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Primordial black hole (PBH) formation from first-order phase transitions (FOPTs) combines two
prevalent elements of beyond the Standard Model physics with wide-ranging consequences. We elaborate
on a recently proposed scenario in which inhomogeneities in vacuum energy decay seed the overdensities
that collapse to PBHs. In this scenario, the PBH mass is determined by the Hubble mass as in conventional
formation scenarios, while its number density is determined by the nucleation dynamics of the FOPT.
We present a detailed study of the formation probability including parameter dependencies. In addition, we
generate populations in the open mass window as well as for the HSC and OGLE candidate microlensing
events. This mechanism inevitably creates PBHs in generic FOPTs, with significant populations produced
in slow and moderately strong phase transitions.
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I. INTRODUCTION

The existence of primordial black holes (PBHs) would
have many interesting and diverse consequences. In the
asteroid mass window 10−16M⊙ ≲MPBH ≲ 10−11M⊙, the
PBH mass fraction is free of constraints, making this mass
range a popular candidate for PBH dark matter (DM) [1–3].
As a subdominant component of DM, PBHs can contribute
to the LIGO-Virgo-KAGRA population of detected binary
black hole mergers [4–17] or seed supermassive black
holes [18–20]. Interestingly, two microlensing experiments
HSC [21] and OGLE [22] have reported candidate events
which may be consistent with a population of PBHs at
MPBH ∼ 10−9M⊙ andMPBH ∼ 10−4M⊙, respectively. PBHs
are leading candidates for DM and ones with abundant
astrophysical consequences.
It is therefore unsurprising that PBH-production mech-

anisms have saturated the literature in recent years. In
addition to the classic formation from primordial over-
densities [23,24], models involving first-order phase tran-
sitions (FOPTs) have become popular [25–33] (see also [34]
for an inflationary scenario but with metastable vacuum).
Generically, FOPTs soften the equation of state of the
relativistic plasma and stimulate the growth of overdensities,
leading to increased PBH production [35–45]. In models
with additional particles, they can accumulate and form
PBHs and other compact objects [46–59].

In particular, Ref. [60] calculated the abundance of
FOPT-induced PBHs that result from the overdensities in
the false vacuum (FV) regions with delayed decay (see [61]
for a specific FOPT model realizing the same scenario).
The essence of this mechanism is the stochastic nature of
the FOPT, which creates inhomogeneities in the subsequent
radiation energy distribution after the vacuum transition.
These perturbations may then grow and collapse into PBHs
in the standard manner. We seek to elaborate and present a
more detailed investigation of this interesting scenario,
providing a quantitative understanding of the production
probability. The PBH prediction of this mechanism is
sensitive to the parameters of the FOPT, so it is possible
to realize any mass and energy fraction given suitable
models. In this paper, we simply choose benchmark
parameters of FOPTs that correspond to the open mass
window (∼10−15M⊙) and the two microlensing events
mentioned above, leaving concrete model buildings for
future investigation.
In this paper, we describe the formation of PBHs from

vacuum energy decay in a FOPT. In Sec. II, a general
overview of FOPTs and the relevant equations are given. In
Sec. III, we construct the formalism to calculate the PBH
formation probability and abundance. In Sec. IV, the
numerical process and results are described. Finally, in
Sec. V, we discuss the results and draw conclusions.

II. FIRST-ORDER PHASE TRANSITION

We summarize the progression of a FOPT and list out
key equations. In the following, we take a phenomeno-
logical approach for the FOPT parameters α and β defined
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below. Our arguments are largely independent of the
underlying model, provided that the phase transition
has a strong vacuum energy α ∼Oð0.1Þ and slow pace
β=H ∼Oð1Þ, where H is the Hubble expansion rate.
In a FOPT, the Universe is initially in a stable FV state,

which becomes unstable below the critical temperature Tcri
(see Refs. [62–66]) and corresponding time tcri. The
nucleation rate for true vacuum (TV) bubbles is given by

ΓðtÞ ¼ AðtÞe−SðtÞ; ð1Þ

where SðtÞ is the bounce action of the three- (from thermal
fluctuations) or four-dimensional (from quantum tunneling)
instanton solution. ΓðtÞ is the number of bubble nucleations
per unit time per unit physical volume in FV regions.
The time dependence of the nucleation rate stems from

the temperature dependence of the finite-temperature
effective potential. As the temperature varies with time
due to the expansion of the Universe and the progression of
the phase transition, the effective potential and the corre-
sponding nucleation rate ΓðtÞ vary accordingly.
The qualitative behavior of the effective potential

depends on whether the potential barrier separating the
two vacua disappears in a finite temperature below Tcri or it
persists even in the zero-temperature limit [62]. As the
Universe cools down, the nucleation rate Γ continually
increases for the former case. In the latter case, it peaks
at some intermediate temperature and subsequently
decreases, where only the quantum tunneling can nucleate
new bubbles in the zero-temperature limit. The statistics of
the postphase transition universe and the completion of the
phase transition (having no FV regions) depend on the low-
temperature behavior. We discuss this consistency problem
in Sec. III A and in more detail in Appendix A, by stating
the conditions that should be satisfied in order to have a
FOPT that successfully ends while producing PBHs by the
scenario considered here.
The temperature evolution is complicated by themoderate

