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Diffusion damping of the cosmic microwave background (CMB) power spectrum results from imperfect
photon-baryon coupling in the pre-recombination plasma. Energy release at redshifts 5 × 104 < z <
2 × 106 can create μ-type spectral distortions of the CMB. These μ distortions trace the underlying photon
density fluctuations, probing the primordial power spectrum in short-wavelength modes kS over the range
50 Mpc−1 ≲ k ≲ 104 Mpc−1. Small-scale power modulated by long-wavelength modes kL from squeezed-
limit non-Gaussianities introduces cross correlations between CMB temperature anisotropies and μ
distortions. Under single-field inflation models, μ × T correlations measured from an observer in an inertial
frame should vanish up to a factor of ðkL=kSÞ2 ≪ 1. Thus, any measurable correlation rules out single-field
inflation models. We forecast how well the next-generation ground-based CMB experiment CMB-S4 will
be able to constrain primordial squeezed-limit non-Gaussianity, parametrized by fNL, using measurements

of CμT
l as well as CμE

l from CMB E modes. Using current experimental specifications and foreground
modeling, we expect σðfNLÞ≲ 1000. This is roughly 4 times better than the current limit on fNL using
μ × T and μ × E correlations from Planck and is comparable to what is achievable with LiteBIRD,
demonstrating the power of the CMB-S4 experiment. This measurement is at an effective scale of k ≈
740 Mpc−1 and is thus highly complementary to measurements at larger scales from primary CMB and
large-scale structure.
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I. INTRODUCTION

The paradigm of cosmic inflation presents arguably the
most compelling and plausible scenario for the earliest
moments of the existence of our Universe and provides a
mechanism for creating the density perturbations that have
grown under the influence of gravity to form all the
structure we see in the Universe today. (For an overview
of the theoretical background and observational evidence
for inflation, see, e.g., the review by Ellis and Wands in
Chapter 23 in Ref. [1].) If a period of inflation did occur,
observations of the cosmic microwave background (CMB)
and tracers of the density field can give us clues about the
nature of the fields involved in inflation and their dynamics.
By extension, these observations can probe physics at the
energy scale of the inflationary potential, far beyond the
energy reach of any terrestrial experiment. The CMB has
most famously been used to constrain inflation models
through measurements of the power spectrum of density
fluctuations and constraints on the imprint of inflationary
gravitational-wave background on the polarization of the
CMB (e.g., [2]), but CMB observations can also shed light
on inflationary dynamics through searches for signatures of
primordial non-Gaussianity (PNG, e.g., [3–15]).
The most well-studied form of PNG is the so-called

squeezed-limit bispectrum (or Fourier-domain three-point
function), which describes a configuration of triangles in
Fourier space in which two of the k modes have a much
larger value than the third. This corresponds to a real-
space configuration in which a long-wavelength mode
modulates the amplitude of small-scale fluctuation power.
Mathematically, this is usually expressed in terms of the
relationship of the bispectrum of curvature perturbations to
the curvature power spectrum (e.g., [16]):

Bζðk1; k2; k3Þk3≪k1≈k2 ¼
12

5
fNLPζðk1ÞPζðk3Þ; ð1Þ

where fNL parametrizes the amplitude of local non-
Gaussianity and is defined explicitly through the first-order
expression for real-space local PNG,

ζðxÞ ¼ ζg þ
3

5
fNLðζ2g − hζ2giÞ; ð2Þ

where ζg is a random Gaussian field. One of the reasons the
squeezed-limit configuration is so well studied is that
models of inflation with a single scalar field whose kinetic
energy is always much less than its potential energy
(“single-field, slow-roll inflation”) produce vanishingly
small amounts of PNG of the squeezed-limit type [17].
A detection of this type of PNG at levels of fNL ≳ 0.01
would thus rule out large classes of inflation models,
including many of the most popular and viable models
(e.g., [18]).

The best current limits on the value of fNL in the squeezed
limit come from analyses of the primary CMB from
the Planck satellite [19]: fNL ¼ −0.9� 5.1 (68% C.L.).
Even cosmic-variance-limited maps of the CMB temper-
ature and polarization out to l ¼ 4000would only improve
these limits by roughly a factor of 5 [20]. Interest is thus high
in other methods of determining fNL. From a pure mode-
counting perspective, there is much more information in the
distribution of matter in the local and moderate-redshift
Universe, but the non-Gaussianity caused by nonlinear
growth complicates bispectrummeasurements of the galaxy
distribution significantly. Previous work has shown that
squeezed-limit PNGcauses a unique scale-dependent bias in
the galaxy distribution [21], and this signature is a target of
upcoming galaxy surveys (e.g., [22]), as is a direct meas-
urement of the matter bispectrum supplanted with careful
modeling (e.g., [23]).
Another promising avenue for detecting or constraining

local PNG involves distortions to the blackbody spectrum
of the CMB [24–27]. The injection of energy into the
primordial plasma will distort the spectrum of the CMB,
and a known source of energy release in the early Universe
is the dissipation of small-scale acoustic waves [28–31]
from photon diffusion or Silk damping [32]. The authors of
Refs. [33,34] pointed out that a modulation of small-scale
power by long-wavelength modes that underlie squeezed-
limit PNG would result in anisotropy in the μ distortion
and that a cosmic-variance-limited measurement of the
cross-spectrum between μ distortions and the CMB
temperature (μ × T) could in principle limit local-type
PNG to fNL ≲ 10−3. Furthermore, because the μ-distortion
signal is created by perturbations with wave numbers
k ≈ 50–104 Mpc−1, scales that are inaccessible by other
cosmological probes [28,35,36], constraints on fNL from
μ × T are highly complementary to constraints on large-
scale PNG from primary CMB or even large-scale structure.
In Refs. [37,38], the authors performed realistic

forecasting for the limits on fNL using μ-distortion
anisotropy measurements from proposed space missions,
including the effects of foreground contamination. Similar
methods have also been used to derive limits on PNG
from Planck [39,40] and COBE/FIRAS [41], with the most
stringent limit, fNL ≲ 6800 (95% C.L.), coming from
Ref. [40].
In this work we consider the potential of measuring

μ-distortion anisotropy from the ground. Ground-based
measurements have not been considered in previous works,
mainly because the calibration and stability requirements
for measuring the global μ signal are so stringent that it has
been assumed that only in the exquisitely stable environ-
ment of space, with no intervening atmosphere, would such
a measurement be possible. Following Ref. [33], we point
out in this work that measuring the μ-distortion anisotropy
is a fundamentally different task. Since anisotropy mea-
surements can be made with a differencing radiometer,
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most of the stability and calibration requirements are
converted to requirements on instantaneous sensitivity.
In this work we focus on the potential of the up-

coming CMB-S4 experiment [42] to measure μ-distortion
anisotropy—specifically, the correlation between μ and
CMB temperature and polarization anisotropies. We cal-
culate the constraints on fNL from CMB-S4 μ × T and
μ × Emeasurements, first considering raw sensitivity alone
and then adding the effects of atmospheric contamination
and foregrounds.
The paper is organized as follows. We discuss the

theoretical background in Sec. II; we describe the methods
we use for forecasting in Sec. III; we present the survey
configuration for CMB-S4 in Sec. IV; we present our
results in Sec. V; and we conclude in Sec. VI.

II. BACKGROUND

In this section, we review some of the key theoretical
concepts in calculating and forecasting the μ × T and μ × E
correlation arising from squeezed-limit non-Gaussianity.

