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Quantum cosmology based on Lorentzian path integrals is a promising avenue. However, many previous
works allow non-Lorentzian configurations by integrating the squared scale factor over the whole real line.
Here we show that restricting the minisuperspace path integral to Lorentzian configurations with positive
squared scale factor can significantly change the expectation values. In addition, this enables the study of
causal horizons and their quantum fluctuations, and achieves singularity avoidance trivially by excluding
singular minisuperspace geometries as non-Lorentzian. The results indicate that semiclassical saddle point
approximation is not always valid in truly Lorentzian quantum cosmology. As a consequence, related
works on the tunneling and no-boundary proposals, bouncing cosmology, and the quantum origin of
inflation etc. need to be reexamined.
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I. INTRODUCTION

Transitioning to the Lorentzian signature has
been a recurring theme in quantum gravity. Historically,
approaches such as simplicial quantum gravity [1], dynami-
cal triangulation [2], spin-foam and related gauge theories
[3] started in the Euclidean. Subsequent works eventually
encompassed the Lorentzian setting to counter issues such
as spikes [4,5], degenerate geometries [6,7], conformal
instabilities [8], or to simply engage with spacetime which
is Lorentzian.
In quantum cosmology one studies simplified models of

quantum gravity such as the homogeneous and isotropic
minisuperspace model with the metric

ds2 ¼ −N2dτ2 þ aðτÞ2dΩ2; ð1Þ

where dΩ2 is the metric of a closed spatial 3-sphere. Since
Euclidean gravitational path integrals suffer from the
conformal instability issue [9], old works explored different
complex integration contours [10–19]. There have been
various discussions about fixing the integration contour to
be over Lorentzian spacetimes in the past (e.g., [20–23]).
More recently, Feldbrugge et al. proposed [24] to define the
gravitational path integrals by the Lorentzian contour, and
use Picard-Lefschetz theory to study complex contour
deformations only as a computational trick for the funda-
mentally Lorentzian theory (see Sorkin [25] for a closely
related discussion).
This has led to renewed interest in investigating old

topics with new methods [24,26–48]. In these works of

“Lorentzian quantum cosmology”, it is common to adopt
the minisuperspace metric

ds2 ¼ −
N2

qðtÞ dt
2 þ qðtÞdΩ2; ð2Þ

and treat the squared scale factor q as a path integral
variable. The action in q is quadratic and a Gaussian
integration yields nice closed-form results [13,49].
However, the Gaussian integration over all real values of

q is questionable step. For the metric to stay in the
Lorentzian signature, q should only assume positive values.
A path integral over also negative q cannot be said to be
truly Lorentzian. In the seminal paper [49] that adopted q as
a path integration variable, Halliwell warned us that

“In Sec. VII we encountered the problem of doing
quantum mechanics in terms of the variable q
whose physical range was the positive real line.
This problem is not in any way an artifact of the
particular model under consideration, but is a
manifestation of the fact that the three-metric hij
satisfies the condition det hij > 0. It is therefore
important to face up to this issue from the very
beginning.”

Yet this warning is largely left aside in subsequent works.
In this work we consider quantum cosmology in a truly

Lorentzian setting, where the path integral is only over
strictly Lorentzian configurations. In particular, we study
minisuperspace quantum cosmology based on the metric
(2), and distinguish the real q scheme, where q is*djia@perimeterinstitute.ca
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integrated over the whole real line, from the positive q
scheme, where q is integrated over positive values.
We find that the two schemes differ in at least three

important aspects. First, the expectation values for the
squared scale factor can differ much in the two schemes,
when q gets close to or below zero for a relevant saddle
point of the path integral. This affects the studies of
tunneling and no-boundary proposals, bouncing cosmol-
ogy, and the quantum origin of inflation. Second, it is only
possible to study the causal horizons and their quantum
fluctuations in the positive q scheme. In the real q scheme
the path integral includes non-Lorentzian geometries,
where causal horizon is not defined. Third, restricting
the path integral to the Lorentzian implies singularity
avoidance. This is because singular minisuperspace geom-
etries are non-Lorentzian and hence are automatically
excluded from the path integral. In this sense, singularity
avoidance is trivially achieved [50] in the truly Lorentzian
minisuperspace path integral.
The results challenge the universal validity of semi-

classical saddle point approximation. In particular, for
negative spatial curvature bouncing cosmology, our numeri-
cal results based on the generalized thimble method [51]
show that the saddle point which dominates the real q
scheme path integral completely fails to capture the quantum
expectationvalues of the truly Lorentzian positiveq scheme.
The true expectation values rather resembles that of the
zero spatial curvature case in their real parts, in addition to
possessing a large imaginary part. Here neither real nor
complex (tunneling) solutions to Einstein’s equations char-
acterize the path integral at leading order, because neither
does the saddle point belong to the Lorentzian integration
contour, nor does it connect to any configuration of the
Lorentzian contour through the Picard-Lefschetz holomor-
phic gradient flow. As a consequence, the semiclassical
saddle point approximation should only be applied when its
validity can be ascertained.
The paper is organized as follows. In Sec. II we review

recent works on Lorentzian quantum cosmology. In
Sec. III we point out the limitations of the real q scheme.
In Sec. IV we review the generalized thimble method which
we use for numerical computation. In Sec. V we define the
quantities of light cone location and its fluctuations to be
computed. In Sec. VI we put the pieces together to study
bouncing cosmology for positive, zero, and negative spatial
curvatures, and compare results from the positive and real q
schemes. In Sec. VII we discuss singularity avoidance. In
Sec. VIII we conclude with a discussion of some topics for
further study.
In the following, we set c ¼ ℏ ¼ 8πG ¼ 1.

