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We apply the full set of most updated dynamical and geometrical data in cosmology to the nonextensive
Barrow entropic holographic dark energy. We show that the data point towards an extensive Gibbs-like
entropic behavior for the cosmological horizons, which is the extreme case of the Barrow entropy, with the
entropy parameter being Δ > 0.86, close to the maximum threshold of Δ ¼ 1 where the fractal dimension
of the area-horizon becomes almost or just the volume and the intensivity is recovered. Furthermore,
we find that the standard Bekenstein area-entropy limit (Δ ¼ 0) is excluded by the set of our data. This
contradicts the bounds obtained recently from early universe tests such as the baryon asymmetry, the big
bang nucleosynthesis, and the inflation limiting Δ < 0.008 at the most extreme case.
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I. INTRODUCTION

In view of the recent tensions in cosmology (see [1] for
a review), various nonstandard approaches have been
attempted as possible resolutions of these issues of the
cosmological setting. One such approach is based on the
application of the cosmological horizons, which are rooted
in the studies of the black hole event horizons and their
thermodynamical framework. After the seminal works on
that topic some decades ago, it is commonly known that
black hole systems behave similarly to thermodynamical
systems. This is generally expressed by the black hole
thermodynamical laws operating the notions of the
Bekenstein entropy [2] and the Hawking temperature [3].
The former is commonly called the “area entropy” due to
the fact that it is proportional to the area of the horizon of a
black hole and, in consequence, to its radius squared.
However, this poses a problem which is not so much
appreciated by the scientific community: the proportion-
ality of the entropy to the surface area makes the
Bekenstein entropy nonextensive, while extensivity means
that the entropy should be proportional to the volume rather
than the area, as is the case in the standard Gibbs
thermodynamics. Besides, the Bekenstein entropy is also
nonadditive [4,5] which again differs from the Gibbs
entropy. In view of that, all applications of the cosmological
horizons towards resolution of the current problems should
take this into account.

In this paper we focus on these issues while applying the
full set of dynamical and geometrical data nowadays
available in cosmology. The work is then organized as
follows: in Sec. II we discuss the nature of nonextensive
horizon entropies (Bekenstein, Barrow, Tsallis-Cirto mod-
els) and exhibit the relations between them; in Sec. III we
introduce the main features of Barrow holographic cosmol-
ogy; in Sec. IV we describe the data we have used for
our analysis; and finally, in Sec. V we outline the main
outcomes of our work.

II. NONEXTENSIVE ENTROPIES AND
HOLOGRAPHIC SCREENS IN COSMOLOGY

So far, there is no convincing statistical theory of
black hole thermodynamics within the framework of
Bekenstein and Hawking which would be based on the
proper definitions of microscopic degrees of freedom
resulting after appropriate averaging to phenomenological
quantities. This would require a generalization of the Gibbs
entropy definition to nonextensive and nonadditive cases.
Generalizations of such a type have been proposed, and
among one of the earliest of them, there was the proposal of
Tsallis [6,7] in which a new parameter q is measuring the
deviation from extensivity, with the entropy reading as

ST ¼ −kB
X
i

½pðiÞ�q lnq pðiÞ; ð2:1Þ

where pðiÞ is the probability distribution defined on a set
of microstates Ω, q∈R is the nonextensivity parameter,
and kB is the Boltzmann constant. This tricky idea comes
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from the introduction of the q-logarithmic function lnq p
defined as

lnq p ¼ p1−q − 1

1 − q
; ð2:2Þ

such that, in the limit, q → 1, Tsallis entropy (2.1) reduces
to Gibbs entropy

SG ¼ −kB
X
i

pðiÞ lnpðiÞ: ð2:3Þ

Tsallis entropy (2.1) satisfies a nonadditive composition
rule of the following form:

S12 ¼ S1 þ S2 þ
1 − q
kB

S1S2; ð2:4Þ

while the Bekenstein entropy fulfills another rule of
nonadditivity which reads [4,5]

S12 ¼ S1 þ S2 þ 2
ffiffiffiffiffi
S1

p ffiffiffiffiffi
S2

p
: ð2:5Þ

In fact, via the introduction of the “formal logarithm”
approach [4], one is able to transfer it into a corresponding
additive entropy in such a way that

SR ¼ kB
1 − q

�
ln

�
1þ 1 − q

kB
ST

��
; ð2:6Þ

which is the Rényi entropy [8]

SR ¼ kB
ln
P

ip
qðiÞ

1 − q
: ð2:7Þ

As already mentioned, the Bekenstein entropy is nonex-
tensive and nonadditive. However, it is often put as Tsallis
entropy into (2.6) in order to make it additive, though still
keeping it nonextensive. The Tsallis entropy, on a similar
footing as the Bekenstein entropy, can be applied to black
holes. In fact, it is known as the Tsallis-Cirto entropy [9,10]
and reads

Sδ ¼ kB

�
SB
kB

�
δ

; ð2:8Þ

with δ > 0 a real parameter, and SB the Bekenstein area
entropy

SB ¼ kBc3A
4Gℏ

; ð2:9Þ

where ℏ, G, and c are the reduced Planck constant, the
Newton gravitational constant, and the speed of light,
respectively. In (2.9), the main variable characteristic of
the entropy is the area A of the horizon. For the simplest

Schwarzschild black hole case, it is defined as A ¼ 4πr2h,
where rh ¼ 2GM=c2 is the Schwarzschild radius and M is
the mass of a black hole. Tsallis-Cirto entropy fulfills the
composition rule in the form

