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Bulk flow velocities are typically estimated in the idealized picture where observers are moving within a
perfectly homogeneous and isotropic spacetime. This picture is consistent within standard perturbation
theory up to relativistic effects that lead to correction terms of order vz, where z is the redshift of
observation and v is the amplitude of the bulk flow. The dominant relativistic contributions at scales z ≲ 1

are caused by gravitational redshift and time evolution of the velocity field. We include these effects within
a broadly applicable weak-field approximation and provide a cosmographic formula for estimating bulk
flows at a high precision. Based on this formula, we judge that recent bulk flow estimates are biased toward
larger values by ∼10%. This theoretical bias surpasses the measurement biases of the same estimates, and it
will become still more important to account for the relativistic effects as the scales at which bulk flows are
estimated to increase.
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I. INTRODUCTION

Large-scale matter flows in our cosmic neighborhood
have been a subject of investigation for decades [1–7].
These cosmic matter flows, also denoted bulk velocities,
serve as important probes of the large-scale mass density
and gravitational theory [8,9]. In recent years, several
analyses have identified coherent flows of matter with a
bigger amplitude than expected within the Lambda cold
dark matter (ΛCDM) model at scales ≳100 Mpc=h
[5,10–14]. Some analyses indicate the larger-than-expected
bulk flows for distance scales ≳300 Mpc=h [10,15] while
others show consistency with the ΛCDM expectation or
remain inconclusive [16,17]. There are forecasts preparing
for improved high-redshift constraints of the bulk velocity
field [18,19]. Some of the most recent analyses find a
growing trend in the amplitude of matter flows over the
distance range from 100 to 300 Mpc=h [13,14]. This is
unexplained within the ΛCDM model where a decay of the
bulk velocity amplitude ∝ 1=ðdistanceÞ is generically
expected within the standard inflationary scenario [10].
The targeted astrophysical sources are typically modeled

as having peculiar motion relative to the canonical frame in
a Friedmann-Lemaître-Robertson-Walker (FLRW) uni-
verse model; see, e.g., [20]. This is a self-consistent
lowest-order approximation of the velocity field within
FLRW perturbation theory when the scale of observation
remains much smaller than the Hubble horizon. When the
scale of observation is a significant fraction of the Hubble
length scale, gravitational redshift must be accounted for in

a precise treatment of bulk flows [21,22]. In addition, since
the velocity field is not observed at an instance of cosmic
time (speed of light is finite), one must generally account
for the systematic evolution of the velocity field with time
[23]. These relativistic imprints may be of particular
importance when the signal that is to be determined, such
as bulk velocity, is itself small. If not included, they can
lead to theoretical biases. These are distinct from meas-
urement biases, caused by, for instance, non-Gaussian
distributed errors for the measured distances [24] and
sampling effects [25].
Relativistic effects are important in the vicinity of very

dense objects, but also toward large scales; see Table 1 in
[26] for estimates of gravitational potentials for various
systems. Surveys have now reached the depth in redshift
and measurement accuracy that makes it important to
include the above-mentioned relativistic effects.
In this paper, we consider a generic weak-field setting

within which the distortion of the distance-redshift relation
coming from motion effects and intrinsic impacts of the
photons (gravitational redshift, the integrated Sachs-Wolfe
effect, and lensing) are described covariantly, and we
provide a formula for accurate estimates of bulk flows
within this broad setting.
The outline of this paper is the following: We first

describe the weak-field setting and matter model that we
assume. We then describe the distances and redshifts to
astrophysical sources within this setting, and we perform a
cosmographic series expansion, which allows one to
evaluate the peculiar Hubble law for luminosity distance
consistently while including the above-mentioned relativ-
istic effects. We finally discuss the correction terms that*asta.heinesen@nbi.ku.dk
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arise and their impact on bulk flow measurements in the
literature.
Notation and conventions: We use units where c ¼ 1 and

G ¼ 1, where c is the speed of light and G is the
gravitational constant. Greek letters μ; ν;… are used for
spacetime indices in a general coordinate system. The
signature of the spacetime metric gμν is ð−þþþÞ and the
connection ∇μ is the Levi-Civita connection.

II. WEAK-FIELD APPROXIMATION

In our analyses of bulk motions, we assume the follow-
ing: (i) There exists a quasi-Newtonian frame that is both
irrotational and shear-free. This may be seen as neglecting
gravitational waves and relativistic frame dragging; (ii) The
matter frame (which may have both vorticity and shear) is a
dust source, i.e., pressure-free matter, in the presence of a
cosmological constant; and (iii) The matter has a velocity
field relative to the quasi-Newtonian frame that is every-
where much smaller than the speed of light.
This approximation largely follows that in [27], but here

we allow for a nonzero cosmological constant. The
approximation includes, but is not limited to, the linearly
perturbed FLRW models with ordinary matter and a
gravitational constant. For details on the results reviewed
in this section, we refer the reader to [27,28].