reheating from the release of latent heat and the differing
Hubble rate in a two-component radiation-vacuum universe.
The effects of reheating are minor in a weak FOPTwith low
latent heat. In a strong detonationlike FOPT, the bubblewalls
move at nearly the speed of light, faster than the sound speed,
so the latent heat remains in TVand the nucleation rate in the
FVis unaffected.An inhomogeneousHubble rate arises from
the constant energy density in the vacuum-dominated FV
regions and the redshifting radiation-dominated TV regions
(see Sec. III). However, we neglect this effect as the
inhomogeneous expansion rates are not directly relevant
to the focus of this paper, and instead use the average energy
density to calculate the Hubble rate.
For analytical purposes, the exponential form

ΓðtÞ ≈ Γ0eβðt−t0Þ; β ¼ −
dSðtÞ
dt

����
t¼t0

ð2Þ

is a good approximation when β=H ≫ 1, and the second
derivative of S is negligible with respect to β [62] at an
arbitrary fixed time t0. Hereafter, we take t0 ¼ tcri, the
critical time in which the two vacua become degenerate.
The average size of the FV bubbles is related to the
bubble wall velocity vw and β by R ∼ 1.12vw=β [49,56],
which implies that β=H ≲Oð1Þ is necessary to have
enough horizon-sized FV regions that can collapse into a
detectable number of PBHs. For numerical calculations, we
consider values of β=H ∼Oð1Þ to marginally satisfy both
these conditions. Another key parameter is the ratio of
the vacuum energy to the plasma energy density α≡
ΔV=ρSMðTcriÞ, which measures the strength of the
FOPT. In this paper, we make an approximation by
ignoring the temperature evolution of ΔV and let it be a
constant after Tcri. This corresponds to a situation where
only the height of the potential barrier varies, giving
Eq. (2), while the vacua energies remain the same. Also,
we simply focus on α≲Oð1Þ to avoid a long-duration
second inflationary phase.
As the phase transition progresses, the volume fraction of

the FV region shrinks from ffv ¼ 1 at T > Tcri to ffv → 0
at T ≪ Tcri, and can be computed by

ffvðtÞ ¼ exp

�
−
4π

3

Z
t

tcri

dt0a3ðt0ÞΓðt0Þr3ðt; t0Þ
�
; ð3Þ

where

rðt; t0Þ ¼ vw

Z
t

t0
dt00

1

aðt00Þ ð4Þ

is the comoving size of a bubble nucleated at t0. Under the
constant scale factor approximation or constant Hubble rate
approximation during the transition and using the expo-
nential approximation (2), ffvðtÞ can be analytically solved
to be [67]

ffvðtÞ ¼ exp ½−I�eβðt−tcriÞ�;

I� ¼
( 8πv3wΓcri

β4
ðconst aÞ;

8πv3wΓcri
βðHþβÞð2HþβÞð3HþβÞ ðconst HÞ:

ð5Þ

Note that we have approximated tcri → −∞ when
H ¼ const. Here we see that there are competing effects
for PBH production. As detailed in Sec. III, the constant
vacuum energy ΔV grows in strength to the surrounding
plasma at lower temperatures and later times. Conversely, the
FV fraction steadily decreases with increasing time, con-
straining the PBH production to peak at intermediate times.

III. PBH FORMATION MECHANISM

In the classical analytic prescription for PBH formation,
a PBH forms when horizon-sized perturbations exceed a
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critical overdensity threshold δ > δc ∼ 0.45 [68]. The
spectrum of curvature perturbations is usually generated
during inflation and reenters the horizon after reheating.
Here, we consider the scenario outlined in Ref. [60] in
which overdensities are generated stochastically during a
FOPT. However, we investigate the formation mechanism
in more detail and comment on the different methodologies
in this paper and Ref. [60] in Sec. III C.
For a moderately strong FOPT α ∼Oð0.1 − 1Þ, the

vacuum energy is a significant component of the overall
energy density which even temporarily keeps the Hubble
rate HðtÞ constant. This vacuum energy will seed the
fluctuations when converted to radiation by the phase
transition. Because of the conservation of entropy, the
background plasma radiation density redshifts with scale
factor a as ∝ a−4, but the vacuum energy density ΔV stays
constant. Therefore, regions of FV will have proportionally
larger energy densities with increasing time. If the resultant
density contrasts are large enough, they gravitationally
collapse and PBHs are formed (see Sec. III A for detailed
PBH formation criterion), whereas deficient overdensities
will decay and disappear soon due to the radiation pressure.
In the paper, we focus on the PBHs from horizon-sized

overdensities only and discard the subhorizon ones, since
the formation criterion for these are not well understood.