S12 ¼ kB

��
S1
kB

�
1=δ

þ
�
S2
kB

�
1=δ

�
δ

: ð2:10Þ

It is worth noticing that for δ ¼ 3=2, the Tsallis-Cirto
entropy scales with the volume, and so it becomes an
extensive quantity. For any other value of δ, as it is clear
from (2.8), this entropy scales proportionally to an area,
similarly to the Bekenstein entropy. The only difference is
that it introduces a new parameter δ, which makes this
scaling nonlinear.
The application of the event horizon to black holes for

the nonextensive entropies has led cosmologists to use
them also for the cosmological horizons in order to try to
solve the current problems of cosmology such as the dark
energy problem or the Hubble tension problem. This is why
one observes recently many applications of the nonexten-
sive entropies to the holographic screens in the Universe.
Apart from Bekenstein entropy, also the Tsallis entropy
was considered theoretically [11,12] and tested cosmologi-
cally [12–16]. Other entropies, such as the Kaniadakis
entropy [17–20] have also been tested, and even a four-
parameters entropy function that generalizes, among
others, the Tsallis, Rényi, and Barrow entropies, has
been proposed and its cosmological consequences studied
qualitatively [21–24].
Our main concern in this paper is the application of yet

another case of nonextensive entropy, which is the Barrow
entropy, in the cosmological setting.
Barrow entropy [25] is a proposal which, like the

Bekenstein entropy, has no statistical roots, but its fractal
nature possesses a clear physical interpretation—it is due
to quantum fluctuations of some hierarchical scales.
The idea was to carry on with the tight structure of smaller
and smaller spheres being attached sequentially on the
top of the previous ones from the horizon to the infinity.
This forms the fully fractal structure which is known as
the sphereflake, and can be referred to any textbook in
dynamical systems [26]. Its mathematical description
suggests no appeal to physics, but on the contrary, it seems
to be quite reasonable if one appeals to the quantum theory,
which allows quantum fluctuations of the horizon in some
analogy to what happens in the early (inflationary) universe
when the quantum fluctuations on each length scales are
generated. A fully satisfactory theory of such fluctuations
has yet not been attempted, but it seems well motivated.
The basic derivation of the Barrow entropy formula has
been presented in a few papers including our previous
contribution [27]. In short, due to the fractal structure of the
horizon sphere, its area is modified such that it gains some
extra fractal volume which makes its dimension larger than
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an area, i.e. the horizon possesses the fractal dimension
2 ≤ df ¼ 2þ Δ ≤ 3, and results in an effective horizon

area of reff ¼ r
df
h , where rh is the standard, nonfractal,

horizon radius. As a result, the horizon area is modified,
yielding the expression for the Barrow entropy as follows:

SBarrow ¼ kB

�
A
Ap

�
1þΔ

2

; ð2:11Þ

where A is the horizon area, Ap is the Planck area, and Δ is
the fractal dimension parameter bound to take values
between 0 and 1, i.e. 0≤Δ≤1. Quick inspection of (2.8)
and (2.11) reveals that the Tsallis-Cirto entropy and the
Barrow entropy are mathematically equivalent provided
that [28]

δ → 1þ Δ
2
; ð2:12Þ

except the δ parameter is not limited besides being required
to be real. In fact, they both yield the same temperatures
and heat capacities as a function of black hole masses [29].
However, the most striking property is that they both, in the
appropriate limits (δ ¼ 3=2 for Tsallis-Cirto and Δ ¼ 1 for
Barrow), lead to the extensivity (while still keeping non-
additivity) of the entropy for the black hole and cosmo-
logical horizons. In this limit they are closest to the standard
Gibbs thermodynamic formulation.
Since its first proposal, Barrow entropy was studied

theoretically [30–36] and also tested observationally in
Refs. [16,27,31,37,38]. It is interesting to note that
using the Jacobson method [39] of obtaining gravity from
thermodynamics, Barrow entropy gives a general relativity-
like gravity with a rescaled cosmological constant
Λ̃ ¼ Λ½ð1þ Δ=2ÞAΔ=2�−1, while Tsallis entropy modifies
the matter side of the Einstein field equations influencing
the gravitational constant, G̃ ¼ ðG=δÞðA=A0Þ1−δ, giving
in the limit δ → 1 (Δ → 0) the standard G [33].

III. BARROW HOLOGRAPHIC HORIZONS

The key point to “translate” the modification of the
horizon area proposed by [25], and the resulting changes in
the effective Bekenstein entropy, into a cosmological
context is to refer to holographic dark energy (DE)
approaches [40]. In that context, DE is given by ρDE ∝
SeffL−4, where in our case the effective Bekenstein entropy
is Seff ∝ Aeff ∝ L2þΔ. The distance L is a horizon length,
whose definition is not set unequivocally.
Then, we can express Barrow holographic (BH) dark

energy as [41]

ρBH ¼ 3C2

8πG
L2ðΔ

2
−1Þ; ð3:1Þ

where C is the holographic parameter with dimensions of
½T�−1½L�1−Δ=2 and G the Newton gravitational constant. It is
worth noticing that the ΛCDM limit of (3.1) is obtained for
Δ ¼ 2 which is beyond the Barrow fractal parameter range,
though it still is within the Tsallis parameter δ (δ ¼ 2) range
[cf. (2.12)]. The choice of which horizon to be used is an
open issue. In this work we will assume it to be the future
event horizon [42,43],

L≡ a
Z

∞

t

dt0

a
¼ a

Z
∞

a

da0

Hða0Þa02 ; ð3:2Þ

where a is the scale factor and HðaÞ the Hubble parameter.
In the literature, one can find that also other choices are
considered. For example, in [44] it is shown how the
Hubble horizon,

L≡ c
HðaÞ ; ð3:3Þ

can be assumed as a boundary, although with some
caveats. Also in [27] we have shown how a Barrow DE
fluid with the Hubble horizon can be, in principle, a
healthy model to be used to describe cosmological data.
But we must point out that the Hubble horizon is not a
“true horizon,” in strict terms, as it can be crossed and has
been crossed in the past [45].
At the same time, some issues of causality violation

which might derive from the choice of the future event
horizon as the boundary have been raised [43]. In order to
solve this problem, an infrared cutoff for holographic DE
models has been proposed in [46,47], which reads as

L≡ c½αH2ðaÞ þ βḢðaÞ�−1=2; ð3:4Þ

with α and β free dimensionless parameters, and the dot
being a time derivative. Even so, we stress again that here
we have only focused on the choice of the future event
horizon, while other cases are postponed to future works.
Finally, we should point out that many types of entropic

models, including Barrow proposal, have also been shown
to be particular examples of generalized nonholographic
dark energy models and modified gravity theories [48–52].