A. The quasi-Newtonian spacetime

The quasi-Newtonian spacetimes that we will consider
are characterized by having a stable frame that is expanding
isotropically, and which therefore bears resemblance to a
canonical FLRW frame in terms of its kinematical proper-
ties. Mathematically, we require the existence of a timelike
congruence with 4-velocity field nμ with kinematical
decomposition

∇μnν ¼
1

3
θhμν þ σμν þ ωμν − nμaν;

aμ ≡ nν∇νnμ; θ≡∇μnμ;

σμν ≡ hαhμh
β
νi∇αnβ; ωμν ≡ hα½μh

β
ν�∇αnβ; ð1Þ

where θ is the isotropic volume expansion rate, σμν is the
anisotropic deformation (shear), and ωμν is the rotation
(vorticity) of the congruence, such that shear and vorticity
vanish:

σμν ¼ 0; ωμν ¼ 0: ð2Þ

In such a frame there can be no gravitational wave distortion
or frame dragging effects that are associated with anisotropic
distortions and/or rotational degrees of freedom of space,
and thus, due to the absence of these relativistic effects,
we shall refer to nμ as a quasi-Newtonian 4-velocity field.
Mathematically, we have that the vanishing shear condition

implies that the lie transport of the spatial metric tensor hμν
along the flow lines of nμ is given by a conformal scaling:

£nhμν ≡ 2hανh
β
μ∇ðαnβÞ ¼

2

3
θhμν: ð3Þ

Thus, the flow lines of nμ are parting isotropically with time,
much as in an FLRWuniverse model, except that θmay be a
complicated inhomogeneous function and thus generally
does not reduce to 3H, whereH is the homogeneous Hubble
parameter in FLRW models. In the above, we have used the
projection tensor onto the three-dimensional space orthogo-
nal to nμ:

hμν ≡ nμnν þ gμν; ð4Þ

and the notation with [] around indices indicating antisym-
metrization in the involved indices, and hi singling out the
symmetric and trace-free part of the tensorwith respect to the
spatial metric (4). Vanishing of vorticity implies that nμ can
be written as

nμ ¼ −N∇μt; N ≡ 1

nμ∇μt
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμν∇μt∇νt
p ; ð5Þ

where the time lapse, N, ensures the appropriate normali-
zation nμnμ ¼ −1. Here, t is a time parameter that labels
spatial hypersurfaces in the quasi-Newtonian frame. It
follows that the 4-acceleration of the quasi-Newtonian frame
is irrotational:

aμ ¼ Dμ lnðNÞ; ð6Þ

where Dμ is the spatial covariant derivative, defined
through its acting on a tensor field: DμTν1ν2���

γ1γ2���≡
hα1ν1h

α2
ν2 ���hγ1β1h

γ2
β2
���hσμ∇σTα1α2���

β1β2���

Quasi-Newtonian 4-acceleration. The field aμ

has an interpretation as the external force per
unit mass that must be applied to counteract any
gravity from structures that would anisotropically
distort the pattern of geodesic particles and cause
shearing of their congruence. It is analogous to
minus the Newtonian 3-acceleration of a freely
falling test particle. The lapse function N has an
interpretation as the gravitational time dilation,
and its logarithm is analogous to the Newtonian
gravitational potential.

It follows from (2) that themagnetic part of theWeyl tensor
in the quasi-Newtonian frame is identically zero [28]:

Hαβ ≡ −
1

2
ϵρσγδCμν

γδnρhασnμhβν ¼ 0: ð7Þ
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B. The matter and its peculiar motion

We assume that the Universe is well described by a dust
source at the observational scales over which one aims to
measure the bulk flow; i.e., we neglect any effective
pressure, anisotropic stress, and heat flux terms that may
arise from internal motions within the effective cosmic
fluid parcels defined at these scales. We thus require that
the energy momentum tensor takes the form

Tμν ¼ ρuμuν; ð8Þ

where ρ is the rest-mass density and uμ is the 4-velocity of
the matter frame. Under this assumption, Einstein’s equa-
tions including a cosmological constant, Λ, read

Rμν −
1

2
Rgμν þ Λgμν ¼ 8πGTμν; ð9Þ

where Rμν is the Ricci tensor and R is the Ricci scalar of the
spacetime.
It follows directly from the dust form of the energy

momentum tensor (8) and its conservation equation
∇νTμν ¼ 0 that the matter source is geodesic:
uν∇νuμ ¼ 0. We can perform the following general decom-
position of the matter 4-velocity:

uμ ¼ γðnμ þ vμÞ; γ ≡ −nμuμ; nμvμ ¼ 0; ð10Þ

where we denote vμ the peculiar-velocity field of the matter
relative to the quasi-Newtonian rest frame, and where we
can express the Lorentz factor in its usual form
γ ¼ ð1 − vμvμÞ−1

2. Generally the matter frame will exhibit
shear, vorticity, and magnetic Weyl curvature that may be
quantified entirely in terms of vμ and its gradients; cf. [27].
Thus, the principle of relativity that the kinematics of
matter is intimately related to the structure of spacetime
through curvature is directly reflected in these relations.