A. Power spectrum and bispectrum

In the limit of purely Gaussian-distributed primordial
curvature perturbations ζðk⃗Þ, the autocorrelation of these
perturbations is given byD

ζk⃗1ζk⃗2

E
¼ ð2πÞ3δ

�
k⃗1 þ k⃗2

�
Pζðk1Þ: ð3Þ

The power spectrum PζðkÞ of these perturbations from
single-field inflation models is given by

PζðkÞ ¼
2π2

k3
Δ2

ζðkÞ; Δ2
ζðkÞ≡ As

�
k
kp

�
ns−1

: ð4Þ

Here we use best-fit numbers from the Planck 2018 data
release [43], As ¼ 2.1 × 10−9, and ns ¼ 0.965, reported for
a pivot scale kp ¼ 0.05 Mpc−1.
In the squeezed limit, where the correlation between two

small-scale modes with wave number kS is modulated by a
large-scale mode with wave number kL, local non-
Gaussianity is generated, and the small-scale power spec-
trum becomes position dependent,

PζðkS; xÞ ¼ PζðkSÞ
�
1þ d lnPζðkSÞ

dζL
ζLðxÞ

�
: ð5Þ

One common measure of the level of non-Gaussianity in
the curvature distribution is the Fourier-domain statistic
known as the curvature bispectrum Bζðk1; k2; k3Þ.
Analogous to the power spectrum and the autocorrelation,
the bispectrum is defined through its relationship to the
three-point correlation function:

D
ζk⃗1ζk⃗2ζk⃗3

E
¼ ð2πÞ3δ

�
k⃗1 þ k⃗2 þ k⃗3

�
Bζðk1; k2; k3Þ: ð6Þ

In the squeezed limit, k1=k3 → 0, the bispectrum can be
expressed as in Eq. (1), with fNL parametrizing the amount
of local non-Gaussianity coupling the power spectrum at
long and short wavelengths. In the squeezed limit, fNL
obeys a consistency relationship with the primordial power
spectrum [44]:

lim
kL=kS→0

12

5
fNLðkL; kS; kSÞ ¼ −

d lnΔ2
ζðkSÞ

d ln kS
: ð7Þ

For slow-roll single-field inflation, the consistency relation-
ship becomes

lim
kL=kS→0

12

5
fNLðkL; kS; kSÞ ¼ 1 − ns: ð8Þ

For the specific observable μ × T, however, the type of
PNG produced in single-field inflation results in a vanish-
ingly small signal, far below what is predicted by the
consistency relation [34,45]. This means any measurable
signal of μ × T would rule out single-field inflation models.
We review the reasoning behind this result in Sec. II C 1.

B. μ distortions

In the early Universe, energy injected into the plasma
will efficiently thermalize through double Compton scat-
tering and bremsstrahlung, producing a blackbody distri-
bution with a new temperature. These two processes are
highly efficient until a redshift zi ≈ 2 × 106, at which point
the Universe has expanded enough that the density neces-
sary for double Compton and bremsstrahlung to frequently
occur becomes too low [26].1 This leaves elastic Compton
scattering, which conserves photon number, as the primary
method for the photon-baryon bath to reach thermal
equilibrium. The inefficient thermalization introduces a
chemical potential, where the mixing of different black-
body spectra at different temperatures produces a
Bose-Einstein rather than Planckian distribution [47]. At
small chemical potentials, the Bose-Einstein distribution
can be approximated as a distorted blackbody spectrum in
which

nðνÞ ¼ ½ehν=ðkBTÞ − 1�−1 → ½ehν=ðkBTÞþμ − 1�−1; ð9Þ

1In reality, double Compton and bremsstrahlung processes will
always be efficient at sufficiently low frequencies, restoring a full
blackbody spectrum in equilibrium with the electrons deep into
the Rayleigh-Jeans tail. However, at zi ≲ 2 × 106, the low-
frequency photons produced are neither efficiently transported
towards higher frequencies (where the main distortion signals are
present) nor do they give the required total photon injection to
restore equilibrium [46].
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where h is Planck’s constant and kB is Boltzmann’s
constant. This distortion of the CMB spectrum from a
typical blackbody is known as a μ-type distortion. It occurs
until a redshift zf ≈ 5 × 104, where even thermalization
through single Compton becomes inefficient and distor-
tions of the y-type start being produced [48].
μ distortions can be generated from a variety of mech-

anisms. The primary contribution we consider in this work
is from diffusion damping of small-scale power. The μ
distortions produced by diffusion damping can be related to
the primordial curvature perturbations via

μðxÞ ¼
Z
k⃗1

Z
k⃗2

ζðk⃗1Þζðk⃗2ÞWðk⃗1; k⃗2Þeiðk⃗1þk⃗2Þ·x⃗; ð10Þ

where Wðk⃗1; k⃗2Þ, the window function, captures the
weighted amount of dissipated modes with wave number
k [45,49,50]. To relate the amount of μ distortions to the
primordial power spectrum, we take the ensemble average
of μðxÞ and k1 ¼ k2

hμðxÞi ≈ 1

2π2

Z
dkPζðkÞk2WðkÞ: ð11Þ

Assuming that μ distortions are generated from subhorizon
modes at the time of dissipation, the window function is

WðkÞ ≈ −4.54k2
Z

∞

0

dz
dk−2D
dz

J μðzÞe
− 2k2

k2
D
ðzÞ; ð12Þ

where kD is the damping scale for energy injection from
diffusion damping,

kDðzÞ ≈ 4.1 × 10−6ð1þ zÞ3=2 Mpc−1; ð13Þ

and J μ is the time window function for μ distortions
[45,49,50]. The time window function is well approximated
by an analytical Green’s function given in Ref. [51]

J μðzÞ ≈
�
1 − exp

�
−
�

1þ z
5.8 × 104

�
1.88

��

× e−ðz=ziÞ5=2 ; ð14Þ

where zi ≈ 2 × 106 is defined above as the beginning of the
μ-distortion era. For single-field, slow-roll inflation, the
average amount of μ distortions is roughly hμðxÞi ≈ 2 ×
10−8 [28,48,52]. We find that μ distortions are tracers of
primordial perturbations in the range 50 Mpc−1 ≲ kμ ≲ 1 ×
104 Mpc−1 [28,48,52].

C. μ cross correlations

Anisotropies of the CMB probe the primordial curvature
perturbations of inflation. CMB anisotropies are typically
decomposed into spherical harmonics. For example, the

real-space temperature anisotropy field Θðn̂Þ ¼ δTðn̂Þ=T,
can be decomposed into spherical harmonics Θðn̂Þ ¼P

lm aTlmYlmðn̂Þ. The spherical harmonic coefficients of
the various CMB anisotropy fields are related to (Fourier-
space) primordial curvature perturbations through

aXlm ¼ 4πi−l
Z
k⃗
eik⃗·x⃗ζðk⃗ÞΔX

l ðkÞY�
lmðk⃗Þ; ð15Þ

where X denotes the type of CMB anisotropy field (we are
considering only T and E here), and ΔX

l ðkÞ is the transfer
function connecting primordial perturbations to CMB
anisotropies. The coefficients can then be correlated with
each other:

D
ðaXlmÞ�aYl0m0

E
¼ δll0δmm0CXY

l ; ð16Þ

where CXY
l is the angular cross-power spectrum of CMB

anisotropy fields X and Y. Observations of μ-distortion
anisotropies can also be decomposed into spherical har-
monics:

aμlm ¼ 4πi−l
Z
k⃗
eik⃗·x⃗μðk⃗ÞΔμ

lðkÞY�
lmðk⃗Þ; ð17Þ

where Δμ
lðkÞ is the transfer function capturing the leading-

order evolution of μ distortion anisotropies [45,49,53,54],

Δμ
lðkÞ ≈ e−k

2=ðq2μ;DðzrecÞÞjlðkΔηÞ; ð18Þ

where qμ;DðzrecÞ ≈ 0.11 Mpc−1 [49] is the diffusion damp-
ing scale of the μ anisotropies, and Δη≡ η0 − ηrec, where
η0 and ηrec are the conformal times corresponding to
redshifts z ¼ 0 and recombination, respectively.
A few words about the μ-distortion transfer function