A. Kinematic quantities

Starting from (3.2), we proceed using the standard first
Friedmann equation,

H2ðaÞ ¼ 8πG
3

½ρmðaÞ þ ρrðaÞ þ ρBHðaÞ�; ð3:5Þ

where we consider the presence of matter, radiation and
DE, and the standard continuity equation for both matter
and radiation, namely,
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ρ̇m;rðaÞ þ 3HðaÞ
�
ρm;rðaÞ þ

pm;rðaÞ
c2

�
¼ 0; ð3:6Þ

with the pressure parametrized as pi ¼ wiρi, with the
equation of state parameter wi being 0 for standard
pressureless matter and 1=3 for radiation. If we introduce
the standard density parameters ΩiðaÞ,

Ωm;rðaÞ ¼
H2

0

H2ðaÞΩm;ra−3ð1þwm;rÞ; ð3:7Þ

ΩBHðaÞ ¼
C2

H2ðaÞL
2ðΔ

2
−1Þ; ð3:8Þ

then the cosmological equation (3.5) can be rewritten as

1 ¼ ΩmðaÞ þ ΩrðaÞ þΩHðaÞ; ð3:9Þ

so that finally the Hubble parameter can be expressed as

HðaÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωma−3 þ Ωra−4

1 −ΩBHðaÞ

s
: ð3:10Þ

This latest expression is quite useful: if we substitute it
into (3.2), equate the obtained horizon length expression
with the one which can be derived from inversion of (3.8),
and differentiate both the expressions with respect to the
scale factor a, we eventually get that the time behavior of
the BH dark energy is defined by the following differential
equation:

a
dΩBHðaÞ

da
¼ ΩBHðaÞ½1 −ΩBHðaÞ�

��
1þ Δ

2

�
F rðaÞ þ ð1þ ΔÞFmðaÞ þ ½1 −ΩBHðaÞ�

Δ=2
2ðΔ
2
−1ÞΩBHðaÞ

1

2ð1−Δ
2
ÞQðaÞ

�
ð3:11Þ

F rðaÞ ¼
2Ωra−4

Ωma−3 þΩra−4

FmðaÞ ¼
Ωma−3

Ωma−3 þΩra−4

QðaÞ ¼ 2

�
1 −

Δ
2

��
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωma−3 þΩra−4

q �Δ=2
1−Δ

2C
1

Δ
2
−1:

ð3:12Þ

We need to note that (3.11) is different from (13) in our
previous work [27], more specifically for the role and the
expression of the radiation term.
Thus, in this work we will perform two analysis. First,

we will improve the results obtained in [27] using the same
data sets appearing there but employing the correct and
updated version of BH DE which can be derived from
the proper (3.11). Second, we will perform a new and fully
comprehensive analysis using both the most updated
cosmological data related to the cosmological background
and the dynamical ones.

B. Dynamical quantities

While the application of BH DE to the cosmological
background is quite straightforward, as we only need to
rely on (3.10) inserting in it the solution of (3.11), the use of
perturbation equations deserves a bit more discussion.
The linear perturbation theory for the Friedmann-

Lemaître-Robertson-Walker universe was introduced
by [53] and later summarized in several books and
publications among which is the seminal work of [54].
In order to derive the corresponding equations for DM
perturbations within models with a DE component,

whether a cosmological constant like ΛCDM or a dynami-
cal DE fluid, one follows the standard procedure, i.e. to
consider perturbed line elements of an expanding universe,
which allow to get first order perturbed Einstein equations.
Following [55], one is then able to derive the first order
energy-momentum conservation equations for a generic
fluid with its equation of state parameter wðaÞ. In general,
one can derive the set of equations governing the growth
of both the DM and DE perturbations as is summarized
in (9), (10), and (16)–(18) of [56]. In the present work we
follow the same procedure in the limit of no perturbations
in DE. The resulting equations are scale invariant, are valid
also for a ΛCDM cosmology, and read as

a2H2ϕ00 þ ð4aH2 þ aḢÞϕ0 þ ðH2 þ 2ḢÞϕ ¼ 0;

δ00m þ 1

a

�
2þ Ḣ

aH2

�
δ0m ¼ 3H2

2
ΩmðaÞδm; ð3:13Þ

where H ¼ aH is the conformal Hubble parameter; δm is
the density contrast parameter for DM; ϕ is the Bardeen
potential coming from metric perturbation; the prime
denotes derivative with respect to the scale factor; and
the dot stands for the derivative with respect to cosmic time.
For the choice of the initial conditions we follow [57]: for
the matter density contrast and its derivative respectively,
we use

δmðaiÞ ¼ −2ϕðaiÞ
�
1þ 1

3HðaiÞ2
�
; ð3:14Þ

dδmðaiÞ
da

¼ −
2

3

ϕðaiÞ
HðaiÞ2

: ð3:15Þ
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Similarly, as in [58], for the scalar field ϕ we set ϕðaiÞ ¼
−6 × 10−7 and we assume ϕ0ðaiÞ ¼ 0, with ai ¼ 0.01. Our
results are unaffected by reasonable changes of the exact
initial value of the ϕ.
The information about the growth rate of (matter)

perturbations is then encoded in the quantity

fðaÞ ¼ d ln δmðaÞ
d ln a

; ð3:16Þ

derived from solving the set of differential equations (3.13).
Actually, observations from galaxy clustering are able to
measure the combination fσ8ðaÞ ¼ fðaÞ · σ8ðaÞ, where
σ8ðaÞ is the conventionally defined amplitude of the linear
power spectrum on the scale of 8h−1 Mpc:

σ8ðaÞ ¼ σ8;0
δmðaÞ
δmð1Þ

; ð3:17Þ

where σ8;0 is the normalization factor at present time
ða ¼ 1 or equivalently z ¼ 0).

