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We study the properties of the stochastic gravitational wave background (SGWB) resulting from
the mergers of primordial black holes (PBH) that formed from the collapse of subhorizon regions in the
early Universe. We adopt a model-independent approach, where we parametrize the fraction fH of the
wavelength of the perturbation mode in units of the horizon radius when the patch starts to gravitationally
collapse. Assuming a monochromatic spectrum of curvature perturbations and spherically-symmetric
density perturbations, we investigate the isotropic SGWB energy density and angular power spectrum at
various frequencies, PBH masses, and horizon size fractions. The key effect of subhorizon formation is a
change in the PBH mass function and formation redshift, which, in turn, affects gravitational wave (GW)
observables. We find that subhorizon PBH formation in general enhances the isotropic SGWB energy
density and the absolute angular power spectrum. However, the quasimonotonic increases in both
quantities as fH decreases cease when the chirp mass of the binary PBHs reaches a mass threshold
determined by the frequency of observation; the isotropic SGWB energy density spectrum significantly
drops above the corresponding cutoff frequency. We find that despite the significant enhancement from
subhorizon collapse, the resulting signal in the anisotropy power spectrum will not be detectable by
planned future gravitational wave detectors such as LISA.
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I. INTRODUCTION

The intriguing possibility that black holes form from
large density fluctuations in the early universe instead of
from the gravitational collapse of large astrophysical
objects in the late universe was proposed long ago [1].
Such “primordial black holes” (PBHs) might be related to
the cosmological dark matter [2], to the matter-antimatter
asymmetry (see e.g., [3] and references therein), or
both [4]; they could play a role in seeding supermassive
black holes [5], or even explain part (or perhaps all) of the
black hole-black hole mergers observed by gravitational
wave (GW) interferometers [6]. While the direct detection
of even a single black hole with a mass below the Tolman-
Oppenheimer-Volkoff limit [7] would indicate the exist-
ence of PBHs (or of unexpected new physics [8]), other
observables may point toward a nonastrophysical origin for
black holes. For instance, the spin distribution expected
from PBHs, whether produced in matter- or radiation-
domination in the early universe, is expected to be
markedly, or at least statistically significantly different
than that expected for astrophysical black holes [9].
While no evidence for a stochastic background of GWs

has been conclusively detected yet (see however [10]),
there are several reasons to believe that it will soon be.

A perfectly plausible source of such diffuse background are
unresolved binary black hole mergers at all redshifts,
including of PBHs [11]. Some information on the origin
and production mechanism of the black holes whose binary
mergers might contribute to the diffuse background of GWs
may arise from spectral considerations [12]. Here, we rather
focus on the use of the power spectrum of anisotropies of
the stochastic background as a possible tell-tale signature of
the production mechanism of the black holes (for previous
studies see, e.g., [13] and references therein).
Previous studies that focused on utilizing the anisotropy

of the stochastic gravitational wave background (SGWB)
as a metric to differentiate PBHs from astrophysical black
holes include, for instance, Ref. [14] (see also Ref. [15]
on how to utilize the isotropic SGWB to constrain the
primordial origin of BH formation channel). Here, how-
ever, we take a different perspective, and aim at differ-
entiating one particular aspect of PBH formation: the
portion of the Hubble horizon that collapsed at formation.
Generically, PBHs result from the collapse of patches of the
early universe as large as the Hubble horizon at collapse,
but depending on the formation mechanism the collapsing
region can be significantly smaller. We therefore simply
assume, here, in a model-agnostic way, that PBHs result
from the collapse of a fraction fH < 1 of the Hubble
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horizon only (we discuss expectations for fH in different
scenarios below), and study the impact of fH on the
anisotropy of the SGWB.
The remainder of this study is as follows: in the next

section we discuss PBH formation from the collapse of
curvature perturbations in the standard and in the presently
investigated nonstandard scenarios. Section III describes
the calculation of the power spectrum of anisotropies of the
SGWB, and presents our results. The final Sec. IV presents
our discussion and conclusions.