A. Formation criterion

Here the quantitative criterion for PBH formation is
stated. First, we define a time t1.45 at which the local energy
density of a FV point is 1þ δc ≃ 1.45 of the background
average density,

1þ δ ≔
ΔV þ ρSMðt1.45Þ

ρ̄ðt1.45Þ
¼ 1.45; ð6Þ

where ρSMðtÞ is the Standard Model (SM) plasma energy
density that was present before the transition, and ρ̄ðtÞ is the
average total energy density of the Universe (see Sec. IVA
for more concrete definitions).
Then we use a simple but justified criterion for PBH

formation: Any Hubble volume that is entirely covered by
FVafter time t1.45 eventually collapses to a PBH. There are
a few subtleties excluded by this prescription. First, the
value of δc ¼ 0.45 is applicable only to radiation-domi-
nated plasma and should be scaled according to its effective
equation-of-state parameter w [36] which would be differ-
ent due to the presence of vacuum energy. Furthermore, the
overdensity δ cannot accumulate and collapse when the
horizon is dominated by the FV until it decays into
radiation, delaying the growth phase of the perturbation
past t1.45. However, this delayed growth is offset by the
relative increase in the FV energy ΔV to the surrounding
plasma during this time. These omitted effects tend to
cancel, and we leave a more in-depth investigation of PBH
formation involving numerical simulations to future work.

The horizon-sized FV regions will expand exponentially
if they remain intact. This resembles the old inflation
scenario, which was abandoned due to the prediction that
inflation never ends because the vacuum transition cannot
overcome the exponential expansion of FV regions.
However, there is one important difference for FOPT:
The nucleation rate is not restricted to be much smaller
than the Hubble scale and also allowed to increase
exponentially as in Eq. (2). So for our scenario to be
consistent with the successful completion of a FOPT, the
nucleation rate should catch up with the volume expansion
rate, making the physical volume of FV ∝ ffvðtÞa3ðtÞ
decrease [57,69]. More detailed conditions to achieve this
are explained in Appendix A with a numerical demon-
stration. We are assuming one of the three cases with
exponential approximation (2) for the nucleation rate; see
the Appendix for more details. Any deviation from our
assumption will result in different quantitative results, but
the physics of PBH formation is not altered.

B. Formation probability

We calculate the time-dependent probability pðtÞ of
PBH formation per unit time for any given Hubble volume.
We then apply this in Sec. IV to find the PBH mass
spectrum and abundance.
In the following, we use the wall cone formalism

developed in Ref. [56] with the comoving radius of a
TV bubble given by Eq. (4). The wall cone formalism
describes the propagation of bubble walls as cones in
spacetime, corresponding to light cones only with light
speed c replaced by wall velocity vw. A future wall cone
coming out from a nucleation point represents the region of
TV, while the past wall cone of a spacetime point represents
the region for nucleation to put that point in TV.
For a Hubble volume to be entirely in FV at time t,

(i) there can be no nucleation within the Hubble volume for
time t0 < t and (ii) no nucleation within the past wall cone
of the Hubble volume. A nucleation outside the horizon at
time t0 < t can propagate to the Hubble volume if it is less
than a distance rðt; t0Þ away. In Fig. 1, we display these
three regions in spacetime. The probability pðtÞdt repre-
sents the transition probability of the Hubble volume
between t and tþ dt. We now derive this probability. To
streamline the discussion, we use comoving quantities,
with the comoving nucleation rate defined as

ΓcomðtÞ ¼ ΓðtÞa3ðtÞ: ð7Þ

In an infinitesimal time interval dt, the probability of no
nucleation in an infinitesimal comoving volume dVcom is
1 − VcomΓcomdt. Summing infinitesimal volumes and tak-
ing the limit, the probability of no nucleation within a given
comoving volume until the time t�ðx⃗Þ for each comoving
point x⃗∈Vcom is
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PnðVcom; t�Þ ¼
Y
i

½1 − VcomΓcomðtiÞdt�

¼ exp

�
−
Z
Vcom

d3x⃗
Z

t�ðx⃗Þ

tcri

a3ðtÞΓðtÞdt
�
: ð8Þ

We apply this formula to the transition probability pðtÞ of a
given Hubble volume by using the comoving radius from
its center

rx ≔ jx⃗j and rHðtÞ ≔
1

aðtÞHðtÞ : ð9Þ

First, each point within the Hubble volume rx < rHðtÞ
should remain in the FV, implying t�ðx⃗Þ ¼ t. This is shown
by the red region in Fig. 1. On the other hand, outside the
horizon, the past wall cone has (t� < t),

rxðt�Þ ¼ rHðtÞ þ vw

Z
t

t�

1

aðtÞ dt ≔ rHðtÞ þ rðt; t�Þ; ð10Þ

where we assume a constant wall velocity vw ≤ 1, and the
maximum comoving radius is denoted by rmax ≔ rxðtcriÞ ¼
rHðtÞ þ rðt; tcriÞ. The corresponding outside region is
represented in blue in Fig. 1. If we denote the inverse of
Eq. (10) as t�ðrxÞ, each outside point x⃗ must remain in the
FVuntil t�ðrxÞ. Then, the survival probability of the Hubble
volume, or the probability of having no TV up to time
t > tcri, is given by the product of the probabilities of
having no nucleation in the horizon itself or in its past wall
cone as

