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We perform three-dimensional simulations of homogeneous and inhomogeneous cosmologies via the
coupling of the Einstein Toolkit numerical relativity code for spacetime evolution to the PHANTOM smoothed
particle hydrodynamics code. Evolution of a flat dust and radiation-dominated Friedmann-Lemaître-
Roberston-Walker (FLRW) spacetime shows an agreement of exact solutions with residuals on the order
10−6 and 10−3 respectively, even at low grid resolutions. We demonstrate evolution of linear perturbations
of density, velocity and metric quantities to the FLRWwith residuals of ≈10−2 compared to exact solutions.
Finally, we demonstrate the evolution of nonlinear density perturbations past shell crossing, such that dark
matter halo formation is possible. We show that numerical relativistic smoothed particle hydrodynamics is a
viable method for understanding nonlinear effects in cosmology.
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I. INTRODUCTION

Since the discovery of an accelerating expanding uni-
verse [1,2], the lambda Cold Dark Matter (ΛCDM) model
has been the leading paradigm in modern cosmology. Much
of the recent effort in cosmological surveys has been
focused on constraining the dark energy and matter density
parameters ΩΛ and Ωm via concordance between super-
novae Type 1a (SNe 1a) [3], baryon acoustic oscillations
(BAO) [4,5] and the cosmic microwave background (CMB)
[6]. However, there remains tension between the early and
late Universe—in particular in measurements of the Hubble
parameter, H0, with local inferences differing by as much
as 5σ compared to the ΛCDM prediction based on CMB
measurements [7].
The key assumption underpinning the ΛCDM model is

that the Universe is well-described by a flat Friedmann-
Lemaître-Roberston-Walker (FLRW) spacetime on suffi-
ciently large scales. This assumption is motivated by the
measured transition to statistical homogeneity in galaxy
surveys at scales of ∼70–80 h−1Mpc [8,9]. However, at
small scales where nonlinear structure formation occurs,
the Universe is both inhomogeneous and anisotropic.
This inhomogeneity and anisotropy is expected to give
rise to general-relativistic effects such as differential

expansion [10], and in the more extreme cases can provide
an explanation for accelerating expansion through the
backreaction of small-scale nonlinearities on the large-
scale average universe [11,12].
Traditional N-body simulations [13–15] of structure

formation are based on the assumption of a purely
FLRW evolution of spacetime combined with structure
collapse described in purely Newtonian gravity (see [16]
for a review). These simulations are thus unable to capture
nonlinear general-relativistic effects. The significance of
such effects can only be investigated by an approach using
general relativity where the formation of structure and the
evolution of the surrounding spacetime metric are treated
self-consistently.
Numerical relativity has been applied to the simulation

of inhomogeneous dust universes, with studies demonstrat-
ing the emergence of nonlinear effects such as gravitational
slip and tensor modes [17], variations in spatial curvature
relative to FLRW [18], variations in proper length and
luminosity distance [19,20], differential expansion [10],
and the gravitoelectromagnetic properties of structure
collapse [21,22]. However, these works are limited by a
fluid approximation of dark matter, and thus virialization is
not possible due to the presence of shell-crossing singu-
larities. The characteristic dark matter “halos” of N-body
simulations are therefore not present in these simulations;
restricting studies to larger-scale, smooth cosmic structures
with limited nonlinearity.*spencer.magnall@monash.edu
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Traditional N-body codes have also been extended to
include general relativistic effects. GRAMSES [23], a modi-
fication of the popular code RAMSES [24] employs a
conformal flatness approximation to perform cosmological
N-body simulations with general relativity. Similarly,
GEVOLUTION [25] also provides a method for the simulation
of general relativistic effectswithin aN-body simulationvia a
weak-field expansion of the Einstein field equations. These
works provide a step forward towards the development of a
full numerical relativity N-body code. However, they are
ultimately based on approximations and do not evolve the
fully nonlinear Einstein field equations in conjunction with
hydrodynamics.
Work by Daverio et al. [26] developed a new code with a

full coupling of numerical relativity to an N-body code
for studying cosmic structure formation. However, cur-
rently no additional results in the context of large scale
structure formation have been made available. Works by
East et al. [27,28] investigated the impact of general
relativistic effects by comparing Newtonian N-body
simulations to relativistic simulations. First by using a
fluid description of matter, and later by solving the
Einstein-Vlasov equations. Similarly, [29] implemented
an Einstein-Vlasov solver in the CosmoGRaPH numerical
relativity code.
Our aim is to develop a particle based hydrodynamics=N-

body method for the simulation of structure formation with
direct coupling to numerical relativity. As a Lagrangian,
particle based method, smoothed particle hydrodynamics
(SPH) [30–32] is an ideal candidate for such an application.
Early development of relativistic SPH was focused on

special relativity [33–37] with the equations for general
relativistic formulations being derived soon after [38–40].
Post-Newtonian approximations were used to model

relativistic effects around black holes [41–44]. These post
Newtonian approximations were integrated into standard
SPH codes, but are ultimately approximations, and may be
hiding crucial physics.
Oechslin et al. [45], Faber et al. [46], and Bauswein et al.

[47] performed SPH simulations of neutron star mergers
with the conformal flatness approximation. However,
assuming conformal flatness excludes gravitational radia-
tion, and as such the inspiral of the two bodies must be
added manually.
Efforts by Tejeda et al. [48], and Liptai and Price [49]

saw the development of a general relativistic SPH
(GRSPH) formalism which allows for the simulation of
relativistic fluids provided a background metric is given.
Recently, Rosswog et al. [50], Diener et al. [51], and

Rosswog et al. [52] presented first studies coupling SPH to
a numerical relativity code. However, the method of
Rosswog et al. [50] has thus far only been applied to
binary neutron stars mergers and the code is not yet public.
In this work we outline and test a new method for

simulating cosmological structure formation with a

GRSPH code. Our approach builds on earlier methods
by Liptai and Price [49] and Rosswog [53,54] which
focused on relativistic hydrodynamics on a fixed back-
ground metric. Our approach is similar to that of Rosswog
and Diener [55] but optimized for studying cosmic struc-
ture formation. We used the publicly available Einstein Toolkit

[56] to evolve the Einstein field equations. We plan to make
our code publicly available.
Our paper is structured as follows: In Sec. II we outline

our numerical method, introducing our gauge choices
(Sec. II A), and general relativistic SPH (Sec. II B). We
then describe our new method for coupling the metric and
hydrodynamic variables (Sec. II C). In Sec. III we describe
the setup and results of our simulations for a flat, dust
FLRW universe. Section IV describes the setup (Sec. IVA)
and results (Sec. IV B) for simulations of a linear pertur-
bation the FLRW model. Section V describes the initial
conditions and results for the evolution of nonlinear
perturbations of the FLRW metric, with particular attention
paid to the evolution of the system past shell crossing.