C. Slow motion and weak-field approximation,
vμvμ ≪ 1

Suppose that the matter frame and quasi-Newtonian
frame have a relative velocity that is everywhere small:
jvμj ≪ 1, and that it is not rapidly changing in time either:
jnν∇νðvμÞj=θ ≪ 1. In the following, we shall keep terms up
to first order in vμ and nν∇νvμ. We shall in addition assume
that jvνjjDνvμj=θ ≪ 1, which means that scales of non-
linearity in the expansion rate of the matter frame are
included as long as jDνvμj=θ does not become very large.
Scales of the rapid (much faster than Hubble expansion)
collapse of matter is thus excluded. In practice, we may
safely consider scales larger than galaxy clusters. Under
these approximations, we have

aμ ¼ −uν∇νvμ −
1

3
θvμ; ð11Þ

and it follows that jaμj=θ ≪ 1 (note that spatial gradients of
vμ and aμ are not necessarily small). We thus keep terms to
first order in aμ=θ for consistency in the approximation.

Weak-field interpretation. The slow-motion con-
dition implies a weak-field approximation around
an FLRW spacetime description in the following
sense: The limit vμ ¼ 0 together with (2) and (8)
implies that the geometry is of the FLRW class;
cf. Sec. 3 of [29]. Thus, vμ may be seen as a
perturbation field relative to an FLRW solution.
The condition jaμj=θ ≪ 1 implies that the loga-
rithm of the relative time lapse is bounded by a
number much less than one for points separated
by length scales≲1=θ. Thus, structures that cause
large gravitational time dilation, such as black
holes, are not described in this formalism.

We obtain for the energy momentum tensor (8) as
projected onto the quasi-Newtonian rest frame as

Tμν ¼ ρnμnν þ ρðnμvν þ nνvμÞ; ð12Þ

where the quasi-Newtonian observers see a flux of mass
∝ ρvμ due to their relative motion with respect to the matter
frame. The Raychaudhuri equation for the quasi-Newtonian
frame reads

nμ∇μθ ¼ −
1

3
θ2 − 4πGρþ ΛþDμaμ: ð13Þ

Consider furthermore the evolution equations for shear in
the quasi-Newtonian frame, which when imposing (2) and
(12) reduce to the following constraint equation:

0 ¼ −Eμν þDhμaνi; ð14Þ

whereEμν ≡ nρnσCρμσν is the electric part of theWeyl tensor
in the quasi-Newtonian frame. It follows from Eqs. (7) and
(14) that the spacetime is conformally flat when the trace-free
part of the spatial derivative of aμ vanishes.
We may define the Ricci curvature of the three-dimen-

sional spatial hypersurfaces, ð3ÞRμν. The associated spatial
Ricci scalar, ð3ÞR≡ hμνð3ÞRμν, satisfies

ð3ÞR ¼ 16πGρ −
2

3
θ2 þ 2Λ ð15Þ

by the Hamiltonian constraint equation. We furthermore
have the constraints

Dμθ ¼ 12πGρvμ; DνEν
μ ¼

8

3
πGðDμρ − θρvμÞ; ð16Þ

from which it can be derived that the vorticity in the matter
frame reads
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∇½μuν� ¼
1

12πGρ2
D½μθDν�ρ: ð17Þ

Thus, if vorticity vanishes in the matter frame, then this
implies alignment of the spatial gradients of expansion and
mass density. We notice from the first constraint in (16) that
spatial derivatives of the expansion rate are suppressed by a
factor of vμ, so the quasi-Newtonian frame is almost
homogeneously expanding.

III. OBSERVED DISTANCES AND REDSHIFTS

We shall now consider the distances and redshifts to
sources in the matter frame as measured by observers that
are themselves located in the matter frame. In particular, we
shall investigate the anisotropies in the distance–redshift
relation and their relation to the peculiar-velocity field, vμ.
To do this, we shall consider the (almost) kinematically
stable quasi-Newtonian frame as a reference for distances
and redshifts, and we derive the cosmographic expression
for the distance–redshift relation in this frame. We shall
then relate the quasi-Newtonian distance–redshift relation
to that of observers and emitters in the matter frame by their
velocities. We refer the reader to [30,31] for details on the
calculation of distances and redshifts in the geometrical
optics approximation in Lorentzian spacetimes, and to [32]
for results on the luminosity distance cosmography.