IV. CONSTRAINING BARROW NONEXTENSIVE
HOLOGRAPHY BY BOTH KINEMATIC AND

DYNAMICAL DATA

For our statistical analysis we will consider many
different types of cosmological probes, which we organize
in different combinations. A quick overview is provided
in Table I.
One collection of data sets will be dubbed as “late,”

because it will not involve any calculation of physical
quantities which are generally connected to early-times
physics, like the sound horizon. Another case will be
referred to as “full” because it will rely on the usage of both
late-times and early-times data. Moreover, we perform
analysis using only geometrical data (i.e. connected to
the cosmological background), and in combination with
dynamical data, which will take into account the growth of
matter perturbations.
For what concerns the analysis which corrects the results

previously published in [27], we have used the same (older)
data for a consistent comparison. The only data in common

TABLE I. Data sets used for the statistical analysis. For each probe we provide the name (first column) and the reference (last column)
from which they are taken. The tick “✓”means that the given data set is included in the final χ2 function. Geo stands for geometrical and
only relates to the cosmological background; +dyn includes solution of the perturbations equations. The term late means that probes
involving the calculation of physical quantities at recombination (and earlier) times are not included. The full tag, instead, refers to the
use of all the possible probes, also those connected to recombination (and earlier) times.

Name Geo-late Geo-full Geo-late+dyn Geo-full+dyn References

Pantheon SNeIa ✓ ✓ ✓ ✓ Brout et al. [59]
Cosmic chronometers ✓ ✓ ✓ ✓ Jiao et al. [60]
GRBs ✓ ✓ ✓ ✓ Liu and Wei [61]
CMB � � � ✓ � � � ✓ Zhai et al. [62]
SDSS-IV DR16 ELG � � � ✓ (BAO) ✓ (RSD) ✓ (BAOþ RSD) Tamone et al. [63] and

de Mattia et al. [64]
SDSS-III DR12 LRG � � � ✓ (BAO) ✓ (RSD) ✓ (BAOþ RSD) Alam et al. [65]
SDSS-IV DR16 LRG � � � ✓ (BAO) ✓ (RSD) ✓ (BAOþ RSD) Gil-Marin et al. [66] and

Bautista et al. [67]
SDSS-IV DR16 LRGþ Void � � � ✓ (BAO) ✓ (RSD) ✓ (BAOþ RSD) Nadathur et al. [68]
SDSS-IV DR16 Lyman α � � � ✓ (BAO) � � � ✓ (BAO) du Mas des Bourboux et al. [69]
SDSS-IV DR16 QSO (BAO) � � � ✓ (BAO) ✓ (RSD) ✓ (BAOþ RSD) Hou et al. [70] and

Neveux et al. [71]
SDSS-IV DR14 QSO (BAO) � � � ✓ (BAO) ✓ (RSD) ✓ (BAOþ RSD) Zhao et al. [72]
WiggleZ ✓ (BAO) ✓ (BAO) ✓ (BAOþ RSD) ✓ (BAOþ RSD) Blake et al. [73]

2dFGRS � � � � � � ✓ (RSD) ✓ (RSD) Song and Percival [74]
6dFGS � � � � � � ✓ (RSD) ✓ (RSD) Achitouv et al. [75]
6dFGS voids � � � � � � ✓ (RSD) ✓ (RSD) Achitouv et al. [75]
FASTSOUND � � � � � � ✓ (RSD) ✓ (RSD) Okumura et al. [76]
GAMA � � � � � � ✓ (RSD) ✓ (RSD) Blake et al. [77]
BOSS-WiggleZ � � � � � � ✓ (RSD) ✓ (RSD) Marín et al. [78]
BOSS LOWZ � � � � � � ✓ (RSD) ✓ (RSD) Lange et al. [79]
SDSS-IV DR15 LGR-SMALL � � � � � � ✓ (RSD) ✓ (RSD) Chapman et al. [80]
SDSS DR7 MGS � � � � � � ✓ (RSD) ✓ (RSD) Howlett et al. [81]
VIPERS voids � � � � � � ✓ (RSD) ✓ (RSD) Hawken et al. [82]
VIPERS � � � � � � ✓ (RSD) ✓ (RSD) Mohammad et al. [83]
VIPERSþ GGL � � � � � � ✓ (RSD) ✓ (RSD) Jullo et al. [84]
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with the present work are the cosmic chronometers (CC),
the gamma ray bursts (GRBs) and the baryon acoustic
oscillations (BAO) data from the WiggleZ survey. Here we
will describe in detail only the data which have been used
for the analysis which we consider “new and fully
updated.” We thus refer the reader to the corresponding
data section of [27] for more details on the remaining data
used in that case.

A. Pantheon+ SNeIa

The most updated type Ia supernovae (SNeIa) data
collection is the Pantheonþ sample [59,85–87], made of
1701 objects in the redshift range 0.001 < z < 2.26. The
χ2SN will be defined as

χ2SN ¼ ΔμSN ·C−1
SN · ΔμSN; ð4:1Þ

where Δμ ¼ μtheo − μobs is the difference between the
theoretical and the observed value of the distance modulus
for each SNeIa and CSN is the total (statistical plus
systematic) covariance matrix. The distance modulus cal-
culated from the theoretical model is

μtheoðzhel; zHD; pÞ ¼ 25þ 5 log10½dLðzhel; zHD; pÞ�; ð4:2Þ

where dL is the luminosity distance (in Mpc)

dLðzhel; zHD; pÞ ¼ ð1þ zhelÞ
Z

zHD

0

cdz0

Hðz0; pÞ ; ð4:3Þ

with HðzÞ the Hubble parameter (cosmological model
dependent), c the speed of light, zhel the heliocentric
redshift, zHD the Hubble diagram redshift [i.e. the cosmic
microwave background (CMB) redshift including peculiar
velocity corrections [87]], and p is the vector of cosmo-
logical parameters.
On the other hand, the observed distance modulus μobs is