PðtÞ¼ exp

�
−
4π

3

Z
t

tcri

a3ðt0Þ
a3ðtÞH

−3ðtÞΓðt0Þdt0
�

×exp

�
−4π

Z
rmax

rHðtÞ
drxr2x

Z
t�ðrxÞ

tcri

a3ðt0ÞΓðt0Þdt0
�
: ð11Þ

The complement 1 − PðtÞ is simply the cumulative dis-
tribution function of pðtÞ, so the desired transition prob-
ability is given by

pðtÞ ¼ −
d
dt

PðtÞ: ð12Þ

As previously mentioned, we limit the domain of pðtÞ to
t > t1.45 so that pðtÞ can be interpreted as the probability
density for the onset of PBH collapse. The mass distribu-
tion of PBH is determined by the temporal distribution of
formation, as the horizon size and the overdensity δ vary
with time. The mass of the PBH is related to the horizon
mass at the transition time by

MðtÞ ¼ γMHðtÞ ¼ γ
4π

3
ρ̄ðtÞH−3ðtÞ; ð13Þ

where we choose the numerical prefactor γ ¼ 1, and ρ̄ðtÞ is
the average energy density (combined radiation and vac-
uum). If another value of γ or a different PBH mass relation
(e.g., critical collapse; see Sec. IV B) is used, the mass
distribution is simply shifted with little consequence for our
purposes. pðtÞ can be converted to the standard PBH
formation parameter βðMÞ, which is the fraction of PBH
abundance in the Universe at the formation time [1–3]. The
(physical) number density at the formation of new PBHs
for a time interval between t and tþ dt is

dnPBH ¼ pðtÞ
�
4π

3

1

H3ðtÞ
�

−1
dt ð14Þ

giving

βðMÞ ¼ 1

ρSMðTÞ
dρPBH
d logM

¼ 4M
3T

1

sðTÞ
dnPBH
d logM

¼ MH3ðtÞ
πT

pðtÞ
sðTÞ

�
d logM

dt

�
−1
; ð15Þ

where sðTÞ is the entropy density of SM plasma, and both t
and T on the rhs are understood as functions of M via
Eq. (13). Finally, the PBH energy fraction fPBHðMÞ is
given in terms of βðMÞ [70] as

fPBHðMÞ ¼ 1

ΩDM

�
Meq

M

�
1=2

βðMÞ; ð16Þ

withΩDM ¼ 0.264 and the horizon mass at matter-radiation
equality Meq ¼ 2.8 × 1017M⊙.

FIG. 1. Wall cone diagram for PBH formation. A nucleation in
either the horizon volume (red) or the causative past wall cone
(blue) would trigger the phase transition. A nucleation in the
green spacetime slice would induce the phase transition between
time t and tþ dt.
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C. Comparison with 2106.05637

In Liu et al. [60], the authors proposed a PBH formation
scenario from vacuum energy during a FOPT and provided
some estimates of the formation probability and PBH
statistics. We elaborate on this mechanism and present
improved calculations in this paper using the wall cone
approach of Ref. [56]. We find that Refs. [60,61] over-
estimate the PBH abundance. In contrast, although our
methods also use analytic simplifications and contain
uncertainties, they are more sophisticated and tend to
conservatively estimate the formation probability, leading
to a lower bound on the PBH abundance. Here we also try
to clarify certain points that were implied in the qualitative
exposition of Refs. [60,61].
Although a direct comparison is difficult, the primary

difference between these two methods is the past wall cone
region that we consider. Our interpretation of the spacetime
diagram for Refs. [60,61] is shown in Fig. 2. Their
condition for PBH production requires only delayed
nucleation in the Hubble horizon itself, treating each
Hubble volume as a separate universe and neglecting TV
propagation from the surrounding wall cone. We find
numerically that the wall cone region contributes an
exponential suppression factor comparable to the contri-
bution from the Hubble volume itself. This would result in
much lower production probability and smaller βðMÞ,
although production is also exponentially sensitive to
FOPT parameters α and β which can be changed to
compensate for the extra suppression. Thus, we conclude
that the production mechanism proposed in Ref. [60] is

valid, but we present a modified version and provide some
details that we found missing.

IV. PBH ABUNDANCE CALCULATION

We numerically evolve the FOPT equations to find the
formation probability pðtÞ and energy fraction βðMÞ or
fPBHðMÞ. We describe the generic numerical procedure in
Sec. IVA and show the results in Sec. IV B.

A. FOPT evolution

During a FOPT, the Universe has two energy compo-
nents: the vacuum energy of FV ΔV and the radiation
energy ρ̄RðtÞ. The FOPT starts at the critical temperature
Tcri. At this moment, there are only homogeneous SM
plasma with energy density π2

30
gðTcriÞT4

cri and the vacuum
energy with density α times the former. As the transition
progresses, the vacuum energy is converted into kinetic
energy for the bubble walls and delivers latent heat into
the plasma. The average total energy density is then
expressed by

ρ̄ðtÞ ¼ ρ̄VðtÞ þ ρ̄RðtÞ; ð17Þ

where

ρ̄VðtÞ ¼ ΔV × ffvðtÞ ð18Þ

is the average vacuum energy density for the FV volume
fraction given by Eqs. (3) and (4), and