A. Quasi-Newtonian distance-redshift relation

Let a beam of null-geodesic light with 4-momentum kμ

pass from a point of emission E to a point for observation
O in this spacetime. We shall initially imagine that
the emitting and observing sources are comoving in the
idealized quasi-Newtonian frame. We decompose the
4-momentum of the light as

kμ ¼ Eðnμ − eμÞ; ð18Þ

where eμ is a spatial unit vector satisfying nμeν ¼ 0 and
E≡ −nμkμ is the energy measured by observers comoving
in the quasi-Newtonian frame. The redshift, z, of the light in
the quasi-Newtonian frame is given by

dz
dλ

¼ −EOð1þ zÞ2H; z≡ E
EO

− 1; ð19Þ

where λ is as an affine parameter along the beam and
satisfies kμ∇μλ ¼ 1, and where d

dλ ≡ kν∇ν is the directional
derivative along the null geodesic. We have introduced the
effective Hubble parameter

H≡ dE−1

dλ
¼ 1

3
θ − eμaμ; ð20Þ

which reduces to the FLRWHubble parameter “ȧ=a” in the
FLRW geometry, with a being the FLRW scale factor. We

see that there is a sense in which the inverse photon energy
function E−1 plays the role of a generalized scale factor on
the past light cone of the observer. The effective Hubble
parameter H evolves from the emitter to the observer in a
way that is generally nontrivial and depends on how the
wavelength of the photon stretches/contracts in response to
the cosmic structure that the photon encounters. The
evolution of H may be quantified in terms of an effective
deceleration parameter, which is related to the curvature of
the spacetime through differentiation of (20); cf. Eqs. (3.9)
and (4.2) in [32] for details. See also [33] for a discussion
on the evolution of H in relation to theorems that are
bounding the distance-redshift relation for broad classes of
universe geometries. We may integrate (19) to yield the
following covariant decomposition of the redshift:

1þ z ¼ NO

N
× exp

�
−
Z

λO

λ
dλ0Enμ∇μ lnðNÞ

�

× exp

�Z
λO

λ
dλ0E

1

3
θ

�
: ð21Þ

The first factor is the ratio between the lapse of the
observer’s and emitter’s proper times, and may be viewed
as the gravitational redshift contribution. The second factor
relates to the time evolution of the time lapse and may be
viewed as an integrated Sachs-Wolfe effect. The third factor
comes from the expansion of space along the light beam.
We define the angular diameter distance in the quasi-

Newtonian frame as dA ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δA=δΩ

p
, where δA is the cross-

sectional area of the bundle of rays passing from the source
and δΩ is the area subtended by the source when observed
in the quasi-Newtonian frame. The luminosity distance is
defined as dL ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L=ð4πFÞp
, where L is the bolometric

luminosity of light emitted from the source, and F is the
bolometric flux that is observed; here all quantities are
again evaluated in the quasi-Newtonian frame.
Assuming that the photon number is conserved on the

path from the emitter to the observer, Etherington’s
reciprocity theorem can be applied to arrive at the relation:

dL ¼ ð1þ zÞ2dA: ð22Þ

Thus, for any such null geodesic congruence ending in a
vertex at an observer in a Lorentzian geometry, we may use
this relation and the geometrical definition of the angular
diameter distance to obtain the Luminosity distance. See
[31] for a comprehensive modern reference on geometrical
optics in Lorentzian geometries, and Sachs optical equa-
tions for angular diameter distance.

B. Luminosity distance cosmography

Assuming analyticity, we can write dL in terms of its
Taylor series expansion around the observer, yielding the
luminosity distance cosmography in the quasi-Newtonian
frame; see [32] for details:
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dL ¼ dð1ÞL zþdð2ÞL z2þdð3ÞL z3þΔdð3ÞL ðzÞ;

dð1ÞL ≡ 1

HO
; dð2ÞL ≡ 1

HO

�
1þ1

2

1

E

dH
dλ

H2

����
O

�
;

dð3ÞL ≡ 1

HO

�
1

2

1

E2

ðdHdλ Þ2
H4

����
O
−
1

6

1

E2

d2H
dλ2

H3

����
O
−

1

12

1

E2

kμkνRμν

H2

����
O

�
;