II. PREVIOUS WORKS

Following [13,24,49] we consider the minisuperspace
metric,

ds2 ¼ −
N2

qðtÞ dt
2

þ qðtÞ
�

1

1 − kr2
dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ

�
; ð3Þ

with squared scale factor qðtÞ, lapse N, and spatial
curvature k ¼ 1, 0 or −1.1 The dN=dt ¼ 0 gauge is used
so N does not depend on t.
Plugging (3) in the Einstein-Hilbert action with

the Gibbons-Hawking-York boundary term [52,53]
S ¼ 1

2

R
d4x

ffiffiffiffiffiffi−gp ðR − 2ΛÞ þ R
B d

3y
ffiffiffi
h

p
K, one obtains

S½q;N� ¼ 2π2
Z

1

0

dtN

�
−
3q̇2

4N2
− Λqþ 3k

�
: ð4Þ

The dot denotes derivative with respect to the coordinate
time t, which is taken to run from 0 to 1. This is without loss
of generality, since the physical proper time derived from
(3) is still arbitrary due to N and q.
For the boundary condition qð0Þ ¼ q0; qð1Þ ¼ q1 the

path integral takes the form

Z½q0; q1� ¼
Z

DN
Z
q0;q1

DqeiS½q;N�: ð5Þ

We omit the subscript q0, q1 below when no ambiguity
arises.
The metric (3) is written in terms of the squared scale

factor rather than the scale factor aðtÞ. This produces the
action (4) which is quadratic in q. In many previous works,
such as [24,26–48], the integration range of the squared
scale factor is taken to be over the whole real line. Then the
path integral in q with the quadratic action can be evaluated
analytically, just like the path integral of a free quantum
particle [54].
Explicitly, a Gaussian functional integration with respect

to q yields

G½q0; q1;N� ≔
Z

DqeiS½q;N�

¼
ffiffiffiffiffiffiffi
3πi
2N

r
ei2π

2
R

1

0
dtð− 3

4N
˙̄q2þNð3k−Λq̄ÞÞ; ð6Þ

q̄ðtÞ ¼ Λ
3
N2t2 þ

�
−
Λ
3
N2 þ q1 − q0

�
tþ q0: ð7Þ

Here q̄ðtÞ obeys the boundary condition qð0Þ ¼ q0; qð1Þ ¼
q1 and solves

1For the flat (k ¼ 0) and hyperbolic (k ¼ −1) cases, we
assume that the spatial geometry is compactified as in [15] so
that the action (4) is finite.
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q̈ ¼ 2Λ
3

N2; ð8Þ

which is the equation of motion obtained from δS=δq ¼ 0.
To obtain the final result Z½q0; q1� ¼

R
DNG½q0; q1;N�

from (6), one still needs to analyze the N integral. In
previous works this one-dimensional integral is commonly
studied through a saddle point approximation. The saddle
point can be obtained directly by demanding stationary
phase for G½q0; q1;N�. Since the phase 2π2 R 1

0 dtð− 3
4N

˙̄q2 þ
Nð3k − Λq̄ÞÞ equals S½q̄; N�, we have ∂NS½q̄; N� ¼ 0.
Equivalently, we could look at the original path integral
(5) and demand δS½q;N�=δN ¼ 0 to obtain the equation of
motion

Z
1

0

dt

�
3

4N2
q̇2 þ 3k − Λq

�
¼ 0: ð9Þ

Equations (9) and (8) form the complete set of equations of
motion for the variables q and N. In the joint solution, q is
given by (7), and N is given by

N̄ ¼ c1
3

Λ

��
Λ
3
q0 − k

�
1=2

þ c2

�
Λ
3
q1 − k

�
1=2

�
; ð10Þ

where c1; c2 ∈ f−1; 1g.
This offers four possible saddle points. However, not all

of them will make contributions to the Lorentzian path
integral, and Picard-Lefschetz theory can be employed to
determine the actually relevant saddle points [24]. Previous
works show that the relevancy of the saddle points depends
on whether the N-integral is defined as

R∞
0 dN or

R∞
−∞ dN.

There has been no consensus in the literature on which
measure to use [24,26–30].

III. LIMITATIONS OF THE REAL Q SCHEME

A. Cases with limitations

In the procedure reviewed above, integrating qðtÞ over
the whole real line is crucial. It enables Gaussian integra-
tion to obtain the analytic result (6).
However, in the context of Lorentzian quantum

cosmology there is an unsettling issue. For the metric (3)
to stay in the Lorentzian signature ð−;þ;þ;þÞ, it must be

that qðtÞ > 0. Therefore, q should only be integrated over
positive values in a strictly Lorentzian path integral.
In practice, integrating q over the real line could still be

employed as a useful trick if the result agrees well with
integrating over positive q. For instance, if the saddle point
q̄ of (7) stays far above zero for the whole time t∈ ½0; 1�,
then the integrals in both positive and real q schemes are
dominated by paths which stay positive.
Yet in some cases q̄ does not stay far above zero:
(i) When a boundary value q0 or q1 is close to zero,

then (7) clearly does not stay far away from zero for
all time (Fig. 1). This happens for Lorentzian
versions (e.g., [24,26,31,35,36]) of the tunneling
[55–57] and no-boundary [58] boundary conditions
where q0 is sent to zero.

(ii) When N is on shell at (10), the saddle point q̄ can
reach 3k=Λ (e.g., at the minimum value for the
c2 ¼ 1 cases in Fig. 2). This minimum value can get
close to or below zero. For example, this happens in
the k ¼ 0 case relevant to inflation [33].

(iii) When N is allowed off shell, there are more cases
where q̄ðtÞ gets close to or below zero. For example,
when Λ > 0 the bouncing saddle point q̄ always
dives into negative values for sufficiently large N.2

The first two cases are especially troublesome. Here the
relevant saddle points with both q and N set on-shell get
close to or below zero. Paths at and around these saddle
points make significant contributions to the path integral in
the real q scheme, but are excluded in the positive q
scheme. Therefore, the real q scheme result may deviate
much from the truly Lorentzian positive q scheme result.
(iv) In addition, for any values of q0; q1;Λ; k, path

integral configurations with zero or negative q at

FIG. 1. Plotting q̄ðtÞ with Λ ¼ 3; q0 ¼ 0; q1 ¼ 2 for on shell N with c1 ¼ 1. In the first two cases Req̄ overlap for c2 ¼ 1 and
c2 ¼ −1.

