have
radius Rh ¼ m−1

χ and masses

Mh ¼
4π

3
mψnψ ðTbgÞR3

h: ð14Þ

In principle, the masses and radii of the halos should be
derived from an underlying distribution such as that
described in the Press-Schechter formalism. Existing
N-body simulations have yet to determine the precise
nature of the mass distribution of the ψ halos. Our
assumption that the halos have a similar composition is
motivated by both simplicity and the fact that the strength
of Yukawa interactions will facilitate a rich merger history,
as demonstrated in Ref. [6], which form halos of a maximal
radius given by the Compton wavelength of the mediator χ.
Without an asymmetry in the ψ population, the halos will

annihilate after the initial stage of collapse. Annihilations
will begin when the average distance between particles
within the halo is less than the Compton wavelength, i.e.,

Rann ≡ 1

mψ

�
3

4π

Mh

mψ

�
1=3

: ð15Þ

The energy released through scalar quanta during the initial
collapse is given by

ΔEemis ¼
y2M2

h

m2
ψRann

�
1 −

Rann

Rh

�
: ð16Þ

Here, ΔEemis designates the energy released through scalar
radiation alone. Annihilation of the halo will also release
energy into the ambient plasma, ΔEann ¼ ϵannMh where
ϵann ≤ 1 parametrizes the efficiency of annihilation. In
particular, ϵann encapsulates deviations from perfect annihi-
lation, which may be caused by many sources like, for
example, the nonsphericity of the ψ halo. The total energy
emitted through scalar particles is the sum, ΔE ≡
ΔEemis þ ΔEann. We will assume that the Yukawa sector,
which contains ψ and χ, is weakly coupled to the SM (see
Fig. 1). The sudden release of a large amount of energy from
collapse and halo annihilation locally heats the SM plasma
(see Fig. 2). We will assume that the collapsing halos
become relativistic so that the initial temperature of the
heated region is

T4
i ¼

90ξsΔE
4π3g�ðTiÞR3

i
; ð17Þ

where Ri is the initial radius of the heated region, g�ðTiÞ are
the relativistic degrees of freedom at Ti, and, crucially, ξs is
the efficiency of energy transfer from the Yukawa sector χ
particles to the SMplasma. Determining the quantity ξs from
first principles is nontrivial. This parameter could be viewed
to encapsulate a number of effects, and not just the coupling
from the Yukawa sector to the SM, and further investigations
will take amodel-dependent approach in order to determine a
better understanding of the energy transfer between the SM
and the Yukawa sector.
Once heated above the background temperature, the

excessive energy spreads out via both a shockwave and
diffusion. In the first case the expanding shockwave travels
through the SM plasma at the speed of sound. Using energy
conservation, we determine the characteristic timescale
associated with the explosion to be

τexp ≡ T
jdT=dtj ¼

4Riffiffiffi
3

p
�
1þ t − tiffiffiffi

3
p

Ri

�
: ð18Þ

Most of the energy released during the collapse occurs right
before annihilation. Therefore, we approximate Ri ∼ Rann.
The region may also cool through diffusion. The timescale
associated with this process is approximately [12]

τdiff ∼
R2
i

4D

�
Ti

T

�
8=3

; ð19Þ

where D is a diffusion constant. As in Ref. [12] we take
D ∼ 1=γg where γg ∼ 0.3g2sT and gs is the strong coupling
[15]. The dissipation timescale is defined as τdiss ≡
minfτexp; τdiffg. Generally, τexp ≪ τdiff . This means that
the expanding fireball is the most rapid method of energy
transport.
Before the early structure formation and collapse, we

require that the WIMP sector is decoupled from the SM.
Therefore we establish the requirement that the background
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temperature Tbg ≲mX. For the parameters we consider the
X density produced from traditional freeze-out must also be
unable to explain the DM abundance today.
With these conditions in mind, the collapse of the ψ

halos reheats local regions above T ¼ mX. Within these
heated regions, thermal equilibrium is reestablished
allowing DM production followed by a rapid imhomoge-
neous refreeze-out. The evolution of the X number density
in these heated regions is described by