approximation in Eq. (18) are in order. First, so far no self-
consistent treatment of the distortion sourcing or evolution
in the context of PNG has been carried out. The framework
for formulating this problem is now in principle
available [55–57], but a detailed solution and discussion
is beyond the scope of the present work. Second, from
previous works [49,53] and also recently [56], it is clear
that the distortion transfer functions behave differently than
temperature modes. The former undergo spectral and
spatial evolution (akin to a rotation in spectral parameters
under each scattering event), while the latter (at first order
in perturbation theory) evolve purely spatially. As such, the
propagation of distortion modes and the related distortion
damping process differs. The quoted damping scale
qμ;DðzrecÞ ≈ 0.11 Mpc−1 is based on μ-distortion evolution
in the tight-coupling limit where no Doppler terms appear
in the distortion dipole [49,53]. As such, no standing waves
form, and distortion damping occurs directly in the dipole.
This is in stark contrast to CMB temperature perturbations,
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which damp primarily in the quadrupole [58], implying
qT;DðzrecÞ ≈ 0.14 Mpc−1. However, even if a self-consistent
treatment of the problem should certainly be carried out in
the future using the formalism of Refs. [55–57], overall the
precise value of the damping scale does not affect our
conclusions at a significant level. We demonstrate this
explicitly in the Appendix. Furthermore, we anticipate
other effects related to the sourcing of the distortion
anisotropies, window-function approximations and other
simplifications to be more significant [49,57].
While CAMB includes damping of CMB anisotropies

from the finite width of the surface of last scattering (SLS),
we also do not include this effect for μ anisotropies.
Properly accounting for the effect would again require
performing a full spectrospatial calculation of the μ
thermalization history [55–57], which is beyond the scope
of this paper. We estimate how the additional damping,
along with other possible modifications to μ damping,
would change our results in the Appendix. We find that our
constraints on fNL are within 15% of our fiducial results in
all cases, suggesting the effect of the additional damping
will be minor for μ anisotropies.
The angular correlation of μ distortions with CMB

anisotropies is given by

D
aμlmðaXl0m0 Þ�

E
¼ δll0δmm0CμX

l

¼ ð4πÞ2i−lþl0
Z
k⃗S

Z
k⃗L

eiðk⃗S−k⃗LÞ·x⃗

×
D
μ
�
k⃗S
�
ζð−k⃗LÞ

E
Δμ

lðk⃗SÞ
× ΔX

l0 ðk⃗LÞY�
lmð bkSÞYl0m0 ð bkLÞ; ð19Þ

where we have explicitly indicated here that, because of the
very different transfer functions, this correlation probes the
connection of the curvature power on very small scales
through μðk⃗SÞ with the large-scale curvature ζðk⃗LÞ. In other
words, this measurement is sensitive to the correlation
of a large-scale mode with two extremely small-scale
modes, i.e., the bispectrum in the ultra-squeezed limit.
The non-Gaussianities being probed are at scales of
50 Mpc−1 ≲ kμ ≲ 1 × 104 Mpc−1, much smaller than
scales probed by Planck measurements of the primary
CMB [19].
The ensemble average of hμðk⃗SÞζð−k⃗LÞi is

D
μ
�
k⃗S
�
ζð−k⃗LÞ

E
¼ hμiPζðkLÞ

12

5
fNL: ð20Þ

We use this to reexpress CμX
l as

CμX
l ¼ 24hμi

5π
fNL

Z þ∞

0

dkPζðkÞk2Δμ
lðkÞΔX

l ðkÞ: ð21Þ

The angular power spectra CμT
l and CμE

l for hμi ¼ 2 × 10−8

and fNL ¼ 1 are plotted in Fig. 1.2

1. μ × T in single-field inflation

As discussed in Sec. II A, even in single-field inflation,
squeezed-limit non-Gaussianity can be generated at the
level of fNL ∼ 1 − ns, where ns is the spectral index of the
curvature power spectrum [44]. The mechanism that
produces this squeezed-limit non-Gaussianity, however,
produces vanishingly small amounts (far smaller than the
level of fNL ¼ 1 − ns) of μ × T correlations. For this
reason, μ × T measurements have the potential to rule
out single-field inflation more stringently than other
probes. This was recognized by the authors of Ref. [45];
we briefly summarize their argument here.
In single-field inflation, squeezed-limit non-Gaussianity

is produced by long-wavelength modes that are outside of
the Hubble radius modulating the global small-scale power
spectrum by acting as a modulation of the global scale, or a
coordinate transformation, as seen in Eq. (5). For μ
distortions, this results in a shift in the observed value
of μ in direction n̂ of the form

μðn̂Þ ¼ μðzf; x⃗recÞ þ ζLðzf; x⃗recÞn̂ · ∇n̂μðzf; x⃗recÞ; ð22Þ

where x⃗rec ¼ n̂ðη0 − ηrecÞ. However, the value of μ dis-
tortion at a given position is a local phenomenon and only
traces the amount of power dissipated, which in turn
depends on the value of the local small-scale power
spectrum, which is invariant in the case of no other form
of modulation. Thus, μðx⃗Þ ¼ hμi, and, relating the long-
wavelength mode ζL to the large-scale temperature

FIG. 1. Angular cross-power spectrum of μ × T and μ × E for
hμi ¼ 2 × 10−8 and fNL ¼ 1. Solid lines correspond to positive
values while dashed lines correspond to negative values.

2This value for hμi includes the small negative μ distortion,
μcool ≈ −0.3 × 10−8 caused by the adiabatic cooling of baryons
[25]. Since this contribution does not partake in the PNG
evolution [49], our quoted results are somewhat conservative.
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anisotropy via ζL ¼ − 9
2
ΘL, in the Sachs-Wolfe approxi-

mation [45], we can write

μðn̂Þ ∼ hμi þ ΘLn̂ · ∇n̂hμi;
¼ hμi þ 0: ð23Þ

This makes it clear that μ distortions from diffusion
damping cannot correlate with a long-wavelength temper-
ature mode via this mechanism:

hμTi ∼ hΘLihμi þ hΘ2
Li∇n̂hμi ¼ hΘLihμi ¼ 0: ð24Þ

This means that μ × T is vanishingly small from non-
Gaussianity in single-field inflation, and the only terms that
survive are ones with ðkL=kSÞ2 suppression [45]. Therefore,
any measurable signal of μ × T would rule out single-field
models. This similarly applies to μ × E.

III. METHODS

Our aim is to forecast constraints on fNL using a joint
analysis of μ × T and μ × E correlations from CMB-S4. In
this section, we describe the key techniques we use to
forecast sensitivity. First we describe the Fisher-matrix
formalism used to convert μ, T, and E power spectra to
constraints on fNL. We then describe the component-
separation technique that allows us to predict μ and
T or E power spectra given the total signalþ noiseþ
foreground covariance matrix for a particular experimental
configuration. Finally, we describe how we model the noise
and foreground contributions to the band-band covariance
matrix.

A. Fisher matrix

If we would like to know how accurately we can measure
a given parameter pi in a data set, we can assume the
likelihood L of measuring the parameter follows a
Gaussian distribution:

L ∝ exp
�
−
1

2
ðpi − p̂iÞFijðpj − p̂jÞ

�
; ð25Þ

where pi is a fiducial value of the parameter and p̂i is the
measured value. Fij is the Fisher matrix, which captures the
covariance of measured parameters. We discuss the validity
of the assumption of Gaussian likelihood in Sec. III B.
We make the approximation that the amplitude of the

