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If long-range attractive forces exist and are stronger than gravity then cosmic halo formation can begin in
the radiation-dominated era. We study a simple realization of this effect in a system where dark matter
fermions have Yukawa interactions mediated by scalar particles, analogous to the Higgs boson in the
standard model. We develop a self-consistent description of the system including exact background
dynamics of the scalar field, and precise modeling of the fermion density fluctuations. For the latter, we
provide accurate approximations for the linear growth as well as quantitative modeling of the nonlinear
evolution using N-body simulations. We find that halo formation occurs exponentially fast and on scales
substantially larger than simple estimates predict. The final fate of these halos remains uncertain, but could
be annihilation, dark stars, primordial black holes, or even the existence of galaxy-sized halos at matter-
radiation equality. More generally, our results demonstrate the importance of mapping scalar-mediated
interactions onto structure formation outcomes and constraints for beyond the standard model theories.
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I. INTRODUCTION

The Higgs boson discovery [1,2] has confirmed the
existence of scalar fields interacting with fermions via
Yukawa couplings. Supersymmetry, axions, string theory
and other theories beyond the standard model predict a
broad range of new scalar fields, while new fermionic
particles could make up the dark matter in the Universe. We
will focus on the long-range effects of the Yukawa
interactions, which are important on the length scales
shorter than the Compton wavelength of the scalar media-
tor. Yukawa forces are attractive, and they can be much
stronger than gravity, leading to an instability similar to
gravitational collapse in the early universe [3,4].
Obviously, the heavier the scalar field, the shorter is the

range of the attractive forces. However, even for the Higgs
boson, there is a window where the Higgs-mediated inter-
actions could be considered long-range on the scale of the

horizon in the early universe. In the case of the Higgs boson
during the radiation dominated era, the effective mass at
temperature T ≫ 102 GeV is mHðTÞ ∼mHð0Þ þ gT ∼ gT.
The long-range forces mediated by the Higgs boson
are relevant on the distance scales R ¼ ϵH−1, where H ∼
T2=MPlanck and ϵ < 1, if mHðTÞ ∼ gT < H=ϵ, that is, for
temperatures T > ϵgMPlanck. Any halos that could form
under the action of such attractive forcewould have an upper
limit on their masses Mh < ϵMPlanck=g2 ∼ 102ϵMPlanck.
In particular, if a black hole were to form from such a
halo, it would have the mass smaller than 102MPlanck,
and it would quickly evaporate. However, since a broad
variety of scalar fields other than the Higgs are predicted by
models of new physics, it is of interest to examine the
corresponding instability and growth of perturbations in the
early universe.
Scalar fields are also ubiquitous in cosmology and

gravity, from the field responsible for cosmic inflaton to
perhaps dark energy and dark matter. The growth of cosmic
structures due to additional scalar “fifth forces” has been
studied in the past, mainly focused on dark matter coupled
to a scalar field dark energy [5,6], the latter also labeled
quintessence [7]. The literature in interacting dark matter
and dark energy is vast: for a nice summary of the literature
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up to 2003, see Sec. 2 of [8]; for a recent review
see Ref. [9]; for a large recollection of references, see
Refs. [10,11]; for early numerical simulations, see
Ref. [12]; and for a coupling to neutrinos instead of dark
matter, see Refs. [13–18]. See also Ref. [19] for the effect of
Yukawa interactions on galaxy rotation curves.
In contrast to the late universe, long-range interactions

in the early universe could be so large that small
primordial density fluctuations collapse to black holes
[3]. However, it is expected that the fermion perturbations
will first collapse into virialized objects called halos [20]
before then forming primordial black holes (PBH) if the
halos can efficiently cool [4]. A detection of PBHs could
therefore be an indication of strong long-range inter-
actions in the early Universe.
However, in addition to long-range interactions, PBHs

could come from first order phase transitions [21,22] and
the collapse of supersymmetric Q-balls [23–25], but the
common assumption is that they form by the collapse of
primordial fluctuations, as proposed first by Hawking and
Carr [26,27] (see Refs. [28–32] for recent reviews). PBHs
might be a substantial fraction (if not all) of the dark
matter [33] (and references therein), they could be
responsible for some of the LIGO/VIRGO gravitational
waves (GWs) events [34–36] and might also be the seeds
of supermassive black holes [37,38]. An appealing aspect
of long-range interactions is that, regardless of whether
PBHs form, the formation of such early compact struc-
tures has a rich phenomenology: they could lead to
observable gravitational waves [39], cold electroweak
baryogenesis [40] and magnetogenesis [41]. Thus, it is
important to explore the formation of such structures in
the nonlinear regime and clarify their possible collapse
to PBHs.
Most of the literature in long-range interactions in

cosmology assume an exponential type coupling to fer-
mionic dark matter, the so-called dilatonic coupling, which
is inspired by string theory and scalar-tensor theories of
gravity (see, e.g., [42,43]). A standard Yukawa coupling
has been considered in, e.g., Refs. [4,8,18,44]. In Ref. [44]
new solutions were found in the relativistic fermion regime.
In this work, we take a particle physics perspective and
consider a renormalizable theory with a scalar field with a
quadratic or quartic potential interacting with heavy fer-
mion dark matter via a Yukawa coupling in the very early,
radiation dominated, universe.
We provide below a brief overview of the organization of

the paper. In this way, the reader mainly interested in the
resulting halo formation might jump directly to the relevant
part. We start in Sec. II by reviewing the expectation that
Yukawa interactions between nonrelativistic fermions and a
scalar field lead to an exponential growth of fluctuations.
This section also serves as a qualitative orientation for the
more detailed calculations in the rest of the paper, which is
divided into three main sections:

Section III: Background dynamics. we present exact
solutions for the quadratic (Sec. III A) and quartic
(Sec. III B) potentials and discuss the implications for
general monomial potentials (Sec. III C). We further-
more describe the parameter space where fermions
always remain nonrelativistic, which is relevant for the
subsequent perturbative and N-body calculations.

Section IV: Linear perturbations. We show in Sec. IVA
that the instability of Sec. II also occurs at linear level
in the general relativistic setting for a general poten-
tial. In Sec. IV B we specialize to the quartic potential,
give the linear solutions and show that Yukawa
interactions have a longer range than expected.

Section V: N-body simulations. We first determine
the scale free form of the particle equations of motion
in Sec. VA, and then describe how we evolve them in
Sec. V B. The results of our simulations are shown in
Sec. V C.

We discuss potential fates of these halos in Sec. VI and
conclude in Sec. VII. Details of the calculations and
simulations can be found in the Appendices. Throughout
the paper we assume that the heavy fermions constitute a
fraction (or all) of the total dark matter. From now on, we
work in natural units where ℏ ¼ c ¼ 1. A list of the
relevant parameters with meaning and definitions used in
this paper is provided in Appendix A, Table I.

II. MOTIVATION: EXPONENTIAL GROWTH

To motivate the formation of halos in the radiation era,
let us first make a Newtonian fluid analysis of the fermions
ψ , following the approach of [20,45,46]. This analysis
allows us to demonstrate the qualitative features of the
model, and especially the exponential growth of structure,
before we provide specific details in the following sections.
Since there is no creation or annihilation of fermion
particles, the mean fermion number density nψ in the
universe is conserved, that is

ṅψ þ 3Hnψ ¼ 0; ð2:1Þ

where dots are derivatives with respect to cosmic time t, i.e.
· ≡ d=dt. H ¼ ȧ=a is the Hubble parameter for a
Friedmann-Lemaître-Robertson-Walker (FLRW) metric
with scale factor aðtÞ satisfying

3M2
plH

2 ¼ ρr þ ρm þ ρψ ; ð2:2Þ

whereM−2
pl ¼ 8πG is the reduced Planck mass, ρr ∝ a−4 is

the radiation energy density and ρm ∝ a−3 is the matter
energy density excluding the dark matter fermions. We
note that the scalar field energy density may contribute to
either radiation or matter, depending on its potential.
In this section we just assume that it does not switch
between the two regimes. We furthermore only consider
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sufficiently early times such that the dark energy density
can be neglected.
Yukawa interactions between the fermions and the scalar

field φ lead to a time dependent effective dark matter mass
meffðtÞ [4,44], since in general φ ¼ φðtÞ. Thus, the fermion
energy density, that is ρψ ¼ meffnψ (with nψ ∝ a−3), is not
conserved due to exchange with the scalar field, namely

ρ̇ψ þ 3Hρψ ¼ Bρψ ; ð2:3Þ

where B ¼ ṁeff=meff .
1 The evolution of the fermion

density contrast δψ ¼ δnψ=nψ is then given by the con-
tinuity equation

δ̇ψ þ θψ ¼ 0; ð2:4Þ

where θψ ¼ ∇! · v⃗p is the divergence of the spatial velocity
v⃗p of the fluid. Due to the time dependent mass, the
velocity equation has an extra friction term in addition to
Hubble [45],

θ̇ψ þ ð2H þ BÞθψ ¼ −
1

a2
∇2ϕ; ð2:5Þ

where ϕ represents the potential forces (e.g., from gravity
and the scalar field). Equations (2.4) and (2.5) can then be
combined into a single second order equation, that reads

δ̈ψ þ ð2H þ BÞδ̇ψ −
1

a2
∇2ϕ ¼ 0: ð2:6Þ

Now, we need to specify the potential forces in the
system. The first contribution is from gravity which scales
as ϕG ∝ −1=r. On subhorizon scales ϕG satisfies the
Poisson equation given by

1

a2
∇2ϕG ¼ 1

2
M2

pl½ρrδr þ ρmδm þ ρψδψ �: ð2:7Þ

Note that, in principle, the gravitational potential includes
contributions from both the matter sector and the radiation
perturbations in the Universe. Fortunately, even though it
may be the case that ρrδr ≫ ρmδm þ ρψδψ , cold dark matter
effectively only feels self-forces during the radiation era,
since the contribution from the radiation (and tightly
coupled baryons) averages to zero [47]. Although the dark
sector could have many components, we shall assume for
simplicity that only fermions are clustered so that the right-
hand side of Eq. (2.7) is dominated by ρψδψ.
The second contribution comes from the scalar field

acting as a Yukawa mediator, which typically scales as
ϕY ∝ ϕG exp½−r=l� [4], where l ¼ lðtÞ is in general a time
dependent length scale of the interaction. Let us assume the

Yukawa force is stronger than gravity by a factor of
2β2 ≫ 1. Then, the Yukawa potential is screened relative
to the Poisson equation, which leads us to

1

a2
½∇2 − l−2�ϕY ¼ 2β2

1

a2
∇2ϕG: ð2:8Þ

Setting ϕ ¼ ϕG þ ϕY and working in Fourier space, we
find from (2.6) that

δ̈ψ þ ð2H þ BÞδ̇ψ
¼ 3

2
H2

ρψ
ρr þ ρm þ ρψ

δψ

�
1þ 2β2

1þ ðklÞ−2
�
: ð2:9Þ

We thus see a separation of scales: when k ≪ ðβlÞ−1
growth is driven by gravity alone, whereas for k ≫ ðβlÞ−1
it is the attractive Yukawa force which dominates.
While the time dependence of meffðtÞ and lðtÞ is

important, it is instructive to first consider the simple setup
where they are constant, e.g., ṁeff ¼ 0 and l ¼ l, as in [4].
Working at early times when dark energy is totally
negligible, Eq. (2.9) can be converted to a scale-dependent
variation of the Meszaros equation [48], namely

δ00ψ þ 2þ 3x
2xð1þ xÞ δ

0
ψ ¼ 3

2xð1þ xÞ δψfψ
�
1þ 2β2

1þ ðklÞ−2
�
;

ð2:10Þ

where 0 ¼ d=dx with x ¼ a=aeq, aeq being the scale factor
when ρr ¼ ρm þ ρψ and fψ ¼ ρψ=ðρm þ ρψÞ ≤ 1. If we
now take the radiation limit x ≪ 1 the general solution to
(2.10) is given by

δψ ¼ c1I0ð
ffiffiffiffiffiffiffiffi
6αx

p
Þ þ c2K0ð

ffiffiffiffiffiffiffiffi
6αx

p
Þ; ð2:11Þ

α ¼ fψ

�
1þ 2β2

1þ ðklÞ−2
�
; ð2:12Þ

where I0 and K0 are modified Bessel function of order 0.
For small arguments, the growing mode is I0ð

ffiffiffiffiffiffiffiffi
6αx

p Þ ∼ 1 as
is traditional in the radiation era, whereas for large
arguments it becomes exponential I0ð

ffiffiffiffiffiffiffiffi
6αx

p Þ ∼ e
ffiffiffiffiffiffi
6αx

p
=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π
ffiffiffiffiffiffiffiffi
6αx

pp
. We therefore expect that halo formation

becomes possible for 6αx ≫ 1. This is never possible if
gravity is the only force, since x ≪ 1 and α ∼ fψ < 1.
However, on scales where the Yukawa force is strong,
which corresponds to α ∼ 2β2fψ , an exponential
growth can occur for x ≫ 1=ð12β2fψÞ. We conclude that
Yukawa forces could lead to nonlinear evolution and the
formation of small halos before any significant gravita-
tional collapse occurs.
While this simple picture is appealing, it has neglected

the time dependence of meffðtÞ and lðtÞ due to the1Note that Eq. (2.3) recovers (2.1) after using ρψ ¼ meffnψ .
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evolution of the scalar field mediator, which can induce
significant changes. For instance, in the cosmologically
massless scalar field limit, the system evolves toward
minimizing meff and eventually oscillates around meff¼0,
which is the exact relativistic fermion regime [44]. While
on a time-average fermions remain nonrelativistic [44], it is
unclear whether the repeated relativistic phases could
prevent the Yukawa driven collapse of small scales fluc-
tuations. We are therefore interested in avoiding such
regime so that the intuition developed in this section
is still valid. The next three sections systematically
extend the calculation of this section: in Sec. III we
compute exact functional forms of lðtÞ and meffðtÞ; in
Sec. IV we solve the linear growth equations including
these time dependent parameters; while in Sec. V we go
beyond this linear theory and compute the fluctuations
using N-body simulations.