II. NUMERICAL METHOD

We adopt geometric units G ¼ c ¼ 1, and let Greek
indices run from 0 to 3 (i.e. representing a four-dimensional
tensor), while Latin indices run from 1 to 3 (i.e. represent-
ing a three-dimensional tensor). We assume the Einstein
summation convention throughout.
We solve the Einstein field equations on a grid using the

Einstein Toolkit [56]. Einstein Toolkit uses “thorns” which are
modular applications that provide additional functionality
to the central “flesh.” We used the MCLACHLAN [57] thorn
to evolve spacetime using the Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) [58,59] formalism.
We evaluate the right hand side of the hydrodynamic

equations using the SPH code PHANTOM [60]. In order to
provide coupling between the evolving metric and hydro-
dynamics we developed a new thorn PHANTOMNR which
interfaces the necessary quantities between the two codes.
While we evolve spacetime using a BSSN scheme in this
work, one may in principle use any scheme that evolves the
Einstein field equations, provided that a physical metric gμν
and its derivatives ∂gμν=∂xμ can be calculated at particle
positions.

A. Gauge

Using the 3þ 1 decomposition, the metric is given by

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð1Þ

where α, βi and γij are the lapse, shift vector, and spatial
metric respectively. The gauge freedom of general relativity
means that we are free to choose values for lapse and shift.
While we can chose values freely, poor gauge choices may
result in numerical instabilities or unphysical results. In the
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context of cosmological simulations a simple choice of
α ¼ 1, βi ¼ 0 leads to possible singularity formation at
early times in our simulations due to the crossing of
geodesics. Instead, our chosen lapse evolution is given by

∂tα ¼ −fðαÞα2K; ð2Þ

where fðαÞ is a positive and arbitrary function, and K ¼
γijKij is the trace of the extrinsic curvature tensor. We adopt
f ¼ 1=3, and βi ¼ 0 following the choices of Macpherson
et al. [18].

B. General relativistic smoothed particle
hydrodynamics

The equations of relativistic hydrodynamics for a perfect
fluid in Lagrangian form are given by

dρ�

dt
¼ −ρ�

∂vi

∂xi
; ð3Þ

dpi

dt
¼ −

1

ρ�
∂ð ffiffiffiffiffiffi−gp

PÞ
∂xi

þ fi; ð4Þ

de
dt

¼ −
1

ρ�
∂ð ffiffiffiffiffiffi−gp

PviÞ
∂xi

þ Λ; ð5Þ

where ρ� is the conserved density, vi ≡ dxi=dt is the three-
velocity of the fluid, pi is the four-momentum, P is the
pressure, and e is the conserved energy of the fluid. In the
above we use the Lagrangian time derivative defined
according to

d
dt

≡ ∂

∂t
þ vi

∂

∂xi
: ð6Þ

The term fi and Λ contain the spatial and time derivatives
of the metric tensor respectively, and have the form

fi ≡
ffiffiffiffiffiffi−gp

2ρ�

�
Tμν

∂gμν
∂xi

�
; ð7Þ

Λ≡ −
ffiffiffiffiffiffi−gp

2ρ�

�
Tμν

∂gμν
∂t

�
: ð8Þ

The stress-energy tensor of a perfect fluid is of the form

Tμν ¼ ρwUμUν þ Pgμν; ð9Þ

where w is the specific enthalpy given by

w ¼ 1þ uþ P=ρ; ð10Þ

and u is the specific internal energy of the fluid. When
discretized to particles, Eqs. (3)–(5) take the form

dρ�a
dt

¼ 1

Ωa

X
b

mbðvia − vibÞ
∂WabðhaÞ

∂xi
; ð11Þ

dpa
i

dt
¼ −

X
b

mb

� ffiffiffiffiffiffiffiffi−ga
p

Pa

Ωaρ
�2
a

∂WabðhaÞ
∂xi

þ
ffiffiffiffiffiffiffiffi−gb

p
Pb

Ωbρ
�2
b

∂WabðhbÞ
∂xi

�
þ fai ; ð12Þ

dea
dt

¼ −
X
b

mb

� ffiffiffiffiffiffiffiffi−ga
p

Pavib
Ωaρ

�2
a

∂WabðhaÞ
∂xi

þ
ffiffiffiffiffiffiffiffi−gb

p
Pbvia

Ωbρ
�2
b

∂WabðhbÞ
∂xi

�
þ Λa; ð13Þ

where Wab is the interpolating kernel, ha is the smoothing
length, and Ωa is given by

Ωa ¼ 1 −
∂ha
∂ρ�a

X
b

mb
∂WabðhaÞ

∂ha
: ð14Þ

On Lagrangian particles we must also solve

dxi

dt
¼ vi; ð15Þ

which, as with the other equations, requires an ordinary
differential equation solver to discretize the left-hand side
into discrete time steps.
In the equations above we use letters a and b to identify

quantities relating to particles. We use letters beginning
from a to represent particle quantities, while letters begin-
ning at i are used as tensor indices, and therefore obey the
usual Einstein summation convention. Note that in practice
we do not evolve Eq. (11) but rather calculate density and
smoothing length directly from particle positions using the
SPH kernel sum, according to

ρ�a ¼
X
b

mbWabðhaÞ; ha ¼ hfact

�
ma

ρ�a

�1
3

; ð16Þ

where both equations are solved simultaneously using a
Newton-Raphson scheme [61]. We also evolve the entropy
equation rather than the total energy equation, as described
in [49], which avoids the need to compute the Λ term. For a
derivation of GRSPH, and applications and tests pertaining
to ideal fluids with static background metrics, see the work
of Liptai and Price [49].