II. PBH FORMATION FROM CURVATURE
PERTURBATIONS

PBHs can form in the early universe as a result of the
gravitational collapse of curvature perturbations ζðxÞ. The
power spectrum of curvature perturbations, PζðkÞ, deter-
mines the width of the Gaussian distribution of matter
overdensities δρðxÞ=ρðxÞ≡ δðxÞ. The distribution of matter
overdensities then in turn determines the mass function of
the resulting PBHs. According to the standard scenario,
where a PBH is formed at the horizon reentry time
tH ∼ 1=k�, with k� the scale of the perturbation that
collapses to form the PBH, the mass of the PBH is directly
related, and proportional to, the Hubble mass—the mass
enclosed at that time in a Hubble patch. The later the scale
k� reenters the horizon, the larger the PBH mass. Notably,
and generically, however, PBHs can be also formed at the
subhorizon scales, and the formation time can be much
later than tH, modifying the relation between PBH mass
and horizon mass. Here, we explore the implications of
subhorizon-forming PBHs for the anisotropy of the gravi-
tational wave spectrum induced by the PBH merger.

A. The standard scenario for PBH formation

The horizon reentry time is defined by, in natural units,

tH ≡ 1

k�
; ð1Þ

where k� is the scale of the overdensity that will collapse to
form a PBH, and where we denote the characteristic
wavelength of the density perturbation as λ� ≡ 1=k�. The
size of a Hubble patch at horizon reentry is given by

rH ¼ tH: ð2Þ

Thus, we can use Eq. (1) to relate the size of the Hubble
patch at the horizon reentry time and the characteristic
wavelength of the density perturbation,

λ� ¼ rH: ð3Þ

Statistically rare perturbations (such that one can neglect
hierarchical random fields) are expected to be approxi-
mately spherically symmetric [16]. With the assumption

that the perturbation is spherically symmetric, the ampli-
tude of the smoothed density contrast δ̄ is related to the
curvature perturbation, in radiation domination, as

δ̄ ¼ −
2

3
rmζ0ðrmÞð2þ rmζ0ðrmÞÞ ¼ δ1 −

3

8
δ21; ð4Þ

where rm is the smoothing scale, the prime is the derivative
with respect to the radial coordinate, and δ1 is the linear
component of the δ̄, given by

δ1 ¼ −
4

3
rmζ0ðrmÞ: ð5Þ

The distribution of δ1 obeys a Gaussian probability dis-
tribution function (PDF):

PDFðδ1Þ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−

δ21
2σ20

�
; ð6Þ

where the variance σ20 characterizes the width of the
Gaussian PDF, and it is obtained from the zeroth moment
of the power spectrum of δ1. The jth moments of the power
spectrum Pδ1 are given by

σ2j ¼
Z

∞

0

dk
k
Pδ1ðk; rmÞ

�
k
aH

�
2j
: ð7Þ

The variance is

σ20 ¼ hδ21i ¼
Z

∞

0

dk
k
Pδ1ðk; rmÞ

¼ 16

81

Z
∞

0

dk
k
ðkrmÞ4W̃2ðk; rmÞT2ðk; rmÞPζðkÞ; ð8Þ

where we choose a Dirac-δ peak power spectrum of the
curvature perturbation PζðkÞ ¼ Asδðln k

k�
Þ þ AbðAs ≫ AbÞ,

As and Ab are the amplitudes of the short-wavelength mode
and background mode, respectively, rm is the smoothing
scale that determines how to choose the spatial volume to
average the overdensity peak,

W̃ðk; rmÞ ¼ 3
sinðkrmÞ − krm cosðkrmÞ

ðkrmÞ3
ð9Þ

is the Fourier transform of the top-hat window function
with the time-dependent smoothing scale rm, and