III. BACKGROUND EVOLUTION

The system under consideration is composed of non-
relativistic fermions ψ , a scalar field φ, interacting via a
Yukawa coupling with strength y, and a radiation fluid with
energy density ρr and pressure pr ¼ ρr=3. We also include
a general dark matter sector with energy density ρm. We
take that, for all practical purposes, radiation dominates the
energy density of the early universe. Then, assuming that ψ
and φ are completely decoupled from, or weakly interact-
ing with, the radiation fluid, the Lagrangian of the fermion-
scalar system reads

Lðψ ;φÞ ¼ ψ̄iΓμDμψ − jmψ þ yφjψ̄ψ

−
1

2
∂μφ∂

μφ − VðφÞ; ð3:1Þ

where VðφÞ is a general potential for the scalar field and we
used the chiral symmetry of the fermions to fix the sign of
the mass to be positive. For later intuition, we note from
(3.1) that we may interpret the Yukawa interaction as an
effective mass for the fermions, namely

meff ¼ mψ þ yφ: ð3:2Þ

In the action the mass is positive definite and therefore it
appears as jmeff j. The effective mass (3.2) is the basic
parameter linking the fermions to the scalar field, and one
can express all other quantities, like energy density,
pressure, momentum, etc. in terms of it. For more details
see Ref. [44].
From now on we approximate the fermions (in thermo-

dynamical equilibrium) as a perfect fluid with energy
density ρψ and pressure pψ . In the nonrelativistic limit,
the fermion fluid has an energy density given by ρψ ¼
meffnψ and pψ ≪ ρψ (for more details on the relativistic
limit in this set up see Ref. [44]). In that same limit, it is also

possible to identify an effective potential for the scalar field,
which is given by

Veff ¼ VðφÞ þ meff

jmeff j
yφnψ : ð3:3Þ

Equation (3.3) leads to the consistent equations of motion
in the grand canonical ensemble [44]. Note that one may
also arrive at (3.3) from the Lagrangian (3.1) by making use
of the fermion asymmetry, i.e. that there are only particles
and no antiparticles. In that case, we have that nψ ≈ ψ̄ψ
(although the correct definition is nψ ¼ ψ̄γ0ψ).
The background equations of motion are given by the

Friedmann equation, energy density conservation and the
Klein-Gordon equation. The Friedmann equation reads

3H2 ¼ ρr þ ρm þ ρψ þ 1

2
φ̇2 þ VðφÞ: ð3:4Þ

The energy conservation of radiation and dark matter
respectively leads to ρr ∝ a−4 and ρm ∝ a−3. The number
density conservation implies nψ ∝ a−3. In addition to the
Friedmann equation we have the Klein-Gordon equation,
namely

φ̈þ 3Hφ̇þ ∂Veff

∂φ
¼ 0: ð3:5Þ

From now on, for simplicity, we will refer all quantities
with respect to their values at radiation-matter equality, that
is when

ρr;eq ¼ ρm;eq þ ρψ ;eq ¼
3

2
H2

eqM2
pl; ð3:6Þ

where Heq ≈ 35 Mpc−1 ≈ 2.2 × 10−37 GeV. We use the
subscript “eq” to refer to evaluation at equality. We then
rewrite the value of nψ at equality as

nψ ;eq ≈
ρψ ;eq
mψ

¼ fψ
mψ

3

2
H2

eqM2
pl; ð3:7Þ

where we introduced the parameter

fψ ≡ ρψ ;eq
ρm;eq þ ρψ ;eq

; ð3:8Þ

which quantifies the fraction of total dark matter in the form
of fermions ψ . When radiation dominates the universe, we
have from (3.4) that

Hða ≪ aeqÞ ≈
Heqffiffiffi
2

p
�

a
aeq

�
−2
: ð3:9Þ

The background equations are fully solved once we solve
the dynamics of φ.
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In the cosmologically massless limit of the scalar field,
that is when j∂V=∂φj ≪ jHφ̇j, we have that the scalar field
grows as [44]

φ ≈ −
2ynψ ;eq
H2

eq

a
aeq

¼ −φo
a
aeq

; ð3:10Þ

where we defined for later convenience the parameters

φo ≡ 3βfψMpl and β≡ yMpl

mψ
: ð3:11Þ

The parameter β is representative of the strength of the
Yukawa interaction. The larger the β, the faster the growth
of the scalar field. In (3.10) we take as initial conditions
φð0Þ ¼ 0. We can do so without loss of generality in the
massless regime as a constant value of φ can be reabsorbed
by a constant shift in mψ . However, when we consider the
potential of the scalar field, the value of φ ¼ 0 will in
general not coincide with the minimum of VðφÞ.
Nevertheless, for analytical simplicity we will later assume
that it does.
Note that by referring all quantities to the time of

radiation-matter equality in Eq. (3.10), we assumed that
the fermions are nonrelativistic throughout the entire
evolution.2 This is not necessarily the case as the fer-
mion-scalar system evolves toward the energy minimum
which lies at meff ¼ mψ þ yφc ¼ 0, at which point the
fermions become exactly relativistic. In some sense, one
may say that the system evolves toward a conformal
invariant state where all fields are massless (except for
any additional, subdominant, dark matter). In fact, the
energy density of fermions and the scalar field also decay as
radiation [44]. The exact relativistic regime would occur at
the critical point given by

φc ¼ −
mψ

y
at

ac
aeq

¼ Mpl

φoβ
¼ 1

3β2fψ
: ð3:12Þ

After reaching the critical point, the scalar field oscillates
around it [44]. While it may be possible, it is not clear
whether fluctuations can grow during this oscillating
regime. We therefore leave this case for a future work,
and instead focus on the nonrelativistic fermion regime
where exponential growth occurs, as shown in Sec. II.
We shall be interested in the case when the critical point

is never reached and the fermions remain nonrelativistic.
We then require the condition that:

(i) meff > 0 at all times, or alternatively jφj < jφcj.

However, condition (i) is not sufficient to ensure that
fermions remain nonrelativistic. To do so, we have two
possible conditions:
(iia) The fermions are, for some reason, in thermal

equilibrium with the radiation bath so we need that
T ≪ mψ in the temperatures of interest.

(iib) The fermions are degenerate and so we need
that m3

ψ ≫ 3π2nψ .
In addition to (iia) or (iib), we require that:
(iii) there are many fermion particles per Hubble volume,

that is nψ ≫ H3.
Condition (iii) is to ensure that later N-body simulations
have enough particles inside a Hubble volume. We proceed
to derive general bounds on the model parameters.
First, for condition (i), a natural way to avoid themeff ∼ 0

regime is to consider a sufficiently large mass for the scalar
field. In this way, the scalar field’s potential might dominate
over the Yukawa interaction in (3.5) before reaching φc. A
necessary condition is then that the potential satisfies

j∂V=∂φjφ¼φc
> jynψ jφ¼φc

: ð3:13Þ

There is a large parameter space where this condition is
satisfied. For instance, using the early solution (3.10) we
find that jynψ j ∝ φ−3. Then, at early times when the scalar
field is cosmologically massless we have

∂Veff

∂φ
≈
∂V
∂φ

− ynψ ;eq

�
φ

φo

�
−3
: ð3:14Þ

This means that if the potential VðφÞ increases for
increasing jφj, there will be a critical value for the
parameters of VðφÞ above which (3.13) is satisfied. For
example, for VðφÞ ¼ 1

n Voðjφj=φoÞn we need Vo > H2
eqφ

2
o

so that the fermions never reach meff ¼ 0.
Second, we may turn conditions (iia), (iib) and (iii) into

upper bounds on β by requiring that they are satisfied
before reaching the critical point φc (3.12). In doing so, we
find that, if fψ ∼ 1, there is a general upper bound on the
value of β given by

β ≪ 1010: ð3:15Þ

We show the conditions (iia), (iib) and (iii) evaluated
at a ¼ ac in Fig. 1 and provide the detailed formulas in
Appendix B.
The evolution of φ after the potential dominates depends

on the shape of the potential VðφÞ. For this reason, let us
consider two typical cases: a quadratic and a quartic
potential. As we shall see, while both cases allow for full
analytical solutions, the quartic potential turns out to be
more suitable for N-body simulations, as the comoving
mass of the scalar field, which determines the length scale
of the Yukawa force, is independent of the scale factor. We
also expect that the quartic term is the dominant

2This would change if the fermions become relativistic.
However, the solutions derived are still valid if instead of the
time of equality we choose another arbitrary pivot time. The only
equations that would not apply are (3.6) and (3.7).
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contribution to the potential at the high energy scale of the
very early universe. We then discuss qualitatively general
power-law potentials.

A. Quadratic potential

For a quadratic potential given by V ¼ 1
2
m2

φφ
2, the

Klein-Gordon equation (3.5) can be simplified to

d2φ
dξ2

þ 3

2ξ

dφ
dξ

þ φþ φ�ξ−3=2 ¼ 0: ð3:16Þ

where we defined

ξ≡mφt and φ� ≡ φo

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Heqffiffiffi
2

p
mφ

s
: ð3:17Þ

The particular solution to (3.16) with initial condition
φð0Þ ¼ 0 is given by

φ¼φ�

�
21=4ξ1=4J1=4ðξÞΓ½1=4�F

�
1

4
;
3

4
;
5

4
;−

ξ2

4

�
þ23=4ξ3=4J−1=4ðξÞΓ½3=4�F

�
1

2
;
5

4
;
3

2
;−

ξ2

4

��
; ð3:18Þ

where JνðxÞ is the Bessel function of order ν, Γ½x� is the
Gamma function and F½a; b; c; x� is the hypergeometric
function. We find that the solution (3.18) first grows
as (3.10) and then reaches the first maximum at ξ1 ≈ 1.3
with amplitude φ1 ≈ −1.8φ�.
Let us obtain the conditions so that the fermions never

reach the relativistic limit in the quadratic case. Here we
explicitly write only condition (i), which yields

mφ

Heq
> 2.6f2ψβ4; ð3:19Þ

and we show all conditions for the quadratic potential in
Fig. 2. We report the explicit expressions of conditions
(iia), (iib) and (iii) in Appendix B. In Fig. 2, we see a vast
parameter space where the fermion remains nonrelativistic.
After reaching the maximum at ξ1, the scalar field decays

as φ ∝ a−3=2 and oscillates around φ ¼ 0. Then, the energy
density of the scalar field effectively behaves as an addi-
tional dark matter component.

B. Quartic potential

In the case of a quartic potential given by V ¼ 1
4
λφ4, the

Klein-Gordon equation (3.5) can be simplified consider-
ably with the following redefinition:

φ ¼ φeq

�
a
aeq

�
−1
vða=aeqÞ: ð3:20Þ

With the above variable, the Klein-Gordon equation (3.5)
reduces to

1

μ2
d2v

dða=aeqÞ2
þ v3 ¼ 1 where μ2 ≡ 2λφ2

eq

H2
eq

; ð3:21Þ

and we fixed for convenience

φeq ≡ −
�
ynψ ;eq
λ

�
1=3

¼ −
φo

μ2
: ð3:22Þ

The parameter μ2 in (3.21) is related to the comoving
effective mass of the scalar field by

FIG. 1. Parameter space of β in terms of the bare mass of the
fermions mψ . We plot conditions (iia), (iib) and (iii) respectively
in red, blue and green. The shaded regions shows the parameter
space for β such that fermions are nonrelativistic, in light and dark
green respectively for degenerate and nondegenerate fermions.
See how in general β < 1010.