μ × T and μ × E spectra are controlled by a single free
parameter fNL and write

CμX
l ¼ fNLC

μX
l

���
fNL¼1

: ð26Þ

The Fisher “matrix” in this case is a scalar,

Fij ¼ −
∂
2 lnL

∂pi∂pj

¼ −
∂
2 lnL
∂f2NL

δij ≡ F; ð27Þ

and the 1σ uncertainty on fNL is

σðfNLÞ ¼
1ffiffiffiffi
F

p : ð28Þ

The expected noise at a given multipole l is given by

σ2l ¼
D�

CμX
l

�
2
E
−
D
CμX
l

E
2

¼ Cμμ
l CXX

l þ ðCμX
l Þ2

ð2lþ 1Þfsky
; ð29Þ

where fsky is the fraction of the full sky observed in the

survey. Our fiducial model for forecasting is CμX
l ¼ 0, and

we neglect the contribution of the noise part of CμX
l to the

variance, as it will always be much smaller than the product
of Cμμ

l and CXX
l . The likelihood is thus

−2 lnL ¼
Xlmax

l¼lmin

ð2lþ 1Þfsky

�
fNLC

μX
l

���
fNL¼1

�
2

Cμμ
l CXX

l
: ð30Þ

For the CμX
l cross spectrum (the numerator or signal

part of the Fisher matrix calculation), we use the formu-
lation in Eq. (21). For our fiducial forecasts, we adopt
hμi ¼ 2 × 10−8. For the denominator or noise part of the
Fisher calculation, we note that the auto-power spectra CXX

l
and Cμμ

l can be separated into signal and noise terms

Cl ¼ CS
l þ CN

l ; ð31Þ

where S and N denote signal and noise, respectively. At
CMB-S4 noise levels, measurements of both CTT

l and CEE
l

are signal dominated for l ≤ 2000 (at which point our
constraints on fNL are well saturated; see Fig. 6). Therefore,
we neglect the effects of noise and foregrounds on our
temperature and E-mode anisotropy maps, and can make
the approximation CXX

l ≈ CXX;S
l . On the other hand, mea-

surements of Cμμ
l will be noise dominated for the foresee-

able future, such that Cμμ
l ≈ Cμμ;N

l . Calculations for CXX;S
l

are taken from CAMB3 [59], while Cμμ;N
l is dependent on

instrument and observation parameters, including instru-
mental and atmospheric noise levels. We describe how we
obtain Cμμ;N

l from noise and foreground models in the
following sections.

3http://camb.info.
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The constraining powers of CμT
l and CμE

l for measuring
fNL are comparable to each other. Rather than having
independent constraints on fNL from CμT

l or CμE
l , we can

use the fact that they both probe the same underlying
correlator hμζi and perform a joint analysis. The authors of
Ref. [54] and Ref. [38] demonstrated that the differing
behavior of CμT

l and CμE
l with l provides a better constraint

on fNL than an independent analysis. We follow their
method and modify the likelihood function to include the
correlations between T and E in both the signal and the
covariance. The final likelihood is then

−2 lnL≈
Xlmax

l¼lmin

ð2lþ1Þfsky
Cμμ;N
l

h
CTT
l CEE

l −ðCTE
l Þ2

i
×
h
CTT
l

�
fNLC

μE
l jfNL¼1

�
2þCEE

l

�
fNLC

μT
l jfNL¼1

�
2

−2CTE
l f2NLC

μT
l jfNL¼1C

μE
l jfNL¼1

i
: ð32Þ

B. Component separation

For the purposes of our forecasting, observed maps of
the total intensity of the sky in direction n̂ and frequency νi,
Iiðn̂Þ, can be described as a linear combination of the CMB
μ and T signals and a noise contribution:

Iiðn̂Þ ¼ aμ;isμðn̂Þ þ aT;isCMBðn̂Þ þ niðn̂Þ; ð33Þ

where aμ;i and aT;i are the μ and temperature spectral
energy distributions (SEDs) at different frequency bands i,
and sμðn̂Þ and sCMBðn̂Þ are the true underlying μ and
temperature anisotropy maps. We treat all astrophysical
signals that are not CMB μ or T as noise and include them
in n. We can choose to work in spherical harmonic space,
defining Ilm such that Iðn̂Þ ¼ P

l

P
m IlmYlmðn̂Þ. We can

then rewrite Eq. (33) as

Ilm;i ¼ aμ;islm;μ þ aT;islm;CMB þ nlm;i: ð34Þ

Traditionally, data from CMB experiments are calibrated
such that maps in all frequency bands have the same
response to primary CMB temperature anisotropy, i.e., the
maps are in units of CMB fluctuation temperature ΔT or
fractional CMB fluctuation ΔT=T. In the latter case, the
CMB temperature SED aT;i is given by

aT;i ¼ TCMB ð35Þ

for all bands. We follow Ref. [37] and approximate the
μ-distortion SED at frequencies of 20 GHz and above as

aμ;i ¼ TCMB

�
1

2.19
−

1

xi

�
; ð36Þ

where

x≡ hν
kBTCMB

: ð37Þ

We can obtain a temperature-free μ map or its spherical
harmonic transform through component separation using a
constrained internal linear combination method (CILC) [60].
This method takes advantage of the known SEDs of temper-
ature and μ-distortion anisotropies and calculates weights w
that, when applied to observed frequency maps, result in
a T-free μmap and a μ-free T map. For example, if we assign
the μweights to the i ¼ 0 component ofwij, then theT-free μ
map is given by

μ̂T-freelm ¼
X
i

w0iIlm;i

¼ 1 � sμ þ 0 � sCMB þ
X
i

w0inlm;i: ð38Þ

It was shown in Ref. [37] that the weights that enforce unit
response to μ distortions and zero response to temperature
anisotropy, and minimize total variance, are given by

wT ¼ eTðATC−1AÞ−1ATC−1 ð39Þ

where

A ¼ ð aμ aCMB Þ; ð40Þ

eT ¼ ð 1 0 Þ; ð41Þ

C ¼ Cij
l is the frequency-frequency l-space covariance

matrix, and T denotes transpose. The above weights can
be generalized to null additional components bm by general-
izingA → ðaμ aCMB b1 … bmÞ and eT → ð1 0 0 … 0Þ.We
note that the weights depend on multipole number l, i.e.,
w → wl. For simplicity of notation, we leave the l depend-
ence implicit and continue to use w.
The reduction of the full Cij

lml0m0 ¼ hIilmIjl0m0 i to Cij
l

rests on the assumption that all sources of variance in the
maps are isotropic, stationary, and Gaussian. With detector
noise only and assuming no correlations between detector
noise at different frequencies, the covariance matrix is
diagonal (Cij

l ¼ Cii
lδij). Including foregrounds and atmos-

phere introduces correlated fluctuations between frequency
bands and requires the full frequency-frequency matrix.
The assumption of Gaussianity and statistical isotropy is

reasonably satisfied by detector noise, atmospheric emis-
sion, and extragalactic foregrounds, but not especially well
by Galactic foregrounds. The CMB-S4 “ultra-deep” survey,
which is the main survey we present forecasts for in this
work (see Sec. IV) is located in an area of the sky with very
low Galactic foreground emission. Furthermore, non-
Gaussianity in the true foreground emission not accounted
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for in the covariance will not bias the component separa-
tion; it will only make it slightly suboptimal. We note that
the Gaussianity of the likelihood [Eq. (33)] depends on the
power spectrum of the noise sources being Gaussian, not
the pixel values or modes of the noise sources themselves,
which is a lighter burden owing to the central limit theorem.
We can then obtain Cμμ

l by applying the μ-distortion
weights to the frequency-frequency covariance matrix:

Cμμ
l ¼

X
ij

w0iC
ij
lw0j: ð42Þ

We discuss the various contributions to the frequency-
frequency covariance matrix Cij

l in the following sections.

C. Instrument noise

Assuming detector noise that is white (uncorrelated
between time samples), uniform sky coverage, and a
Gaussian instrument beam or point-spread function, the
statistics of the map noise for frequency band i in spherical
harmonic or l space are given by

nil ¼ Niel
2θ2i =ð16 lnð2ÞÞ; ð43Þ

where Ni and θi are the white noise level in the map and the
angular resolution (beam FWHM) for frequency band i.
The contribution to the frequency-frequency covariance
matrix from this source will be

Cij;N
l ¼ hninji

¼ NiNjel
2θiθj=ð8 lnð2ÞÞ ð44Þ

and, for detector noise that is uncorrelated between bands,

Cij;N
l ¼ ðNiÞ2el2θ2i =ð8 lnð2ÞÞδij; ð45Þ

where δij is the Kronecker delta. For white detector noise
only, the μ-distortion power spectrum reduces to

Cμμ
l ¼

X
i

w2
0iðNiÞ2el2θ2i =ð8 lnð2ÞÞ: ð46Þ

D. Atmosphere

A major source of noise that must be considered in
ground-based observations of the CMB is the emission
from blobs of poorly mixed water vapor in the Earth’s
atmosphere (i.e., clouds). For detailed discussions of this
effect and measurements of the impact at various sites, see,
e.g., Refs. [61–63]. The spectrum of cloud sizes is such that
the noise power from this source is much larger at large
angular scales, and it is often modeled as a power law in l
(e.g., Ref. [64]). The total detector þ atmosphere noise
power in frequency band i can then be parametrized with

three numbers, namely the white noise level Ni, the
multipole value at which the detector and atmosphere noise
levels are equal lknee;i, and the power-law index of the
atmosphere noise αatmo;i,