ð23Þ

where Δdð3ÞL ðzÞ is the remainder term of the third order
expansion. We go to third order, since this is sufficient for
analyzing large scale bulk flows in the low-redshift

regime,1 z ≪ 1. The coefficient dð1ÞL is anisotropic with
the dipolar term eμaμjO, as can be seen from (20). We
consider scales of observation smaller than θ−1O , and thus

the leading order anisotropic terms in dð2ÞL ; dð3ÞL , etc., will be
those with a maximum number of spatial derivatives of aμ.
Keeping those leading order terms only for each coeffi-
cient, together with the nonperturbative contributions from
θ and ð3ÞR, we have

HOd
ð2Þ
L ≈

1 − qm
2

þ eμeνDhμaμi
2ðθ

3
Þ2

����
O
;

HOd
ð3Þ
L ≈

−1þ 3q2m þ qm þRm − jm
6

þ
19
45
eμDμDνaν þ eμeνeρDhμDνaρi

6ðθ
3
Þ3

����
O
; ð24Þ

where the monopolar parameters

qm ≡ −1 − 3
nμ∇μθ þDμaμ

θ2

����
O
; Rm ≡ −

1

6

ð3ÞR
ðθ
3
Þ2
����
O
;

jm ≡ 1þ 9
nν∇νðnμ∇μθÞ þ θnμ∇μθ

θ3

����
O
; ð25Þ

determine the isotropic parts of the luminosity distance
function. The isotropic contributions are on a form that
is similar to the FLRW deceleration, curvature, and jerk
parameters when θ=3 is thought of as a Hubble
parameter and when ð3ÞR is thought of as the FLRW
spatial curvature. In general, however, θ and ð3ÞR may
be inhomogeneous functions (so that they vary across
observers). The spatial divergence of aμ also enters in
the expression for qm and can be seen as an

isotropic tidal contribution. The remaining anisotropic
contributions in (24) come from spatial gradients in aμ,
which may be interpreted as tidal effects from the
inhomogeneity of the gravitational field strength. The
anisotropic terms are discussed individually in some
detail in the section with the discussion of the main

results below. In calculating the coefficient dð3ÞL in (24)
we have used the identity 3hαβDαDhβaμi ¼ 3ð3ÞRα

μaαþ
2DμðDαaαÞ.

C. The distance-redshift relation in the
matter frame

We consider the generic transformation of redshift and
angular diameter distance under a small boost of the emitter
and observer. We let this boost be the one from the quasi-
Newtonian frame to the matter frame,2 such that

1þ ẑ ¼ ð1þ zÞð1þ eμvμjE − eμvμjOÞ ð26Þ

and

d̂A ¼ ð1þ eμvμjOÞdA; ð27Þ

where the hat indicates that the emitter and the observer are
located in the matter frame, and where the expressions
are linear in the velocity field. The observed luminosity
distance reads

d̂L ¼ ð1þ ẑÞ2d̂A ¼ ð1þ 2eμvμjE − eμvμjOÞdL: ð28Þ

We may consider the situation where the observer’s motion
has already been accounted for, by appropriate transfor-
mations of the observables, that will then read: 1þ ẑ ¼
ð1þ zÞð1þ eμvμjEÞ and d̂L ¼ ð1þ 2eμvμjEÞdL. We sub-
stitute these transformations into ðθO=3Þ × ð23Þ to obtain
the following expression:

1

3
θOd̂L þ eμvμjEð1 − ẑþ 2HOd

ð2Þ
L ẑÞ

¼ ẑþ eμaμjO
1
3
θO

ẑþHOðdð2ÞL ẑ2 þ dð3ÞL ẑ3 þ Δdð3ÞL ðẑÞÞ;

ð29Þ

where we have used the definition (20). We have kept terms
of order ẑeμvμjE, but we have neglected terms ∝ ẑneμvμjE
with n ≥ 2.

1Note that convergence properties and the level of approxi-
mation at a given redshift must in principle be assessed
independently for any model geometry. See Appendix A of
[34] for a discussion of convergence properties in the Einstein
Toolkit cosmology simulations.

2Gravitational potentials within the virialized neighborhood
of the observer/emitters will generate additional contributions
to their velocities, which are not accounted for in the large-
scale matter model. For the purpose of estimating large-scale
matter flow, these may be considered noise terms.
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The exact FLRW case. To recover the results for
an FLRW spacetime, we formally set aμ ¼ 0 in
the above equations and view vμjE as small
velocities relative to the comoving FLRW frame.
Then θO=3 reduces to the Hubble parameter, and

dðnÞL reduce to their usual FLRW expressions
given in [35]. In this limit, our result in (29)
agrees with the formula in Eq. (15) of [22] for
motions relative to an exact FLRW frame, which
can be seen by performing a Taylor series
expansion in redshift of their formula and keeping
cross terms with the velocity field up to order
eμvμjE ẑ.