FIG. 2. Parameter space of mφ in terms of mψ for a fixed
β ¼ 102. We show conditions (i), (iia), (iib) and (iii) respectively
in orange, red, blue and green. The parameter space where
degenerate fermion are nonrelativistic is shown with shaded
regions, in light and dark green respectively for degenerate and
nondegenerate fermions. Note that only the orange line depends
on β through Eq. (3.19). Thus, increasing the value of β, rises the
orange line and shrinks the parameter space for mφ.
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M2
φ ≡ a2Vφφ ¼ 3

2
a2eqH2

eqμ
2v2ðaÞ: ð3:23Þ

Also note that by using the value of φeq and Heq we
have that

μ ¼
�
y
ffiffiffiffiffi
2λ

p nψ ;eq
H3

eq

�
1=3

¼
� ffiffiffiffiffi

2λ
p 3fψβMpl

Heq

�
1=3

≈ 3.6 × 1018ð
ffiffiffi
λ

p
fψβÞ1=3: ð3:24Þ

From Eq. (3.24) we see that unless λ is extremely small, that
is λ < 5 × 10−111=ðfψβÞ2, we expect that in general μ ≫ 1.
It is interesting to note that the first step in Eq. (3.24) relates
the largeness of μ to condition (iii) evaluated at matter-
radiation equality, i.e. nψ ;eq ≫ H3

eq, assuming λ and y are
not too small.
We find that there is an exact solution to (3.21) with the

initial condition φð0Þ ¼ 0 in terms of elliptic functions.3

The solution reads

vðζÞ ¼ 22=3
1 − CnαðζÞffiffiffi

3
p þ 1þ ð ffiffiffi

3
p

− 1ÞCnαðζÞ
; ð3:25Þ

where CnαðζÞ is the Jacobian elliptic function of order α
(see Appendix A) and we defined ζ ≡ 21=631=4μa=aeq and

α≡ 2−3=2ð ffiffiffi
3

p
− 1Þ. The Jacobian elliptic function CnαðζÞ

is periodic with period equal to 4Kα where Kα is the
complete elliptic integral of the first kind. In our case we
have that Kα ≈ 1.6.
The solution φðaÞ (3.20) with vðaÞ given by (3.25),

first grows as (3.10) and reaches a maximum value at
ζmax ≈ 2.77, which corresponds to

φmax ≈ 0.78μφeq at amax=aeq ≈ 1.87μ−1: ð3:26Þ

Using (3.26), we can study the conditions under which
the fermions remain nonrelativistic. As we did for the
quadratic potential, we explicitly write only condition (i),
which yields

λ > 8 × 10−110f4ψβ10; ð3:27Þ

and report the details in Appendix B. In Fig. 3 we show all
constraints on λ and the available parameter space. We see
that for λ ∼Oð1Þ there is a wide range of parameter space.
After reaching the maximum value φmax the scalar field

decays as a−1 and oscillates. During the oscillations we find
that the average value of v and v2 are respectively given by

hvi ≈ 0.68 and hv2i ≈ 0.98; ð3:28Þ

where the brackets refer to oscillation average [defined later
in (4.26)]. Note that in contrast to the quadratic potential,
the energy density of scalar field now decays like radiation
and the oscillations never cross the initial value φð0Þ ¼ 0.
The latter is due to the fact that, for a quartic potential, the
first derivative of VðφÞ and ynψ decay in the same way with
the scale factor. Then as φ approaches the minimum, the
Yukawa interaction starts to dominate again and the system
resembles the initial state. Thus, it never crosses the initial
condition imposed.
In Fig. 4, we show an illustration of the behavior of φ in

the massless, quadratic, quartic and sixtic cases separately.
For easier comparison, we chose the values of the param-
eters such that the coefficients of the Klein-Gordon
equation for each separate case in terms of vðaÞ are all
unity.4

FIG. 3. Parameter space of λ, mψ and β where fermions are
nonrelativistic. We show in orange, red, blue and green the
conditions (i), (iia), (iib) and (iii). The shaded region show the
allowed parameter space, in light and dark green respectively for
degenerate and nondegenerate fermions. In the top figure we
show β in terms of mψ for λ ¼ 1. Note that, in contrast to the two
other panels, the orange line also yields an upper bound for β. For
a fixed value ofmψ , the top figure could also be understood as the
parameter space for the Yukawa coupling y. In the bottom left
panel we have λ in terms of mψ for β ¼ 102. In the bottom right
panel, we show λ in terms of β for a fixed mψ ¼ 1010 GeV.

3Note that, without such initial condition, v ¼ 1 is also a
solution to (3.21). However, it implies φ ¼ φc far enough
in the past.

4In general, the Klein-Gordon equation for a monomial
potential V ¼ V⋆ðφ=φ⋆Þ2n=ð2nÞ can be rewritten as

1

μ2⋆

d2v
da2

þ a4n−2v2n−1 þ sign

�
1þ βφ⋆

Mpl

v
a

�
¼ 0; ð3:29Þ

where used thatφ ¼ φ⋆vðaÞ=a andwe definedφ⋆ ¼ V⋆=ðynψ ;eqÞ
and μ2⋆ ¼ ð2V⋆Þ=ðHeqφ⋆Þ2. At early enough times with the initial
condition φð0Þ ¼ 0 we always have that φ ≈ −φ⋆a.
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C. Power-law potential

Let us now discuss the behavior of an arbitrary mono-
mial following a power-law, namely VðφÞ ∝ φ2n with
n ≥ 1. This is possible from an effective field theory point
of view. At early times, the system behaves exactly as
explained at the beginning of Sec. III: the scalar field grows
due to the Yukawa interaction and decays after the potential
dominates. From the effective potential (3.3), we expect
that the decay of the scalar field either follows the time
evolution of the effective minimum of (3.3) or it oscillates
as if no Yukawa interaction is present. In the first case, the
scalar field would decay as

φmin ∝ n
1

2n−1
ψ ∝ a−

3
2n−1: ð3:30Þ

In the second case, it is known that [49]

φno-y ∝ a−
3

nþ1: ð3:31Þ

The subscripts “min” and “no-y” respectively refer to
effective minimum and no Yukawa. The solution which
decays slower will dominate the scalar dynamics. After
comparing the exponents in (3.30) and (3.31), we see that
the oscillations without Yukawa interaction (3.31) domi-
nate for n < 2, while the field oscillates around the effective
minimum (3.30) for n > 2. This also implies that for n < 2
the oscillations go through φ ¼ 0, while for n > 2, the field

φ never returns to the origin (only asymptotically). In the
particular case where n ¼ 2, which corresponds to φ4, both
exponents are equal and the solution goes back and forth
from φ ¼ 0 to OðφminÞ.
From the above background dynamics we can qualita-

tively understand the growth of perturbations in each case
by looking at the comoving effective mass for the scalar
field,

M2
φ ¼ a2Vφφ: ð3:32Þ

The effective mass determines the Yukawa comoving
length scale, namely l ¼ M−1

φ , which sets the naive cutoff
for the Yukawa force. In other words, not much structure is
expected on scales larger than l. Note that we used the
word naive as l is in general time dependent. Using the
solutions (3.30) and (3.31), we see that l decreases with a
for n < 2 while it increases for n > 2. For n ¼ 2 the
amplitude of l is independent of a.
The above discussion implies the following for the

growth of perturbations:
(i) For a quadratic potential (n ¼ 1), the Yukawa

interaction becomes less relevant as the universe
expands. In this case, we expect that halos will
have a clear typical mass, or alternatively a
peaked mass function as in Ref. [4] (with some
changes in their estimates because the growth stops
at some point).

(ii) For the quartic potential (n ¼ 2), one obtains a
nondecaying time-oscillating l. As we shall show
later, the time-oscillations of l lead to a longer range
of the Yukawa interaction (and a larger characteristic
mass) than for a constant l.

(iii) For n > 2, the comoving range of the Yukawa
interaction increases with the expansion of the
universe. This means that eventually the instability
will be of the size of the cosmic horizon. This is also
what occurs for dilatonic (exponential) couplings, as
in Refs. [3,20], which could be roughly thought as
the limit of n ≫ 1. One must then invoke an addi-
tional mechanism to stop the long-range inter-
actions, otherwise fluctuations on all (subhorizon)
scales are constantly growing.

To anticipate the focus of the simulations, we will
eventually specialize on the quartic potential with a
Yukawa coupling to the fermions because: (1) we expect
that the quartic term is the dominant contribution in
renormalizable theories in the very early universe for large
field values and (2) the comoving length scale l of the
interaction does not redshift with a, which allows our
simulations to resolve l throughout their evolution.
In passing, since we are interested in renormalizable

theories, we shall find an upper bound on mφ by requiring
that the quadratic potential never dominates before ΔN
e-folds after the critical point ac (3.12). Doing this yields

FIG. 4. Evolution of the scalar field in terms of the scale factor,
normalized to the critical value φc (3.12). For illustrative
purposes, we fixed the parameters such that all curves have
similar amplitude. In particular, for a given single monomial
potential of the type V ∝ φn, we fixed μ⋆ ¼ 1 and φ⋆ ¼ Mpl=β in
the Klein-Gordon equation given in footnote 4. In red, green, blue
and purple we separately show the cases of massless scalar field,
quadratic, quartic and sixtic potentials respectively. All cases
share the same early time growth. Then, in the massless case the
scalar field oscillates around the critical point. In the other three
cases, the potential term dominates before reaching the critical
point and the scalar field decays and oscillates.
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mφ < 10−18e−ΔN GeVf4=3ψ β7=3λ1=6: ð3:33Þ

As we shall later see, 4e-folds are sufficient to create
nonlinear structures. Then, for β ∼ 1010, ΔN ∼ 4 and
fψ ; λ ∼Oð1Þ we have mφ < 5 TeV. Smaller β or a larger
number of e-folds will require a smaller bare mass mφ.

IV. LINEAR PERTURBATIONS

Having established the background scalar field dynam-
ics, we now investigate the growth of fermion number
density fluctuations. We first show that even though the
scalar field exits the cosmologically massless regime at
some point, there is still an exponential growth on suffi-
ciently small scales. We then derive and solve the linearized
fluid equations governing the fermion perturbations, find-
ing that fluctuations grow on larger than anticipated scales.
We lastly study the limit where the scalar field oscillations
rapidly, finding that it converges to a time-independent
force law. We note that while we largely focus on the
quartic potential in this section, our justification for the
exponential growth is valid for a general potential where
the fermions do not enter the relativistic regime.

A. Collapse instability

The Yukawa force is most effective for modes which are
subhorizon and below the Yukawa length scale, which is set
by the mass of the scalar field. Thus, we expect that a Jeans-
like instability appears for wave numbers such that

k ≫ H and k2 ≫ M2
φ ¼ a2Vφφ; ð4:1Þ

where H ¼ aH is the conformal Hubble parameter. Since
the exponential growth takes place at small scales and in a
short amount of time, compared to the Hubble time, we
shall work under the quasistatic approximation, i.e., we
neglect time derivatives of the gravitational potential.
To study the perturbations, we work in the Newton gauge

in which the metric reads

ds2 ¼ a2ð−ð1þ 2ΨÞdη2 þ ð1þ 2ΦÞdx2Þ; ð4:2Þ

where η is the conformal time, defined by dt ¼ adη. We
perturb the other variables as ρr → ρrð1þ δrÞ, ρm →
ρmð1þ δmÞ, nψ → nψð1þ δψ Þ and φ → φþ δφ. In the
absence of anisotropic stress, the i − j component of
Einstein’s equations yields ΦþΨ ¼ 0. See Appendix C
for more details. For simplicity, we present the equations in
terms of e-folds, namely

dN ¼ Hdη ¼ Hdt ¼ Heq

�
a
aeq

�
−2
dt: ð4:3Þ

The number of e-folds N later coincides with what is called
the “superconformal” time in the N-body simulations.