μobs ¼ mB −M; ð4:4Þ

with mB the standardized SNeIa blue apparent magnitude
and M is the fiducial absolute magnitude calibrated by
using primary distance anchors such as Cepheids. It is well
known that in general H0 and M are degenerate when
SNeIa alone are used. But the Pantheonþ sample includes
77 SNeIa located in galactic hosts for which the distance
moduli can be measured from primary anchors (Cepheids),
which means that the degeneracy can be broken and H0

and M can be constrained separately. Thus, the vector Δμ
will be

Δμ ¼
�
mB;i −M − μCeph;i i∈Cepheid hosts

mB;i −M − μtheo;i otherwise;
ð4:5Þ

with μCeph being the Cepheid calibrated host-galaxy dis-
tance provided by the Pantheonþ team.

B. Cosmic chronometers

As extensively outlined in [88–92], early-type galaxies
which undergo passive evolution and exhibit characteristic
features in their spectra can be defined and assessed as
“clocks” or CC, and can provide measurements of the
Hubble parameter HðzÞ [60,93–98]. The most updated
sample of CC is from [60] and spans the redshift range
0 < z < 1.965. The corresponding χ2H can be written as

χ2H ¼ ΔH · C−1
H · ΔH; ð4:6Þ

where ΔH ¼ Htheo −Hdata is the difference between the
theoretical and observed Hubble parameter, and CH is the
total (statistical plus systematics) covariance matrix calcu-
lated following prescriptions from [91].

C. Gamma ray bursts

The so-called “Mayflower” sample [61] overcomes the
well-known issue of calibration of GRBs by relying on a
robust cosmological model independent procedure. It is
made of 79 GRBs in the redshift interval 1.44 < z < 8.1
for which we recover the distance modulus. The χ2G is
defined exactly like in the SNeIa case, (4.1), but in this case
we cannot disentangle between the Hubble constant and the
absolute magnitude, so that we have to marginalize over
them. Following [99] it becomes

χ2GRB ¼ aþ logd=ð2πÞ − b2=d; ð4:7Þ

with a≡ ðΔμGÞT ·C−1
G · ΔμG, b≡ ðΔμGÞT ·C−1

G · 1 and
d≡ 1 ·C−1

G · 1.

D. Cosmic microwave background

The cosmic microwave background (CMB) analysis is
not performed using the full power spectra provided by
Planck [100] but instead using the shift parameters defined
in [101] and derived from the latest Planck 2018 data
release in [62]. The χ2CMB is defined as

χ2CMB ¼ ΔFCMB ·C−1
CMB · ΔFCMB; ð4:8Þ

where the vector FCMB corresponds to the quantities

RðpÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩmH2

0

q rðz�; pÞ
c

;

laðpÞ≡ π
rðz�; pÞ
rsðz�; pÞ

; ð4:9Þ

in addition to a constraint on the baryonic content, Ωbh2,
and on the dark matter content, ðΩm −ΩbÞh2. In (4.9),
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rsðz�; pÞ is the comoving sound horizon evaluated at the
photon-decoupling redshift. The general definition of the
comoving sound horizon is

rsðz; pÞ ¼
Z

∞

z

csðz0Þ
Hðz0; pÞ dz

0; ð4:10Þ

where the sound speed is given by

csðzÞ ¼
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þ R̄bð1þ zÞ−1Þ
p ; ð4:11Þ

with the baryon-to-photon density ratio parameters defined
as R̄b ¼ 31500Ωbh2ðTCMB=2.7Þ−4 and TCMB ¼ 2.726 K.
The photon-decoupling redshift is evaluated using the
fitting formula from [102],

z� ¼ 1048½1þ 0.00124ðΩbh2Þ−0.738�ð1þ g1ðΩmh2Þg2Þ;
ð4:12Þ

where the factors g1 and g2 are given by

g1 ¼
0.0783ðΩbh2Þ−0.238
1þ 39.5ðΩbh2Þ−0.763

;

g2 ¼
0.560

1þ 21.1ðΩbh2Þ1.81
: ð4:13Þ

Finally, rðz�; pÞ is the comoving distance at decoupling,
i.e. using the definition of the comoving distance:

dMðz; pÞ ¼
Z

z

0

cdz0

Hðz0; pÞ ; ð4:14Þ

we set rðz�; pÞ ¼ dMðz�; pÞ.

E. Baryon acoustic oscillations

For BAO we consider multiple data sets from different
surveys. In general, the χ2 is defined as

χ2BAO ¼ ΔFBAO ·C−1
BAO · ΔFBAO; ð4:15Þ

with the observables FBAO which change from survey to
survey.
When we employ the data from the WiggleZ Dark

Energy Survey [73], at redshifts z¼ f0.44;0.6;0.73g, the
relevant physical quantities are the acoustic parameter,

Aðz; pÞ ¼ 100

ffiffiffiffiffiffiffiffiffiffiffi
Ωmh2

q
dVðz; pÞ

cz
; ð4:16Þ

where h ¼ H0=100, and the Alcock-Paczynski distortion
parameter,

Fðz; pÞ ¼ ð1þ zÞ dAðz; pÞHðz; pÞ
c

; ð4:17Þ

where dA is the angular diameter distance defined as

dAðz; pÞ ¼
1

1þ z

Z
z

0

cdz0

Hðz0; pÞ ; ð4:18Þ

and

dVðz; θÞ ¼
�
ð1þ zÞ2d2Aðz; θÞ

cz
Hðz; θÞ

�
1=3

ð4:19Þ

is the geometric mean of the radial and tangential BAO
modes. This data set is independent of any early-times
quantity and it is thus the only BAO data set included in the
late-times analysis.
We also consider data from multiple analysis of the latest

release of the Sloan Digital Sky Survey (SDSS) Extended
Baryon Oscillation Spectroscopic Survey (eBOSS) obser-
vations. Each one of the following data are used for the full
data analysis and not for the late-times one because they
involve the calculation of the sound horizon at early times.
For all the SDSS data [63–71], with the exception of the