The formula (29) may be considered final for isolating
the velocity component eμvμjE . There is, however, the
subtlety that the emitter’s position, E, is at the past light
cone. To use (29) to estimate bulk flows of a volume at a
fixed cosmological time, we must account for the depth of
the survey in time. We have to first order in elapsed time,
τO − τE , in the frame of the source that

eμvμjE ¼ eμvμjpE
O
þ uν∇νðeμvμÞjpE

O
ðτE − τOÞ; ð30Þ

where the point pE
O is the spacetime point of the source

“today.” Rewriting (30) in terms of the distance in redshift
to the emitter, we have

eμvμjE ¼ eμvμjpE
O
−
uν∇νðeμvμÞjpE

O

1
3
θO

ẑ; ð31Þ

where we have used the first constraint in (16) to replace
θjpE

O
with θO to zeroth order in jvμj. Decomposing

uν∇νðeμvμÞjpE
O
¼ vμuν∇νeμjpE

O
þ eμuν∇νvμjpE

O
, the first

term arises from the drift in the direction of emission of
photons from the source while the second term is due to the
evolution of the velocity field. The first terms are zero in
linearized perturbation theory around an FLRW metric but
may be important on scales of nonlinear structures [36,37].

Velocity evolution in perturbation theory. In
standard linearized perturbation theory, the
velocity evolution reads uν∇νvμ ∝ vμ, with a
magnitude and sign that can be calculated via
the velocity growth function [38,39]. For the
spatially flat ΛCDM model with Ωmatter ¼ 0.3
and ΩΛ ¼ 0.7, it happens that uν∇νvμjpE

O
¼

−0.07ðȧ=aÞvμjpE
O
; cf. Eqs. (6) and (10) in

[39]. For comparison, Ωmatter ¼ 1 gives
uν∇νvμjpE

O
¼ 0.5ðȧ=aÞvμjpE

O
, whereas ΩΛ ¼ 1

yields uν∇νvμjpE
O
¼ −1.0ðȧ=aÞvμjpE

O
.

Inserting (31) in (29), we have

1

3
θOd̂L þ eμvμjpE

O
ð1 − ẑþ 2HOd

ð2Þ
L ẑÞ −

uν∇νðeμvμÞjpE
O

1
3
θO

ẑ

¼ ẑþ eμaμjO
1
3
θO

ẑþHOðdð2ÞL ẑ2 þ dð3ÞL ẑ3 þ Δdð3ÞL ðẑÞÞ:

ð32Þ

This relation is the main result of this paper and expresses
the peculiar motion of the astrophysical source evaluated at
the present epoch in terms of its measured distance and
redshift.

IV. DISCUSSION OF THE MAIN RESULT

The relation (32) provides a cosmographic expression
for peculiar velocities given our weak-field description.
Loosely speaking, it applies to scales where gravitational
waves and frame dragging can be ignored, and where
gravitational time dilation is perturbative. It does apply to
scenarios with nonlinear contrast in density and in spatial
curvature. Thus, various systems that are usually consid-
ered nonperturbative in terms of curvature are included in
this weak-field description, for instance, certain Lemaître-
Tolman-Bondi structures [40,41]. Here we discuss the
terms appearing in (32) and their significance for recent
analyses of bulk motions in the literature.

A. The individual terms in peculiar-velocity formula

The anisotropic terms on the left-hand side of the
equality in (32) arise due to pure motion effects. The
anisotropic terms on the right-hand side may be thought of
as intrinsic; i.e., they are there even when the observer and
emitter 4-velocities coincide with that of the quasi-
Newtonian reference frame, and their dominant contribu-
tions come from the gravitational redshift of sources;
cf. Eq. (21).
It is tempting to set aμ to zero in the neighborhood of

observation in order to avoid dealing with these terms.
However, this cannot be done in a consistent treatment of
the bulk motions, as the same gravitational structures that
cause the bulk motions are causing time dilation in the
quasi-Newtonian frame. Indeed, we can expect 3jaμj=θ ∼
jvμj from (11). We shall here give a brief interpretation of
the anisotropic terms on the right-hand side of (32).
The term 3eμaμjOẑ=θO describes the dipole in the

gravitational redshift of sources as is evident from the
equation for redshift (21) and the definition of aμ in terms
of the lapse function. The gravitational redshift is caused by
the same gravitational potentials that cause the flow of
matter, and the dipole in the gravitational redshift may thus
be expected to show alignment with the peculiar flow.
Indeed, in linearized perturbation theory around an FLRW
background, the following proportionality relation holds:
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3aμ=θ ∝ vμ, with a proportionality factor which is ≈ − 1 at
late cosmic times in the spatially flat ΛCDM model with
Ωmatter ¼ 0.3; cf. [39]. We note that there is no statistical
cancellation effect for this term, as the term is evaluated at
the observer position.
The terms HOd