Then, in the limit where k ≫ H, the gravitational potential
Φ is determined by the Poisson equation, which comes
from the 0 − 0 component or Hamiltonian constraint, and it
is given by

2
k2

H2
Φ ¼ a2

H2M2
pl

ðρrδr þ ρmδm þ ρψδψ þ VφδφÞ

þ a2ρψ
H2M2

pl

yδφ
meff

þ 1

M2
pl

dφ
dN

dδφ
dN

: ð4:4Þ

It should be noted that we abused notation with meff which
denotes only the background value ofmeff . Also note that in
(4.4) we have neglected time derivatives of Φ and we will
do so in the subsequent equations. The Klein-Gordon
equation for the scalar field fluctuations δφ reads

d2δφ
dN2

þ dδφ
dN

þ k2 þ a2Vφφ

H2
δφþ y

meff

a2ρψ
H2

δψ ¼ 0: ð4:5Þ

The number density and momentum conservation for the
fermion fluids yield

d2δψ
dN2

þ d ln jmeff j
dN

dδψ
dN

−
k2

H2
Φþ k2

H2

y
meff

δφ ¼ 0: ð4:6Þ

The equations of motion for δr and δm are the standard ones
(given in Appendix C) but, as we shall see, they are not
relevant for the following discussion. Also, since we are
assuming that meff > 0 we drop the absolute value hereon.
We now proceed as follows. With the expectations of an

exponential growth of δψ driven by δφ, we neglect all
components in equations (4.5) and (4.6) except for δψ and
δφ. Since the instability leads to an exponential growth for
k2 ≫ a2Vφφ we also neglect the friction and the potential
term in (4.5). Lastly, since we are always in the regime
where jφj < jφcj by condition (i) we take meff ≈mψ . We
check a posteriori the validity of these assumptions. By
doing all the mentioned above, we rewrite (4.5) and (4.6) as

d2

dN2

 
δφ
Mpl

δψ

!
þ
 

κ2 φo
Mpl

a
aeq

βκ2 0

! 
δφ
Mpl

δψ

!
¼ 0; ð4:7Þ

where φo is given by (3.11), and κ is the ratio of the wave
number to the Hubble parameter, κ ≡ k=H. We find that the
eigenvalues of the system are given by

γ2� ¼ κ2

2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

κ2
φo

jφcj
a
aeq

s !
; ð4:8Þ

where we used that jφcj ¼ mψ=y (3.12). The eigenvectors
are given by
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e⃗� ¼
� γ2�

βκ2

1

�
: ð4:9Þ

Note that we always have γ2− < 0. This means that if we
neglect the time dependence in a and κ, there is always an
instability and we have that

δψ ∼ eΓN; ð4:10Þ

where Γ2 ≡ −γ2−. Now, let us study two limits. On one
hand, for κ2 ≫ φo

jφcj
a
aeq

the growth rate is given by

Γ2 ≈
φo

jφcj
a
aeq

¼ a
ac

: ð4:11Þ

On the other hand, when κ2 ≪ φo
jφcj

a
aeq

the growth rate reads

Γ2 ≈ κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φo

jφcj
a
aeq

r
¼ κ

ffiffiffiffiffi
a
ac

r
: ð4:12Þ

From Eq. (4.11), we see that Γ ≪ 1 for a < ac, namely
during the cosmologically massless regime [see also the
discussion around (3.12)]. Equation (4.12) is not applicable
in this regime since it would imply κ ≪ 1 but it was only
valid on subhorizon scales. Thus, although theYukawa force
is effectively a very long-range interaction, it is very weak
during the cosmologically massless regime. The physically
interesting regime where Γ ≫ 1 occurs for a ≫ ac (3.12)
when the scalar field is no longer in the cosmologically
massless regime and has nontrivial dynamics. We then
conclude that for wave numbers such that k ≫ H and k ≫
Mφ the number density of fermions grow exponentially.
Before we end this section, let us check that the

assumption that Φ, δr and δm are not important for the
exponential growth. First, when the exponential growth
takes place the scalar field fluctuations are well approxi-
mated by

δφ

Mpl
≈ −

Γ2

βκ2
δψ : ð4:13Þ

This means that for κ ≫ Γ the scalar field fluctuations are
subdominant, which is always the case for a > ac and
k > kc, where kc ¼ Hc. This is an important result for the
N-body simulations as it implies that one can treat the
Yukawa interaction as an additional force without taking
into account the scalar field fluctuations. Second, the
requirement that Φ does not play a role in (4.6) yields

Φ ≪ β
δφ

Mpl
¼ −

Γ2

κ2
δψ : ð4:14Þ

Thus, if Γ ≪ κ, the amplitude of Φ is consistently small.
This in turn implies from (4.4) that δr; δm ≪ Γ2δψ . We see

that in the regime where κ ≫ 1, Γ ≫ 1 and Γ ≪ κ only the
fermion fluctuations dominate the cosmological perturba-
tions. In that regime we can thus only consider the fermion
fluctuations whose evolution is dictated by an effective
potential given by the scalar field. We can then write

d2δψ
dN2

þ d lnmeff

dN

dδψ
dN

¼ −
k2

H2
ϕY; ð4:15Þ

and

−
k2 þM2

φ

H2
ϕY ¼ β2

a2ρψ
H2M2

pl

δψ ; ð4:16Þ

where we defined

ϕY ≡ y
meff

δφ; ð4:17Þ

consistent with the notation of Sec. II. Note that because the
exponential growth occurs during the oscillations of φ, the
term friction term in (4.15) containingmeff and the effective
mass of the scalar field in (4.5) could be important.

B. Linear evolution

From now on, we focus solely on fermion number
density fluctuations, since they quickly dominate cosmo-
logical perturbations due to their exponential growth on
subhorizon scales. We then combine equations (4.15) and
(4.16) into a single equation for δψ ,

s
d2δψ
ds2

þ
�
1þ d logmeff

d log s

�
dδψ
ds

¼ 1

4

meff

mψ

δψ
1þ ðklÞ−2 ;

ð4:18Þ

where we have introduced a new time variable given by

s ¼ 12β2fψ
a
aeq

; ð4:19Þ

so that the system is independent of β and fψ . In terms of
redshift we have that ð1þ zÞ ¼ 12β2fψð1þ zeqÞ=s≈
4 × 104β2fψ=s.
Let us now specialize to the quartic potential of

Sec. III B, where ϕ oscillates as a function of ζ ¼ ωs, as
domeff and l. In terms of the new variable s, the frequency
of oscillations in ϕ, given by (3.25), reads

ω ¼ 1

2

μ

25=633=4fψβ2
≈ 4 × 1017

� ffiffiffi
λ

p

f2ψβ5

�1=3

; ð4:20Þ

which for fψ ; λ ∼Oð1Þ and β ≪ 1010 [see the upper bound
(3.15)] is in general very large. The frequency ω enters into
the dynamics via the effective mass, that is

DOMÈNECH, INMAN, KUSENKO, and SASAKI PHYS. REV. D 108, 103543 (2023)

103543-10



meff

mψ
¼ 1 −

ffiffiffi
3

p

2sω2

1 − CnαðωsÞffiffiffi
3

p þ 1þ ð ffiffiffi
3

p
− 1ÞCnαðωsÞ

; ð4:21Þ

and the typical Yukawa length scale, namely

l−1 ¼ l−131=4
ffiffiffi
2

p 1 − CnαðωsÞffiffiffi
3

p þ 1þ ð ffiffiffi
3

p
− 1ÞCnαðωsÞ

; ð4:22Þ

where we defined

ðkeqlÞ−1 ≡ 2−1=331=4μ ¼ 6
ffiffiffi
2

p
fψβ2ω; ð4:23Þ

and keq ¼ Heq. With the definition (4.23) we find that
hli ∼ 0.8l−1. Thus, we see that while the correction to the
mass is suppressed for ω ≫ 1, yielding meff ≈mψ , the
Yukawa length scale l varies between l and infinity. And,
although one might naively conclude that for high frequen-
cies the oscillations average out, the fact that the Yukawa
force becomes very long range periodically enhances the
power of fluctuations on scales larger than l.
For later numerical purposes, we set the initial conditions

when ωs < 1. The reason behind our choice is twofold.
First, the regime ωs < 1 is useful to select the growing
mode and, second, the final results are not very dependent
on the initial conditions. For instance, it is not so clear when
exactly should one set the initial conditions in the regime
ωs > 1, where the scalar field quickly oscillates. The only
issue with the ωs < 1 regime is that some of the simulation
modes are initially superhorizon, since kHl ¼ 1=ðsωÞ
where kH ¼ H ¼ a2eqHeq=

ffiffiffi
2

p
=a. But, Eq. (4.18) has been

derived in the subhorizon regime. Nonetheless, we expect
that this will not affect our main results, as the big
exponential growth occurs for s ≳ 4 when modes have
entered the horizon. We leave a detailed study of the fully
relativistic initial conditions for future work. We then
obtain the initial conditions at early times (ωs < 1), where

meff=mψ ≃ 1 − s=8 and l=l ≃ ðωsÞ2=ð2
ffiffiffiffiffiffiffiffiffi
2
ffiffiffi
3

pp
Þ and so we

can assume that meff is constant and l ≫ k−1. In this limit
we find that

dδψ
ds

≃
1

4

meff=mψ

1þ d lnmeff=d ln s

δψ
1þ ðklÞ−2 ≃

1

4
δψ ; ð4:24Þ

Note that Eq. (4.18) is precisely the same as Eq. (2.10) and
the solution in Eq. (4.24) corresponds to the expansion of
the growing mode: I0ð

ffiffiffiffiffiffiffiffiffiffiffiffi
s ≪ 1

p Þ ≃ 1þ s=4.
We numerically solve the linearized fluid equations for

the fermion density transfer functions δψ=δψ ;i where we set
δψ ;i at si ¼ 10−4. We show the resulting transfer functions
as a function of kl at s ¼ 50 for ω ¼ 1=2, 4Kαð≃6.4Þ and
100 in Fig. 5. The most dramatic effect is that the force has
substantially longer range than in the constant l case. We
also find that increasing ω leads to diminishing changes,

and as long as there is roughly a full oscillation (ωs ≃ 4Kα)
before s ¼ 1 the growth is unchanged. That is, even a
relatively small value of ω ≃ 4Kα should represent the
dynamics of very large frequencies as well. Note that a
value of ω ∼Oð1Þ requires β ∼ 1010 × λ1=10f−2=5ψ , which is
borderline of the nonrelativistic conditions (i)–(iii) (also
see Fig. 3). We also note that conditions (i)–(iii) require
nonrelativistic fermions right before the start of the scalar
field oscillations. At earlier times, conditions (i)–(iii)
become more strict. For example, using Eqs. (3.24) and
(4.20) we find a lower bound on s by requiring that
nψ=H3 > 1, namely

s > smin ≈
1

ω

�
βmψ

ffiffiffi
λ

p

Mpl

�1=3

: ð4:25Þ

While for ω ≫ 1 we easily have smin ≪ 1, for ω ∼ 1 the
parameter space much more restricted to small values of λ
(as earlier times also require a larger value of mψ due to
higher temperatures).
Now, let us consider the limit when ω ≫ 1 (or ζ ≫ 1),

which is the general expectation from (4.20). In this case,
we shall find a good analytical approximation to the
solution of (4.18) by replacing highly oscillating back-
ground functions by their average over half period, that is

hfðζÞi ¼ 1

2Kα

Z
2Kα

0

dζ1fðζ1Þ: ð4:26Þ

We find that meff=mψ quickly approaches unity, and
oscillation averages simply lead to Oð1Þ numbers. The
more interesting term is the time average of the Yukawa

FIG. 5. Linear perturbations evaluated at s ¼ 50 for low
(ω ¼ 1=2) and high (ω ¼ 4Kα ∼ 6.4 and ω ¼ 100 ≫ 4Kα)
frequencies. As the frequency ω increases the solutions approach
the oscillation averaged growing mode solution (dashed gray). In
all cases the oscillations in l lead to a substantial increase in large
scale perturbations compared to the l ¼ l case (dotted black).
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potential that contains l. As we have that 0 < l−1 ≲ 2l−1,
the right hand side in (4.18) oscillates between 1 and
1=ð1þ ðklÞ−2Þ. For later use, let us call this term as

Akl ≡
�

1

1þ ðklÞ−2
�
; ð4:27Þ

while we let Ākl be its evaluation for constant l ¼ l.
We then note that as we decrease the value of kl,
the term 1=ð1þ ðklÞ−2Þ starts to be mostly negligible
except when ζ ∼ 4nKα with n∈Zþ. For kl ≪ 1 the term
1=ð1þ ðklÞ−2Þ behaves as a pulselike function. With this
knowledge, we approximate each pulse by a Gaussian,
namely we take

1

1þ ðklÞ−2 ≈
X
n

exp

�
−

1

2σ2
ðζ − 4nKαÞ2

�
: ð4:28Þ

We determine the width of the Gaussian σ by finding the
time ζ where 1=ð1þ ðklÞ−2Þ ¼ e−1=2. For kl ≪ 1, we find
that this occurs when l−1 ≪ 1 and we can use the
approximation that l−2 ≈ l−2ðζ − 4nKαÞ4=ð8

ffiffiffi
3

p Þ. In this
way we find that

σ2 ¼ 23=231=4ð ffiffiffi
e

p
− 1Þ1=2kl ≃ 3kl: ð4:29Þ

We are now ready to compute an analytical approximation
for the time average of (4.28). After integration we find that