Cij;N
l ¼

�
1þ

�
lknee;i

l

�
αatmo;i�

ðNiÞ2el2θ2i =ð8 lnð2ÞÞδij: ð47Þ

Implicit in the formulation of Eq. (47) is the assumption
that the atmospheric noise is uncorrelated between bands.
In fact, nearly the opposite is the case, at least for detectors
for which the beam patterns mostly overlap at the height of
the atmospheric emission. For example, internal CMB-S4
analysis of data from the SPT-3G receiver on the South Pole
Telescope (SPT) [65,66] found that for detectors in differ-
ent frequency bands but colocated in a focal-plane
pixel, the long-time-scale fluctuations in the time-
ordered data were over 99% correlated. To model this,
we can introduce an atmospheric correlation parameter η
and rewrite the noiseþ atmosphere contribution to the
frequency-frequency covariance matrix as

Cij;N
l ¼

�
1þ

�
lknee;i

l

�
αatmo;i�

× ðNiÞ2el2θ2i =ð8 lnð2ÞÞδij
þ
�
lknee;i

l

�
αatmo;i=2

�
lknee;j

l

�
αatmo;j=2

× NiNjel
2θiθj=ð8 lnð2ÞÞπij; ð48Þ

where πij ¼ ηð1 − δijÞ. In Sec. V, we show forecasts using
values of η ranging from 0 to 1. As the correlation η
increases, the component separation algorithm defined in
Sec. III B is more effective in reducing the atmospheric
contribution to the final Cμμ

l covariance.

E. Foregrounds

In our forecasting pipeline, we also consider the effects
of foregrounds. Foregrounds contribute to the frequency-
frequency covariance matrix as linear additions (because
they are not correlated with the other sources of covariance)
such that

Cij
l ¼ Cij;N

l þCij;fore
l : ð49Þ

For this work, we approximate all foregrounds as 100%
correlated across frequency bands (though we approxi-
mate each foreground source as uncorrelated with the
others), such that for a given foreground type (call it
“type X”)
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Cij;X
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cii;X
l Cjj;X

l

q
: ð50Þ

Foreground sources can be separated into Galactic and
extragalactic sources, and we treat each of these in turn
below. Often in the literature, foreground amplitudes and

l-space behavior are quoted in Dl ¼ lðlþ1Þ
2π Cl. When we

adopt such parametrizations, we keep the description in Dl
but convert to Cl when actually implementing the model.
We show the SEDs of the primary foreground sources,
along with the T and μ SEDs, in Fig. 2.

1. Galactic sources

The primary sources of Galactic contamination at CMB
observing frequencies are thermal dust emission and
synchrotron emission. Interstellar dust heated by starlight
emits as a quasithermal modified blackbody. We follow
Ref. [64] and parametrize the frequency behavior and
l-space shape of thermal dust emission as

Dd
l;ν1;ν2

¼ Dd
80;ν0

ϵν1;ν2

�
ν1ν2
ν20

�
αd

×
Bν1ðTdÞBν2ðTdÞ

B2
ν0ðTdÞ

�
l
80

�
−0.4

; ð51Þ

where B is Planck’s law, Dd
80;ν0

is the value of D at l ¼ 80

and the reference frequency ν0, Td is the dust temperature,
and αd is the dust spectral index. Following Ref. [67],
we define Dd

80 ¼ 3.253 μK2, αd ¼ 1.6, Td ¼ 19.6, and
ν0 ¼ 145 GHz. Finally, ϵν1;ν2 relates the brightness of
CMB fluctuations at ν1, ν2, and ν0:

ϵν1;ν2 ≡
h
dBðν0;TCMBÞ

dT

i
2

dBðν1;TCMBÞ
dT

dBðν2;TCMBÞ
dT

: ð52Þ

Because we have defined our μ and T SEDs assuming that
the input maps are calibrated to CMB fluctuation ampli-
tudes, we must also account for this in the foreground
modeling. The ratio 1=ðdB=dTjν;TCMB

Þ converts the source
radiance of a given foreground at frequency ν to an
equivalent CMB temperature anisotropy.
We use a similar parametrization for Galactic synchro-

tron, again following Ref. [64]

Dsync
l;ν1;ν2

¼ Dsync
80;ν0

ϵν1;ν2

�
ν1ν2
ν20

�
αsync

�
l
80

�
−0.4

; ð53Þ

and we again adopt values from Ref. [67]:
Dsync

80 ¼ 0.005 μK2, αsync ¼ −1.10, and ν0 ¼ 93 GHz.
We note that both the synchrotron and dust amplitudes
used here are estimated for the CMB-S4 “ultra-deep”
fsky ¼ 0.03 survey (see next section for details).
Because of the shape of the μ-distortion SED, lower-

frequency channels are particularly important for recover-
ing the signal, and it is possible that other Galactic
foregrounds such as free-free emission and “anomalous
microwave emission” (AME) could be important contam-
inants. We investigate the behavior of these additional
foregrounds in the CMB-S4 3% sky region using
PySM [68], which is based on the Planck Sky Model [69].
We find that the AME SED has a double-peaked shape,
which we parametrize as

f2AMEðνÞ¼
e−½lnðνÞ−lnðνa1Þ�

2=2σ2a1 þAe−½lnðνÞ−lnðνa2Þ�
2=2σ2a2

1þAe−½lnðνa1Þ−lnðνa2Þ�2=2σ2a1
; ð54Þ

with νa1 ¼ 10 GHz, σa1 ¼ 0.43 GHz, νa2 ¼ 22 GHz,
σa2 ¼ 0.35 GHz, and A ¼ 0.0065. We assume similar
l-space behavior as the thermal dust and write

DAME
l;ν1;ν2

¼ DAME
80;ν0

fAMEðν1ÞfAMEðν2Þ
�
l
80

�
−0.4

; ð55Þ

with DAME
80;ν0

¼ 1.0 × 104 μK2 at ν0 ¼ 10 GHz. The free-
free emission in the CMB-S4 3% sky region appears to be
dominated by point-like sources (either residual contribu-
tions from extragalactic radio sources or emission from
compact HII regions). Because CMB-S4 will have the
sensitivity and resolution to find and mask such sources, we
neglect the contribution of free-free emission in this
analysis.

2. Extragalactic foregrounds

In addition to emission from our Galaxy, we also need to
consider foreground emission from extragalactic sources.

FIG. 2. Spectral shape of CMB anisotropy, μ distortions, and
various Galactic and extragalactic foregrounds, all divided by the
CMB anisotropy SED and scaled by an arbitrary amplitude. For
frequencies ν < 100 GHz, we see that Galactic synchrotron
sharply rises, even relative to μ distortions. At frequencies
ν > 100 GHz, Galactic dust and the thermal SZ effect start
growing as the μ-distortion spectrum starts leveling off.
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We treat four independent types of extragalactic fore-
grounds: the thermal Sunyaev-Zel’dovich (tSZ) effect,
the clustered cosmic infrared background (CIB), the
unclustered (“shot-noise” or “Poisson”) component of
the CIB, and synchrotron-emitting active galactic nuclei
(or “radio sources”), the clustering of which is assumed to
be negligible. We neglect the contribution from the kinetic
Sunyaev-Zel’dovich effect, which has the same frequency
spectrum as the CMB and will be nulled by the CILC.
The tSZ effect, a type of y distortion, arises from CMB

photons scattering off electrons in the intracluster medium
of galaxy clusters and other collapsed structures. This shifts
the reemitted photons to higher frequencies compared to
the CMB spectrum. We parametrize the tSZ as

DtSZ
l;ν1;ν2

¼ DtSZ
3000;ν0

TðlÞ fðν1Þfðν2Þ
f2ðν0Þ

; ð56Þ

where

fðνÞ ¼ x
ex þ 1

ex − 1
− 4; ð57Þ

x ¼ hν
kBT

; ð58Þ

and TðlÞ is the tSZ template used in Ref. [70]. Following
Ref. [71], we adopt DtSZ

3000;ν0
¼ 3.4 μK2 at ν0 ¼ 150 GHz.