ρ̄RðtÞ ¼ ρSMðtÞ þ ρ̄heatðtÞ þ ρ̄wallðtÞ ð19Þ

is the total average radiation energy density, the sum of the
SM plasma from the reheating after inflation, the latent
heat, and the bubble wall energy. Hereafter, the wall energy
is included in ρ̄RðtÞ as it is subject to the same redshift
dependence of ∝ a−4 [60] and will release gravitational
waves after collisions. ρ̄RðtÞ evolves as

dρ̄R
dt

þ 4Hρ̄R ¼ −
dρ̄V
dt

; ð20Þ

where the converted vacuum energy goes into the last two
terms in Eq. (19), and the Hubble rate HðtÞ is determined
by the Friedmann equation

H2ðtÞ ¼ ρ̄ðtÞ
3M2

P
: ð21Þ

To simplify our calculations, we assumed HðtÞ to be
homogeneous, regardless of the local composition of
energy contents, hence neglecting the backreaction of
the inhomogeneous vacuum transition to the expansion
rate. Also, we use the exponential form of ΓðtÞ, Eq. (2),

FIG. 2. The underlying spacetime diagram for Refs. [60,61]
with the missing wall cones, which should have been somewhere
between the solid and the dashed blue curves.
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which is marginally valid for our parameter choice of
β=H ≳ 1. For even slower phase transitions, which are
conducive to forming horizon-sized bubbles, the Gaussian
approximation should be used [62]; however, this may
suffer from the consistency problem as explained in
Appendix A.
For a given set of FOPT and cosmological parameters,

we first perform a numerical evolution of the FOPT to
calculate t1.45, i.e., Eq. (6). Then, using Eqs. (11) and (12),
the transition probability of PBH formation pðtÞ for t >
t1.45 is calculated. The mass and energy fractions of the
corresponding PBH are estimated by Eqs. (13), (15),
and (16).

B. Numerical results

As benchmarks, we chose three phenomenological
FOPT models summarized in Table I.1 Model A assumes
a high-temperature phase transition resulting in light mass
PBHs in the mass window for DM. The other two happen-
ing at lower temperatures can produce heavier mass PBHs,
which can be responsible for the candidate events of the
HSC and OGLE experiments.
We first display the energy density evolution of model A

in Fig. 3, whose behavior is generic to all three models. The
average radiation energy density ρ̄RðtÞ initially falls with
increasing scale factor but is subsequently heated up by the
decaying FV.2 The energy density in the FV ρfv becomes
dominated by ΔV as the radiation component redshifts
away. During the phase transition, the FV regions become
significantly overdense δ > δc with respect to the average
density at t1.45.
If the onset of the phase transition in a Hubble volume

occurs after this time, then the overdensity there will tend to
grow until the FV regions are depleted so that PBH

formation is almost certain. We show the PBH-producing
tail of the probability density distribution pðtÞ in Fig. 4, and
the discarded region where PBH formation is unlikely. It is
possible for some Hubble volumes near the boundary that

FIG. 3. The average radiation density ρ̄RðtÞ, average FVenergy
density ρ̄V, and average total density ρ̄ðtÞ as functions of time.
ρfvðtÞ is the local density of unperturbed FV regions.

TABLE I. FOPT parameters for models A (PBH mass win-
dow), B (HSC), and C (OGLE) in Fig. 5. Γcri and β are for Eq. (2)
with t0 ¼ tcri, and β=H and α are evaluated at tcri. Model A is also
used in Figs. 3 and 4 to demonstrate generic features of the phase
transition and PBH formation.

Model Tcri Γ1=4
cri β=H α vw

A 3.7 × 106 GeV 5.39 × 10−6 GeV 2.5 1.0 1
B 3.7 × 103 GeV 5.47 × 10−12 GeV 2.5 1.0 1
C 39 GeV 5.91 × 10−16 GeV 2.5 1.4 1

FIG. 4. Top: the transition probability pðtÞ for a Hubble volume
as a function of time in model A. Transitions in the shaded region
can only form PBHs under favorable circumstances, whereas
transitions that occur after t1.45 in the unshaded region are
significantly overdense and highly likely to form PBHs. Bottom:
variations of pðtÞ and t1.45 for faster (red) or stronger (blue) FOPT
parameters.

1While the nucleation rate starts with 0 at Tcri [62], we extend
the exponential approximation (2) to this point for numerical
calculation and take Γcri=H4

cri ≪ 1. This value has only little
effect on the results.

2Figure 3 is for the average densities. Locally, FV regions are
not reheated as discussed above Eq. (2). The nucleation rate there
thus can still be approximated by the exponential form, except for
the common deviation by the actual potential shape outlined in
Appendix A.
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begin transitioning at t≲ t1.45 to have δ > δc by the time
the phase transition culminates. However, we discard these
“probabilistic” regions to provide a conservative estimate
on the PBH abundance.
In the bottom panel of Fig. 4, we show the effect of

changing the FOPT parameters β, which determines the
timescale of the FOPT, and α or the vacuum energy density
ΔV (with β=Hcri fixed). Faster phase transitions (larger β)
result in earlier TV nucleation and exponentially sup-
pressed PBH production. Alternatively, the average size
of the FV pockets is inversely proportional to β [49,56] so
that there are fewer horizon-sized ones. Naturally, stronger
phase transitions (larger ΔV) result in larger overdensities
between FV regions with energy density ρfv and the
background ρ̄ facilitating PBH formation. All these effects
exponentially impact pðtÞ and dominate the final PBH
abundance.
We show the PBH distribution of the three models in