Akl≪1
≈

ffiffiffi
π

2

r
σ

2Kα
Erf

�
Kαffiffiffi
2

p
σ

�
: ð4:30Þ

We compare this approximation to the exact oscillation
average in Fig. 6 and find that it is accurate to around 1.2%
for kl ≪ 1. Importantly, for kl ≪ 1 we find that�

1

1þ ðklÞ−2
�

kl≪1

∝
ffiffiffiffiffiffi
kl

p
; ð4:31Þ

as opposed to the naive ðklÞ2 expectation if l were
constant. This translates into a longer range interaction
and larger power on large scales. We fit the oscillation
average with the following asymptotically correct form,

Akl ¼
�

1

1þ ðk�=kÞ2
�

1=4
ð4:32Þ

with k�l ≃ 2.16 which is accurate to better than 1.5%
regardless of kl (simply using k�l ¼ 2 is accurate to
around 5%).
With the time average (4.27), we find that Eq. (4.18) has

the same solution as Eq. (2.10), but with Akl instead of
Ākl, namely

δψ ≈ δψ ;iI0ð
ffiffiffiffiffiffiffiffiffiffi
Akls

q
Þ: ð4:33Þ

We show this approximation in Fig. 5 as a dashed gray
curve, and find that it agrees very well with the computation
of the transfer functions at higher frequencies. BecauseAkl

decreases for kl ≪ 1 slower than ðklÞ2, we find that
fluctuations on kl < 1 are significantly enhanced with
respect to the case of constant l. We can also evaluate when
a mode k enters the nonlinear regime, i.e. when δψðklÞ ∼ 1.
We find that this is given by

snl ≈
1

4Akl

W2

�
−
δ2ψ ;i
π

�
; ð4:34Þ

where WðxÞ is the Lambert function of order −1. Let us
briefly contextualize how quickly modes k≳ l−1 become
nonlinear. Based on the analysis of Sec. IVA the fast
exponential growth occurs after a ¼ ac (3.12) which
corresponds to sðacÞ ¼ 4, and can also be observed in
the expansion of Eq. (4.33). For δψ ;i ∼ 10−4 and kl ≫ 1,
snl ∼ 130 corresponds to just 3.5 e-folds. Fluctuations
become nonlinear very fast.
On the other hand, for kl ≪ 1 and δψ ;i ≪ 1, we have

that jWðxÞj increases as a combination of lnðxÞ and
lnðlnðxÞÞ. So a rough order of magnitude estimate would
be to replace W2ðxÞ ∼ ln2ðxÞ, which leads us to

snl ≈
0.37ffiffiffiffiffiffi
kl

p ln2
�
δ2ψ ;i
π

�
: ð4:35Þ

From this equality, we see that if we require that the mode
with k ¼ H never hits δψ ¼ 1 then

FIG. 6. Comparison of the oscillation average of the Yukawa
force law in the high frequency limit (solid), the constant l case
(dashed) and our approximation for kl ≪ 1 (dotted). For
comparison, a similar plot for the gravitational force would be
a scale independent constant but with an amplitude suppressed by
a factor of 2β2 ≫ 1.
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s < snlðk ¼ HÞ ≈ 0.14ω ln4
�
δ2ψ ;i
π

�
: ð4:36Þ

Nevertheless, since ω ≫ 1 this limit is easily satisfied. We
also see that, unless the scalar field decays or fermions
collapse to PBHs, the scale k < keq enters the nonlinear
regime at a ∼ aeq if

β ∼ 2 × 104
� ffiffiffi

λ
p

f5ψ ðk=keqÞ3
�1=11

ln12=11
�
δ2ψ ;i
π

�
: ð4:37Þ

If we take, for example, δψ ;i ∼ 10−4, k ∼ keq and fψ ∼ 1 this
implies β ∼ 6 × 105.

V. N-BODY SIMULATIONS

Having demonstrated that the fermion density undergoes
exponential growth for the quartic potential, our next goal
is to study the resulting nonlinear structure that forms from
scalar forces, which requires the use of cosmological
simulations. While this scenario is physically quite differ-
ent from gravitational structure formation, it shares many
similarities with gravitational evolution and so can be
studied using standard cosmological N-body algorithms,
a review of which can be found in [50]. Nonetheless, there
are several important differences that need to be taken into
account: the simulations are run in the radiation era, rather
than matter-dark energy era; the particle mass evolves with
time, whereas it is usually constant; and the scalar force has
a time varying length scale, rather than the scale-free
gravity. Some aspects of our calculation, such as time
stepping criteria and initial conditions, are loosely based on
the CUBEP3M code [51]. We also use the spherical
overdensity halofinder of CUBEP3M, defining halos as
having 200× the mean density and at least 100 particles.

A. Equations of motion

Our first goal is to specify the equations of motion that
need to be solved in the N-body simulations. The
Hamiltonian for amassive relativistic particlemaybewritten
in general as H ¼ − 1

2
gμνpμpν. However, in the nonrelativ-

istic limit where p0 ≫ jp⃗jwe have that the Hamiltonian can
also be written, in conformal coordinates, as

H ≈
p0

a
≈

p⃗2

2ameff
þ ameffϕY; ð5:1Þ

where we used that −gμνpμpν ¼ meff þ δmeff and that
δmeff ¼ meffϕY . We also dropped the time dependent rest
massmeff and the gravitational potential. In this way we can
identify VY ≡ ameffϕY as the attractive Yukawa potential.
Then Hamilton’s equations are given by,

dx⃗
dη

≃
p⃗

ameff
; ð5:2Þ

dp⃗
dη

≃ −ameff∇!ϕY; ð5:3Þ

where η is conformal time, x is a comoving position and
p⃗ ¼ ameff v⃗p is the conjugate momentum.
For the simulations, it is more convenient to

use equations that reproduce Newton’s laws rather
than having friction terms [50,52,53]. We therefore
utilize the super-conformal time adtN ¼ dη which in the
radiation era (H ¼ Hr=a2, Hr ¼ a2eqHeq=

ffiffiffi
2

p
) coincides

with e-folds N ¼ HrtN , and define particle velocities as
v⃗N ¼ p⃗=meff , the potential as ϕN ¼ a2ϕY and forces via

f⃗N ¼ −meff∇!ϕN . We then nondimensionalize the system
in the following way:

tN ¼ H−1
r ts; ð5:4Þ

x ¼ ðL=ncÞxs ↔ ∇ ¼ ðnc=LÞ∇s; ð5:5Þ

vN ¼ ðLHr=ncÞvs; ð5:6Þ

p ¼ ðmψLHr=ncÞps; ð5:7Þ

ϕN ¼ ðLHr=ncÞ2ϕs; ð5:8Þ

meff ¼ mψms; ð5:9Þ

l ¼ ðL=ncÞls ¼ nlðL=ncÞðl=lÞ; ð5:10Þ

where L will be the box size of the simulation, nc is the
number of grid cells which will be used in the force
calculation, and nl=nc ¼ l=L. Hamilton’s equations are
then given by

dx⃗s
dts

¼ v⃗s; ð5:11Þ

dp⃗s

dts
¼ f⃗s; ð5:12Þ

with v⃗s ¼ p⃗s=ms and f⃗s ¼ −ms∇!sϕs. In these units,
Eq. (4.16) becomes

ð∇2
s − l−2

s Þϕs ¼
s
4
δψ ; ð5:13Þ

where s, defined in Eq. (4.19), can be parametrized as

s ¼ siets−ti : ð5:14Þ

Lastly, from Eq. (4.21) we have
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ms ¼ 1 −
ffiffiffi
3

p

2sω2

1 − CnαðωsÞffiffiffi
3

p þ 1þ ð ffiffiffi
3

p
− 1ÞCnαðωsÞ

; ð5:15Þ

while from Eq. (4.22)

l−1
s ¼ n−1l 31=4

ffiffiffi
2

p 1 − CnαðωsÞffiffiffi
3

p þ 1þ ð ffiffiffi
3

p
− 1ÞCnαðωsÞ

: ð5:16Þ

Equations (5.11)–(5.16) are the full N-body equations of
motion in the Newtonian approximation. It is important to
note that the frequency ω implicitly depends on L since
ω ∝ ðkeqlÞ−1, explicitly, we have that L ¼ ðnc=nlÞl and
so LHr ¼ ðnc=nlÞðaeq=ð12fψβ2ωÞÞ. However, in the high-
frequency limit, these equations no longer depend on the
oscillation frequency ω and they become scale-free (i.e.,
independent of L). Furthermore, the particle velocities,
specifically v⃗p ¼ v⃗N=a ¼ ðv⃗s=nlÞ=ðsωÞ, may become
relativistic unless ω ≫ 1 (which also corresponds to the
subhorizon regime as discussed in Sec. IV B). The simu-
lations are also invariant to specific values of the fermion
mass, mψ , and assume that gravitational forces from the
radiation or other matter components (which are not
evolved in the simulation) are negligible. The free param-
eters that need to be chosen are the initial scale factor si, the
oscillation frequency ω and the value of the mean Yukawa
length nl, which in turn set λ, β and fψ in physical
parameters.

B. Numerical methods

We now briefly explain our methodology for the
numerical simulations, focusing on differences with respect
to standard gravity calculations [50]. Because the particle
mass varies with time, we evolve positions and momenta
(instead of velocity) according to Eqs. (5.11) and (5.12)
using the drift-kick-drift algorithm,

x⃗s ← x⃗s þ v⃗sdts=2; ð5:17Þ

p⃗s ← p⃗s þ f⃗sdts; ð5:18Þ

x⃗s ← x⃗s þ v⃗sdts=2; ð5:19Þ

where we evaluate v⃗s ¼ p⃗s=msðtsÞ first at ts and then at
ts þ dts, while fs is evaluated at ts þ dts=2. Although there
are many algorithms to compute f⃗s, we have opted to use
the simple and robust particle-mesh method [54] which
involves solving Eq. (5.13) on a grid. We first obtain the
density contrast δψ by interpolating particles to a cubic grid
of n3c ¼ 10243 cells using the cloud-in-cell (CIC) method.
We then obtain f⃗s completely in Fourier space via

f⃗s ¼
ik⃗s

k2s þ l−2
s

s
4
msδψ ; ð5:20Þ

using discrete modes k⃗s chosen to match fourth order
accurate finite difference approximations to the gradient
and Laplacian. Having computed the force on the grid, we
then interpolate the grid force back to the particles, again
using CIC to conserve momentum. We ensure that the
simulation timestep satisfies dts ≤ ϵx=max½vs� and dts ≤ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵx=max½fs=ms�

p
where we have set ϵx rather conserva-

tively to be 1=10 the mean inter-particle distance. We
furthermore also prevent s from changing too rapidly,
requiring both ds and d ln s to be less than ϵs ¼ 0.1.
We next consider how the time varying mass and length

scale, Eqs. (5.15) and (5.16), affect our calculation. In this
work we consider three different setups: one where we keep
ms ¼ 1 and ls ¼ nl fixed, one in the low-frequency regime
with ω ¼ 1=2, and one with ω ¼ 4Kα to realize the high-
frequency limit. As we discussed previously, using values
of ω ∼ 1 can cause particle velocities to become relativistic
and can have superhorizon modes within the volume,
whereas the simulations assume purely Newtonian evolu-
tion. However, as demonstrated in Fig. 5, even low values
of ω can represent the evolution at very high frequencies.
Our two choices of ω therefore need to be interpreted as
taking the numerical limit of ω → ∞ where the Newtonian
approximations become valid. When considering the time
dependence, ms is quite straightforward as it only depends
on the dimensionless quantities s and ω. ls on the other
hand has a residual dependence on the parameter nl. In
other words, even though the system of equations is
independent of L, the finite resolution of the grid leads
to a dependence of our results on the mean length scale. In
Appendix D we investigate how this potentially affects our
results, and have chosen nl ¼ 12 as a good choice to
resolve both wave numbers larger and smaller than 1=l. In
addition to spatial resolution, we also ensure sufficient
temporal resolution to track the oscillations in ms and ls
which we do via logarithmic limiters d logms ≤ ϵm and
d logls ≤ ϵl. Because ms simply oscillates near its mean,
this condition is straightforward and we set ϵm ¼ 0.1
throughout, except during the first period where we instead
rely on d ln s. Unfortunately, ls diverges periodically and
the logarithmic limiter cannot be maintained. Instead, we
use ϵl ¼ 0.1while ls ≤ nc, and simply ensure that ds does
not increase until ls returns below nc.
Lastly, we need to specify the initial conditions of the

simulation. As in Sec. IV B, a natural choice of the initial
scale factor, si, is before Yukawa forces become large, i.e.
when si ≪ 1. Because we are considering very small
scales that are not at all constrained, we opt for a very
simple choice of initial fluctuations: a heuristic scale-
invariant spectrum of Gaussian fluctuations with an
initial amplitude of Δ2

i ¼ hδ2i i ¼ 10−5. We initially dis-
place Np ¼ 2 × ðnc=2Þ3 particles from a body-centered-
lattice [55,56] using the Zel’dovich approximation to find

the displacement field −∇! · Ψ⃗ ¼ δψ ðsiÞ [57]. We start the
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simulation with initial velocities V⃗ðsiÞ ¼ ð1=4ÞsiΨ⃗, which
corresponds to the growing mode δψðsÞ ¼ δψðsiÞI0ð

ffiffiffi
s

p Þ=
I0ð ffiffiffiffi

si
p Þ.
As a test of our simulation setup, we compute the

dimensionless power spectrum Δ2ðkÞ and show it as a
function of kl ¼ ksnl for the three oscillation choices in
Fig. 7 at s ¼ 10 and s ¼ 50, corresponding to a linear time
and just before nonlinearity ensues. In general we find good
agreement on large scales with our linear calculation, while
there is some softening on small-scales due to the particle
mesh calculation. We note that at s ¼ 10 the ω ¼ 1=2 case
has not completed a full oscillation yet (s ¼ 4Kα=ω ∼ 12.8)
and so there is an increase on all scales due to the
asymmetric change in ms and corresponding increase in
particle velocity. Before moving on, let us briefly compare
this setup to the standard cold dark matter (CDM) scenario
where the CDM only interacts gravitationally. For that case,
the exact solution in the radiation era has the subhorizon
limit δCDM ∝ ðγE − 1=2þ log ½kη= ffiffiffi