SDSS-IV DR14 quasars analysis from [72], the following
quantities are given:

dMðz; pÞ
rsðzd; pÞ

;
c

Hðz; pÞrsðzd; pÞ
; ð4:20Þ

where the comoving distance dM is given by (4.14) and the
sound horizon is evaluated at the dragging redshift zd. The
dragging redshift is estimated using the analytical approxi-
mation provided in [103] which reads

zd ¼
1291ðΩmh2Þ0.251

1þ 0.659ðΩmh2Þ0.828
½1þ b1ðΩbh2Þb2�; ð4:21Þ

where the factors b1 and b2 are given by

b1 ¼ 0.313ðΩmh2Þ−0.419½1þ 0.607ðΩmh2Þ0.6748�;
b2 ¼ 0.238ðΩmh2Þ0.223: ð4:22Þ

Data from [72] are instead expressed in terms of

dAðz; pÞ
rfids ðzd; Þ
rsðzd; pÞ

; Hðz; pÞ rsðzd; pÞ
rfids ðzd; pÞ

; ð4:23Þ

where rfids ðzdÞ is the sound horizon at dragging redshift
calculated for the given fiducial cosmological model
considered in [72], which is equal to 147.78 Mpc.
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F. Redshift space distortions

For the dynamical analysis based on the perturbation
equations and thus connected to redshift space distortion
(RSD) measurements, we have used the data sets (with the
RSD tag) which we only report in Table I, for the sake
of legibility and clarity. Note that although in some
literature [104,105] larger samples are considered, we have
decided to retain only those data which are unequivocally
unrelated and to discard those which are superseded by
most updated ones, as it happens in the case of the final
release from SDSS.
One important comment is in order here: RSD measure-

ments are not cosmologically independent, which means
that data points are provided for a given fiducial cosmol-
ogy. Thus, in order to be used by us in our analysis for our
Barrow DEmodel, we have to rescale them, considering the
following relation:

½fσ8ðzÞ�model ¼ ½fσ8ðzÞ�data
Hfid;dataðzÞ ·DA=fid;dataðzÞ
HmodelðzÞ ·DA=modelðzÞ

;

whereDA is the angular diameter distance defined in (4.18).

G. Statistical tools

The total χ2 properly corresponding to each data combi-
nation is minimized using our own code for Monte Carlo

Markov chain. The convergence of the chains is checked
using the diagnostic described in [106].
In order to establish the reliability of the Barrow DE with

respect to the standard ΛCDM scenario, we calculate the
Bayes factor [107], Bi

j, defined as the ratio between the
Bayesian evidences of the two compared models, in our
case modelMi being the Barrow one, and modelMj being
the ΛCDM. We calculate the evidence numerically using
our own code implementing the nested sampling algorithm
developed by [108]. Finally, the interpretation of the
Bayes factor is conducted using the empirical Jeffrey’s
scale [109].

V. DISCUSSION AND CONCLUSIONS

In this work we have applied a set of cosmological
data—both kinematic and dynamical—to the Barrow
entropy holographic screen. There are a couple of interest-
ing results which we list below.
Preliminarily, we would briefly comment how the

application of the new data influences the results of
our previous paper [27] on the Barrow entropy. In fact,
comparing Table II here with Table I of [27], we can clearly
see how the corrected (3.11) implies no change at all for
what concerns the analysis with the late-times data. Both
results are fully compatible and totally statistically con-
sistent. Instead, the greatest differences appear when we use
full data. As they are totally in line with the results which

TABLE II. Results from the statistical analysis. For each parameter we provide the median and the 1σ constraints. The columns show:
1. Considered theoretical scenario; 2. Dimensionless matter parameter,Ωm; 3. Dimensionless baryonic parameter,Ωb; 4. Dimensionless
Hubble constant, h; 5. Fiducial absolute magnitude, M; 6. Amplitude of the linear power spectrum at present time, σ8;0; 7. Barrow
entropic parameter,Δ; 8. Holographic parameter,C; 9. Amplitude of the weak lensing measurement (secondary derived parameter), S8;0;
and 10. Logarithm of the Bayes factor, logBi

j.

Ωm Ωb h M σ8;0 Δ C S8;0 logBi
j

“Revision” of [27]