Fig. 5. The survival probability drops sharply after t1.45,
and the scaling lnpðtÞ ∼ −eβðt−tcriÞ can be obtained from
Eq. (B1) with t1.45 replaced by t and Eq. (12). We have
numerically confirmed this behavior in Fig. 4. Combined
with the mass relation Eq. (13), the resulting PBH dis-
tributions are sharply peaked and resemble Dirac delta
functions ∼δðMPBH −Mðt1.45ÞÞ. However, the actual mass
function would be slightly broadened to lower mass ranges
if critical collapse is considered [71–73], modifying
Eq. (13). The variation of δ of a Hubble volume after
the transition time depending on the internal progression of
phase transition would be responsible for it.
We further explore the parameter space of α and β and

show the PBH abundance in Fig. 6 using model A as a
reference. As a whole, we see that the abundance increases
with α and decreases with β, as expected from the behavior

of pðtÞ in Fig. 4 and also the physical considerations. The
dependence is stronger for β than α, and the α dependence
is even more suppressed for α≳ 10. The α dependence
becomes saturated by resulting in the same vacuum-
dominated universe, hence the same FOPT progression
for fixed Γcri=H4

cri and β=Hcri; see also [74]. These scaling
behaviors correspond with our semianalytic analysis in
Appendix B.
Because of the exponential dependence of the PBH

fraction on these input parameters, only a very narrow
parameter region near the red contour with fPBH ¼ 1 is
practically viable to produce DM. On the other hand, from
a phenomenological point of view, any reasonable PBH
massM and fraction fPBH can be generated in this scenario
by changing the model parameters.

V. DISCUSSION

In this paper, we presented a thorough calculation of the
PBH mass distribution function arising from vacuum
energy decay in a FOPT. We examined the condition of
Ref. [60] for a Hubble volume to be entirely in the FV, and
found that the surrounding wall cone was neglected. This
omitted factor was found numerically to be of similar
magnitude to the primary contribution of the Hubble
volume itself and can therefore result in significant sup-
pression of the PBH abundance.
Through our numerical simulations, we generated PBH

populations that make up all of DM in the PBH mass

FIG. 5. The PBH mass function fPBHðMÞ. The excluded
regions by existing bounds are shown by the shaded regions.
H0 ¼ 67.66 km=s=Mpc and ΩDM ¼ 0.264 are used. The three
colored dots represent the abundance of PBHs in the Window
(red), HSC (green), and OGLE (blue) models. The extended mass
functions are sharply peaked (see Fig. 4), so we represent them as
points.

FIG. 6. Contours of the final PBH abundance as a function of
the FOPT parameters α and β, with Tcri and Γcri=H4

cri of model A
(red dot). β=Hcri is fixed when α is varied. The red curve is where
the PBHs from the FOPT constitute the full DM.
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window and that can originate the candidate HSC and
OGLE microlensing events. Although we included the
additional term and have a slightly different formalism, our
results generally agreed with those of Ref. [60]. Because of
the sensitive dependence of the PBH abundance on the
FOPT parameters, the extra suppression we found can be
compensated by a modest change in parameters.
The PBH formation probability and the resulting abun-

dance are exponentially sensitive to FOPT speed β and
strength α. Among them, the dependence on β was shown
to be exceedingly strong, while the dependence on α was
relatively mild, and further suppressed for α≳ 10. These
are supported by semianalytic analysis, and they also align
with intuition. For horizon-sized perturbations to survive
late into the FOPT, small β=H ≲Oð1Þ is needed as it
determines the timescale of the phase transition and is
inversely proportional to the bubble size [49,56]. Naturally,
small values of the vacuum energy suppress PBH formation
and large values increase the formation rate, but make no
further difference once a fully vacuum-dominated universe
is reached.
Altogether, the PBH formation from horizon-sized

vacuum decay is a viable and versatile scenario and can
apply to a generic FOPT in beyond the Standard Model
physics. Phenomenologically, setting the critical time/
temperature determines the PBH mass, and minor changes
in the FOPT parameters can produce the desired PBH mass
function. We found that significant production of PBH
occurs in phase transitions that are slow and moderately
strong.
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APPENDIX A: CONSISTENCY CHECK
FOR COMPLETION OF FOPT