ð2Þ
L ẑ2 and HOd

ð3Þ
L ẑ3 incorporate higher-

order derivatives of the gravitational redshift. The aniso-

tropic signature of the term HOd
ð2Þ
L ẑ2 is a quadrupole [see

(24)]. By (14) we see that it is probing the electric Weyl
tensor in the quasi-Newtonian frame. The electric Weyl
tensor is analogous to minus the Newtonian tidal tensor,
and it is thus describing deviations of the gravitational field
strength with a change of position. The anisotropic sig-

nature of HOd
ð3Þ
L ẑ3 is given by a combination of a dipole

and an octupole. From the second relation in (16), we
derive that the dipole contribution is along vμ and Dμρ.
Vanishing vorticity in the matter frame implies that Dμρ ∝
vμ by (17). Thus, for the vanishing vorticity case, it is
expected that the dipolar contribution coming from the term

HOd
ð3Þ
L is proportional to eμvμjO.

Comparison of the size of the anisotropies. Evaluating
the derivatives of aμ over a scale comparable to the
observed redshift ẑ, we have jeμeνDμaνjjO ∼ jaνj θ3 jO=ẑ;
jeρeμeνDρDμaνjjO ∼ jaνjðθ3Þ2jO=ẑ2. Thus, the terms

HOd
ð2Þ
L ẑ2 and HOd

ð3Þ
L ẑ3 are expected to be of roughly

the same order as the first order contribution 3eμaμjOẑ=θO.
We, however, note the factor of 6 in the denominator of dð3ÞL
in (24) that will suppress this term. At higher order, the

terms HOd
ðnÞ
L ẑn will become increasingly suppressed by

the factorials when the series is convergent.

B. Comments on recent empirical analyses

Many bulk flow estimators in the literature, e.g., those in
recent analyses [14,18], are considering the lowest-order
anisotropic term eμvμjpE

O
in (32) while neglecting the higher-

order contributions. Other studies again,3 e.g., [24,42–44],
are including some of the terms of order v × z, but are
neglecting others. In both cases, this is generally expected to
lead to theoretical biases of the estimated bulk velocity of
order v × z. Such correction biases, even if subdominant
when z≲ 0.1, may significantly alter the error analysis and
any quoted significance levels.
Perhaps most importantly, the discussed theoretical

biases could alter the observed trend in bulk flows as
deduced in some recent analyses [13,14]. From an order of
magnitude estimate within the spatially flat ΛCDM model,

with Ωmatter ¼ 0.3, we have that 2HOd
ð2Þ
L − 1 ∼ 0.55, and

thus eμvμjpE
O
ð−ẑþ 2HOd

ð2Þ
L ẑÞ ≈ 0.55 × ẑeμvμjpE

O
. The cor-

rection term coming from the velocity evolution is sub-
dominant for Ωmatter ¼ 0.3, as discussed in the box above
(32), and we set uν∇νvμjpE

O
≈ 0. Using this approximation,

we have 3eμaμjOẑ=θO ≈ −eμvμjOẑ. Putting all of the
approximations together in (32) gives the ΛCDM estimate:

eμvμjpE
O
ð1þ 0.55ẑÞ þ eμvμjOẑ ¼ HOdLðẑÞ −

1

3
θOd̂L;

HOdLðẑÞ≡ ẑþHOðdð2ÞL ẑ2 þ dð3ÞL ẑ3 þ Δdð3ÞL ðẑÞÞ: ð33Þ

If neglecting anisotropies in the higher-order coefficients

HOd
ðnÞ
L , n ≥ 2, we have that HOdLðẑÞ is isotropic, and the

residual on the right-hand side of the equality would be
what is typically used in lowest-order estimates of peculiar
velocities. At the left-hand side of the equality, the
correcting factor ð1þ 0.55ẑÞ amplifies the true velocity
amplitude. The term eμvμjOẑ in addition amplifies the
amplitude in cases where eμvμjpE

O
and eμvμjO are of the

same sign. The formula in (33) is local and in practice
applies to the individual galaxies of a given survey.
However, averaging over the individual observed velocities
eμvμjpE

O
, and assuming that these are uncorrelated with the

observed redshifts ẑ at lowest order, the formula applies to
the bulk flow, eμvμjpE