Again following Ref. [71], we parametrize the clustered
CIB as

Dc
l;ν1;ν2

¼ Dc
3000ðν0Þϵν1;ν2

�
ν1ν2
ν20

�
αp
�

l
3000

�
0.8
; ð59Þ

where Dc
3000ðν0Þ ¼ 3.46 μK2, αp ¼ 4.27, and

ν0 ¼ 150 GHz. And we parametrize the Poisson compo-
nent of the CIB as

Dp
l;ν1;ν2

¼ Dp
3000ðν0Þϵν1;ν2

�
ν1ν2
ν20

�
αp
�

l
3000

�
2

; ð60Þ

with Dp
3000 ¼ 9.16 μK2, αp ¼ 3.27, ν0 ¼ 150 GHz. For

this initial work, we do not consider spatial correlation
between the tSZ and CIB. This does not cause any direct
bias to our final result, as we explicitly null any signal with
a tSZ spectrum in our final constraints (see Sec. V for
details). For more discussion of the effects of tSZ-CIB
correlation on μ × T measurements, see Ref. [40].
Finally, we parametrize radio source power as

Dr
l;ν1;ν2

¼ Dr
3000ðν0Þϵν1;ν2

�
ν1ν2
ν20

�
αp
�

l
3000

�
2

; ð61Þ

with Dr
3000ðν0Þ ¼ 0.02 μK2, αp ¼ −0.7, ν0 ¼ 150 GHz.

This is significantly lower than amplitudes quoted in,

e.g., Ref. [71]. This is because the radio Poisson power
is dominated by the brightest individual sources in the map,
and masking and removing the brightest radio sources will
reduce the Poisson term. For an experiment similar to
CMB-S4, which will achieve roughly 1 μK-arcmin map
noise, radio sources can be cleaned down to roughly
0.2 mJy, which reduces their Poisson amplitude to
Dr

3000ðν0Þ ¼ 0.02 μK2.

F. Calibration

Historically, measurements of absolute brightness or
temperature at microwave/millimeter-wave frequencies
have been successfully carried out only by space-
or balloon-borne telescopes, because of the stringent
requirements on calibration accuracy and stability (e.g.,
Refs. [72,73]). Proposed measurements of the absolute
μ-distortion amplitude, such as with the PIXIE satellite
[74], are designed with similar constraints in mind. It was
pointed out, however, in Ref. [33] that measuring the
anisotropy of μ distortions, and particularly the correlated
anisotropy of μ and temperature, effectively converts the
absolute calibration requirement to a relative calibration
requirement, and the bias on the absolutemeasurement to an
uncertainty on the measurement of anisotropy.
A calibration error in CMB-S4-like data will result

primarily in leakage of the much larger temperature signal
(or foregrounds) into the component-separated μ map,
resulting in a component of T × T in the μ × T cross
spectrum. The T × T spectrum does not have the same
shape as μ × T (which crosses zero many times over the l
range we consider), so there will be on average no bias from
this leakage, just excess variance. We have investigated the
level towhich the relative calibrationmust be known for this
variance not to dominate the error on fNL, but a simple
scaling argument tells us that, because the relative calibra-
tion will come from enforcing equal response to the CMB
temperature in every frequency band, the calibration pre-
cision in any one bandwill be equal to the signal-to-noise (S/
N) on the CMB temperature anisotropy in that band. Thus,
the contribution to uncertainty on fNL from calibration
errors will be on the order of the contribution from noise
divided by the square root of the number of bands. For this
reason,we ignore calibration uncertainty in ourmain results.
A related concern is the knowledge of the instrumental

bandpasses. Even in the limit of perfect relative calibration off
the CMB, imperfect knowledge of the instrument bandpasses
could lead to a different level of foreground contamination in
the μmap than the component-separation algorithm predicts.
AswithCMBT leakage, thiswill not generally have the same
shape as the μ × T spectrum and will thus not cause bias on
average. Furthermore, as we are not explicitly projecting out
foregrounds in the component separation, the extra leakage of
foregrounds into the μ map from bandpass uncertainty is
likely to be small.Nevertheless,wewill update the forecasting
machinery to include this effect in a future paper.
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IV. SURVEY CONFIGURATION

In this work, we are forecasting σðfNLÞ using the
parameters of the upcoming CMB-S4 experiment [42].
There are two major surveys planned for CMB-S4: an
“ultra-deep” survey of roughly 3% of the Southern sky,
conducted from the South Pole with both small-aperture
telescopes (SATs) and a large-aperture telescope (LAT),
and a “deep and wide” survey of roughly 60% of the sky,
conducted from Chile with LATs only.
Our fiducial forecasting is for the fsky ¼ 0.03 survey.

The fsky ¼ 0.6 survey involves a similar investment of total
detector number and observing time, but spread across a
sky patch that is 20 times larger. In the limit of detector
noise only, this introduces a factor fsky into the covariance
matrix, leading to

Cij;N
l ðfskyÞ ¼ Cij;N

l ðfsky ¼ 0.03Þ fsky
0.03

: ð62Þ

Because incomplete sky surveys also observe fewer total
sky modes and hence have fewer samples of the various
power spectra, the Fisher matrix calculations also include
an fsky term, as in Eq. (29).
As discussed in the previous section, we can make the

approximation that Cμμ
l is noise dominated, while CTT

l is
signal dominated for l ≤ 2000. This means that Cμμ

l is the
only term in the denominator of the μ × T Fisher calcu-
lation that has an fsky dependence:

−2 lnL ¼
Xlmax

l¼2

0.03ð2lþ 1Þ fsky
0.03

×

�
fNLC

μT
l jfNL

�
2

ðfsky=0.03ÞCμμ;N
l jfsky¼0.03C

TT
l

: ð63Þ

In this limit, fsky cancels out, leaving our Fisher matrix
independent of fsky in the detector-noise-only case. We
note that this will be true for any measurement that depends
on correlating a very small signal (that is below the
detection threshold for a given experiment) with a much
larger one (that is measured at high S/N).4 When we add

atmosphere and foregrounds, the situation becomes more
complicated, because the statistics of the atmospheric noise
are different at the two CMB-S4 sites, and because it is
more difficult to avoid bright parts of our Galaxy when
more sky is observed.
The parameters of the high-resolution (LAT) part of the

ultra-deep (fsky ¼ 0.03) survey, including band centers,
angular resolutions, and noise levels, are given in Table I.
The corresponding values for the degree-scale (SAT) ultra-
deep survey are shown in Table II.
The fsky ¼ 0.03 ultra-deep survey for CMB-S4 will be

conducted from the South Pole. In terms of atmospheric
emission at CMB frequencies, the South Pole is the best
large, developed site on Earth [75]. In Tables I and II, we
show the expected values of lknee and α [see Eq. (47)] for
the CMB-S4 bands at the South Pole, derived from CMB-
S4 internal analysis of SPT-3G data. We note that the Deep
Survey LAT value for lknee for bands below 40 GHz in
official CMB-S4 documents is 1200, while we use 400
here. The value of 1200 is a conservative choice made
assuming no improvement in atmospheric noise from the
lowest SPT band of 95 GHz. The lknee values for the Wide
Survey LAT low-frequency bands, which were derived by
scaling the atmospheric noise power with levels of precip-
itable water vapor, are close to 400, and thus we adopt that
value for the Deep Survey here. We discuss the impact of
this choice in Sec. V.
In addition to reducing raw noise levels, the authors of

Ref. [37] suggested expanding detector frequency cover-
age, in order to lower Cμμ;N. To increase the upper
frequency range of CMB-S4 measurements, we include
Planck 2018 data in the forecast, which extends up to
857 GHz. This should provide valuable complementary
information that can help mitigate foregrounds at frequen-
cies that CMB-S4 is unable to observe. We implement
Planck bands in our forecasting pipeline in the same
way as CMB-S4 (as independent frequency channels, over
the same 3% of the sky as CMB-S4 Deep), using the
parameters shown in Table III. In Fig. 3, we show the
components of w for the T-free μ map contributed from
each individual CMB-S4 or Planck band, assuming 99%
atmospheric correlation and the foregrounds described in
the previous section.
In Fig. 4, we show the expected noise power in the μmap

from CMB-S4 (Cμμ;N
l ) for various values of atmospheric

correlation among frequency bands. In the scenario where

TABLE I. Survey configuration for the LAT in the CMB-S4 ultra-deep survey.