C. PHANTOMNR

The simulation of collisionless matter using particles in
relativistic spacetimes is similar to that of Newtonian
techniques, in particular the N-body particle-mesh tech-
nique. We require some mapping of the metric tensor to
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particles from the mesh to move the particles, and we also
require some mapping of the stress-energy tensor from
particles to the mesh.

1. Mesh to particle

Before any interpolation can be performed, we first need
to reconstruct the physical metric gμν from the variables
stored by Einstein Toolkit: the lapse α, shift vector βi, and
spatial metric γij. Einstein Toolkit stores these variables for
each grid point and therefore, the construction of a physical
metric is achieved via Eq. (1). We also require the spatial

derivatives of the metric ∂gμν
∂xi which we calculate using a

second-order centered finite difference

∂gμνðxiÞ
∂xi

≈
gμνðxi þ ΔxiÞ − gμνðxi − ΔxiÞ

2Δxi
; ð17Þ

where Δxi is the separation between grid points.
We used trilinear interpolation to obtain values of the

metric tensor and its derivatives at each particle position.

2. Hydrodynamic evolution

Once a spacetime metric (and its derivatives) has been
passed to particle positions, our evolution is no different to
that of a GRSPH simulation with a fixed background
metric. As such, we obtain our primitive variables, shock
capturing, and derivatives in the same manner as that
of [49].
We briefly outline the conservative to primitive routine

below, with particular emphasis on the distinction between
the dust (P ¼ 0) and fluid cases. We begin with the
conserved variables on each particle, ρ�, pi and Kentr,
corresponding to conserved density, momentum and an
entropy variable respectively. From these conserved vari-
ables we wish to recover ρ, u, vi and P. Firstly, we use the
equation of state to solve for the enthalpy w [Eq. (10)]. For
the dust case (since u ¼ 0 and P ¼ 0) this reduces to
w ¼ 1. For the fluid cases we employ a Newton-Raphson
root finding scheme to solve the equation

w − 1 −
PðwÞ
ρðwÞ

�
γad

γad − 1

�
¼ 0: ð18Þ

Once we have obtained the enthalpy, we calculate a
primitive density via

ρ ¼ ρ�ffiffiffi
γ

p ΓðwÞ ; ð19Þ

where γ is the determinant of the spatial metric, and we can
compute ΓðwÞ via

ΓðwÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ pipi

w2

r
: ð20Þ

We can then recover P and u from our equation of state, and
the fluid three-velocity using

viðwÞ ¼
αpi

wΓðwÞ − βi; ð21Þ

which is then raised using the spatial metric to give
vi ¼ γijvj. For the case of dust (P ¼ 0), our scheme
reduces to solving the geodesic equations with N-body
particles. Since our aim is to simulate dark matter as a
collisionless fluid, we switch off all dissipation for colli-
sionless particle types.
Instead of evolving the total specific energy e, we evolve

the entropy variable

Kentr ≡ P
ργab

; ð22Þ

where γab is the adiabatic index of the fluid. For the cases
we consider in this paper Kentr is either zero (for dust, since
P ¼ 0) or constant (for a uniform radiation-dominated
universe). However, our scheme is implemented for the
general case.
To integrate our equations, we opt for a generic “method

of lines” time stepping, where we solve the left-hand side of
all of our equations governing the hydrodynamic evolution
of the particles inside the Einstein Toolkit. This allows for
different choices of integrator at runtime. We then use
PHANTOM to obtain the particle summations needed for the
right-hand sides, and for the interpolation to and from
the grid.
We have additional constraints on our choice of timestep

since our mesh is subject to the Courant-Friedrichs-Lewy
(CFL) condition [62]

Δtgrid ¼ CminðΔxiÞ; ð23Þ

where C is the safety factor and Δxi is the size of the grid
spacing. We also consider the time step constraints for the
hydrodynamics of [49]

Δtahydro ¼ min

�
CCourha

maxðvsig;aÞ
; Cf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ha

jdpi=dtaj

s �
; ð24Þ

where ha is the smoothing length for particle a, CCour and
Cf are safety factors for the Courant and force condition,
vsig;a is the signal speed, and dpi=dta is the time derivative
of specific momentum. We then take the global time step
Δthydro to be the minimum value of Δtahydro across all
particles. Combining these two requirements the choice of
time step is therefore given by

Δt ¼ minðΔtgrid;ΔthydroÞ: ð25Þ

MAGNALL, PRICE, LASKY, and MACPHERSON PHYS. REV. D 108, 103534 (2023)

103534-4



3. Particle to mesh

To evolve the metric in Einstein Toolkit we calculate a
stress-energy tensor for each grid cell. We calculate the
stress-energy tensor per particle using Eq. (9) and then
translate to grid cells. Translation of values on particles to
grid cells is performed via kernel interpolation, where the
kernel function is of the form

Wabðr; hÞ ¼
Cnorm

h3
fðqÞ: ð26Þ

We use the cubic spline kernel [63]

fðqÞ ¼

8>><
>>:

1 − 3
2
q2 þ 3

4
q3 0 ≤ q < 1;

1
4
ð2 − qÞ3 1 ≤ q < 2;

0 q ≥ 2;

ð27Þ

with a normalization constant Cnorm ¼ 1=π in three-
dimensions, and an implied kernel radius of Rkern ¼ 2
from the compact support of the function. Interpolation of
values to the grid is one of the largest sources of error in our
method due to the small bias in the kernel. An error in the
calculation of density ultimately leads to an error in the
stress-energy tensor, and a (slight) violation in our
Hamiltonian constraint (see Sec. III B and Appendix A).
Naively, we can reduce our kernel bias, and therefore
improve our density calculations via the use of a kernel
with a larger compact support radius (quartic, quintic, etc.).
While the use of an improved kernel reduces the error, the
larger compact support radius, implies a higher number of
neighbors, and therefore a higher computational cost. We
instead opt for a correction in the kernel bias by noting that
the total mass of all particles Mpart is a conserved quantity,
and should be equal to the total mass on the grid