2The general solution (7) is a parabola with axis of symmetry
at ta ¼ 1=2þ 3ðq0 − q1Þ=ð2N2ΛÞ. When Λ > 0, q̄ assumes its
minimum value

q̄ðtaÞ ¼
1

12

�
−ΛN2 −

9ðq0 − q1Þ2
ΛN2

þ 6ðq0 þ q1Þ
�
; ð11Þ

which is always negative for large enough N. Moreover, ta
approaches 1=2 for large N, so it always falls within the relevant
range t∈ ½0; 1�.
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some time are not Lorentzian so do not possess a
causal structure.

This poses a difficulty in studying topics related to causal
structures, for example, on the topics of how quantum
fluctuations of spacetime affects the horizon problem [59]
and light/gravitational wave propagations for bouncing
cosmology [60].

B. A toy model example

To illustrate how the positive and real q schemes can
produce quantitatively very different results, we look at a
simple toy model just for the q path integral. The results
of the later sections, which demand more efforts to obtain,
will show that the same happens for the joint q − N path
integral. The q path integral can be approximated by

G½q0; q1;N� ≈
Z

Dqei
P

n
i¼0

Si ; ð12Þ
Z

Dq ¼
Z

∞

0

dqðt1Þ � � �
Z

∞

0

dqðtnÞμðqðt1Þ;…; qðtnÞ; NÞ;

ð13Þ

Si ¼ 2π2
�
−
3ðqðtiþ1Þ − qðtiÞÞ2

4NΔt

þ NΔt
�
3k −

1

2
ΛðqðtiÞ þ qðtiþ1ÞÞ

��
; ð14Þ

where the time domain t∈ ½0; 1� is broken into nþ 1
intervals of size Δt ¼ 1=ðnþ 1Þ with the actions Si. The
exact result is approached as n → ∞.
Here μ is the measure factor for the integrals. The result

(6) is obtained with

μ ¼
�

3πi
2NΔt

�nþ1
2

; ð15Þ

which takes the same form of the measure factor for a
quantum particle [54]. We will use this measure to make the
comparison between the positive and real q schemes.
Figure 3 plots the on shell q̄ðtÞ of (7) for Λ ¼ 3; k ¼

1; q0 ¼ 1; q1 ¼ 2 for a list of N values, including some
for which q̄ðtÞ gets close to zero or reach negative values.
In the simplest approximation n ¼ 1, there is only one

dynamical variable q ≔ qðt1Þ, and (12) can be computed
by direct numerical integration. The results obtained using
Mathematica for the positive and real q schemes are shown
in Fig. 4. Clearly as N increases and q̄ðtÞ approaches zero
or negative values, the difference becomes quite significant.
Already at N ¼ 2.4 where q̄ðtÞ still stays positive, the
difference reaches as high as 39%.

IV. GENERALIZED THIMBLE METHOD

In order to investigate the differences between the truly
Lorentzian positive q scheme and the real q scheme further,
we need a method to evaluate the truly Lorentzian path
integrals. The problem is quite nontrivial because analyti-
cally, not much is known for path integral computations
beyond Gaussian integration. Even numerically, the com-
plex Lorentzian path integral has an oscillating phase that
gives rise to the numerical sign problem.

A. Review of the method

Fortunately, the generalized thimble numerical method
[51,61] offers a way to overcome the sign problem. This
is a Monte Carlo sampling method that exploits Picard-
Lefschetz theory to deform the integration contour to
reduce the complex phase fluctuations. It can be viewed
as a generalization of the Lefschetz thimble method [62] to
other than the steepest descent contours [63], which makes
the method more adaptable to attack problems such as
multimodal problems [64–67].

FIG. 2. Plotting q̄ðtÞ with Λ ¼ 3; q0 ¼ 1.9; q1 ¼ 2 for on shell N with c1 ¼ 1.

FIG. 3. Plotting q̄ðtÞ with Λ ¼ 3; k ¼ 1; q0 ¼ 1; q1 ¼ 2 for a
list of N values.
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Given a multidimensional integral

Z Y
i

dvieE½v1;v2;����; ð16Þ

the holomorphic gradient flow equations

dvi
dt

¼ −
∂E
∂vi

∀ i; ð17Þ

generate an integral curve for each point ζ¼ðv1;v2;…;vnÞ
in the original integration contour. Subjecting the whole
integration contour to this flow generates a contour
deformation CðtÞ as a function of the flow time t, with
Cð0Þ as the original contour. If the integrand is holomor-
phic everywhere the flow transverses, Cauchy’s integration
theorem guarantees that the integral along CðtÞ differs from
the original one only along the boundaries of the flowed
region (Fig. 5). If the boundary contributions are negligible,
we could use the integral along CðtÞ to approximate the
original integral.
Evaluating the integral along CðtÞ could ameliorate the

sign problem. To see this, note that by (17) the real part ER
of E obeys

dER

dt
¼ 1

2

�
dE
dt

þ dE
dt

�
¼ 1

2

X
i

�
∂E
∂vi

dvi
dt

þ ∂E
∂vi

dvi
dt

�

¼ −
X
i

���� ∂E
∂vi

����
2

≤ 0: ð18Þ

Therefore, the magnitude of the integrand is exponentially
suppressed along the flow, except for regions close to

the stationary points where ∂E=∂vi ¼ 0; ∀ i. For suffi-
ciently large t, only this region contributes significantly
to the integral along CðtÞ, and we can hope that the phase
fluctuation of the integrand is milder than over the original
contour.
The generalized thimble method of [51,61] exploits the

deformed contour to perform Markov Chain Monte Carlo
sampling based on the following algorithm:
(1) Fix some flow time t ¼ T. Start with a configuration

ζ ¼ fvigi in the original contour. Use numerical
integration to evolve it under (17) by T to ob-
tain ϕ ¼ ϕðζÞ.