Tðk; rmÞ ¼ 3
sinðkrm=

ffiffiffi
3

p Þ − krm=
ffiffiffi
3

p
cosðkrm=

ffiffiffi
3

p Þ
ðkrm=

ffiffiffi
3

p Þ3 ð10Þ

is the linear transfer function. In the literature [17], it is
common to choose the smoothing scale to be the Hubble
scale, i.e., rmðzÞ ¼ rH ¼ ðaHÞ−1.
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When the smoothed density contrast δ̄ is greater than the
critical threshold value δc, a PBH is formed, with a mass
closely related to the modeling of the gravitational collapse,

MPBH ¼ Kðδ̄ − δcÞγMH; ð11Þ

where MH is the horizon mass at the formation time of
PBH, K ¼ 4 accounts for most of the shape of the density
contract, γ ¼ 0.36 is the critical exponent dependent on the
equation of state of the universe and here is evaluated in the
radiation-dominated era [17], and δc ¼ 0.51 is chosen for a
typical profile shape of the density perturbation and a real-
space top-hat window function at the horizon reentry
time [18,19]. Given the above PBH formation model,
the distribution of the Gaussian random field δ1 thus
determines the abundance and mass function of the result-
ing PBHs. By inverting Eq. (11) and combining with
Eq. (4), one can obtain the value of δ1 corresponding to a
given PBH mass MPBH,

δ1ðMPBHÞ ¼
2

3

 
2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 6δc − 6

�
MPBH

KMH

�
1=γ

s !
: ð12Þ

The initial abundance of PBHs is usually described by
the energy density fraction of PBHs in the universe at a
single formation time,

β ¼
Z

μmax

μc

dμ
MPBHðμÞ

MH
npeakðμÞ; ð13Þ

where μ≡ δ1=σ0, μ∈ ½μc; μmax�, μc ¼ δc;1=σ0,
μmax ¼ δ1;max=σ0 ¼ 4=ð3σ0Þ, makes the gravitational col-

lapse happen, δc;1 ¼ 4
3

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3

2
δc

q �
is the critical

value for gravitational collapse of δ1, npeak ¼ 1
4π2

ðσ1σ0Þ3
μ3 exp ð− μ2

2
Þ is the number density of over-density peaks

in a comoving volume [16].
The mass function is defined as

ΨðMPBHÞ ¼
1

fPBH

dfPBH
dMPBH

; ð14Þ

such that
R
ΨðMPBHÞdMPBH¼1, where fPBH≡ΩPBH=ΩDM

is the fraction of the present dark matter (DM) energy
density stored in PBHs. The fraction fPBH can be calculated
from β by integrating the contributions from PBHs formed
across the history of the universe until the time of matter-
radiation equality,

fPBH ¼ 1

ΩDM

Z
MH;max

MH;min

dðlnMHÞ
�
MH;eq

MH

�
1=2

βðMHÞ; ð15Þ

where MH;eq ¼ 4π
3
2ρeqH−3

eq ≈ 2.8 × 1017M⊙ is the approxi-
mate horizon mass at the matter-radiation equality.

Assuming a Dirac-δ form for the power spectrum of the
curvature perturbation and assuming as a result that all
PBHs form at a single time, the mass function is given by

ΨðMPBHÞ ¼
1

β

dβ
dMPBH

: ð16Þ

Here is the derivation. First, we relate β, the abundance
of PBHs at a single formation time, to ΩPBH, the energy
density parameter of PBHs observed today:

β ¼ ρPBH
ρr

¼ ρPBH
ρc;0

ρc;0
ρr

¼ ρPBH;0ða0a Þ3
ρc;0

ρc;0
ρr;0ða0a Þ4ðg0g Þ1=3

¼ ΩPBH

Ωr

�
a
a0

��
g
g0

�
1=3

; ð17Þ

where Ωr is the energy density parameter of radiation
observed today, a is the scalar factor, a0 ¼ 1 is the scalar
factor today, g and g0 are the degree of freedom of the
relativistic species at the time of a and a0 respectively.
Therefore, the energy density fraction of PBHs in terms
of DM is given by a simplified expression instead of the
integral in Eq. (15),

fPBH ¼ ΩPBH

ΩDM
¼ Ωr

ΩDM

1

a

�
g0
g

�
1=3

β: ð18Þ

Let ψðxÞ ¼ Ψ ×MH be a dimensionless mass function:

ψðxÞ ¼ 1

4π2βσ0
x

�
σ1
σ0

�
3
�
δ1ðxÞ
σ0

�
3

exp

�
−
δ21ðxÞ
2σ20

�

×

ffiffiffi
2

p ðx=KÞ1=γ−1
γK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 3δc − 3ðx=KÞ1=γ

p ; ð19Þ

where x≡ MPBH
MH

is the ratio between PBH mass and horizon
mass. The normalization of the dimensionless mass
function becomes

R
ψðxÞdx ¼ 1, and the PBH-mass-to-

horizon-mass ratio x ranges from 0 to 2.05, where the upper
limit is coming from the that Eq. (4) has a maximum value
δ̄ ¼ 2

3
such that

MPBH;max ¼ K
�
2

3
− δc

�
γ

MH ¼ 2.05MH; ð20Þ

where the second identity is obtained by substituting the
parameters of the PBH formation model used in this paper.

B. Subhorizon PBH formation

Generically, a PBH can form from the collapse of a
density perturbation of λ� smaller than the size of the
horizon by a factor fH,
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λ� ¼ fH × r0H; ð21Þ

where we use the symbol r0H to indicate the Hubble patch
where the PBH is formed. Several example formation
mechanisms with fH ≲ 1 and/or with fH ≪ 1 have been
proposed and discussed in detail in the literature. For
instance, Ref. [20] considers PBH production from the
collapse of scalar field lumps (Q-balls or oscillons) that can
potentially temporarily dominate the energy density
of the universe leading to efficient PBH formation; the
typical size of the lumps (formed, here, not because of
gravitational instability, but rather due to self-interactions)
is predicted, from numerical simulations, to be a fraction
fQ ∼ 10−2–10−1 of the horizon size. Bubble collision upon
spontaneous symmetry breaking and a first-order phase
transition also generically seed subhorizon density pertur-
bations leading to collapse into black holes with mass much
smaller than the horizon mass (see, e.g., [21]). Similarly,
cosmic string loops lead to subhorizon mass PBH,
depending on the string tension [22,23]. Reference [24]
entertains a more speculative possibility of multigravitino
Bogomol’nyi-Prasad-Sommerfield (BPS) states that if suf-
ficiently large could collapse into black holes whose mass
is entirely unrelated to the horizon mass. A somewhat
less speculative possibility is the collapse of Fermi balls
consisting of massive fermions trapped into regions of false
vacuum in a first-order phase transition [25]. Other similar
possibilities include the formation of PBH from long-range
scalar forces and scalar radiative cooling [26], and a late-
phase transition in a strongly interacting fermion-scalar
fluid [27]. Finally, the collapse of neutron stars in the very
late universe, possibly triggered by the accumulation of
dark matter in the neutron star core, can also lead to the
formation of black holes with masses much smaller than the
horizon mass [8,28].
For fH < 1, one has r0H ¼ rH=fH > rH, i.e., the Hubble

patch where the PBH is formed is greater than the one in the

standard scenario, and thus the formation time is later than
the one in the standard scenario, t0H > tH. Assuming PBHs
formed in the early universe, during radiation domination,
the formation redshift can be related to the one in the
standard scenario by the following equation:

z0form
zform

¼ fH: ð22Þ

In the subhorizon formation scenario, rmðzÞ in Eq. (8)
is evaluated at time z0form instead of zform, such that
k�rmð¼ f−1H Þ ≠ 1. There is one subtlety for the smoothing
scale of the top-hat window function. In the standard case,
there is only one density contrast peak of the mode k� in
one Hubble patch, so choosing rm ¼ rH is reasonable.
However, in the subhorizon formation case, there are bf−1H c
density contrast peaks, but we still choose rm ¼ rH as the
smoothing scale. We comment later on the impact of
choosing different smoothing radii and how our results
depend on the choice of rm.
Figure 1 shows σ20 as a function of the inverse of the