Here we show that our scenario is generically consistent
with the completion of FOPT. We first discuss several
options for completing a FOPT with (super)horizon-sized
FV regions at t1.45, and then present a numerical demon-
stration under a simplified treatment.
The major concern is that the horizon-sized FV regions

soon become vacuum energy dominated and undergo a
de Sitter expansion, starting a second inflation that

resembles the old inflation scenario. Since the latter was
abandoned due to the failure of the graceful exit, we must
also check whether these FV regions do not harm the
completion of FOPT.
We first state that just having a de Sitter expanding FV

region does not necessarily mean a never-ending inflation.
The precise reason that the old inflation was unsuccessful is
that the constant nucleation rate was restricted to be much
smaller than H4 in order to solve the horizon and the
flatness problems. This turned out to be incompatible with
the completion of the vacuum transition and thermalization
[75]. Here in our scenario, no such restriction applies, and
we can have much higher nucleation rates during the phase
transition. If the nucleation rate is high enough, the bubble
nucleation and growth can overcome the volume expansion
of FV so that the physical FV volume decreases to zero and
the phase transition ends [57,69].
To clarify, assume a simplified situation of a de Sitter

expanding background with constant H and a constant
nucleation rate Γ. The physical FV volume is Vphys

fv ∝
ffvðtÞa3ðtÞ, so its decrement requires

1

Vphys
fv

dVphys
fv

dt
< 0

¼ 3HðtÞ − 4π

3

d
dt

Z
t

tcri

dt0a3ðt0ÞΓðt0Þr3ðt; t0Þ; ðA1Þ

which is, for constant H and Γ,

Γ >
9H4

4π
≈ 0.7H4: ðA2Þ

Thus, even a quite slow FOPT can complete while having
horizon-sized FV regions if the nucleation rate in those
regions is higher than about 0.7H4.
Then the question comes down to how high the nucle-

ation rates in the FV regions can be after passing Tcri. This
is determined by the temperature dependence of the
effective potential as discussed in Sec. II. If the barrier
disappears at some finite temperature, the nucleation rate in
FV regions keeps increasing, and hence there is no problem
in finishing the phase transition; after the barrier disap-
pears, the phase transition becomes second order and ends
through spinodal decomposition. On the other hand, if the
barrier persists in the zero-temperature limit, the nucleation
rate by thermal fluctuation decreases to zero. Then nucle-
ation can only occur through quantum tunneling, and it is
likely that the phase transition never ends, resulting in a
second inflationary phase.
Typically, the latter case does not pose a serious problem

because the remaining FV regions are fragmented into
subhorizon sizes before the nucleation rate becomes too
small. These regions are totally converted into TV by the
bubble walls approaching from outside, instead of relying

KIYOHARU KAWANA, TAEHUN KIM, and PHILIP LU PHYS. REV. D 108, 103531 (2023)

103531-8



on bubble nucleations inside. However, as our scenario
requires having horizon-sized FV regions at least until t1.45,
we need a stronger condition to have a consistent scenario.
In conclusion, there are generically three ways to have

completion of FOPT within our scenario. First, if the
effective potential gives the bubble nucleation rate that
keeps increasing with decreasing temperature, the FOPT
will finish without any problem. The exponential approxi-
mation we take (2) in our study corresponds to this case.
Second, even if the nucleation rate peaks and decreases, it is
still possible to have a high enough nucleation rate after
t1.45 so that all the horizon-sized FV regions are dismantled
into subhorizon pieces before the nucleation rate becomes
too small. The third option is to have a sufficiently high
quantum tunneling rate that can finish the FOPT even at
zero temperature.
The actual nucleation rates in these three cases will have

deviations from the simple analytic exponential approxi-
mation in Eq. (2), although more realistic forms of the
nucleation rate for the current scenario are left to future
studies.
In the rest of this appendix, we numerically demonstrate

the decrease of physical FV volume after t1.45 for the first
option in a simplified setup. We regard the FV region at
t1.45 as a separate universe and assume it undergoes a de
Sitter expansion with the Hubble rate coming from the
vacuum energy density ΔV. These are quite good approx-
imations for horizon-sized FV regions, as they are vacuum
dominated and the bubble walls from outside cannot
entirely cover them. The exponential approximation (2)
is used for the nucleation rate.
In Fig. 7, we plot ffvðtÞ and ffvðtÞa3ðtÞ for the separated

universe corresponding to a FV region at t1.45 with the same
parameters as in Fig. 3. We see that the physical volume of
the FV initially increases due to the volume expansion, but
it soon rapidly decreases due to the nucleation and growth

of TV bubbles. The nucleation rate at t1.45 is already about
Γðt1.45Þ ∼Oð10Þ ×H4 due to the exponential growth from
tcri, and even keeps increasing further. Referring to
Eq. (A2), this nucleation rate is sufficient to convert all
the remaining FV regions soon after the nucleation begins.
We also note that this large nucleation rate at late times is

one of the two reasons why the survival probability [or pðtÞ
as its differential] is suppressed as depicted in Fig. 4. The
other reason is of course the wall cone contribution in
Fig. 1. This tiny probability is compensated by the
cosmological expansion during the radiation-dominated
epoch, where the radiation density redshifts ∝ 1=a4 while
the PBH only undergoes a number density dilution ∝ 1=a3.
Because of this effect, the small fraction of horizons that
have delayed transitions in the early Universe can contrib-
ute significantly to ΩPBH in the present day.