(2) Sample a new configuration ζ0 ¼ ζ þ δζ on the
original contour and evolve ζ0 under (17) again
by T to obtain ϕ0 ¼ ϕ0ðζ0Þ.

(3) Accept ζ0 as the new ζ with probability P ¼ minf1;
eReEeffðϕ0Þ−ReEeffðϕÞg, where Eeff is defined below
in (22).

(4) Repeat steps 2 and 3 until a sufficient ensemble of
configurations is generated.

(5) Compute the expectation values using the formula

hOi ¼ hOeiφðζÞiReEeff

heiφðζÞiReEeff

; ð19Þ

where φ is defined in (23) and h·iReEeff
denotes

averaging over the ensemble just generated.
To define Eeff , we note that

Z
Cð0Þ

eEðζÞdζ ¼
Z
CðTÞ

eEðϕÞdϕ ¼
Z
Cð0Þ

eEðϕðζÞÞ det J dζ:

ð20Þ

In the second expression, the contour CðTÞ is parametrized
by the flowed coordinates ϕ. In the last expression the
contour CðTÞ is reparametrized by the original coordinates
ζ. This induces the Jacobian Jij ¼ ∂ϕi

∂ζj
which can be

computed by integrating to t ¼ T

dJijðtÞ
dt

¼
X
k

HikJkj; Hij¼−
∂
2E

∂vi∂vj
; Jijð0Þ¼ δij:

ð21Þ

The integrand exponent of the last integral of (20) is given a
special name

FIG. 4. Numerical integration results for the n ¼ 1 approximation. The first row shows results of the positive q scheme, the second
row shows results of the real q scheme, and the third row shows their relative differences.

FIG. 5. If the integrand is holomorphic in the region enclosed
by the curves shown, the integral along the boundary will vanish
by Cauchy’s integration theorem. As a consequence, the integrals
along the contours Cð0Þ and CðtÞ differ only by the integrals
along the dashed boundaries.
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Eeff ¼ EðϕðζÞÞ þ log det JðζÞ ð22Þ

Expanding Eeff in real and imaginary parts yields
eEeff ¼ eReEeffþiφ, where

φ ¼ ImEeff ¼ ImEþ arg detðJÞ: ð23Þ

This explains steps 3 and 5, in which we sample (20)
according to the magnitude eReEeff of the integrand, and
multiply O with the phase eiφ in (19).

B. Integration range and measure factors

We want to apply the generalized thimble method to the
path integral (5)

Z½q0; q1� ¼
Z

DN
Z

DqeiS½q;N� ¼
Z

DNG½q0; q1;N�

ð24Þ

with G½q0; q1;N� given in (12). For this we need to specify
the integration range and measure factors.
Since the metric (3) is of the Lorentzian signature

ð−;þ;þ;þÞ only when q is positive, we integrate q over
positive values as in (13).
For the q measure factor μ of (13), previous results

in the real q scheme employed (15). Since
R
∞
−∞ e−ax

2

dx ¼ffiffiffiffiffiffiffiffi
π=a

p ¼ 2
R∞
0 e−ax

2

dx for Rea > 0, it seems reasonable to
modify (15) by a constant factor in the positive q scheme.
Since constant multiplicative factors cancel out in (19), for
simplicity we will directly employ μ ¼ ð1NÞ

nþ1
2 . This factor μ

can be incorporated as an additional term

Eμ ¼
nþ 1

2
logN ð25Þ

in the path integral exponent E of (16).
As mentioned at the end of Sec. II, there is more than one

choice for the N integration range. Here we take

Z
DN ¼

Z
∞

0

dN ð26Þ

as in [24] for concreteness. The disagreement between
real and positive q schemes should also be present for the
alternative measure

R
∞
−∞ dN. Although we have not per-

formed the study, it seems the generalized thimble method
can be applied to this case as well.
An additional measure factor is included for the follow-

ing reason. The q and N integration ranges are both
bounded by 0. As explained around Fig. 5, the integrals
along the flowed contour and the original contour agree
well if contributions are small along the “side contours”
(dashed part of Fig. 5) traced by the boundaries of the
original contour under the holomorphic gradient flow. For

the particular case at hand, the boundaries of the original lie
at N ¼ 0 and qðtiÞ ¼ 0; ∀ i. According to (25), the N ¼ 0
boundary is a log singularity. As explained in Sec. 2 of [24],
such a singularity is unchanged under the holomorphic
gradient flow. As the flow time grows from T ¼ 0 to T ¼
∞ toward the Lefschetz thimbles, the contour is pinched at
N ¼ 0 while the angle at which the contour reaches N ¼ 0
varies. Therefore this “side contour” has no extension, and
offers no contribution to the integral.
To ensure that “side contour” also offers no contribution

to the integral at the qðtiÞ ¼ 0 boundaries, we employ the
trick of introducing the measure factor

Q
i qðtiÞm for some

m < 0. For jmj ≪ 1 such as m ¼ −0.001 used here, qm

stays fairly close to one for practical ranges of q. For
instance, consider the range starting from the very tiny
value of q ¼ 10−8 and extending to the very large value of
q ¼ 102 in comparison to the saddle paths of Sec. VI. In
this range, qm only decreases monotonically from 1.0186 to
0.9954 to four digits after the decimal place for m ¼
−0.001 used below in Sec. VI. This makes almost no
difference in comparison to the case without the additional
measure factor, where m ¼ 0 and qm stays at 1. Therefore
the additional measure factor does not affect much the
integral over the original real contour. Yet as in the N case,
it generates a log singularity for the exponent, which
sets qðtiÞ ¼ 0 unchanged under the holomorphic gradient
flow. Consequently, the “side contour” has no extension,
and offers no contribution to the integral. This ensures that
the integrals agree along the flowed contour and the
original contour.
In summary, we will apply the generalized thimble

method to the path integral

Z½q0; q1� ¼
Z

∞

0

dN
Z

∞

0

dqðt1Þ � � �

×
Z

∞

0

dqðtnÞei
P

n
i¼0

S̃i−nþ1
2
logN; ð27Þ

S̃i ¼ 2π2
�
−
3ðqðtiþ1Þ − qðtiÞÞ2

4NΔt

þ N

�
3k −

1

2
ΛðqðtiÞ þ qðtiþ1ÞÞ

�
Δt

�

−
im
2
ðlog qðtiÞ þ log qðtiþ1ÞÞ; ð28Þ

where the measure factor for q is absorbed in S̃i, and that
for N is added to the exponent of the integrand. For
convenience of writing, we separated a single factor qðtiÞm
into two places in S̃i and S̃i−1. This introduces constant
factors for the unintegrated boundary q values, but these
constants drop out eventually when taking ratios as in (19).
The integrals in (27) are now for the Borel measure without
additional factors, so (17) is directly applicable.
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C. Notes on implementing the algorithm