Mgrid ¼
Z

ρ�gridΔxΔyΔz; ð28Þ

where ρ�grid is the interpolated density onto the grid using
the smoothing kernel. The kernel bias is then calculated as

Cbias ¼
Mpart

Mgrid
; ð29Þ

with the corrected stress-energy tensor taking the form

Tμν ¼ T interp
μν Cbias; ð30Þ

where T interp
μν is the uncorrected stress-energy tensor

obtained on the grid from raw interpolation. This correction
is performed at every timestep (with added computational
cost due to interpolation), and explicitly accounts for
differences in initial densities between particle and grid
distributions such as those in Secs. IVand V. We correct the

stress-energy tensor for each grid cell using the correcting
factor calculated from the total mass.
We adopt the particle-to-grid interpolation utilized in the

SPLASH code [64]. In particular, these routines account for
subgrid effects via the use of an exact interpolation method,
which exactly integrates the overlap between the (spherical)
kernel function and the pixel edges via analytical line
integrals derived for a cubic-spline kernel (see Petkova
et al. [65]). However, this exact interpolation routine is
significantly more computationally expensive and as such,
we only utilize it when subgrid effects are significant (such
as the three-dimensional nonlinear collapse simulations of
Sec. V C).

III. FLRW SPACETIME

A. Setup

A homogeneous and isotropic FLRW metric in synchro-
nous gauge has the form

ds2 ¼ aðηÞ2
�
−dη2 þ 1

ð1þ kr2=4Þ2 δijdx
idxj

�
; ð31Þ

where η is conformal time, aðηÞ is the scale factor, k is the
curvature parameter that can take values of k ¼ 0;−1, 1 for
a flat, negatively curved or positively curved universe
respectively. We assume a flat spatial geometry (k ¼ 0),
and initialize a homogeneous and isotropic universe with
initial scale factor ainit ¼ 1 and an initial density ρinit
obtained from solving the Friedmann equation for a
matter-dominated universe

Hinit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πρinita2init

3

r
; ð32Þ

where Hinit is the initial Hubble rate. We set the spatial
metric

γij ¼ a2δij; ð33Þ

and the extrinsic curvature via the derivative of the spatial
metric

d
dt
γij ¼ −2αKij; ð34Þ

where d=dt ¼ ∂=∂t − Lβ and Lβ is the Lie derivative in the
direction of the shift, which is always zero based on our
gauge choice of βi ¼ 0. The extrinsic curvature is therefore

Kij ¼ −
ȧa
α
δij; ð35Þ

where an overdot represents a derivative with respect to
conformal time. We initialize an FLRW spacetime in Einstein

Toolkit using FLRWSolver [17].
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To set the initial stress-energy tensor, we first set a
uniform cubic lattice of particles with zero velocity, and
zero pressure. The particle mass is set by considering the
total mass in the domain

M ¼
Z

ρ�dV; ð36Þ

where ρ� is the conserved density and V is the volume of
the domain. Since we have a constant density

M ¼ ρ�V; ð37Þ

we divide this mass by the total number of particles to
obtain the mass of each particle.
By setting zero pressure we see implicitly from Eq. (22)

that

Kentr ¼ 0;
dKentr

dt
¼ 0; ð38Þ

and as such we can neglect the calculation of Eq. (8) and the
evolution of entropy. The stress-energy tensor is then
calculated on the particles and interpolated back to the
grid as described in Sec. II C 3. The kernel interpolation
used to obtain the density on each particle introduces a
small bias compared to the initial density. In most simu-
lations using SPH, small variations in density compared to
the setup are not an issue. However, in our case this
manifests as a small violation of the Hamiltonian constraint

H ≡ ð3ÞR − KijKij þ K2 − 16πρ ¼ 0; ð39Þ

where ð3ÞR is the three-Ricci scalar. We apply the correction
factor described in Sec. II C 3 to the interpolated stress-
energy tensor to fix this, which results in the initial
Hamiltonian constraint satisfied to H ≈ 10−7 in code units.
To quantify the smallness of this error, we calculate an
order of magnitude estimate of the relative violation via
Hrel ≈H=16πρ. Our initial density in code units is
ρinit ≈ 13.29, and thus the relative Hamiltonian constraint
violation is O ∼ 10−10. We also have initial relative errors
in scale factor, and primitive density of O ∼ 10−16 and
O ∼ 10−9, respectively.
Our choice of gauge in Eq. (2) is a harmonic-type slicing

which, for an FLRW background, results in the matching of
the simulation coordinate time with conformal time.
Give our gauge choice, the evolution of the scale factor

for a matter-dominated universe is given by

aðηÞ ∝ η2; ð40Þ

and the primitive density evolution is given by

ρðηÞ ∝ η−6: ð41Þ

We initialize our Einstein-de Sitter (EdS) simulation
(corresponding to an FLRW universe with zero spatial
curvature and no cosmological constant), with a 1 h−1Gpc
box length at redshift zini ¼ 1000, corresponding to a ratio
of initial box size to Hubble scale of HL ≈ 10.55. This
choice sets our initial Hubble expansion and background
density in code units, as in [18]. Our initial conformal time
is then set via ηinit ¼ 2=Hinit and we evolve until the scale
factor has increased by a factor of 250. Time integration is
performed with a fourth-order Runge-Kutta method. We
utilize the kernel bias correction [Eq. (30)], but do not use
the analytical exact interpolation of Petkova et al. [65]. We
used a grid size of 323 and a particle resolution of 643

particles, corresponding to 8 particles per grid cell, and
choose a box length of L ¼ 1 in code units.