3
p �Þ where γE is the

Euler-Mascheroni constant [47]. Such a result requires an
expansion of both I0 and K0 in Eq. (2.11) for x ≪ 1. In
other words, both the growing and decaying modes of
CDM are excited due to the energy density of the
primordial plasma. For the Yukawa force, we have only
solved the perturbations in the subhorizon limit and so have
opted for simpler initial conditions with just the growing
mode with the expectation that exponential growth quickly
dominates the initial perturbations.

C. Halo formation

With the cosmological simulations we are now ready to
investigate how structure forms under Yukawa forces

instead of gravity. Figure 8 shows a visualization of the
fermion density field. The three rows correspond to the
nonoscillating case, the low-frequency (ω ¼ 1=2) case and
the high-frequency case (ω ¼ 4Kα ≃ 6.4, which should be
representative of the ω → ∞ limit). We see that fragmen-
tation initially resembles that of gravity with distinct
weblike features. However, the finite scalar mass (e.g.
finite l) leads to a substantially different final state of well-
separated halos. We furthermore see that the final density
field, shown at s ¼ 200 in the right third, is substantially
different between the simulations with oscillations and
without, with the latter having many small halos through-
out, whereas the former has bigger but fewer halos due to

the ∝
ffiffiffiffiffiffi
kl

p
scaling.

To be more quantitative we compute the halo mass
function, dnhalo=d logMhalo as a function of the mass of the
halo, Mhalo. We normalize masses to

MY ≡ 4π

3
ρψ ;eqa3eql

3; ð5:21Þ

which is the mass of a halo with an initial radius
equal to the Yukawa length scale aeql, and corresponds
to ð4π=3ÞNpðnl=ncÞ3 ≃ 2 × 103 N-body particles. We
show the results in Fig. 9 at s ¼ 100 and s ¼ 200, which
correspond to halfway and completely through the simu-
lation time evolution shown in Fig. 8. At s ¼ 100, the
halo mass functions are qualitatively similar in all three
simulations, with a slight excess/deficit of light/heavy halos
in the nonoscillating scenario. Later however the simula-
tions begin to substantially differ. The nonoscillating case
tends to halos of a similar mass yielding a sharp peak in the
mass function. On the other hand, both oscillating scenarios
have a similar halo mass function that extends to much
larger scales.
We now briefly estimate the typical mass of the largest

halos as a function of time. We leave a detailed study
including radiative cooling as in [4] for future work. We
proceed as follows. We assume that the largest halos at a
given time are those that form when the density fluctuations
with wave number k enter the nonlinear regime, that is
when δψðknl; sÞ ∼ 1 (4.33). Then, we take that the initial
radius of a halo is Oða=knlÞ and so the mass of the halo is
given by

MmaxðsÞ ¼
4π

3
ρψ

�
a

knlðsÞ
�

3

¼ MYðknlðsÞlÞ−3; ð5:22Þ

where knlðsÞ is the wave number that enters the
nonlinear regime at time s given by inverting Eq. (4.34),
explicitly

FIG. 7. Dimensionless power spectra at s ¼ 10 and s ¼ 50

normalized by Δ2
i ¼ 10−5 for the low-frequency, high-frequency

and nonoscillating simulations. The bands around each case are
the linear perturbation calculations.
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knlðsÞl ¼ 1

8s2
W4
h
−

δ2ψ ;i
π

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

W8

h
−
δ2
ψ ;i
π

i
256s4

s ; ð5:23Þ

where we used k�l ∼ 2 in (4.32). Using l−1 from Eq. (4.23)
we find that

MY ¼ 23=2π

37=4
mψ

yλ1=2
≈
6 × 10−6 g

β
ffiffiffi
λ

p : ð5:24Þ

The physical length scale lY is given by

FIG. 8. Visualization of fermionic dark matter density field assuming no oscillations (top) and oscillations with ω ¼ 1=2 and 4Kα

(middle and bottom). The left two-thirds show the time evolution between si ¼ 10−4 and sf ¼ 200. Each pixel column is a density slice
equally separated in s and the cubic volume has been periodically wrapped once. The magenta curve shows the time evolution of the
effective mass,meff=mψ , scaled such that 0 is at the bottom and 1 is at the top, while the cyan curve is the time evolution of l (omitted in
bottom row for clarity). The right third shows the 2D density field at the final redshift. Movies showing this evolution are available in the
Supplemental Material [58]. It is interesting to note that the final structure in the Yukawa case is different from usual ΛCDM simulations
during CDM domination. In particular, due to the effectively finite range of the Yukawa interaction we do not see any cosmic web like
structure.
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lY ¼ aeql ¼ 2−1=63−1=4

ðnψ ;eqy
ffiffiffi
λ

p Þ1=3 ≈
0.23 km

ðfψβλ1=2Þ1=3
: ð5:25Þ

Thus, the basic halos are small and light unless λ ≪ 1.
The mass (5.24) would be the typical mass of the halos if

the mass of the scalar field, or alternatively l, were
constant. However, as we have seen in Sec. III, the actual
Yukawa force has a much longer range than lY due to the
time-oscillations of the mass. This causes the halos to keep
merging constantly over time until the long-range inter-
action stops. For example, let us consider that φ has a tiny
mass mφ so that the quadratic term does not play a role in
the early evolution of the system but eventually dominates
the potential. Once this occurs, the comoving Yukawa
length scale decreases with the scale factor, that is l ¼
ðamφÞ−1 without oscillations, quickly shrinking the comov-
ing range of the interaction. In particular, the quadratic term
dominates for

a
aeq

>
acut
aeq

≈
μHeq

mφ

≈ 4 × 10−5fψ
ffiffiffi
λ

p �
β

105

�
1=3
�
1 eV
mφ

�
; ð5:26Þ

where μ is given by Eq. (3.24) and the subscript “cut” refers
to the time when the long range interaction is cut off. The
maximum halo mass (5.22) at that time then reads

MmaxðacutÞ ≈ 2 × 1016f8ψ
ffiffiffi
λ

p �
mφ

10−3 eV

�
−6
�

β

105

�
13

g;

ð5:27Þ
where we took δψ ;i ∼ 10−4. As an extreme case we take that
acut ∼ aeq, and mφ ∼ 10−8 eVðβ=105Þ1=3. We can then

roughly evaluate the nonlinear scale (5.23) at radiation-
matter equality, where s ¼ 12fψβ2, which gives

knlðs ¼ 12fψβ2Þl ∼
230

f2ψβ4
: ð5:28Þ

Then, the maximum halo mass (5.22) is roughly

Mmaxðs ¼ 12fψβ2Þ ≈ 5 × 1042
f6ψffiffiffi
λ

p
�

β

105

�
11

g: ð5:29Þ

Thus, as time goes on, tiny halos merge several times and
the resulting halos are huge, even by cosmological stan-
dards as 5 × 1042 g ∼ 2.5 × 109M⊙. The maximum halo
mass only depends on the time where the long-range forces
disappears by, e.g., the decay of the scalar field or the
formation of PBHs. The physical size of the halo can be
estimated to be

Rmaxða0Þ ∼
�

Mmax

4πΔρψ=3

�
1=3

¼ 1þ zeq
Δ1=3knll

lY

≈ 40
f5=3ψ

λ1=6

�
β

105

�
11=3

kpc: ð5:30Þ

where we used Δ ∼ 200 in the last step.
Below we list three examples in which the parameters in

the model enter the allowed range for which exponential
growth may occur based on the discussion in Sec. III:

(i) Example 1: we requireOð0.1Þ values for the Yukawa
and quartic coupling; β ¼ 107, mψ ¼ 1011 GeV,
y ¼ 0.4 and λ ¼ 0.3. This yields a small Yukawa
scale and basic halo mass with lY ¼ 1 m, MY ¼
10−10 g.

(ii) Example 2: we allow only for small values of the
quartic coupling and aim for large β; β ¼ 109,
mψ ¼ 5 × 108 GeV, y ¼ 0.2 and λ ¼ 10−19. This
time the scale and mass is slightly larger than in
example 1 with lY¼ 0.4 km, MY ¼ 4 μg.

(iii) Example 3: we aim for a large halo mass allowing
for tiny couplings; β ¼ 105, mψ ¼ 106 GeV, y ¼
4 × 10−8 and λ ¼ 10−50. Now we have a large and
massive basic halo with lY ¼ 1 km, MY ¼ 1017 g.

The maximum halo mass depends on the concrete evolu-
tion of the scalar field until equality, which is beyond the
validity of our approximations. Let us emphasize that the
constraints on the parameter space, presented in Sec. III and
in Appendix B, used in the above examples only concern
the approximate validity of the N-body simulations but not
the theory space. However, the system beyond the con-
strained parameter space will, at some point, enter the
relativistic fermion regime or will have too few particles per
Hubble volume. Let us also note that the examples are
meant to be extreme, and do not strictly match the

FIG. 9. Halo mass function for constant, low frequency and
high frequency simulations at s ¼ 100 and s ¼ 200. While
initially similar, the periodic increases in force range eventually
lead to larger halos than the constant case.
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simulation requirements (in particular, high enough fer-
mion number density and ω ≫ 1 are not enforced).
Before moving on to the discussions, let us show that if

the halos virialize, the virial velocities can be nonrelativ-
istic. We first compute the virial gravitational potentials of
the halos and then use Eq. (2.8) to estimate the virial
Yukawa potential. First, we find that the basic halos have

GMY

lY
≈ 2 × 10−38

�
fψ
β2λ

�
1=3

; ð5:31Þ

which using Eq. (5.22) leads us to

jϕGj ≈
GMmax

Rmax
≈ 3 × 10−9

f13=3ψ

λ1=3

�
β

105

�
22=3
�
acut
aeq

�
4

:

To go from gravitational potential to the effective Yukawa
potential by Eq. (2.8) we make use of our results for the
oscillation average of the Yukawa force on larger scales that
l, that is Eq. (4.30), explicitly given by�

2β2

1þ ðklÞ−2
�
≈ 2β2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
knlðsÞl

q
≈
26

fψ

aeq
a

; ð5:32Þ

where in the last step we used Eq. (5.23). Then we find that

jϕY j ≈
�

2β2

1þ ðklÞ−2
�
jϕGj

≈ 7 × 10−8
f10=3ψ

λ1=3

�
β

105

�
22=3
�
acut
aeq

�
3

: ð5:33Þ

Thus, if the virial theorem holds, i.e. v2 ≈ jϕY j particles
always move at nonrelativistic velocities (v < 1) for

β < 106 × λ1=22f−5=11ψ

�
acut
aeq

�
−9=22

: ð5:34Þ

Although this depend very much on the value of acut=aeq
we see that even for acut ∼ aeq we have β < 106 which is
compatible with conditions (i)–(iii) but which may lead to a
more restricted parameter space. We also note that β < 106

roughly corresponds ω > 107 (4.20), well within high
frequency regime.