The generalized thimble method requires the integrand to
be holomorphic everywhere the holomorphic gradient flow
transverses. Since log functions show up in the integrand
(27), the integration domain is now taken on the Riemann
surfaces of the q’s and N. This means in step 1 of the
generalized thimble algorithm, one needs to keep track of
the log branches for q and N during the flow. In the Julia
programming language [68] that we use, this is imple-
mented by the “callback functions” of the package
“DifferentialEquations.jl” [69], as is done in simplicial
quantum gravity which refers to both log and square root
branches [70].
For step 2 of the generalized thimble algorithm, again

as in [70] we apply the adaptive Monte Carlo sampler
reviewed in [71]. The rest of the steps are then implemented
as stated in Sec. IVA.

V. LIGHT CONE FLUCTUATIONS

The results of the generalized thimble method are in
terms of the expectation values (19). We are interested in
hqðtÞi and hNi for the squared scale factor and the lapse.
In addition, we will compute the expectation values for

the light cone location and their fluctuations. Consider an
event on the initial boundary for the minisuperspace
universe at t ¼ 0, and set its coordinate to

ðt; r; θ;ϕÞ ¼ ð0; 0; 0; 0Þ ð29Þ

in the spherical radial coordinate of (3). We are interested in
where its future light cone cross the final boundary for the
minisuperspace universe at t ¼ 1. Since the metric (3) is
spherical symmetric, in each metric the final light cone
location is the same for all θ;ϕ. Therefore we focus on the
radial light cone location. Since the path integral sums over
different metrics, we will compute the expectation value for
the final light cone location.
For the metric (3), the equation for radial lightlike

geodesic is

0 ¼ −
N2

qðtÞ dt
2 þ qðtÞ

1 − kr2
dr2: ð30Þ

With dχ2 ¼ 1
1−kr2 dr

2, (30) implies Ndt
qðtÞ ¼ dχ. Integrating

both sides yields

N
Z

1

qðtÞ dt ¼ Δχ: ð31Þ

During a time interval Δt, the zigzagging path of (12)

obeys qðtÞ ¼ qðtiþ1Þ−qðtiÞ
Δt tþ qðtiÞ. Plugging this in (31) for

yields

Δχi¼
NΔtðlogqðtiÞ− logqðtiþ1ÞÞ

qðtiÞ−qðtiþ1Þ
; Δχ¼

Xn
i¼0

Δχi: ð32Þ

For a radial geodesic ds2 ¼ − N2

qðtÞ dt
2 þ qðtÞdχ2, so Δχ

gives the spatial comoving distance that a radial light ray
covers from t ¼ 0 to t ¼ 1 and quantifies the size of the
causal horizon for events at t ¼ 0. Below we will use (32)
in (19) to compute the expectation value hΔχi and the
standard deviation

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔχ2i − hΔχi2

q
ð33Þ

to quantify horizon fluctuations.
Such horizon fluctuations have been studied before

in Lorentzian simplicial quantum gravity [59,72] as an
aspect where quantum cosmology may make a difference
to standard paradigms of cosmology based on classical
spacetimes. In particular, light rays that were never in
causal contact if spacetime was treated classically could
actually have been in causal contact if spacetime is treated
quantumly to allow quantum fluctuations of the light ray
paths. Therefore the horizon problem may take a different
form in quantum cosmology in comparison to classical
cosmology. Although it is too early to draw any definitive
conclusions from the results presented below in Sec. VI,
the potential for future developments should be bear
in mind.

VI. CASE STUDY: BOUNCING COSMOLOGY

In Fig. 2 the bouncing saddle points qðtÞ are for c2 ¼ 1.
When k ¼ 1, q̄ðtÞ stays above 0. When k ¼ 0, q̄ðtÞ reaches
0 at its minimum. When k ¼ −1, q̄ðtÞ drops below 0. In the
last two cases, the saddle point q̄ðtÞ does not stay positive
for all time, so q̄ðtÞ is not included in the truly Lorentzian
path integral sum. Therefore results from the real q scheme
run the risk of deviating much from the positive q scheme.
In this section we apply the method of Sec. IV to make a
quantitative comparison between the positive and real q
schemes.

A. Focusing on the bouncing saddle point

As shown in [24], both saddle points with c2 ¼ 1 and
c2 ¼ −1 in Fig. 2 are relevant for the real q scheme path
integrals. An otherwise unconstrained path integral will
exhibit interference effects for the two saddle points.
In comparing the positive and real q schemes, we want to

focus on the c2 ¼ 1 bouncing saddle point since the c2 ¼
−1 saddle point stay high above 0 for all time. One way to
achieve this is to modify the boundary condition. The c2 ¼
1 and c2 ¼ −1 saddle points have different momentum
at the boundaries. By employing a coherent state type
boundary condition that centers around the momentum of
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c2 ¼ 1, one obtains a path integral without the interference
of the other saddle point [33].
The generalized thimble method offers a practical alter-

native. In a Monte Carlo simulation with multiple saddle
points, the sampler needs to overcome the low integrand
weight barrier at intermediate regions to move from around
one saddle point to around another. Usually one wants to
sample efficiently across different saddle points, and some
advanced variations of the original generalized thimble
method have been developed to achieve this [64–67]. Here
we want to avoid traveling across saddle points, which
does not require any advanced method. Because of (18), a
larger flow time T increases the integrand weight barrier.
Therefore we can simply adopt a large T to restrict the

Monte Carlo sampler to around the bouncing saddle point.
The results presented next show the appropriate T to
achieve this.