B. Results

Figure 1 shows a comparison of numerical solutions
using our N-body code to the solutions of the Friedmann
equations for a dust FLRW universe. The top two panels
show the evolution of scale factor (a) and density (ρ)
relative to their initial values (ainit and ρinit respectively)
with a magenta dashed line. The time evolution for exact
solutions for scale factor (aFLRW) and density (ρFLRW) is
shown with a black solid line. Our numerical solutions
show agreement with the exact solutions, with residuals
(bottom two panels) on the order of 10−6 for scale factor
and 10−5 for density, even at relatively low-grid and particle
resolutions.
To quantify the error in our numerical method, and

ensure that we demonstrate the expected numerical con-
vergence, we calculate the L1 error for scale factor, density,
and the Hamiltonian constraint. We calculate the L1 error in
some quantity q using

L1ðqÞ ¼
1

nqmax

Xn
i¼1

jqi − qFLRWj; ð42Þ

where qFLRW is the analytic value for an FLRW spacetime
of the quantity qi at grid cell i, and qmax is the maximum
value of the analytic solution within the domain, used for
normalization. We opt for this normalized L1 calculation to
avoid biasing our error where the exact value is small.
Figure 2 shows the L1 error in scale factor (left), density
(middle), and Hamiltonian constraint (right) for simulations
withΔt ¼ 0.0015625, 0.003125 and 0.00625 in code units.
The filled color circles represent our data points while the
solid black line shows the ∝ Δt4 relationship expected from
the truncation error in the time-stepping scheme. We see the
expected fourth-order convergence for both scale-factor,
density, and Hamiltonian constraint.
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C. Radiation-dominated universe

In addition to a dust FLRW universe, we simulated the
evolution of a constant density radiation-dominated uni-
verse. Once again we initialize a homogeneous and
isotropic universe with an initial scale factor and density

as described in Sec. III A. Unlike our dust universe, we
have some pressure via

P ¼ wρenergy; ð43Þ

FIG. 2. Convergence study of matter-dominated FLRWuniverse: the L1 errors for scale factor (left), density (middle) and Hamiltonian
constraint (right) are compared to the expected fourth-order convergence in time for the RK4 integrator. The circle markers indicate data
points from our simulations, while the solid lines are polynomials of the formΔt4. Our method shows the expectedOðΔtÞ4 convergence,
for the scale factor, density, and Hamiltonian constraint.

FIG. 1. Matter-dominated FLRW universe: Comparison between numerical solutions (magenta) and exact solutions (black). The top
two plots show the evolution of scale factor (top left) and density (top right), while the bottom plots show the residuals of scale factor
(bottom left) and density (bottom right). Simulations were performed with a grid resolution of 323 and a particle resolution of 643.
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where w is a dimensionless number and ρenergy is the energy
density. For an ultrarelativistic (i.e. radiation-dominated)
universe we have

P ¼ 1

3
ρenergy; ð44Þ

and ρenergy ¼ aT4. We consider an adiabatic equation of
state such that

P ¼ ðγad − 1Þρu; ð45Þ

where γad is the adiabatic index and u is the internal energy.
Combining Eqs. (44) and (45), we obtain an adiabatic index
of γad ¼ 4=3. To set our stress-energy tensor, we initialize a
uniform cubic lattice of particles with energy density
ρinit ≈ 13.29, once again obtained from solving the
Friedmann equation. We set particle matter density to be
small, such that we are in radiation-dominated regime, and
then solve for initial temperature via

T4 ¼ ρenergy − ρ

a
; ð46Þ

which gives an initial temperature of T init ≈ 6500 K. We
then set an internal energy via

u ¼ aT4

ρ
; ð47Þ

which then sets an initial pressure. Note that since our
GRSPH formalism requires us to have a nonzero particle
mass, and therefore a nonzero matter energy density
component, we expect some slight deviation from a pure
radiation-dominated FLRW solution. As we are consider-
ing only a constant density radiation-dominated universe
with no irreversible dissipation, the entropy variable K is
constant.
In our chosen gauge, the evolution of the scale factor for

a radiation-dominated universe is given by

aðηÞ ∝ η; ð48Þ

and the primitive density evolution is given by

FIG. 3. Radiation-dominated FLRW universe: top panel, comparison between numerical (magenta) and exact solutions (black) with
constant initial density. The evolution of scale factor (left) and density (right) compared to exact solutions is shown in the top two panels.
The bottom panel shows the relative errors compared to analytical solutions.
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ρðηÞ ∝ η−4: ð49Þ

We begin at ηinit ¼ 1=Hinit and evolve until η ≈ 10
corresponding to an approximate change in scale factor
of 100. As with the matter-dominated universe, we have
initial relative errors in scale factor, and primitive density of
O ∼ 10−16 and O ∼ 10−9, respectively. We also utilize the
kernel bias correction [Eq. (30)] but do not require the
analytical exact interpolation for this problem. Figure 3
shows the evolution of a constant density radiation-
dominated FLRW universe using our method, compared
to the analytic solutions given in Eqs. (48) and (49). The top
panels show the evolution of the scale factor (left) and
density (right), with the numerical solutions indicated with
the dashed magenta lines, while the analytical solutions are
shown by the solid black lines. The bottom two panels
show the relative errors in scale factor (left) and density
(right) compared to exact solutions. Our numerical solu-
tions show agreement with the exact solutions, to an order
of 10−4 for density and 10−5 for scale factor even at low
grid and particle resolutions. We note that the L1 errors
obtained for the constant density radiation-dominated uni-
verse are a few orders of magnitude higher than that of the
dust universe. We attribute this mainly to the nonzero matter
energy density componentwhich offsets our numerical result
from the pure radiation-dominated solution obtained from
solving the Friedmann equations. Additionally, a longer
simulation time is required to achieve the same change in
scale factor due to the linear growth ofawith η fromEq. (48).

IV. LINEAR PERTURBATIONS

We introduce small perturbations to the FLRW initial
conditions, following the setup of [17] with the thorn
FLRWSolver. We describe the setup briefly below, for a more
complete treatment we refer the reader to [17] or [18].