LCDM (geo-late) 0.293þ0.016
−0.016 � � � 0.713þ0.013

−0.013 � � � � � � � � � � � � � � � 0

LCDM (geo-full) 0.319þ0.005
−0.005 0.0494þ0.0004

−0.0004 0.673þ0.003
−0.003 � � � � � � � � � � � � � � � 0

BH1 (geo-late) 0.290þ0.020
−0.019 � � � 0.715þ0.014

−0.013 � � � � � � > 0.63 3.93þ1.77
−1.88 � � � −0.71þ0.03

−0.02

BH1 (geo-full) 0.314þ0.006
−0.006 0.049þ0.001

−0.001 0.676þ0.007
−0.007 � � � � � � > 0.84 4.66þ0.87

−1.07 � � � −0.05þ0.03
−0.03

Updated and newest constraints
LCDM (geo-late) 0.321þ0.015

−0.015 � � � 0.730þ0.010
−0.009 −19.263þ0.028

−0.028 � � � � � � � � � � � � 0

LCDM (geo-full) 0.318þ0.007
−0.006 0.0493þ0.0006

−0.0006 0.674þ0.004
−0.004 −19.437þ0.012

−0.012 � � � � � � � � � � � � 0

LCDM (geo-late+dyn) 0.315þ0.014
−0.014 � � � 0.731þ0.010

−0.010 −19.263þ0.028
−0.028 0.770þ0.018

−0.017 � � � � � � 0.790þ0.023
−0.022 0

LCDM (geo-full+dyn) 0.314þ0.006
−0.005 0.0490þ0.0006

−0.0006 0.677þ0.004
−0.004 −19.429þ0.011

−0.011 0.779þ0.017
−0.017 � � � � � � 0.796þ0.019

−0.019 0

BH (geo-late) 0.300þ0.020
−0.019 � � � 0.729þ0.010

−0.010 −19.263þ0.028
−0.029 � � � > 0.63 4.50þ2.20

−2.13 � � � −0.39þ0.02
−0.04

BH (geo-full) 0.311þ0.006
−0.006 0.0486þ0.0008

−0.0008 0.679þ0.006
−0.006 −19.438þ0.013

−0.013 � � � > 0.82 4.58þ0.90
−1.16 � � � −2.99þ0.04

−0.04

BH (geo-late+dyn) 0.290þ0.018
−0.017 � � � 0.729þ0.010

−0.010 −19.261þ0.028
−0.028 0.791þ0.022

−0.022 > 0.69 5.31þ1.97
−2.27 0.791þ0.022

−0.022 −0.35þ0.03
−0.03

BH (geo-full+dyn) 0.307þ0.006
−0.006 0.0484þ0.0009

−0.0008 0.681þ0.006
−0.005 −19.431þ0.013

−0.013 0.777þ0.017
−0.017 > 0.86 4.89þ0.76

−1.03 0.786þ0.020
−0.020 −4.36þ0.04

−0.04
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we get from the newest and most updated data set, we focus
on a general discussion about them in the next paragraphs.
First of all, all data tests lead to the conclusion that

the Barrow fractal index Δ is bound from below, being
Δ > 0.86 for full data and peaking towards Δ → 1 in all
our data combination, which means that the cosmological
horizon should be of the fractal nature. This has a very
interesting consequence in view of the nonextensive entro-
pies cosmological applications—namely, the better fit to
the data, the more extensivity in the system. Otherwise, we
might state that the resolution of the dark energy problem
due to the Barrow (or Tsallis-Cirto) holography is possible
if the thermodynamics of the universe is more like the
classical Gibbs one, which is extensive and additive.
However, unlike Gibbs, Barrow entropy is still nonadditive.
If looked at from the perspective of a cosmologist, we

might say that this result does not come totally unfore-
seen. Indeed, we know very well that the ΛCDM model,
i.e. a cosmological constant for what concerns the dark
energy component, provides the most successful fit to the
cosmological data we have considered. Thus, a biased
implicit preference toward a cosmological constant
dynamical behavior might be expected, although not
necessarily obvious. Considering that the Barrow DE,
as stated in previous sections, can achieve a cosmological
constant behavior only at Δ ¼ 2, which lies beyond
the expected physical range for this scenario, the peak
toward the maximum upper limit Δ ¼ 1 can be seen as an
implicit trend from the data towards a cosmological
constant behavior.
Another very important point to stress is that the

“standard” limit of a nonfractal horizon, i.e. Δ ¼ 0, is
excluded by our set of data. In fact, our bound on Barrow

index Δ ¼ 2ðδ − 1Þ contradicts other evaluations from
the literature.
The difference in the retrieved estimations is very likely

related to the different approaches which are used to
include entropy definitions in the cosmological context.
More specifically, one can identify two main ways: by the
holographic principle, which is also used in this work, and
by the gravity-thermodynamics conjecture [110–113].
In the gravity-thermodynamics-based works, the new

contributions to the first Friedmann equation due to new
definition of entropy can be written as two terms: a
function of scale factor [which is mostly a function of
the Hubble parameter HðaÞ] and a constant (of integra-
tion). The latter is always identified with the cosmological
constant. We know very well that with a cosmological
constant one can describe quite well and in its entirety the
dark energy sector and its dynamics. From this point of
view, entropic contributions, at the cosmological level,
are almost like a “nuisance.” Furthermore, in gravity-
thermodynamics analysis, the authors are generally inter-
ested into an epoch where dark energy is negligible
and they mostly assume that the only contribution to
the energy matter is from radiation. Thus, what it is really
going to be tested with the entropic contributions are
“corrections to radiation physics,” which one could
naively expect to be small.
Given such premises, in [35], the constraints on Barrow

entropy are derived from observational bounds on baryon
asymmetry, leading to Δ ∼ 0.005–0.008. In [12] the same
analysis is performed for Tsallis entropy, with a final
constraint of 0.002≲ jδ − 1j≲ 0.004. In [16], Tsallis
entropy is confronted with big bang nucleosynthesis,
and it is found that 1 − δ < 10−5. The same data are

FIG. 1. Confidence contours from ΛCDM and the BHmodel for fΩ; hg (left panel) and the BH parameters fΔ; Cg (right panel). Color
code: green—SNeIa; blue—CC; red—CMB; yellow—BAO þ RSD; black—full joint data set. Solid lines are 1σ and 2σ levels for the
BH model; dashed (dot-dashed) lines are 1σ (2σ) levels for ΛCDM.
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confronted with Barrow entropy in [114], and the authors
get Δ≲ 1.4 × 10−4.
In [115] the entropic modified Friedmann equation

within the gravity-thermodynamics approach is confronted
with a set of cosmological probes, including Pantheon
SNeIa and a BAO sample, but the early-times physics (and
thus the role of radiation) is not included in their model,
differently from our (3.11). After applying a Gaussian prior
on the sound horizon, onΩm andH0, they obtainΔ ∼ 10−4.
In [15], the authors start from the gravity-thermodynamics
approach again, and although they perform a more detailed
analysis of the consequence of Tsallis entropy at the level
of cosmological perturbations, they also introduce a scalar
field with constant equation of state which behaves as a
dark energy fluid. Thus, entropic corrections result to bring
a negligible contribution in the cosmological context,
with the fluid having a w ≈ −1 and the entropic parameter
δ ≈ 0.9997. Finally, confronting Barrow entropy with
inflationary cosmological parameters constraint from
Planck, in [38] the Barrow parameter is qualitatively set
as Δ≲ 10−4 (but assuming a number of e-fold of 30).