B. Results

In Fig. 2 we took q0 ¼ 1.9, q1 ¼ 2.0 and Λ ¼ 3. For the
same parameters, Fig. 6 and Table I summarize the
numerical results based on (27) with n ¼ 5.
For k ¼ 1 and k ¼ 0, the expectation values hqðtÞi and

hNi from the positive and real q schemes are close, as seen
in Table I. The expectation values hqðtÞi are in turn close to
the saddle point values q̄ðtÞ, as seen from Fig. 6. In
particular, the imaginary part of the saddle points vanish,

FIG. 6. Comparing quantum expectation values hqðtÞi of Table I from the positive q scheme with the saddle point values q̄ðtÞ.

TABLE I. Results for q0 ¼ 1.9; q1 ¼ 2.0;Λ ¼ 3. Data for each of the six columns is produced from a Monte Carlo chain of length
10 million.

k 1 1 0 0 −1 −1
Scheme Positive Real Positive Real Positive Real

m −0.001 0 −0.001 0 −0.001 0
T 0.025 0.025 0.03 0.03 0.027 0.03

heiφi 1 1 0.98 0.98 0.94 0.96

hqðt1Þi 1.38þ 0.01im 1.41 − 0.01im 0.84þ 0.04im 0.86þ 0.02im 0.97þ 0.38im 0.22 − 0.01im
hqðt2Þi 1.08þ 0.01im 1.1þ 0.0im 0.22þ 0.05im 0.24þ 0.03im 0.35þ 0.59im −0.77 − 0.02im
hqðt3Þi 1.0þ 0.0im 1.0þ 0.02im 0.04þ 0.04im 0.03þ 0.04im 0.15þ 0.65im −1.1 − 0.02im
hqðt4Þi 1.12 − 0.0im 1.1þ 0.03im 0.28þ 0.03im 0.25þ 0.05im 0.39þ 0.58im −0.74 − 0.01im
hqðt5Þi 1.46 − 0.0im 1.44þ 0.03im 0.94þ 0.02im 0.91þ 0.04im 1.04þ 0.37im 0.29 − 0.01im
hNi 1.96 − 0.03im 1.92 − 0.03im 2.7 − 0.11im 2.71 − 0.1im 1.73 − 0.81im 3.5þ 0.03im
hΔχi 18.93 − 0.47im N/A 97.96 − 37.04im N/A 5.6 − 28.43im N/A
σ 1.08 − 0.08im N/A 11.84þ 18.21im N/A 1.07 − 1.9im N/A
jσj 1.08 N/A 21.72 N/A 2.18 N/A
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and the imaginary part of the expectation values are also
close to zero. In contrast:

(i) For k ¼ −1, the expectation values hqðtÞi and hNi
from the positive and real q schemes differ much. In
the positive q scheme, RehqðtÞi deviate much from q̄
which is real, and ImhqðtÞi deviate much from zero.

Besides, there is a fundamental difference that applies to
all values of k. In the positive q scheme all path integral
configurations are Lorentzian, so we can compute expect-
ation values hΔχi for the comoving horizon (32) and its
fluctuations σ as defined in Sec. V. In contrast, in the real q
scheme there are path integral configurations which are not
Lorentzian, so the expectation value for the comoving
horizon is undefined. The results for hΔχi; σ; jσj for the real
q scheme are shown in the last three rows of Table I. To the
extent that jσj offers an indirect indicator of the amount of
fluctuation:
(ii) In the positive q scheme, the amount of light cone

fluctuation as indicated by jσj is much larger for
k ¼ 0 than for k ¼ 1 and k ¼ −1.

C. Understanding the expectation values

In the first bullet point of Sec. VI B, we noted that the
real q scheme expectation values for q differ much from the
saddle point values in the negative spatial curvature k ¼ −1
case. To understand this, it helps to consider again the one-
variable toy model of Sec. III B. According to Picard-
Lefschetz theory [24], the real line approaches the steepest
descent contour asymptotically under the holomorphic
gradient flow defined by (16) and plotted in Fig. 7.
In the real q scheme, the integration contour is the real

line. Since this contour is deformed into the steepest

descent contour under the flow, and the integral can be
equivalently performed there. As shown in Fig. 7, the
saddle point is at −0.75. Points around the saddle point
along the steepest descent contour all have negative real
parts around −0.75, but some have positive and some have
negative imaginary parts. Therefore, we expect hqðtÞi to
have a negative real part around the saddle point, and an
almost vanishing or exactly vanishing imaginary part due to
the cancellation from positive and negative contributions.
In the positive q scheme, the integration contour is the

positive half-line. As shown in Fig. 7, this contour only
approaches a portion of the steepest descent contour quite
far from the saddle point. In particular, all points of the
original contour flow towards the directions of positive real
values and negative imaginary values. Therefore, we expect
hqðtÞi to have a much larger real part than the saddle point,
and a much smaller imaginary part than zero.
The actual model for k ¼ −1 we considered has more

dynamical variables than one. However, similarly the real
parts of hqðtÞi deviate much from the negative saddle point
values, and the imaginary parts of hqðtÞi deviate much from
zero (Fig. 8). Presumably this is for the same reason that
under the holomorphic gradient flow, the original positive q
contour approaches only a portion of the steepest descent
contour which does not cover the saddle point.