VI. DISCUSSION: HALO FATES

Our nonlinear results are only able to follow the first
stage of halo formation and not their subsequent evolution.
Firstly, let us explain the reason of behind the smallness
of (5.24). It turns out that the length scale of the interaction
is proportional to the number density of fermions. Indeed,
the effective potential for the scalar field in the quartic
potential (3.3) has a minimum at

φmin ¼ −
�
4y
λ
nψ

�
1=3

: ð6:1Þ

The solution (3.20) exhibits the same behavior. This means
that the larger the number of fermions, the larger the value
of φmin and the larger the effective mass of the scalar field.
For instance, we have that

lY ∝ V−1=2
φφ ∝ ðλφ2Þ−1=2 ∝ ðnψy

ffiffiffi
λ

p
Þ−1=3; ð6:2Þ

Thus, although the Yukawa force is much stronger than
gravity and creates bound structures in the radiation
dominated universe, the typical volume of the basic halos
is inversely proportional to the number density. Then, the
total mass only depends on mψ , y and λ. We note that this
density dependent expectation value for the scalar field also
occurs in the so-called chameleon and symmetron models
[59–61] in the context of dark energy. In the notation of
such models, the Yukawa force would be screened for
scales R > ðnψy

ffiffiffi
λ

p Þ−1=3, were not for the time-oscillations
in the Yukawa length scale l, which render the Yukawa
force effectively with a much longer range.
We now comment on various possibilities for the final

state of the system, depending on how the evolution of the
fermions proceeds. If the fermions have a small cross-
section to standard model particles, the rapid increase in the
cores of halos may lead to substantial or complete anni-
hilation of the fermions. The consequences of such an
effect for baryogenesis have been discussed in [40]. Note
that in this case a different particle is required to make up
the dark matter. If no annihilation occurs, as in the models
of asymmetric dark matter [62,63] the coupling to the scalar
field also allows the fermions to cool via scalar radiation
[4]. In this case, the halos first cool to form dark stars with
radiation pressure opposing the attractive force. They can
then further cool until the fermion degeneracy pressure
becomes the stabilizing force. If this is also overcome, then
they may collapse to form primordial black holes which are
decoupled from the scalar field. The masses of any such
collapsed objects depends on how quickly they cool
compared to the halo growth rate via mergers.
If, on the other hand, no radiative behavior occurs (or is

simply inefficient), then the fermions will simply make up
fψ of the present day matter with inhomogeneities that will
simply continue to grow. The maximum mass of the halos
at matter-radiation equality [e.g. Eq. (5.29)] is around the
size of small galaxies, although with strong dependence on
fψ and β, and suggests the possibility of using large-scale
observations to constrain this scenario. Let us emphasize
that forming such large halos is a very surprising result
considering the “typical” mass scale given by Eq. (5.24).
While such large halos at matter-radiation equality may

be difficult to reconcile with cosmological observations,
lighter ones can simply be obtained if the fermions
are not all the dark matter, i.e. fψ < 1. Depending on
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the compactness and number density of the final
objects, we may expect the rest of the dark matter to
gravitationally collapse through secondary infall [64] with
steep density profiles ρ ∝ r−9=4, similar to what is expected
for PBH [65,66], or via continued hierarchical collapse.
Such dynamics will also be influenced by how the attractive
force behaves in the matter era. Regardless, such processes
can then accelerate structure formation in ways that,
depending on specific mass scales, may explain or be
constrained by high redshift observations such as the
EDGES 21 cm signal [67], the excess of heavy galaxies
observed by the James Webb Space Telescope [68,69], or
the currently unknown formation and growth mechanisms
of supermassive black holes [70]. Note that if fψ < 1, then
it is necessary to specify the rest of the dark matter, and
some models such as WIMPs may be incompatible with
fermions similar to the way they are incompatible with
PBHs [65,71,72]. Lastly, even though we have focused on
the early Universe there may also be differences from
standard CDM in the late Universe, similar to models like
asymmetric dark matter [73,74].
One may wonder if such early dark matter halos are

already constrained by current observations, as e.g. one
places bounds on the amount of massive compact halo
objects, also known as MACHOs (see Ref. [75] and
references therein for details on the constraints).
However, it is not so clear whether current constraints
on MACHOs [75–77] apply to the early dark matter halos
of this work. First, in the absence of additional physics, the
halos from the long range Yukawa interaction are rather
diffuse. For instance, there are no significant constraints
from CMB and BBN, since the halos do not deposit any
energy as argued in Ref. [20]. Second, at the present stage
we do not know the exact halo profiles nor how the yukawa
force behaves during the matter dominated universe, both
which are important for a detailed study of microlensing
constraints (although they are expected to be weak for
diffuse structures [20]). Nevertheless, we may constrain our
model by demanding that the halos are not too massive. For
example, requiring that Mmax < 109M⊙ we find a lower
bound on the bare mass of the Yukawa mediator, namely

mφ > 4 × 10−8f4=3ψ λ1=12
�

β

105

�
13=6

eV: ð6:3Þ

Note that this bound may also be recast as an upper bound
on β or fψ. In the future, one very promising probe is
gravitational lensing of gravitational waves by dark matter
substructures [78–80], which in the wave optics limit is
sensitive to the number of darkmatter halos and their profile.
Before concluding, let us briefly compare our results

with existing works [3,20] and argue that the two system
are considerably different. In [3,20], the mass of the
fermions is dilatonically coupled to the scalar field, namely
in our notation meff ¼ mψe−βφ=Mpl . The same exponential

coupling acts as potential for φ. For small values of φ,
we have a Yukawa-like interaction where y ¼ mψβ=Mpl.
However, the exponential running changes the dynamics
of the system when compared to the ones studied in this
work. With the exponential coupling, the effective mass
always decays asmeff ∼ 1=a and the energy density of both
the fermions and the scalar decays as radiation [3].
Nevertheless, the fermions remain in the nonrelativistic
regime if they were initially nonrelativistic since meff=T ¼
constant (T ∝ 1=a for thermal radiation in an expanding
universe). However, the system by itself is never matter
dominated unless there is backreaction from the nonlinear
structures or one considers, e.g., a bare mass for mψ. We
also find that, in the dilatonic coupling case, the effective
scalar field mass M2

φ decays with the scale factor and all
perturbations on subhorizon scales (k ≫ H) grow. This
growth is a power-law with δψ ∼ ap and p ∼ 1.62 [3],
which is not as fast as the exponential growth of this work.

VII. CONCLUSIONS

We have computed the dynamics of a realistic interacting
dark sector composed of just one scalar and one family of
fermion particles via a Yukawa coupling. We showed that
including a potential for the scalar field allows for the
fermions to remain nonrelativistic behaving as dark matter
with an additional attractive force. We then focused on a
quartic potential for the scalar field, which is motivated by
renormalizable theories and also convenient for the simu-
lations. Confirming previous studies [4], we find that this
attractive force leads to substantial growth in the fermions
allowing for the possibility of nonlinear halo formation. We
also find that the specific type of coupling substantially
changes the growth of perturbations and can lead to the
formation of halos much larger than has previously been
assumed in simplified setups. These halos could become
dark stars, primordial black holes, galaxy-sized halos at
matter-radiation equality, or end up annihilating. Such halo
formation might also be accompanied by gravitational
waves [39], cold electroweak baryogenesis [40] or mag-
netogenesis [41].
While our results have demonstrated the nonlinear halo

formation in the scalar-fermion dark sector, they are also
limited in some ways. On the theory side, we have assumed
the radiation era throughout aswe expected halos to be small
in the radiation era. Determining how the system behaves
into the matter epoch is of substantial interest from the
perspective of large-scale structure. We furthermore did not
solve the fully relativistic perturbation equations, and
instead used initial conditions based on the subhorizon
growing mode. Calculating the subhorizon growth with
initial conditions that canvary on superhorizon scales would
therefore bevaluable tomake our calculationsmore realistic.
We have also been limited by various aspects of the

numerical simulations beyond the lack of radiative physics.
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First, the simulations are fully Newtonian and in comoving
coordinates, requiring the fermions to be nonrelativistic at
all times, that the growth of perturbations occurs on
subhorizon scales and that l is on average constant. The
first two requirements necessitate that the scalar frequency
ω ≫ 1. In practice we used ω ∼ 1 and argued based on our
linear theory analysis that the high-frequency case already
achieved the correct ω → ∞ dynamics. On the other hand,
the ω ∼ 1 dynamics themselves are also within the inter-
esting theoretical range of possibility, but would require
fully relativistic equations of motion to model correctly.
The last requirement on l makes other potentials such as
the quadratic one difficult to simulate. We have also been
substantially limited by resolution. On small-scales, our use
of just a particle-mesh calculation does not allow for
detailed investigation of the halo interiors and less con-
centrated halos may interact with the finite value of l in
unexpected ways. Including a subgrid pairwise force would
circumvent this issue and is important to include in the
future. On large-scales, we lack the ability to follow theffiffiffiffiffiffi
kl

p
scaling limiting the maximum redshift and mass of the

halos in our simulation. This regime could however be
studied using the asymptotic high-frequency scaling alone.
Let us conclude by highlighting that the scalar-fermion

system we have considered is simple. The long-range
forces between matter particles can arise in models with
supersymmetry [25], as well as other dark matter models
[11,81–83]. We therefore expect the phenomenology we
have identified to be rather common in expanded dark
sectors in the radiation epoch. Moving from such a
phenomenological discussion of final states—radiation,
stars, black holes, or halos—to predictive modeling, as
well as generalizing to various other interacting dark
sectors, are therefore important steps toward understanding
the dynamics of the early Universe.
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APPENDIX A: PARAMETERS AND DEFINITIONS

In this appendix we summarize the meaning of main
parameters and definitions used throughout the text.

1. Jacobi elliptic functions

Here we define the Jacobian elliptic functions. The
Jacobian elliptic functions are the inverse of the elliptic
integrals, explicitly given by

ζ ¼ FαðϕÞ ¼
Z

ϕ

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2 sin2 θ

p : ðA1Þ

One then defines

CnαðζÞ≡ cosϕ; ðA2Þ

from which is clear that CnαðζÞ is periodic. The period Δx
defined by CnαðζÞ ¼ Cnαðζ þ ΔζÞ is given by

Δζ ¼ Fαð2πÞ ¼ 4Kα; ðA3Þ

TABLE I. List of basic parameters of our model. In the main
text quantities with an upper “bar” are constant and refer to the
amplitude of the unbarred variable. For example, l is the
amplitude of l.

Scalar field, φ
Bare mass mφ

Quartic coupling λ
Potential V ¼ m2

φφ
2=2þ λφ4=4þ…

Effective mass Mφ ¼ a
ffiffiffiffiffiffiffiffi
Vφφ

p
Dimensionless effective mass μ ∝ Mφ=keq
Perturbation δφ

Fermions, ψ
Bare mass mψ

Number density nψ
Energy density ρψ ¼ meffnψ
Matter fraction in ψ fψ ¼ ρψ=ðρm þ ρψ Þ
Perturbation δψ ¼ δnψ=nψ

Yukawa interactions
Yukawa coupling y
Interaction strength β ¼ yMpl=mψ

Effective ψ mass meff ¼ mψ þ yφ
Effective φ potential Veff ¼ V þ sign½meff �yφnψ
Long-range potential ϕY ¼ yδφ=meff

Yukawa length scale l ¼ M−1
φ ∝ ðkeqμÞ−1

Effective scale factor s ¼ 12fψβ2a=aeq
Effective frequency (quartic) ω (ωs ∝ μa=aeq)

Gravitational interactions
Scale factor a
Hubble parameter H ¼ a−1da=dt ¼ H=a
Metric potentials ϕG ¼ Φ ≃ −Ψ
Matter density, w/out ψ , φ ρm
Radiation density, w/out ψ , φ ρr
Perturbations δr ¼ δρr=ρr, δm ¼ δρm=ρm
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where Kα is the complete elliptic integral of the first kind.
For the case of Sec. III B, that is α ¼ 2−3=2ð ffiffiffi

3
p

− 1Þ, we
find the period can also be expressed in terms of Gamma
functions as

Kα ¼ 31=4
ffiffiffi
π

p Γ½7=6�
Γ½2=3� ≈ 1.6: ðA4Þ

2. Parameters and variables

In Table I we provide a list of the main parameters
and variables. As an introduction section, Sec. II does not
make the same approximations (e.g. β2 ≫ 1 and a ≪ aeq)
as the remainder of the text and so the notation differs.
Nonetheless, if those approximations are made then the
transformation 6αx → Ākls [see below (4.27)] yield the
same equations. Lastly, many parameters are with respect to
matter-radiation equality, defined as when ρr ¼ ρm þ ρψ
(i.e. excluding φ), and denoted with subscript “eq”. In
particular, keq ¼ aeqHeq is the comoving horizon size at
that time.

APPENDIX B: DETAILED CONDITIONS FOR
NONRELATIVISTIC FERMIONS

In this appendix we provide the limits used to draw
Figs. 1–3.