horizon size fraction f−1H for different values of As with a
fixed value of Ab ¼ 8 × 10−4. For a given As, σ20 increases
monotonically before reaching its maximum at f−1H ∼ 2.5,
and it rapidly drops until it reaches its minimum at
f−1H ∼ 4.5. The behavior of σ20 is quasiperiodic with
respect to f−1H because the window function and transfer
function in Eq. (8), containing sinðk�rmÞ ¼ sinðf−1H Þ and
cosðk�rmÞ ¼ cosðf−1H Þ, are periodic but with a suppressed
amplitude at larger f−1H . Figure 1 additionally illustrates
how the value of σ20 decreases globally for a smaller value
of As, because σ20 characterizes the autocorrelation of the
overdensity whose amplitude is determined by the ampli-
tude of the curvature perturbation. We stress that the
nonlinear dependence of the value of σ20 on As at some
values of fH stems from the fact that the ratio As=Ab is not a

FIG. 1. The variance σ20 of the over-density distribution as a function of 1=fH , for different amplitudes of the short-wavelength
perturbation mode As ¼ 0.8ðblueÞ, 0.08(orange), 0.008(green), at a fixed value for the amplitude of the background mode
Ab ¼ 8 × 10−4. The left plot uses a top-hat window function while the right plot uses a Gaussian window function.
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constant. If As=Ab were a constant, σ20 would linearly
depend on As, which can be directly derived from Eq. (8).
Starting from the Sec. III, for simplicity, we choose Ab ¼ 0,
and the jth order moments are simplified to be

σ2j ¼ 432Asf
8−2j
H ðsinðf−1H Þ − f−1H cosðf−1H ÞÞ2

×
�
sin ðf−1H =

ffiffiffi
3

p
Þ − f−1H =

ffiffiffi
3

p
cos ðf−1H =

ffiffiffi
3

p
Þ
�
2
: ð23Þ

We note that the above dependence on As and fH brings a
degeneracy of As when fixing fPBH and fH. This is because
fPBH is proportional to β, which, in turn, is only determined
by σ20 and σ21 [see Eq. (13)]; specifically, β has an
exponential dependence on σ20, and a power-law depend-
ence on σ21. This results in fPBH being approximately fixed
by a given choice of σ20. However, Eq. (23) can have
multiple roots for As when fixing σ20 and fH, which can also
be appreciated by imagining a horizontal line in Fig. 1 and
noting how it would intersect with curves of different colors
from a large σ20 value to a smaller value. Therefore, As has
multiple values for given fPBH and fH. Also, due to the
quasiperiodic behavior of σ20 versus fH, one has the
freedom to pick As such that fPBH is sufficiently small
at a given fH. In the calculation of Sec. III, we fix fPBH ¼
0.01 and choose the smallest value of As for each fH.
Equation (23) also manifests choosing different smoothing
scales rm will change the value of σ20 and σ

2
1. For the choice

of rm ¼ rH, k�rm ¼ f−1H , while in general, one can choose
fHrH ≤ rm ≤ rH, i.e., 1 ≤ k�rm ≤ f−1H .
In order to study the systematic dependence on the

functional form of the window function, we also considered
a Gaussian window function W̃ðk; rmÞ ¼ e−ðkrmÞ2=2 and
calculated the variance (see Fig. 1, right panel). By
comparing this plot to the plot using a top-hat window
function (left panel), one appreciates how the oscillatory
pattern is eliminated because of the exponential suppres-
sion on the amplitude of σ20 at a large value of f−1H . If we
set Ab ¼ 0, the variance can be given by an analytical
expression,

σ20 ¼ 48Asf2He
−f−2H

�
sin

�
1ffiffiffi
3

p
fH

�
−

1ffiffiffi
3

p
fH

cos

�
1ffiffiffi
3

p
fH

��
2

:

ð24Þ

For f−1H ≥ 4, σ20 reaches to the asymptotic value 0.0064
which depends on Ab.
Figure 2 shows (on a linear (left) and logarithmic (right)

scale) the mass function of Eq. (19) for different values of
the variance σ2 induced by As ¼ 0.8, 0.08, and 0.008, again
at fixed Ab ¼ 8 × 10−4. The log-log plots (Fig. 2, right
panels) illustrate how the mass function exhibits a power-
law behavior when the normalized PBH mass x < x0,
where x0 is the point at which the mass function reaches
its local maximum. However, we note that for As ¼ 0.8,

fH ¼ 1=2 and 1=3, the mass function does not have a local
maximum, but, rather, it monotonically increases as a
function of the PBH mass, while for the other it is
exponentially suppressed when x > x0. This behavior
can be explained as follows: the exponential function

exp ð− δ2
1
ðxÞ

2σ2
0

Þ in Eq. (19) decreases monotonically as x

increases for a given σ20 but with a different decreasing
rate which depends sensitively on the value of σ20. For
f−1H ¼ 2 or 3 when As ¼ 0.8, the value of σ20 ∼ 0.8, which is
almost an order of magnitude larger than σ20 at other f−1H ,

such that the decrease in exp ð− δ2
1
ðxÞ

2σ2
0

Þ is counterbalanced by
the increase in the remaining x-dependent part in Eq. (19).
For other f−1H values, since the corresponding value of σ20 is
small (∼0.1), the behavior of the mass function at large x is
instead mainly determined by the exponential suppression

originated from exp ð− δ2
1
ðxÞ

2σ2
0

Þ.
We also investigate the mass function at a very small fH,

i.e., very large f−1H , ranging from f−1H ∈ ½10; 5000� in
Figure 3 which shows the mass function at fH ≪ 0.1 in
the left panel and the ratio of mass functions normalized
by the “standard” mass function corresponding to fH ¼ 1
in the right panel. We note that for fH ≤ 1=30, the mass
functions for different values of fH are self-similar.
The reason is that the mass function ψðxÞ only depends
on the value of σ20 ¼ σ20ðfHÞ and when fH ≤ 1=30, σ20 ≈
0.00085 ∼ Ab does not significantly change.

III. ANISOTROPIC SGWB ENERGY DENSITY
POWER SPECTRUM

If two PBHs, separated by a distance x, have an energy
density 4M=ð3πx3Þ larger than the cosmic radiation energy
density ρr (since we suppose PBHs are formed deep in the
radiation era, radiation is the dominant component of the
universe), they decouple from the Hubble flow and become
a gravitationally bound binary system. PBH binaries then
radiate GWs during the inspiral, merger, and ring-down
phases [29]. The incoherent superposition of the unresolved
GWs emitted by such PBH binaries contributes to SGWBs
across several orders of magnitude in frequency, which
advanced LIGO or LISA can detect in the near future [30].
The SGWB produced by PBH binaries has both an
isotropic and an anisotropic component1: while only
spectral information can be extracted from the former,
we focus on the latter, the anisotropic component in seeking
a way to ascertain whether the PBH formation history
corresponds to a standard horizon-size collapse, or to the
aforementioned subhorizon-collapse scenarios. As such,

1Reference [31] show that anisotropies of scalar-induced GW
can, for sufficiently peaked spectra, be quite sizable. One such
example may come from scenarios that also predict PBH
production.
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the scope of the present study is to seek for distinguishable
features of PBH binary mergers in the standard versus
subhorizon formation scenarios by studying the anisotropic
component.
As is customary [32], we define as the isotropic SGWB

energy density spectrum the dimensionless quantity

Ω̄gwðνÞ≡ ν

ρc

dρgw
dν

; ð25Þ

where ρc is the critical energy density of the universe
and ρgw is the SGWB energy density. In a more general

situation where the SGWB has directional dependence, the
definition is supplemented by