APPENDIX B: SEMIANALYTIC ANALYSIS
OF PBH FORMATION PROBABILITY

We derive the qualitative dependence of the PBH
formation probability on the FOPT parameters α and β,
and confirm the agreement to the intuitive expectations
while also supporting our numerical results in Sec. IV B.
As the actual PBH formation in this model is exponentially
sensitive to the parameters, the quantitatively correct
probabilities and resultant abundances need to be numeri-
cally computed as in the main text.
Here we focus on the formation probability (Fig. 4), as

this is the main point of our calculation; analytic expres-
sions of βðMÞ and fðMÞ follow directly from Eqs. (12),
(15), and (16). We approximate the integrated formation
probability ∼

R
t1.45

pðtÞdt as simply the survival probability
Pðt1.45Þ, since the majority of the PBH production occurs at
t1.45 [see the rapidly dropping curves of pðtÞ in Fig. 4].
Furthermore, it is sufficient to consider only the first
exponent in Eq. (11) for our purposes since the behavior
of the second exponent is similar (see Fig. 1).
As can be seen in Fig. 3, the average energy density ρ̄

stays approximately constant before t1.45. This is generi-
cally true in our scenario, as the vacuum energy necessarily
becomes dominant over the SM plasma. Then as the FV
energy is converted into latent heat, the average density will
decline to a value ρ̄ ¼ ðΔV þ ρSMðt1.45ÞÞ=1.45 ≈ 0.69ΔV
by t ¼ t1.45. Thus, the average density and the Hubble rate
[Eq. (21)] are approximately constant for tcri < t < t1.45 as
H2� ≃ ΔV=3M2

P, and hence, aðtÞ ∝ eH�t.
Then in this constant Hubble rate approximation, the first

exponent of Eq. (11) is (we calibrate t by setting tcri ¼ 0
hereafter)

lnPHVðt1.45Þ ≃ −
4π

3

Z
t1.45

0

e−3H�ðt1.45−tÞ Γcri

H3�
eβtdt

≃ −
4π

3

Γcri

ð3H� þ βÞH3�
eβt1.45 ; ðB1Þ

FIG. 7. The normalized FV volume of a FV region at t1.45,
simplified to be a separated de Sitter universe. Black: the FV
volume fraction equivalent to the normalized FV comoving
volume. Red: the FV volume fraction times a3 equivalent to
the normalized FV physical volume.
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where the subscript HV denotes the Hubble volume
only (excluding the wall cone contribution) and eβt1.45 ,
e3Ht1.45 ≫ 1. Since H2� ∝ α, only the behavior of eβt1.45
remains to be figured out.
To see how it scales, we use Eqs. (6) and (17)–(20). First,

integrating Eq. (20) with Eqs. (18) and (19) gives

ρ̄RðtÞ ¼ ρSMð0Þe−4Ht þ ΔV
Z

t

0

�
−
dffv
dt0

�
e−4H�ðt−t0Þdt0:

ðB2Þ

Then substituting Eqs. (17) and (B2) into Eq. (6) and
eliminating ΔV by α≡ ΔV=ρSMðTcriÞ gives

ffvðt1.45Þþ
0.31
α

e−4H�t1.45 þð1−ffvðt1.45ÞÞX¼ 0.69; ðB3Þ

where X represents the average redshift of the transitioned
vacuum energy defined by

ð1 − ffvðt1.45ÞÞX ≡
Z

t1.45

tcri¼0

�
−
dffv
dt

�
e−4H�ðt1.45−tÞdt: ðB4Þ

From the constant Hubble rate approximation in Eq. (5),

ffvðt1.45Þ≃ exp

�
−

8πv3wΓcrieβt1.45

βðH� þβÞð2H� þβÞð3H� þβÞ
�
: ðB5Þ

From Eq. (B3), we extract the variation of ffvðt1.45Þ
with α and β. Then we use Eq. (B5) to solve for eβt1.45
as a function of ffvðt1.45Þ and determine the behavior of
PHV in Eq. (B1).
We first examine the dependence on β. Faster phase

transitions with larger β have smaller t1.45, which results in

less redshifting and greater X.3 The FV fraction at for-
mation ffvðt1.45Þ decreases to satisfy Eq. (B3) and lower the
background energy density.4 Equation (B5) then demands
eβt1.45 to greatly increase to get over the denominator.
Solving for it gives the scaling of eβt1.45 ∼ −β4 ln ffv.
Since 0 < ffv < 1 itself decreases with increasing β, using
this relation in Eq. (B1) shows that PHVðt1.45Þ decreases
rapidly, faster than negative exponential of powers of β.
On the other hand, Eq. (B3) shows that larger α results in

larger ffvðt1.45Þ,5 but the effect is suppressed by the expo-
nential factor e−4H�t1.45 and α itself. Furthermore, Eqs. (B1)
and (B5) show no explicit α dependence as long as Γcri=H4�
and β=H� are fixed. Therefore, PHVðt1.45Þ increases with α,
but the effect is suppressed if α keeps growing.
These behaviors are depicted in the bottom panel of Fig. 4

and Fig. 6. Increasing β drastically lowers pðtÞ and hence
fPBH. Increasing α gives larger pðtÞ and fPBH but relatively
mildly. Clearly, these agree with the rule of thumb expect-
ations: The faster the phase transition, the less time for the
redshift to generate density contrast, so PBH formation
probability decreases with β; greater vacuum energy (the
source of density contrast) over the homogeneous SM
radiation always facilitates the PBH production, so the
probability increases with α, but asymptotes at large values
of α corresponding to a vacuum-dominated universe.
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