A. Setup

Writing the metric for an FLRW universe in terms of
scalar perturbations only we have

ds2 ¼ a2ðηÞ½−ð1þ 2ψÞdη2 þ ð1 − 2ϕÞδijdxidxj�; ð50Þ

where, in this gauge, ψ and ϕ coincide with the Bardeen
potentials [66]. Assuming amplitudes such that ϕ;ψ ≪ 1,
we can solve Einstein’s field equations using linear
perturbation theory, following [17,18]. Extracting only
the growing mode we arrive at the following equations:

ϕ ¼ fðxiÞ; ð51Þ

δ ¼ 2

3H2
∇2fðxiÞ − 2fðxiÞ; ð52Þ

vi ¼ −
2

3aH
δfðxiÞ; ð53Þ

where we have freedom to choose fðxiÞ provided that it is
sufficiently small to retain our linear approximation. Since

Hinit ¼ 2=ηinit; ð54Þ

Equations (52) and (53) have an evolution of δ ∝ η2 and
vi ∝ η we choose ϕ of the form

ϕ ¼ ϕ0

X3
i¼1

sin

�
2πxi

λ
− θ

�
; ð55Þ

where ϕ0 is the initial perturbation, λ is the wavelength and
θ is the phase offset Using this value of ϕ, Eqs. (52) and
(53) are

δ ¼ −
��

2π

λ

�
2 ainit
4πρ�

þ 2

�
ϕ0

X3
i¼1

sin

�
2πxi

λ
− θ

�
; ð56Þ

and

vi ¼ −
�
2π

λ

�
2 Hinit

4πρ�
ϕ0

X3
i¼1

cos
�
2πxi

λ
− θ

�
; ð57Þ

respectively.
After setting the metric quantities based on the pertur-

bations of density and velocity, we initialize a density
distribution by stretching a cubic lattice with the stretch-
map method of [67] employing Eq. (56) for the density
perturbation. We also set particle velocities based on their
position and Eq. (57). Due to the nature of stretching a
finite particle resolution to a given density distribution, we
do not exactly recover our initial density and velocity
perturbations on the particles, and as such have initial
residuals on the order of 10−4. In principle, provided we
have a large enough particle resolution, we obtain residuals
that approach machine precision.
We set ϕ0 ¼ 10−6 and Hinit ≈ 10.55, which corresponds

to initial amplitudes of δ ≈ 10−6 and δvi ≈ 10−7, and evolve
the simulation from η ¼ 2=Hinit until η ≈ 3 corresponding
to a factor of ≈250 change in scale factor. We perform time
integration using a fourth-order Runge-Kutta method.We
use the kernel bias correction detailed in Sec. II C 3 but do
not use the exact analytical kernel interpolation for this
problem.

B. Results

Figure 4 shows the numerical evolution of the amplitude
of the density perturbation δ (left) and maximum velocity
perturbation δv (right) with dashed magenta curves in the
top two panels. We calculate the amplitudes of the
perturbations by fitting a sine function to the particle data
[sinðθÞ for δ and cosðθÞ for δv] using scipy.curve_
fit. Exact solutions, given by Eqs. (56) and (57), are
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FIG. 4. Linearly perturbed matter-dominated FLRWuniverse; comparison between numerical solutions (magenta) and exact solutions
(black) with sinusoidal perturbations to initial velocity and density. The evolution of the density perturbation δ is shown on the top left,
while the evolution of the velocity perturbation is shown in the top right. Relative errors for δ and δv, are shown on the bottom left and
bottom right respectively. The simulation was performed with 643 particles and a 323 numerical relativity grid.

FIG. 5. Convergence study for linear perturbations to a matter-dominated FLRW universe; the L1 errors of both the density
perturbation (left), velocity perturbation (middle) and Hamiltonian constraint (right) are compared to the expected second order
convergence. The circle markers indicate points from our simulations, while the expected OðΔx2Þ convergence is shown with the solid
black line.
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shown with solid black curves. The bottom panels show the
relative errors for δ (left) and δv (right). As with the
constant density simulations of Sec. III we also quantify our
errors by computing the L1 error [Eq. (42)]. Figure 5 shows
the L1 errors in the density perturbation (δ), velocity
perturbation (δv) and Hamiltonian constraint (H) for
increasing particle resolutions of 163, 323, and 643. All
simulations are performed with a grid resolution of 323. We
see the expected second order convergence with increasing
particle number for δ, δv and H. Our simulations
of a linearly perturbed FLRW spacetime show agreement
with exact solutions of order 10−2 by the end of the
evolution.

V. NONLINEAR EVOLUTION
AND SHELL CROSSING

A. Setup

To perform a nonlinear evolution, we chose an initial
perturbation of ϕ0 ¼ 10−5 such that the linear approxima-
tion of FLRWSolver remains valid. Our initial ϕ0 gives
perturbations in velocity and density of δ ¼ 10−4 and
δv ¼ 10−5 in the x direction, as shown in Fig. 6.
In addition to the x-direction-only perturbation, we also

evolved a nonlinear simulation with perturbations in x, y
and z directions. These perturbations are initialized on

particles by performing the stretch mapping procedure
three times: once for each direction. Velocities are directly
specified at each particle position using Eq. (57). Once
again, we use an initial perturbation of ϕ ¼ 10−5, which
gives maximum values of δ ¼ 10−4 and δv ¼ 10−5. For
both simulations we begin at ηinit ≈ 1.89 and evolve until
η ≈ 360. We perform time integration using a second-order
Runge-Kutta method. Simulations are performed with a
particle resolution of 643, and a grid resolution of 323 in the
one-dimensional perturbation, and the three-dimensional
perturbation using both a particle and grid resolution of
323. For the three-dimensional simulation only, we utilize
the exact kernel interpolation of Petkova et al. [65] when
interpolating our stress energy tensor from the particles to
the grid. However, the kernel bias correction is used in each
simulation.

B. Results

Figure 6 shows the velocity (lower) and density (upper)
with respect to position at times of η ≈ 1.89 (initial time),
η ≈ 35, η ≈ 50 and η ≈ 66. The magenta dashed curves
represent the values obtained from our simulations while
the solid gray curves show sinusoids of the same amplitude
as the numerical solutions. We calculate our sinusoids by
fitting a sine function to the particle data [sinðθÞ for δ and

FIG. 6. Nonlinear one-dimensional perturbation to a matter-dominated universe; density (lower) and velocity (upper) perturbations as
a function of position, for various values of conformal time η. The numerical result is given by the dashed magenta curves, while the gray
solid curves represent sinusoids with the same amplitude as the numerical result, thus showing the expected deviation from linear
solutions. The simulation was performed with a 323 numerical relativity grid and 643 particles.
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cosðθÞ for δv] using scipy.curve_fit. We see a
deviation from the linear (sinusoidal) shape at η ≈ 50
indicating that our simulations have passed into the non-
linear regime as expected. Figure 7 shows the column-
integrated density perturbation at η ≈ 1.89 and η ≈ 98 in the

x–y plane for a simulation with perturbations in each
direction. The overdense region in the top right-hand
corner collapses to a point with a column integrated density
perturbation ≈88 times greater than the initial distribution,
with a void forming in the bottom left corner.