T
d
dT

�
nXðTÞ
T3

�
¼ −

ΓXðTÞ
τ−1dissðTÞ

�
n2X
T3

−
ðneqX Þ2
T3

�
; ð20Þ

where

ΓXðTÞ ≃
α2X

ðm2
X þ T2Þ n

eq
X ðTÞ: ð21Þ

Unlike the standard paradigm, here DM freeze-out
reoccurs at the temperature where ΓXðTfÞ ¼ τ−1dissðTfÞ
where Tf is the freeze-out temperature within an expanding
heated region found by solving the above equation. The
fact that the fireballs expand at a much faster rate than the
Hubble parameter causes a rapid DM (re-)freeze-out leav-
ing a significant DM abundance even for annihilation cross
sections much larger than the weak one required in the
standard freeze-out paradigm. The resultant DM energy
density is thus given by

ρXðTbgÞ ≃ f ·mXn
eq
X ðTfÞ; ð22Þ

where f is a volume filling factor defined as

f ≡ NhH3ðTbgÞR3
i

�
Ti

Tf

�
4

: ð23Þ

We will restrict our parameter space such that f < 1,
Ti < MPl, and Ti > mψ , Tbg. Furthermore, to ensure that
the DM produced is cold, or nonrelativistic we require that
Tf < mX. Lastly, we need to impose a condition for the
produced DM. Once the fireball stops expanding, i.e., once
its temperature drops to the background value, we have to
guarantee that the generated DM density does not annihi-
late with a rate higher than the Hubble expansion. In such a
case we will once again have a depletion of the DM
population. This condition reads as

3
ffiffiffiffiffi
10

p

π
g−1=2�

TbgMPl

τdissðTfÞ
< T3

f: ð24Þ

In Fig. 3 we show the present-day DM abundance as a
function of the DM mass, mX, and annihilation coupling,
αX. The black contours illustrate the abundance predicted
by the traditional freeze-out scenario, where we have taken
the thermal averaged cross section to be

hσannvi ∼ α2X=m
2
X: ð25Þ

The red line denotes the region of parameter spacewithin our
setup where ΩX ¼ ΩDM. The green region indicates param-
eter space which fails the depletion limit, Eq. (24). Figure 3
illustrates that our scenario can generate the full abundanceof
DM in regions of parameter space which are ruled out in the
standard freeze-out paradigm. In the presented example, we
have used y ¼ 0.75, mψ ¼ 100.3 GeV, mχ ¼ 10−16 GeV,
and ξs ¼ 10−3. This slice of parameter space satisfies the
conditions discussed previously, but is far from the only
acceptable set of parameters.
As touched upon in [3,13], the scalar χ may act as an

additional relativistic degree of freedom thus leading to a
modification to ΔNeff . This is permissible, and may even
help resolve the Hubble tension [16–24]. Crucially, the
collapse of ψ halos is generically asymmetric, thus leading
to a nonvanishing quadrupole moment. This naturally
implies the generation of gravitational waves, and studies
have shown that such a signal may be detectable by future
gravitational wave observatories [5].
We note that any inhomogeneities in the production of

DM might occur on such small scales that they have no
implications for conventional structure formation or iso-
curvature fluctuations. The mechanism described above
occurs far before matter-radiation equality. In fact, for the
parameter space we have considered, the generation of DM
occurs before neutrino decoupling. The scales upon which
the DM homogeneities are produced are smaller than the
horizon size at that time, and are significantly smaller than
those which could ultimately impact the formation of large
scale structures.

FIG. 3. Predicted DM density for a variety of DM masses and
couplings. The red line indicates values within the fireball
scenario where the abundance of X is exactly the observed
abundance of DM today. Black contours are the predicted DM
density in the conventional freeze-out scenario, i.e., Eq. (3). The
green region is excluded by the depletion limit [Eq. (24)]. Here
y ¼ 0.75, mψ ¼ 100.3 GeV, mχ ¼ 10−16 GeV, and ξs ¼ 10−3.
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Here we demonstrate that early structure formation from
Yukawa interactions can lead to the generation of DM. This
occurs due to the collapse of halos of heavy fermions due to
scalar radiation, which exchanges energy with SM, thus
allowing for local heating of the background SM plasma.
These inhomogenous hot spots re-establish thermal equi-
librium, allowing for the local formation of DM. Freeze-
out, now dependent on the timescale pertaining to the rapid
expansion of the heated region, produces a non-negligible
abundance of matter which may present itself as the DM
observed today. This is particularly applicable to regions of
parameter space which are ruled out in the traditional
freeze-out paradigm.
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