O
, and the mean redshift, ¯̂z, with

eμvμjpE
O
ð1þ0.55ẑÞþeμvμjO ¯̂z¼HOdLðẑÞ−

1

3
θOd̂L; ð34Þ

where the overbar indicates the average by the galaxy
window function employed in the analysis.
In the case where the amplitude of the local flow4 vμjO is

of order of the mean estimated emitter flows vμjpE
O
and in

the same direction,5 we have that the left-hand side
of (34) yields ∼eμvμjpE

O
ð1þ 1.55¯̂zÞ, thus giving rise to

an amplifying factor of ∼ð1þ 1.55¯̂zÞ for the mean esti-
mated eμvμjpE

O
. Within this order-of-magnitude analysis,

3In Appendix A of [42], the impact of peculiar-velocity
estimates from neglecting various terms of order v × z in
Eq. (15) of [22]. However, this equation itself is only exact in
the idealized case of peculiar motions relative to an exact FLRW
frame, and is thus missing the additional relativistic terms of
order v × z as discussed in this paper.

4The local flow vμjO does not generally coincide with the bulk
flow, as the latter is rather obtained by a (weighted) mean of
vμjpE

O
. However, when the observational scales become as small

as the fluid elements of the matter model, the emitters and
observer can essentially be treated as belonging to the same fluid
parcel, and we expect the value of the bulk flow to approach that
of the local flow.

5This case is motivated by the observed bulk flows in [14,18],
where the direction of the bulk flow remains approximately stable
across the investigated scales 40–200 Mpc=h (and probably
stable across even broader ranges; cf. the discussion on the flow
of the local sheet in the below discussion), and where the
amplitude of the flow is of the order of a few hundred km=s
across the same scales.
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the overestimate of the bulk velocity amplitude at ẑ ¼ 0.1
(corresponding to 300 Mpc=h) would be ∼15%.
Indeed, in [14] the estimate of the bulk flow at 200 Mpc=h

is 420 km=s in the direction ðl ¼ 298; b ¼ −8Þ, with a
direction of the flow that is rather stable across the inves-
tigated redshift range. This inferred large-scale flow is
notably similar to the estimated flow of the local sheet of
galaxies: In the rest frame of the local sheet, the dipole in the
cosmic microwave background corresponds to the velocity
631 km=s in the direction ðl ¼ 270; b ¼ 27Þ, which, once
corrected for close by “attractors” and “repellors” within a
radius of z ¼ 0.01, yields the residual velocity of 455 km=s
with direction ðl ¼ 299; b ¼ 15Þ [45]. We take the latter
inferred velocity as an estimate for vμjO, the above estimate
roughly applies, and there should be a∼10% overestimate of
the bulk flow at the scale 200 Mpc=h (corresponding to
z ¼ 0.06). This does not seem quite sufficient in explaining
the entire upgoing trend line from 100 Mpc=h to
200 Mpc=h, even if the estimate is conservative. In any
case, we expect the size of the correction terms to be enough
to alter the trend of the estimated bulk flow and the error
analysis in [14], but they would not be enough to make the
results agree with the ΛCDM expected bulk flow amplitude
or its decay ∝ 1=ðdistanceÞ. In that sense, the main con-
clusions of [14] are robust.

V. CONCLUSION

The main result of this paper is the formula (32), valid for
inferring large-scale peculiar motions from cosmological
datasets within the cosmographic regime z≲ 1. When the
aim is precise (mean) velocity, v, estimates at the level of
v × z precision, all of the terms in (32) must a priori be
included in the analysis. These terms include both classical
peculiar-motion terms, but also relativistic effects in the
light propagation.
The leading order relativistic correction terms are due to

gravitational time dilation6 and the fact that objects are

observed on the past light cone. These effects have been
analyzed in detail in [22,23] within linearized FLRW
perturbation theory.
Here we have provided the first cosmographic expres-

sion where all anisotropic terms up to order v × z are
included consistently, and this is done within a fairly
general weak-field formalism. Structures of arbitrary size
and nonperturbative structures (in terms of density and
spatial curvature contrasts) can be described within our
formalism, which makes it suitable for interpreting bulk
motions outside of the strictly linearized perturbative
regime of an FLRW metric.
Theoretical biases in neglecting (one or more of) the

relativistic correction terms are already surpassing the
estimated measurement biases in the most recent analyses
of bulk flows [14]. The inclusion of these correction terms
will be important for future analyses that will constrain the
bulk flow toward z ∼ 1 [18,19]. It should be noted that the
relativistic terms will be competing with the statistical
measurement errors, which are currently large when going
beyond z≲ 0.1. Irrespective of future efforts in reducing
the error bars, the relativistic correction terms should as a
minimum be included in the error analysis in order to
achieve reliable significance levels for the bulk flow
estimates.
The formula (32) can be used to constrain bulk flows to a

high precision when the quality of the data allows it, either
by fixing a model beforehand or by determining the
coefficients of the cosmography in a combined fit to
the data.
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