FIG. 7. Three-dimensional collapse of an overdense region; column integrated density of our simulation at η ≈ 1.89 and η ≈ 98. The
simulation was performed with a particle resolution of 323 and a grid resolution of 323, and exact kernel interpolation.

FIG. 8. Plane wave collapse of nonlinear perturbations: velocity (upper) and density (lower) are shown as a function of position at
η ≈ 148 (corresponding to roughly the time of shell crossing), η ≈ 304 and η ≈ 357 (representing points well past shell crossing). We see
the formation of a spiral-like structure in velocity and of various caustic like spikes in density, as expected after shell crossing even with a
relatively low grid resolution of 323.
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C. Shell crossing

To explore the impact of shell crossings using our
method, we consider initial linear perturbations of
ϕ ¼ 10−5, δ ≈ 10−4 and δv ≈ 10−5 to FLRW background
as in Sec. V B. We evolve to η ≈ 365 such that our
numerical solutions diverge significantly from the linear
solutions and caustic formation occurs. Figure 8 shows the
density and velocity distributions as a function of position.
We show the density and velocity distributions at shell
crossing η ≈ 148, η ≈ 304 and η ≈ 357 representing the
evolution well past shell crossing. The spiral shapes shown
in velocity, and the caustics in density are characteristic of a
shell crossing.We stress that the conformal times shown are
not meant to be physically meaningful, and are just
indicative of the simulation time required to form such
structures. We also continue to evolve our simulation of the
three-dimensional perturbation until shell crossing occurs.
Figure 9 shows the distribution of particle x velocity with
respect to x position for the three-dimensional perturbation
at η ≈ 226. Like the one-dimensional perturbation, we see
the emergence of a “spiral” like structure in phase space. To
quantify the numerical stability of our simulations, we
show the evolution of the Hamiltonian and momentum
constraints in Fig. 11, while we see an increase in constraint
violation once the shell crossing occurs, the evolution
remains stable during and beyond this point.

VI. DISCUSSION AND CONCLUSIONS

We have introduced a new method for simulating homo-
geneous and inhomogeneous cosmologies by coupling the
Einstein Toolkit numerical relativity code to the PHANTOM

general relativistic smoothed particle hydrodynamics
code. Similar to the works of Macpherson et al. [17,18],
Bentivegna and Bruni [10], and Giblin et al. [19,20] we

have shown that numerical relativity is a viable tool for the
simulation of homogeneous and inhomogeneous cosmol-
ogy, albeit at low resolution. Like [17], our initial con-
ditions extract only the growing mode, rather than both the
growing and decaying modes. Unlike the previously stated
methods, our method is capable of simulating gravitational
collapse without shell crossing singularities, and thus can
facilitate the formation of dark matter halos in fully
nonlinear general relativity.
We demonstrated the evolution of a flat dust FLRW

universe with errors of the order of 10−6 compared to exact
solutions, with the expected fourth-order convergence
caused solely by truncation error in the time stepping
scheme, whilst using relatively low-particle (643) and grid
(323) resolutions. The evolution of linear perturbations to a
dust FLRW universe, has relative errors in density and
velocity compared to analytical solutions on the order 10−2,
whilst demonstrating the expected second-order conver-
gence in space.
Unlike previous attempts to employ N-body particle

methods in numerical relativity [26–28], our method allows
for simulation of gas as well as collisionless matter and
works in 3D, fully nonlinear general relativity rather than
using post-Newtonian approximations [25,68] or restricted
dimensionality [69]. In particular, we also demonstrated the
evolution of a flat, radiation-dominated universe with errors
on the order of 10−3 compared to the radiation-dominated
FLRW solution.
Finally, we show the evolution of nonlinear perturbations

in both one-dimensional and three-dimensional perturba-
tions past the point of shell crossing.We follow the formation
of dark matter halos without any significant violations in
either the Hamiltonian or momentum constraints.
Implementation wise, our main difficulty was our initial

attempt to split the time stepping between the two codes,
evolving the particle quantities in PHANTOM, while the
BSSN equations were evolved in Einstein Toolkit. We found
that the simplest approach was instead to discretize the time
derivatives on the left-hand side of the fluid equations in
Einstein Toolkit and use PHANTOM to compute the particle
summations needed for the density estimate and spatial
derivatives on the right-hand side.
As in Rosswog et al. [55], Diener et al. [51], Rosswog

and Diener [50] we coupled Lagrangian hydrodynamics
code to numerical relativity. However, there are several key
differences in implementation. Firstly, we use a regular
SPH kernel for interpolating the stress-energy tensor back
to the grid. This is accompanied by the exact interpolation
of Petkova et al. [65] which helps to ensure that mass and
momentum are conserved when interpolating from par-
ticles to the grid. We also evolve an entropy variable,
instead of total energy and as such we do not need to
compute time derivatives of the metric.
In this work we have only considered applications to

inhomogeneous cosmology. However, there are other

FIG. 9. The distribution of particle velocity in the x-direction as
a function of x position for the simulation of a three-dimensional,
nonlinear perturbation shown in Fig. 7. Here we show a restricted
domain corresponding to roughly the position of the “dark matter
halo.” The system has evolved well past shell crossing and has
begun to undergo virialization.
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applications which could be investigated using our code.
The most notable of these is the application to compact
binary mergers, however, this would require the develop-
ment of a fixed mesh refinement method.
Future work could investigate nonlinear effects with