D. Understanding the fluctuations

From Table I, we see that the light cone fluctuation
measurers σ and jσj differ much among the k ¼ 1; 0;−1
cases. In addition, for k ¼ −1 the fluctuations in q and N
differ much between the real and positive q schemes,
as shown in Fig. 8 vs Fig. 9. These difference can be
understood better by drawing an analogy to a simpler setting.
Consider three Gaussian distributions with standard

deviation 1, but centered around different locations μ ¼ −2,
0, and 2. Assume that only the portion along the positive real
half-lineRþ is relevant, and rescale the distributions so that
they are normalized onRþ. As shown in Fig. 10, the smaller
μ is, the more sharply the distribution is peaked. As a
consequence, the standard deviation σ computed on Rþ is
smaller for smaller μ (Fig. 10).
In the case of quantum cosmology, the real vs positive q

schemes of k ¼ −1 is like μ ¼ 2 vs μ ¼ −2. In the real q
scheme, the original contour covers the whole steepest
descent contour under the holomorphic gradient flow, and
the magnitude of the integrand varies slowly around the
saddle point to yield relatively large fluctuations. This is
like the μ ¼ 2 case where a large portion around the peak 2
is covered by the positive domain. In the positive q scheme,
the original contour only covers a portion of the steepest
descent contour under the holomorphic gradient flow. This
portion does not contain the saddle point, and the magni-
tude of the integrand varies much faster around the peak
that is covered. This is like the μ ¼ −2 case where the peak
−2 lies far outside the positive domain. Therefore the

FIG. 7. Holomorphic gradient flow for the one-variable model
for N ¼ 3. The steepest descent contour is labeled by the
thickened line.

TRULY LORENTZIAN QUANTUM COSMOLOGY PHYS. REV. D 108, 103540 (2023)

103540-9



FIG. 8. Histograms for the Monte Carlo sampling data for k ¼ −1 in the positive q scheme. To reduce complexity the length of the
samples is reduced from 1000 million to 1 million by sequentially picking the first element from every 1000 samples.
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FIG. 9. Histograms for the Monte Carlo sampling data for k ¼ −1 in the real q scheme. To reduce complexity the length of the samples
is reduced from 1000 million to 1 million by sequentially picking the first element from every 1000 samples.
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fluctuations in hqðtÞi and hNi are smaller in comparison to
the real q scheme (Fig. 8 vs. Fig. 9).
The positive q scheme of k ¼ −1 vs k ¼ 0 is like μ ¼ −2

vs μ ¼ 0. For k ¼ 0, the saddle point is on the boundary of
the original contour. This is like the μ ¼ 0 case where the
peak 0 is on the boundary of the positive domain. Here we
expect more fluctuation than k ¼ −1, which is analogous to
the μ ¼ −2 case where the peak 0 lies far outside of the
positive domain. This explains why there is more fluc-
tuation for k ¼ 0 than for k ¼ −1measured by jσj, as noted
in the second bullet point of Sec. VI B.
Finally, there is also less fluctuation for k ¼ 1 than for

k ¼ 0 as measured by jσj. This is presumably because of
the form Δχi ∝

log q−log q0
q−q0 of the comoving distance function

(32). As q approaches zero, Δχi becomes very large and
very sensitive to the precise value of q. Since in the k ¼ 0
case the saddle point value q does get very close to zero,
while in the k ¼ 1 case it does not, larger fluctuations inΔχ
is expected.

E. Breakdown of saddle point approximation

In previous works of quantum cosmology, it is common
to apply saddle point approximation to the path integrals.
Here in the k ¼ −1 example the saddle point failed at
capturing the quantum expectation values of the truly
Lorentzian path integral. This shows that the technique
of saddle point semiclassical approximation does not enjoy
universal validity for Lorentzian quantum cosmology, and
must be used with caution.3

VII. SINGULARITY AVOIDANCE

A. Is singularity avoidance trivial?

Even when the expectation values are close (as in the
k ¼ 0 case), the positive and real q schemes still differ on

the critical issue of singularity avoidance. There are many
nontrivial ideas of singularities avoidance in quantum
gravity. For example, through discreteness, nonlocality,
higher-order terms in the action, final boundary condition
choices etc. However, there is a trivial alternative. A
gravitational path integral may simply not include singular
spacetimes in its sum [22,50].
For the minisuperspace model studied here, this indeed

follows from including only Lorentzian configurations in
the path integral. At the q ¼ 0 singularity, the metric (3)
is of signature ð∞; 0; 0; 0Þ. This is not of the Lorentzian
signature, so it is automatically avoided in the truly
Lorentzian path integral. In this sense, singularity avoid-
ance is trivially achieved.

B. Tunneling and no-boundary proposals

Interestingly, insisting on a strictly Lorentzian path
integral for all time including t ¼ 0 invalidates from the
outset Lorentzian variants of the tunneling/no-boundary
proposals that set qð0Þ ¼ 0. Therefore one must choose
from: (1) allowing non-Lorentzian configurations in the
path integral; or (2) rejecting boundary conditions that set q
to zero.
Choice (1) calls for some additional specifications.

Suppose quantum cosmology is governed by some funda-
mental theory of quantum gravity. Then how exactly are
non-Lorentzian configurations included in the path integral
for this fundamental theory? Is non-Lorentzianess only
allowed at certain places of quantum spacetime but not
others? If so, at exactly which kind of places, and why
not at other places? One possibility is to consider non-
Lorentzian pieces at the boundary of superspace, and allow
this kind of non-Lorentzianness in the path integral [74].
However, this proposal needed to divide the boundary of
superspace into regular and singular parts, and append
additional rules associated with probability fluxes to these
two parts. However, as far as we know the exact definition
of the regular and singular parts of the boundary has never
been written down in general [75], and this proposal still
remains as an incomplete idea.
Choice (2) is dynamically less ambiguous since no addi-

tional rule is needed on how to include non-Lorentzian
configurations. However, it leaves open the question of
boundary conditions which can only be determined by other
means. One possibility is to impose an ordinary Lorentzian
boundary condition concentrated around small positive
values of q. Another possibility is to give up on boundary
conditions at small sizes of the universe and investigate
boundary conditions for bouncing cosmology [76].

VIII. DISCUSSIONS

Quantum cosmology based on Lorentzian path integrals
is a promising avenue. However, many previous studies
integrate the squared scale factor over the whole real line.

FIG. 10. Sections of Gaussian distributions centered around μ
and normalized over Rþ. The standard deviation σ is smaller for
smaller μ.