When it comes to the application of the holographic
principle, as we have done in this work, results are still
different from what we find. In [116] the authors do not use
any early-times probe, but only SNeIa, CC, and GRBs, and a
different horizon from ours, and their final estimation for
the Tsallis parameter is δ ≈ 0.16, which corresponds to
Δ ≈ −1.68, clearly out of the physical boundary required by
Barrow theory. In [117] the holographic principle is applied
also to our same horizon definition, and there is the usage of
early-times data (BAO and CMB), but the contribution of
radiation seems to be missing from the main equations
derived for Barrow entropy. Anyway, they constrain
δ ≈ 1.07 corresponding to Δ ≈ 0.14. Similar results are
obtained in [118,119] using only late-times data, with
Δ ∼ 0.09, but with the holographic parameter C being
totally unconstrained (see their Fig. 2). Finally, in [120],
Barrow holographic dark energy is compared to SNeIa and
CC only, but assuming a varying spatial curvature; the final
range for Barrow entropy parameter is Δ ∼ 0.06 ÷ 0.2.
As for all the other cosmological parameters, we can note

that they are always perfectly consistent with ΛCDM.

FIG. 2. Comparing the behavior of the BH model with respect to ΛCDM. Top left panel: matter, ΩmðaÞ, from BH (dark blue) vs
ΛCDM (light blue); radiation, ΩrðaÞ, from BH (orange) vs ΛCDM (yellow); dark energy component, ΩBHðaÞ, from BH (black) vs
ΩΛðaÞ fromΛCDM (red). Although not discernible, we plot 1σ confidence levels for each component. Top right panel: percent (absolute
value) difference 1 − ΩBHðaÞ=ΩΛCDMðaÞ. Matter—blue; radiation—orange; dark energy—black. Bottom left panel: percent (absolute
value) difference in the Hubble parameter, 1 −HBHðaÞ=HΛCDMðaÞ. Bottom right panel: entropy (in arbitrary units) SΛCDM ¼ L2 (solid
black) and SBH ¼ L2þΔ (solid red) and the corresponding derivatives with respect to scale factor (dashed lines).
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A trend towards slightly lower values for Ωm seems to be
favored by the Barrow scenario, but the statistical signifi-
cance of this deviation is negligible. In the left panel of
Fig. 1 we show the constraints on Ωm vs the Hubble
constant h which can be obtained from separate fits from
each separate data set, both for our BH and for ΛCDM
model. We can clearly observe that there is no notable
inconsistency among the different probes that have been
used. We may note that in the case of the BH model (solid
lines/contours) the CMB shift parameters (red) exhibit
a larger variability with respect to the ΛCDM case, and
that the SNeIa have a bit larger “tension” with respect to
other sets. More specifically, the (expected) higher value
for h seems to be more strongly correlated with Ωm,
which is lower with respect to the ΛCDM case and other
probes (although being consistent with all of them at 2σ
confidence level).
We can also note how the holographic parameter C is

well restricted to a quite precise range, being ∼5 inde-
pendently of the probes which are considered, with smaller
errors when the full sample is used. The interpretation
of such numbers, although, is not an easy task, because
the holographic parameter actually has no defined units.

From the right panel of Fig. 1 we can see how all data
sets are consistent with each other, with SNeIa showing a
larger variability.
Finally, in general, if we look at the Bayes factors we can

state that the Barrow DE model is always statistically
disfavored with respect to ΛCDM, with the inclusion of
early-times and dynamical probes leading to the most
penalizing results. If we look more carefully at the back-
ground dynamics, we can see that there is barely any
statistically significant difference between the two scenar-
ios. In the top panels of Fig. 2 we can see how the
difference in the matter and radiation content over a large
temporal range is ≲0.1%. For the dark energy the BH
model estimates a consistent excess of this component
with respect to a standard cosmological constant,
although in epochs where it is the subdominant compo-
nent, so that its effect is largely negligible. This is
also confirmed by verifying (in the bottom left panel
of Fig. 2) that the percent (absolute) variation in the
Hubble parameter is ≲1%. Moreover, in Fig. 3, we
can easily see how the model fits quite well all the data
which we have considered. The early-times quantities,
like the sound horizon at decoupling and dragging epoch,

FIG. 3. Comparing the behavior of the BH model with respect to ΛCDM and data. In all panels, data are gray/black points; BH
inferred values are blue; ΛCDM ones are red. Top left panel: SNeIa Hubble diagram. Top right panel: cosmic chronometers. Bottom left
panel: BAO radial (c=H) (gray points) and tangential ðDMÞ (black points) modes normalized at the sound horizon at dragging redshift
ðrsðzdragÞÞ, as reported by the surveys listed in Table I. Bottom right panel: RSD data from different surveys, as listed in Table I.
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are also strongly consistent with each other, having
rsðz�Þ ¼ 144.30þ0.38

−0.38 and rsðzdragÞ ¼ 150.76þ0.44
−0.44 for the

BH scenario and rsðz�Þ ¼ 143.97þ0.32
−0.32 and rsðzdragÞ ¼

150.41þ0.39
−0.39 for the ΛCDM model.

Finally, in the bottom right panel of Fig. 2 we also plot
the general behavior (in arbitrary units) of the entropy both
for the ΛCDM and the Barrow model, together with its
derivatives with respect to the scale factor.

One interesting point to address would be if there were
any positive contributions to the cosmological tensions
which are now under scrutiny and debate. But we can easily
see that there is no real improvement in that for H0, while
for S8;0 ¼ σ8;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
we can see some mildly positive

effects namely, even including Planck CMB data, we get a
value of S8 which is consistent with late-times large scale
surveys.
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