realistic cosmological initial conditions similar to
Macpherson et al. [18]. This would mainly require further
optimization of our code. The current largest bottleneck is the
expense of interpolating the stress-energy tensor from the
particles to the grid, limiting the maximum resolutions we
can study in reasonable computation time. Improvements
could also be made to the parallelization, since we are
currently limited to one cluster node since our code does not
yet support MPI parallelization. We could also investigate
cosmologies involving a combination of nonrelativistic
(CDM and bayronic) and relativistic particles (neutrinos)
(like the simulations described in Adamek et al. [25]). This
would involve tracking and evolving two (or more) particle
species in PHANTOM, modeling their interaction (e.g. neu-
trino absorption/scattering with baryonic matter), and then
summing their resultant contributions to the stress energy
tensor before interpolation back to the numerical relativ-
ity grid.
Throughout this work we have only performed simu-

lations using a single uniform grid, which may not be
optimal for studying the formation of dark matter halos in a
realistic, large-scale universe simulation. The development
of an adaptive-mesh refinement method that works in
conjunction with the AMR methods implemented in
Einstein Toolkit would be desirable. Our main limitation is
the large computational expense compared to traditional
Newtonian N-body simulations. The combination of
numerical relativity with particles makes the evolution
slower than traditional N-body because of the required
interpolation at every time step to go from particles to grid
and vice versa, which is unavoidable. Despite these
limitations, we have shown that simulations of cosmologi-
cal spacetimes using numerical relativity need no longer be
limited by the use of a fluid approximation.
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APPENDIX A: CONSTRAINT VIOLATION

For some of the simulations presented in this paper we
quantified our errors compared to exact solutions by
calculating relative errors and also through a calculation
of the L1 error. For numerical relativity simulations without
exact solutions, the error can be quantified by looking at the
violations in the constraint equations for the Hamiltonian
and momentum constraints

H ≡ ð3ÞR − KijKij þ K2 − 16πρ ¼ 0; ðA1Þ

Mi ≡DjK
j
i −DiK − Si ¼ 0; ðA2Þ

where Dj is the 3-metric covariant derivative, and
Si ¼ −γiαnβTab. An initial constraint violation of O ∼ 2 ×
10−5 in H occurs due to a difference between initial metric
quantities and initial densities. This is particularly pertinent
when dealing with a density distribution discretized to
particles. We have two main sources of error when
reconstructing our density distribution. Firstly, we there
is a small initial error due to stretching the lattice of
particles to our desired density distribution. Secondly we
have an error due to the bias of our kernel. Similarly, large
increases in constraints during the evolution of our simu-
lations are indicative of departures from numerical stability.
Figure 10 shows the time evolution of the Hamiltonian and
momentum constraints for the linear perturbation to a dust
FLRWuniverse. While we show the constraint violations in
code units, we can normalize these violations by the order
of magnitude of the individual terms to get an insight
into the relative violation we are seeing. The maximum
density at the end of the simulation in code units is
ρmax ≈ 8 × 10−7, which gives a relative H violation,
Hrel ≈H=16πρ, of O ∼ 5 × 10−7. Note that we did not
compute the L1 error of the relative constraint violation (see
[18]) as this would have required several more quantities to
be interpolated to the grid (and corrected) at significant
computational expense. Figure 11 shows the evolution of
the Hamiltonian and momentum constraints in the non-
linear regime for a one-dimensional perturbation to an
FLRW universe. We see increases in Hamiltonian and
momentum constraints at η ≈ 100 as the system undergoes
shell crossing, and a increase in the momentum constraint
at η ≈ 300 as the virialization begins to occur. However,
there is no large increase in constraint values indicative of
numerical instability. The relative Hamiltonian constraint is
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O ∼ 7 × 10−1 at the end of the simulation. Finally, Fig. 12
shows the time evolution of the Hamiltonian and momen-
tum constraints for a nonlinear perturbation in each
direction. Like the one-dimensional case we have an
increase in both the Hamiltonian and momentum con-
straints as shell crossing begins to occur at η ≈ 100, before

plateauing and increasing as instances of shell crossing
reoccur. The maximum density is ρmax ≈ 2.1 × 10−5 at the
end of the simulation, and thus we obtain a relative
Hamiltonian constraint violation of O ∼ 8 × 10−4.

APPENDIX B: BIAS CORRECTION EVOLUTION

For each of the simulations shown in this paper we have
used a kernel bias correction factor (Cbias) which is
calculated from comparing the total mass on the grid, to
the total mass on the particles [see Eq. (30)] to correct our

FIG. 10. Constraint evolution for a linear perturbation to a
matter-dominated FLRW universe. The L1 error of the Hamil-
tonian (blue) and momentum (red) constraints are shown with
respect to conformal time.

FIG. 11. Constraint evolution for a nonlinear one-dimensional
perturbation to a matter-dominated FLRW universe. The L1 error
of the Hamiltonian (blue) and momentum (red) constraints are
shown with respect to conformal time.

FIG. 12. Constraint evolution for a nonlinear three-dimensional
perturbation to a matter-dominated FLRW universe. The L1 error
of the Hamiltonian (blue) and momentum (red) constraints are
shown with respect to conformal time.

FIG. 13. Evolution of the kernel bias correction factor Cbias for
three different perturbations to a matter-dominated FLRW uni-
verse. The value of Cbias for the constant density (blue), linear
(green dotted), and nonlinear (red dash-dotted) perturbations are
shown with respect to conformal time.
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interpolated stress-energy tensor. To quantify the evolution
of this bias correction we perform three different simu-
lations of a one-dimensional sinusoidal perturbation to a
matter-dominated FLRW universe with varying initial
perturbation amplitudes (ϕ0). The ϕ0 ¼ 0 case corresponds
to no perturbation or a constant density universe, while
ϕ0 ¼ 10−6 corresponds to a linear perturbation, and finally
ϕ0 ¼ 10−2 which corresponds to a nonlinear perturbation.
For each simulation we set Hinit ≈ 10.55, which gives an

initial density of ρinit ≈ 13.29. We evolve the simulation
from η ¼ 2=Hinit until η ≈ 3. We use a 643 particles and a
323 numerical relativity grid. Figure 13 shows the evolution
of the bias correction factor Cbias for the constant (blue
solid line), linear (green dotted line), and nonlinear (red
dot-dashed line) cases. For both the constant and linear
cases, Cbias remains constant over the course of the
simulation. While in the nonlinear case Cbias decreases
as the perturbation becomes more nonlinear.
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