3When naive saddle point approximation on unrestricted
domain does break down, it may be interesting to develop
new saddle point approximation method on bounded domains
along the line of, e.g., [73].
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This step introduces non-Lorentzian configurations into the
path integral. Instead, a truly Lorentzian path integral
should only include positive squared scale factor.
Here we studied and compared minisuperspace path

integrals with real and positive squared scale factors.
By restricting to Lorentzian configurations, the truly
Lorentzian case enables the study of causal horizons and
their quantum fluctuations, and achieves singularity avoid-
ance by excluding singular minisuperspace geometries as
non-Lorentzian. In addition, we find that the expectation
values can differ much between the two cases. This
happens in particular when the saddle point configuration
does not belong to the strictly Lorentzian integration
contour and is not connected to the strictly Lorentzian
integration contour by the holomorphic gradient flow.
These results challenge the universal validity of saddle

point approximation widely used in quantum cosmology. In
particular this affects topics such as Lorentzian variations of
tunneling/no-boundary proposals, and the quantum com-
pleteness of inflation [33]. In these cases, the saddle point
gets close to or below zero, so that it does not belong to the
strictly Lorentzian integration contour. Instead of using
saddle point approximation, a safer option is to compute the
path integral directly. This can be done, for example, using
the generalized thimble method adopted here.
We finish by a discussion on some topics to be under-

stood better.

A. Negative q

Although the metric (3) has the ð−;þ;þ;þÞ signature
only when q > 0, it has the ðþ;−;−;−Þ signature when
q < 0. One may wonder whether this rescues the real q
scheme for a Lorentzian path integral, since the
ðþ;−;−;−Þ signature might also be considered Lorentzian.
However, an attempt at rescue face some outstanding

issues, because the real q scheme path integral includes
configurations where q < 0 at certain times and q > 0 at
other times.
First, such a configuration involves signature change. It

does not qualify as a Lorentzian spacetime in the usual
sense such that the spacetime stays within the ð−;þ;þ;þÞ
or the ðþ;−;−;−Þ signature.
Second, in connecting the q < 0 and q > 0 parts of the

configuration q has to cross 0. Here the metric has signature
ð∞; 0; 0; 0Þ. This is not Lorentzian.
Third, when q crosses 0, it is not a priori clear what the

causal structure is for that spacetime. Some additional rules
are required to tell how causal paths travel across the
singularity at q ¼ 0. Without such a rule, the causal relation
between two events from the q < 0 and q > 0 parts of
spacetime remains unclear.

B. Inhomogeneity, anisotropy, and matter coupling

The present study is restricted to minisuperspace
models. For further research it is certainly interesting to

accommodate inhomogeneity and/or anisotropy in the truly
Lorentzian setting. For example, the Bianchi types I and III,
andKantowski-Sachsmodels studied in [15], and the biaxial
Bianchi IX model studied in [29,30] may be simple enough
as starting points to incorporate anisotropy. In a general
nonperturbative setting, simplicial manifold models
provide a systematic way to incorporate inhomogeneity
and anisotropy in quantum cosmology [10–12,77–84].
Traditionally, simplicial quantum gravity is studied with
respect to an Euclidean contour or an ad hoc complex
contour, but there has been growing attention towards
the Lorentzian case [4,5,50,59,70,72,85–88]. In particular,
the generalized thimble method employed here and
in [70] may be applicable in studies of inhomogeneity
and anisotropy.
Certainly one should also consider matter coupling in

further works. In addition to coupling to scalar fields and
investigate the inflation scenario, we also find alternative
scenarios without inflation worth investigating [89–92].

C. Light cone topics

Another topic about simplicial models of direct rel-
evance is irregular lightcone structures. In simplicial
models, there is the question whether the path integral
should include simplicial geometries with interior points
attached to more or fewer than two light cones. In [86,87]
this question is studied based on a comparison with the
continuum minisuperspace model in the real q scheme. It is
worth revisiting this topic given that the positive q scheme
may yield a different result.
In Sec. VI, we noted that the k ¼ 0 case exhibit larger

causal horizon fluctuations than the k ¼ 1 and k ¼ −1
cases. For the k ¼ −1 case, that the fluctuations are smaller
is related to the breakdown of saddle point approximation
based on Einstein’s equations. Whether this and other
effects of light cone fluctuations lead to any observable
signatures is worth investigating further.

D. Singularity

Much of quantum cosmology is driven by the
hope to understand singularities. In the recent wave of
interest for Lorentzian quantum cosmology, the question
has been raised whether singular geometries with q ¼ 0
should be avoided in the path integral [36], as such
geometries enter critical discussions about boundary con-
ditions [28,32,35,36,45] and inflation [37]. In Sec. VII we
showed that in a strictly Lorentzian path integral, singu-
larities are automatically excluded as non-Lorentzian. How
this affects the above topics is an open question.
There are many attempts to find effective regular space-

times that replace spacetimes with cosmological and black
hole singularities. Some of these derive regular solutions
from equations of motion of modified actions. The k ¼ −1
example studied here shows that an effective singularity-
free geometry that characterizes the quantum theory at
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leading order (e.g., gives the correct expectation values)
need not obey the equation of motion from an action
principle. It remains to be clarified how such alternative
views on singularity avoidance stand to each other.

E. Analytic insights

In computing the oscillating complex path integrals, we
applied the generalized thimble method [51] to overcome
the numerical sign problem. This method would not have
been available a decade ago. However, new methods for
evaluating complex path integrals are being developed at a
promising pace in the recent decade (see e.g., [63,93–95]
and references therein). We expect such technical tools to
boost the study beyond semiclassical analysis for the
Lorentzian path integrals.
That said, it is still beneficial to find analytic methods to

complement the numerical methods. One idea is to identify
the value of N so that the N-dependent saddle point q̄ of (7)
just falls within the Lorentzian domain. Flowing this pair of

N-q̄ values under the holomorphic gradient flow to the
steepest descent contour may yield a close guess at the
expectation values.
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