Ωgwðν;nÞ≡ 1

ρc

d3ρgwðν;nÞ
d ln νd2n

¼ Ω̄gw

4π
ð1þ δðν;nÞÞ; ð26Þ

where ρðν;nÞ is the SGWB energy density at frequency ν
along the line-of-sight direction n, δðν;nÞ denotes the
anisotropic fluctuations.
The isotropic component Ω̄gwðνÞ produced by PBH

binary mergers is given by the following integral:

FIG. 2. The mass function of PBH for different values of fH , for As ¼ 0.8 (top panels), 0.08 (middle panels) and 0.008 (bottom
panels) with Ab ¼ 8 × 10−4 in all cases. Left column: linear-linear scale. Right column: log-log scale.
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Ω̄gwðνÞ ¼
ν

ρc

Z
z�

0

dz
ð1þ zÞHðzÞ

Z
dΘsRðΘs; zÞ

dE
dν

ðνs;ΘsÞ;

ð27Þ

where z is redshift, z� corresponds to the formation time of
PBHs,HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωrð1þ zÞ4 þ Ωmð1þ zÞ3 þ ΩΛ

p
is the

Hubble parameter, R is the merger rate of PBH binaries,
dE=dνðνs;ΘÞ is the energy spectrum at source frequency
νs ¼ ν × ð1þ zÞ, with source parameters Θs describing
masses, eccentricity, and so on. The energy spectrum used
in our calculation is derived from the inspiral-merger-
ringdown waveforms for nonspinning PBH binaries given,
e.g., in Refs. [33,34]. Figure 4 shows the isotropic SGWB
energy density Ω̄gwðν; fHÞ as a function of f−1H at different
observed frequencies and different MPBH;max, in which we
use the merger rateR [see Eq. (32)] that is to be introduced
later to take into account the effect of the subhorizon
formation.

The cross-correlation of the anisotropies in SGWB
between two different directions n and n0, hδðν;nÞδðν;n0Þi,
describes the amplitude of the statistical fluctuation at a
certain angular scale n · n0. By decomposing it in a
spherical harmonic basis, we have

hδðν;nÞδðν;n0Þi ¼
X
l

2lþ 1

2π
ClPlðn · n0Þ; ð28Þ

and the dimensionless angular power spectrum is given by

ClðνÞ≡ 2

π

Z
d ln kk3jδlðk; νÞj2; ð29Þ

where δlðk; νÞ is the Fourier transforms of the spatial
anisotropies δðν;nÞ, and are given by [35],

FIG. 4. The isotropic component of the SGWB energy spectrum at ν ¼ 10−4 Hz with different MPBH;max ¼ 2.05MH , with
MH ¼ 10−6M⊙=f2H , 10

−4M⊙=f2H , 10
−2M⊙=f2H , and 1M⊙=f2H (left), and the case atMH ¼ 1M⊙=f2H , for different observed frequencies

ν ¼ 10−4 Hz, 10−2 Hz, 1 Hz, and 100 Hz (right). We fix fPBH ¼ 0.01.

FIG. 3. The mass function (left) and the one normalized by the mass function of fH ¼ 1 (right) for fH ≤ 0.1, As ¼ 0.8, and
Ab ¼ 8 × 10−4.
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δlðν; kÞ ¼
ν