1. Massless case

For the massless case we have that conditions (iia), (iib)
and (iii) respectively yield

β ≪ 4 × 109f−1=2ψ

�
g�ðTÞ
106.75

�
1=8
�

mψ

1010 GeV

�
1=2

; ðB1Þ

β ≪ 2 × 1012f−2=3ψ

�
mψ

1010 GeV

�
2=3

; ðB2Þ

and

β ≪ 3 × 1010f−1=3ψ

�
mψ

1010 GeV

�
−1=6

: ðB3Þ

2. Quadratic potential

For the case of a quadratic potential, we find the
following. On one hand, for condition (iia) we require that
T1 ≪ mψ , where T1 temperature of the radiation fluid at
that the time τ1 and which reads

T1

Mpl
≈ 0.33

ffiffiffiffiffiffiffiffi
mφ

Mpl

r �
g�ðTÞ
106.75

�
−1=4

: ðB4Þ

Then, the condition T1 ≪ mψ yields

mφ ≪ 370

�
g�ðTÞ
106.75

�
1=2

GeV: ðB5Þ

To have nonzero parameter space between the bounds
(3.19) and (B5), we obtain the following upper bound on β:

β ≪ 5 × 109f−1=2ψ

�
g�ðTÞ
106.75

�
1=8
�

mψ

1010 GeV

�
1=2

: ðB6Þ

On the other hand, for condition (iib) we require that
m3

ψ ≫ 3π2nψ evaluated at ξ1 which yields

mφ ≪ 3.4 × 1013f−2=3ψ

�
mψ

1010 GeV

�
8=3

GeV: ðB7Þ

We see that the case of degenerated nonrelativistic fermions
is less restrictive in the value ofmφ and the upper bound on
β now reads

β ≪ 3 × 1012f−2=3ψ

�
mψ

1010 GeV

�
2=3

: ðB8Þ

Lastly, condition (iii) also evaluated at ξ1 implies

mφ ≪ 2 × 106f2=3ψ

�
mψ

1010 GeV

�
−2=3

GeV: ðB9Þ

3. Quartic potential

We proceed as in the previous subsection but for the
quartic potential. First, for condition (iia), the temperature
of the radiation fluid at amax is given by

TðamaxÞ
Mpl

≈ 7 × 10−29μ

�
g�ðTÞ
106.75

�
−1=4

: ðB10Þ

Then, by imposing TðamaxÞ ≪ mψ we obtain

λ <
1.4 × 107

f2ψβ2

�
g�ðTÞ
106.75

�
3=2
�

mψ

1010 GeV

�
6

: ðB11Þ

By saturating the inequalities (3.27) and (B11) we also
obtain an upper bound on β given by (B6).
For condition (iib), we require mψ ≪ 3π2nψ ðamaxÞ,

which yields

λ <
1.1 × 1040

f4ψβ2

�
mψ

1010 GeV

�
8

; ðB12Þ

and again the resulting upper bound on β by saturating the
parameter space coincides with the one in the quadratic
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case (B8). Lastly, the condition (iii), that requires more than
one particle per Hubble volume, imposes

λ <
3 × 1018

β2

�
mψ

1010 GeV

�
−2
: ðB13Þ

APPENDIX C: EINSTEIN EQUATIONS

In this appendix we explicitly write the general equations
used in this paper. We start with Einstein equations which
are given by

M2
plGμν ¼ Tψ ;μν þ Tr;μν þ Tm;μν

þ ∂μφ∂νφ −
1

2
gμνð∂αφ∂αφþ 2VðφÞÞ; ðC1Þ

where the subscript r refers to radiation and TQ;μν with
Q ¼ fr;m;ψg is the energy-momentum tensor of a per-
fectly fluid, explicitly given by

TQ;μν ¼ ðρQ þ PQÞuQ;μuQ;ν þ PQgμν; ðC2Þ

and uQ;μ are the fluid’s 4-velocity. Second, the energy
conservation of the Fermi gas is given by

uμψ∇μρψ þðρψ þPψÞ∇μu
μ
ψ þ
�
∂Pψ

∂φ

�
T;μ

uμψ∇μφ¼ 0: ðC3Þ

Then, we use the Bianchi identities and the conservation of
the energy momentum tensor for radiation, to derive the
Klein-Gordon equation which reads

∇ν∇νφ − Vφ −
meff

jmeff j
ynψ ¼ 0: ðC4Þ

In a similar manner, we find that the equation for the
velocity is given by

uνψ∇νuψ ;μ þ ðδνμ − uψ ;μuνψÞ
1

ρψ

y
meff

∇νφ ¼ 0: ðC5Þ

Lastly, we have the fermion number density conservation,
namely

∇μðnψuμψÞ ¼ 0: ðC6Þ

1. Cosmological perturbations on
subhorizon scales

We also present here the main equations for cosmologi-
cal perturbations that are used in the text. We perturb the
FLRW metric in the shear-free gauge, in which the line
element reads

ds2 ¼ a2ð−ð1þ 2ΨÞdη2 þ ð1þ 2ΦÞdx2Þ: ðC7Þ

The energy densities are expanded as ρ → ρþ δρ and the
velocities as uμ ¼ a−1ð1 −Φ; viÞ for both the radiation and
fermion fluids. For the scalar field we take φ → φþ δφ.
With this prescription, the 00 component of Einstein
equations, which is related to the Poisson equation, is
given by

2
k2

H2
Φ ¼ a2ρr

H2M2
pl

δr þ
a2ρr
H2M2

pl

δm þ a2ρψ
H2M2

pl

δψ

þ a2ρψ
H2M2

pl

y
meff

δφþ 1

M2
pl

dφ
dN

dδφ
dN

þ a2Vφ

H2M2
pl

δφ:

ðC8Þ

Then we have the Klein-Gordon equation:

d2δφ
dN2

þ dδφ
dN

þ k2

H2
δφþ y

meff

a2ρψ
H2

δψ ¼ 0: ðC9Þ

The energy density and momentum conservation for
fermions:

dδψ
dN

−
k2

H
vψ ¼ 0; ðC10Þ

dvψ
dN

þ vψ −
1

H
Φþ 1

H
y

meff
δφ ¼ 0: ðC11Þ

And the energy density and momentum conservation for
radiation:

dδr
dN

−
4

3

k2

H
vr ¼ 0; ðC12Þ

dvr
dN

þ 1

H

�
1

4
δr −Φ

�
¼ 0: ðC13Þ

If there is an additional dark matter component which
behaves like dust, we also have:

dδm
dN

−
k2

H
vm ¼ 0; ðC14Þ

dvm
dN

þ vm −
1

H
Φ ¼ 0: ðC15Þ

2. Newtonian approximation

For completeness we derive the equations in the
Newtonian regime, which consists in keeping the linear
order of metric perturbations but allowing for the nonlinear
evolution of the nonrelativistic matter fields. This is
justified since on subhorizon scales the gravitational
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potential is suppressed with respect to the density fluctua-
tions. Here we do the same perturbative expansion as in
Appendix C 1 but we also include the velocity perturbation
of the fermion fluid. With this prescription, the relevant
equations in real space and in terms of e-folds are given by

dδψ
dN

þ 1

aH
∇!½ð1þ δψ Þv⃗ψ � ¼ 0; ðC16Þ

dv⃗ψ
dN

þ
�
1þ d lnmeff

dN

�
v⃗ψ

þ 1

aH
ðv⃗ψ · ∇!Þv⃗ψ þ 1

aH
∇!ϕY ¼ 0; ðC17Þ

ð∇2 − l−2ÞϕY ¼ a2β2M−2
pl ρψδψ ; ðC18Þ

where ϕY is the effective potential due to the Yukawa
interaction related to the scalar field by (4.17) and
l−2 ¼ M2

φ ¼ a2Vφφ. These equations can be recast in a
more convenient form with the following redefinitions:

vψ ¼
� ffiffiffi

2
p

a
aeq

�−1
Vψ ; ϕY ¼

� ffiffiffi
2

p
a

aeq

�−2
ϕN;

∇!¼ aeqHeq
e⃗∇; l ¼ a−1eq H−1

eq
el: ðC19Þ

We also introduce a new time variable by

s ¼ 12fψβ2
a
aeq

: ðC20Þ

Then, we have that dN ¼ d ln s. In this notation we obtain

dδψ
d ln s

þ ⃗∇̃½ð1þ δψÞV⃗ψ � ¼ 0; ðC21Þ

dV⃗ψ

d ln s
þ d lnmeff

d ln s
V⃗ψ þ ðV⃗ψ · ⃗∇̃ÞV⃗ψ þ ⃗∇̃ϕN ¼ 0; ðC22Þ

ð∇̃2 − l̃−2ÞϕN ¼ s
4
fψδψ ; ðC23Þ

where we used (3.7) to write nψ ;eq in terms of Heq. It is
important to note that the equations above are independent
ofHeq and β. Thus, we may solve them in general and later
translate the result to the physical variables.

APPENDIX D: CHOICE OF l

In this appendix, we consider how the value of l (nl)
relative to the simulation size L (nc) affects our calculation.
First of all, we consider the calculation of the force in
Eq. (5.20). We run a set of pairwise force calculations
between two particles as a function of their separation rs
and the value of nl. We show the results in Fig. 10. Despite
the modification to include l, the particle-mesh calculation

performs well for particles separated by more than a few
grid cells. As separations approach nc=2 the periodic
boundary conditions truncate the force, rather than nl.
While the physical value of l cannot affect the results of

the simulation, the numerical value nl certainly can via
artifacts associated with finite resolution. If the value is
small and approaches the grid size nl ∼ 1, then particles
will not feel any force. We would like then, to choose nl
fairly large. However, if it is too large then our results will
be affected by the simulations periodic boundary condi-
tions which will truncate the force law rather than the
Yukawa scale. This is particularly troublesome for our scale
free initial conditions, as nonlinear coupling between
modes within the simulation volume and those larger than
the box would not be resolved. This motivates a choice of
nl fairly small.
Fortunately, the invariance to a physical value of l

allows for a useful test, analogous to scale-free tests for
large-scale structure simulations [87], as converged results
should be insensitive to a specific choice of nl provided
they are rescaled consistent with their dimensions. We
therefore run a set of simulations with constant ms and ls,
but varying the choice of nl. We note that even though the
initial density field is the same, the force law effectively
differs between the simulations and so the final results are
only statistically equivalent.
We show our results at s ¼ 200 in Fig. 11. We see that

unlike the linear solution which grows arbitrarily, halos
virialize with more typical densities. We see that, as
expected, larger values of nl better probe small scales,
while smaller values are able to resolve the constant large
scales. In addition, we also consider the halo mass function
of these simulations, shown in Fig. 12. Here we do not see

FIG. 10. Pairwise computation of the Yukawa force fs for
various choices of nl. rs is the particle separation (specified in
grid cells, with nc ¼ 1024), and we normalized r2sfs to 1 for
rs ≪ nl. 1σ fluctuations are computed by repeating the calcu-
lation 100 times.
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as good agreement upon rescaling, and simulations with
nl ≤ 8 having fairly different mass functions. We also see a
decrease in heavy halos when nl ¼ 20 (and also a little for
16), which is indicative of having too small a volume for
such large halos. Fortunately, nl ¼ 12 and nl ¼ 16 appear
reasonably converged in both the power spectrum and the
halo mass function.
When including time dependence of l there is an

additional effect to consider which is that the minimum
value of l is ∼l=2. For the high-frequency case, we expect
the simulation to match the effective force law in (4.32);
however, for the low frequency case substantial amounts of
the simulation time is spent around this minimum which
may amplify force artifacts. We do a test by running a low
frequency simulation with nl ¼ 16. We show the power
spectra at before the onset of nonlinearity (s ¼ 50) and after
(s ¼ 200) in Fig. 13. We find that the two choices of nl
lead to very similar results; however, we also find that the
low frequency case has lower power in the nonlinear regime
of the simulation than the high frequency case. It is not
clear why this may occur, but could be indicative of a lack
of force at l ∼ l=2. In general, without a subgrid force we
expect that halos are less concentrated and the power
spectrum to be lower regardless of our choices of nl or ω.
This may have unexpected consequences, as the limited
range of the force means that the distribution of matter in

the halo, and not just the halo mass, matters [88]. While we
may expect the long-range periods to ameliorate this effect,
it remains to be seen whether there are differences in the
halo distribution when subgrid forces are included.

FIG. 12. Halo mass function at s ¼ 200 as a function of the
number of N-body particles in the halo Nhalo. The solid curves
show the rescaled mass functions which should be equivalent
outside of numerical artifacts. The dashed curves are unscaled
and correspond to the upper x-axis and right y-axis.

FIG. 13. Dimensionless power spectra at s ¼ 50 and 200 for
various values of ω and nl. The bands show the linear result using
the high-frequency approximation.

FIG. 11. Dimensionless power spectra at s ¼ 200 for constant
meff and l but different choices of nl relative to the grid size,
nc ¼ 1024.
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