Frequency (GHz) 20 27 39 93 145 225 278

Angular resolution (arcmin) 11 8.4 5.8 2.5 1.6 1.1 1.0
White noise level in temperature (μK-arcmin) 9.31 4.6 2.94 0.45 0.41 1.29 3.07
lknee for TT 400 400 400 1200 1900 2100 2100
α for TT 4.2 4.2 4.2 4.2 4.1 4.1 3.9

4One caveat to this is that the survey needs to be big enough to
resolve the largest scale that is important for measuring the signal.
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frequency bands are fully correlated and the atmosphere
can be fully subtracted out, the associated noise curve
closely matches the scenario with no atmosphere. However,
even minimal decorrelation among detectors significantly
worsens Cμμ;N

l at low multipoles. Residual atmosphere acts
as an effective lmin when summing over multiple obser-
vation bands to constrain fNL.
We note that currently fielded experiments such as

Advanced ACTPol [77] and SPT-3G, as well as the
upcoming Simons Observatory (SO) experiment [78] can
be approximated in this forecasting framework as versions
of either the CMB-S4 Deep or Wide surveys, but with
higher noise and (in the case of currently fielded experi-
ments) reduced frequency coverage. In particular, the SO
LAT “goal” survey is similar to the CMB-S4 Wide survey
with 2–3 times higher noise and slightly less sky area, and
thus we would expect to forecast roughly 2–3 times worse
constraints on fNL for SO compared to CMB-S4.

V. RESULTS

Using the noise, atmosphere, and foreground paramet-
rizations described in the previous sections, we forecast
σðfNLÞ from the combination of μ × T and μ × E for the
CMB-S4 experiment, combined with data from the Planck
satellite [76]. For our results, we assume a fiducial value of
fNL ¼ 1. We generally show the cumulative constraint on
fNL as a function of lmax, the highest multipole value
considered in the calculation. In all cases, we assume
lmin ¼ 10, though our final results are not sensitive to this
exact choice.
We first show, in Fig. 5, the S/N as a function of multipole

l. The solid lines include detector and atmospheric noise
and foreground residual, with color differentiating the
amount of assumed atmospheric correlation between fre-
quency bands. The dashed lines correspond to detector and
atmospheric noise only, with no foreground residuals.

For the scenario where atmosphere is perfectly correlated
between frequency bands we see that most of our signal is
at the lowest l modes. The addition of foregrounds reduces
our overall signal by about an order of magnitude, agreeing
with previous results [37] that foregrounds are a primary
obstacle for experiments constraining μ distortions.
The main foregrounds that impact our constraints are

from Galactic sources, such as dust, synchrotron radiation,
and AME. Galactic foregrounds have a larger effect on
reducing sensitivities to μ, compared to extragalactic
sources [38]. Even though several Galactic and extraga-
lactic foregrounds are brighter at lower frequencies, the
shape of the μ SED becomes more distinct for these
frequency bands. This suggests for optimal detection of
μ distortions, future experiments should concentrate on
improving observations with lower frequency bands rather
than higher frequency ones. In spite of foreground resid-
uals, in the limit of 100% atmospheric correlation between
bands, we find that the lowest l modes provide the best
leverage for constraining fNL.
However, when we introduce any atmospheric decorre-

lation, residual atmosphere has a more significant impact
on our μ maps than residual foregrounds. While fore-
grounds reduce the S/N across the entire l range, atmos-
phere suppresses the S/N primarily at low l, where the raw
S/N is highest. This means that we lose significant leverage
in constraining fNL from atmospheric contamination.
Another potential contamination to measurements of μ ×

T correlations are y-type spectral distortions. In our default
component-separation algorithm, y distortions are treated
as noise and not explicitly projected out of the μ or T map.
However, the authors of Ref. [54] showed that there are
y × T correlations induced from late integrated Sachs-
Wolfe effects. This means that y × T correlations will leak
into μ × T and potentially result in a bias on fNL, unless the
y-distortion signal is deprojected explicitly from the μmap.
This is easily accomplished in the algorithm by adding the

TABLE II. Survey configuration for the SATs in the CMB-S4 ultra-deep survey.

Frequency (GHz) 30 40 85 95 145 155 220 270

Angular resolution (arcmin) 72.8 72.8 25.5 22.7 25.5 22.7 13.0 13.0
White noise level in polarization (μK-arcmin) 3.53 4.46 0.88 0.78 1.23 1.34 3.48 5.97
White noise level in temperature (μK-arcmin) 2.50 3.15 0.62 0.55 0.87 0.95 2.46 4.22
lknee for TT 400 400 1200 1200 1900 1900 2100 2100
α for TT 4.2 4.2 4.2 4.2 4.1 4.1 4.1 3.9

TABLE III. Angular resolution and noise levels assumed for Planck (reproduced from Table 4 of Ref. [76]). Note that we assume
Planck noise is white down to the lmin of our forecasting.

Frequency (GHz) 30 44 70 100 143 217 353 545 857

Angular resolution (arcmin) 32.4 27.1 13.3 9.69 7.30 5.02 4.94 4.83 4.64
White noise level for TT (μK-arcmin) 150 162 210 77.4 33.0 46.8 154 815 2.98 × 104
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y-distortion SED as one of the components in the matrix A
in Eq. (39), but we pay some noise penalty for this.
Figure 6 shows our constraints on fNL (including

projecting out a y component) after summing over all
multipoles up to lmax. We consider different values of
atmospheric correlation and the presence of foregrounds.
We see that at lmax ¼ 2000, we have effectively saturated
our constraints on fNL for all configurations. Therefore, in
Tables IV and V, we report σðfNLÞ for lmax ¼ 2000.
In the ideal case in which we can ignore atmosphere,

foregrounds, and y distortions, we find σðfNLÞ ¼ 48. The

addition of foregrounds worsens our constraints to
σðfNLÞ ¼ 461, or 462 if we project out y. This is better
than forecasts for LiteBIRD, which is forecasted to achieve
σðfNLÞ ¼ 825 [38]. Adding atmosphere and assuming
some level of decorrelation across frequency bands, we
find our constraints on fNL noticeably degrade even in the
absence of foregrounds. For 1% decorrelation (η ¼ 99%)
we find σðfNLÞ ¼ 165, or 231 with projecting out y. The
addition of foregrounds further reduces constraints, with
σðfNLÞ ¼ 738 or 750 in the case of 1% atmospheric
decorrelation, comparable to the forecast for LiteBIRD.
We note that, because of the effect of atmosphere on
CMB-S4 constraints and the low angular resolution of
LiteBIRD, it is likely that the fNL constraints from the two
experiments will come primarily from independent regions
of l space, in which case we will be able to improve the
individual constraints by nearly a factor of

ffiffiffi
2

p
by combin-

ing them.
Foreground residuals can in principle be reduced through

expanded frequency coverage. If the foreground SEDs are
smooth and require minimal degrees of freedom to model,
with enough observations across unique frequency bands,
one can constrain the foreground and CMB SEDs. Pairing
CMB-S4 with additional surveys that aim to accurately
model CMB foregrounds can greatly improve our
constraints on fNL. However, even with reduced fore-
ground residuals, CMB-S4 will be limited by atmospheric
noise to σðfNLÞ > 100, unless the correlation between
bands is >99%.

VI. DISCUSSION

In this work, we have presented forecasted constraints on
fNL, at effective scales of k ≈ 740 Mpc−1, with CMB-S4
using correlations of μ-distortion anisotropies with CMB
temperature and E-mode polarization. We found that with
this ground-based experiment we are able to achieve

FIG. 4. Cμμ;N
l for the CMB-S4 ultra-deep survey and various

assumptions for the degree of atmospheric correlation between
bands. Full correlation among bands closely matches the nominal
case of no atmosphere. However, even minimal decorrelation
among detectors significantly worsens Cμμ;N

l at low multipoles.

FIG. 3. Weights used to construct the T-free μ-distortion map
(i.e., the μ component of w) for the CMB-S4 ultra-deep patch
from different frequency channels, including foregrounds and
assuming 99% correlated atmosphere.
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comparable results to forecasts for the LiteBIRD
satellite [38], depending on the amount of atmospheric
correlation among frequency bands. CMB-S4 will not have
prior knowledge of the amount of atmospheric correlation,
which is expected to depend on the optical design and
observing strategy. Colocated detectors will likely be more
correlated, since they will observe along the same incident
angle and will observe similar parts of the atmosphere.
Conversely, detectors located further from each other
will observe through slightly different columns of the

atmosphere and are expected to be less correlated.
Understanding the correlation properties of atmospheric
emission between frequency bands is therefore vital for
producing realistic forecasts of σðfNLÞ from μ-distortion
anisotropies.
Independent of the details of atmospheric correlation, we

have demonstrated that CMB-S4 has the potential to
constrain small-scale Gaussianities down to σðfNLÞ ≲
1000 with μ × T and μ × E. We note that correlations
between μ-distortion and primary CMB anisotropies

FIG. 6. 1σ constraints on fNL as a function of the maximum multipole used in analysis, lmax. Dashed lines correspond to σðfNLÞwhen
only including instrumental and atmospheric noise, while solid lines also include the effects of foregrounds. In all cases, the y SED has
been projected out (see text for details).

FIG. 5. S/N per multipole for various assumed values of atmospheric correlation between bands. Dashed lines correspond to S/N when
only including instrumental and atmospheric noise, while solid lines also include the effects of foregrounds. In all cases, the y SED has
been projected out (see text for details).
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represent one of our only probes for understanding non-
Gaussianities on extremely small scales or, equivalently,
the ultra-squeezed limit of the bispectrum. This presents an
opportunity to constrain inflationary models that predict
specific behavior at very small scales. One such area that
can be constrained with small-scale non-Gaussianities are
inflationary models that contain additional fields. Certain
curvaton models can naturally generate fNL ≫ 1 on small
scales while preserving current upper limits on
fNLð0.05 Mpc−1Þ from Planck [79]. If massive fields have
direct couplings to the inflaton, they can also induce
oscillatory features in the squeezed-limit bispectrum at
small scales [6]. Modified (non-Bunch-Davies) initial
vacuum states can also produce enhanced small-scale
non-Gaussianity [33] and can be constrained with μ × T
and μ × E correlations. Finally, μ × T and μ × E correla-
tions can place stringent constraints on the running of the
spectral index ns and general scale-dependent non-
Gaussianities [80], such as have been proposed to explain
recent discoveries from JWST [81].
It is also worth noting that the constraint on fNL from

μ × T and μ × E is linearly proportional to the mean value
of μ [cf. Eqs. (27) and (21)], so any nonstandard model that
boosts hμi will correspondingly improve the forecasted

constraints on fNL [49]. One example of such a model is
given in Ref. [82], in which the authors used μ × T to
constrain primordial black hole (PBH) models. PBH
models generically have a rising slope for the power
spectrum at small scales, preceded by a region with lower
power. For scales close to the ones μ distortions probe, the
rising power can enhance hμi, while the dip can generate
non-Gaussianities larger than slow-roll predictions. These
combined effects mean that upcoming CMB experiments
can potentially rule out some PBH models. Work in
Ref. [50] has shown that the main signal PBH models
imprint on μ × T is from local modulation of acoustic
dissipation by long-wavelength modes, which induce a bias
in μ distortions. We will examine this potential signal in
future work.
Our analysis probed non-Gaussianities from scalar

perturbations hζζζi. Distortions of the μ type should also
be generated by primordial gravitational waves (GWs)
injecting energy into the photon-baryon fluid. This
allows μ to probe the primordial tensor power spectrum.
Since GWs are free streaming throughout the radiation-
dominated era, tensor μðtÞ distortions probe scales in the
range 1 Mpc−1 ≲ k≲ 106 Mpc−1, complementing the gap
between CMB scales and the scales probed by upcoming
GW interferometers [83]. Recent work in Ref. [84] has
demonstrated that μ × B correlations can probe tensor and
mixed tensor-scalar non-Gaussianities. Using FIRAS data,
Ref. [41] attempted the first measurement of μ × B, which
they found was consistent with zero at existing noise levels.
The forecasts presented here are not the last word on fNL

from μ × T and μ × E. As shown in Ref. [45], a cosmic-
variance limited experiment can in principle constrain
σðfNLÞ to ≲10−3 with μ × T, although this will also
require a significantly improved limit on the average
μ-distortion amplitude to break the degeneracy between
fNL and hμi [49] and ensure that no other source of
distortion anisotropies is present [56]. Putting this in
context, the best constraints a cosmic-variance limited
CMB experiment could place on squeezed-limit non-
Gaussianity with hTTTi is σðfNLÞ ∼ 1. One promising
avenue for improvement on the constraints presented here
was suggested in Ref. [37], namely expanding coverage to
lower frequency ranges where the relative amplitude of the
μ-distortion SED is higher. In particular, the addition of
bands at and below 10 GHz would significantly improve
detection. One possibility is to combine CMB-S4 with
upcoming low-frequency radio surveys such as the Square
Kilometer Array [85] to improve constraints on fNL, an
aspect we will explore in future work.
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APPENDIX: DAMPING

To understand how different effects of damping impact
the angular power spectrum Cl, we see that the spectrum
scales as

Cl ∝
Z þ∞

0

dkPζðkÞk2½ΔlðkÞ�2; ðA1Þ

where the transfer function ΔlðkÞ is

ΔlðkÞ ¼ Dl × jlðkΔηÞ; ðA2Þ

and Dl is the damping factor of anisotropies. For tempera-
ture anisotropies, the formulation that accounts for both
diffusion damping and the finite width of the SLS is given
by Ref. [58], which can by approximated by their Eq. (16).
For μ anisotropies, since we can only reliably calculate

the effects of diffusion damping, we approximate the

damping factor as Dl ¼ e−k
2=ðq2μ;DÞ, where qμ;D is the

damping scale of μ-distortion anisotropies. For the diffu-
sion damping scale of μ anisotropies, we use the value from
Ref. [49], qμ;D ¼ 0.11 Mpc−1. This can be compared to the
diffusion-only damping scale for temperature anisotro-
pies, qT;D ¼ 0.14 Mpc−1.
We show the effect of the two damping functions (the

diffusion-only μ-anisotropy damping function and the
temperature anisotropy damping function from Ref. [58])
on an undamped spectrum in Fig. 7. At l ¼ 200we see that

FIG. 7. Change in the angular power spectrum Cl depending on the damping factor. For illustrative purposes, we choose an undamped
spectrum that is nearly scale invariant, with a slight spectral tilt. The spectrum with a damping scale qμ;D ¼ 0.11 Mpc−1 corresponds to
our treatment of the damping of μ anisotropies. The spectrum using the damping factor from Ref. [58] has more severe damping at
l ¼ 200, but has a slightly less steep slope compared to the μ-anisotropy damping scale. The black line corresponding to l ¼ 200 is a
reference scale for the reader.
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the damping corresponding to temperature anisotropies is
more severe than the damping corresponding to μ anisot-
ropies. However, damping due to the finite width of the
surface of last scattering makes the slope of the damping
less steep [58]. This results in the μ anisotropy spectrum
being more severely damped than the temperature
anisotropy spectrum at l ≈ 1000.
Table VI shows our constraints on fNL when using the

damping factor from Ref. [58]. We find a degradation
of our constraints on fNL of 15% or less compared to
our nominal results in Table V. This change is much smaller
than the effects of foregrounds and the atmosphere.
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