Ω̄gwðνÞρc

Z
η0

η�
dηLðη; νsÞ

	
½4ΨkðηÞ þ 4ΠkðηÞ þ bδm;kðηÞ�jlðkΔηÞ − 2kvkðηÞj0lðkΔηÞ − 6

Z
η

η0

dη0Ψ̇kðη0ÞjlðkΔη0Þ

þ ∂ lnðdE=dνsÞ
∂ ln νs

�
−ΨkðηÞjlðkΔηÞ − ΠkðηÞjlðkΔηÞ þ kvkðηÞj0lðkΔηÞ þ 2

Z
η

η0

dη0Ψkðη0ÞjlðkΔη0Þ
�


; ð30Þ

where Lðη; νsÞ ¼ aðηÞ R dΘsRðΘs; zðηÞÞ dEdν ðνs;ΘsÞ is the
GW luminosity of the PBH binary merger, the galaxy
bias b ¼ 1 for PBH, Ψk ≈ ϕk and Πk ¼ 0 are two scalar
gravitational potentials, δm;k is the matter density
contrast, vk is the velocity of matter, the dot represents
the derivative with respect to conformal time η. The
corresponding transfer functions are calculated numerically
by solving the linearized cosmological perturbation equa-
tions in CLASS, and the primordial scalar fluctuation
power spectrum is PsðkÞ ¼ A2

sk−3ðk=k0Þns−1, where
As ¼ 2.215 × 10−9, ns ¼ 0.96, and k0 ¼ 0.05 Mpc−1 are
chosen from the Planck 2018 results [36], and jl is the
spherical Bessel function.
By comparing the numerical results of δl in Eq. (30) with

or without including the vk’s and ϕk’s terms, we find that
only the term with the matter density contrast δm is
dominant in the calculation, so it can be approximated by

δlðν; kÞ ¼
ν

Ω̄gwðνÞρc

Z
η0

η�
dηLðη; νsÞδm;kðηÞjlðkΔηÞ: ð31Þ

We assume that the merger rate of PBH is given by the
functional form [37],

RðΘs; τÞ ¼ 1.6 × 106 Gpc−3 yr−1f53=37PBH ηðm1; m2Þ−34=37

×

�
m1 þm2

M⊙

�
−32=37

�
τ

t0

�
−34=37

Ψðm1Þ

×Ψðm2ÞSðfPBHÞ; ð32Þ

where fPBH (not to be confused with fH) is the fraction of
PBH at the present time t0, ηðm1; m2Þ ¼ m1m2=ðm1 þ
m2Þ2 is the symmetric factor for the binary, Ψ ¼ Ψðm; fHÞ
is the mass function which is defined in the previous

section, and SðfPBHÞ ¼ ð5f2PBH
6σ2M

Þ21=74Uð21
74
; 1
2
; 5f

2
PBH

6σ2M
Þ is the

suppression factor with U the confluent hypergeometric
function. Notice that we assume that the form of the merger
rate is unchanged in the subhorizon formation scenario, i.e.,
Ψðm; fHÞ can be evaluated when fH < 1, which is strongly
physically motivated.2

Figure 5, left, shows the typical angular power spectrum
of the SGWB anisotropic component for PBH
binary mergers in the standard scenario. We choose a
Dirac-δ mass function in the merger rate such that
MPBH ¼ MH ¼ 1M⊙, and thus PBHs are formed deep in
the radiation-dominated era with zform ¼ 1.62 × 1012. The
right panel shows the frequency dependence of the l ¼ 1
dipole as a function of frequency for various choices of the
PBH mass MPBH ¼ 0.1; 1; 10M⊙, illustrating how larger

FIG. 5. The angular power spectrum at multiple frequencies at a fixed PBH mass MPBH ¼ 1M⊙ (left). The relative amplitude of
angular power spectrum at l ¼ 1 as a function of frequency ν for three different PBH masses MPBH ¼ 0.1; 1; 10M⊙ (right).

2The paper [38] studied in detail the spatial clustering of
primordial black holes in which the PBHs are formed when the
overdensity mode reenter the horizon at the radiation-dominated
era, and the conclusion from this paper is that for a narrow power
spectrum, the impact of the initial clustering of PBH on the
formation of early PBH binaries can be neglected. We expect the
conclusion to only be valid under similar assumptions also for
fH ≠ 1. Generically, however, this may not be the case in
different formation scenarios. Answering the issue of clustering
in generic subhorizon formation scenarios is beyond the scope of
this study, and per se an interesting question for future studies.
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chirp masses, Mc ¼ 2−1=5MPBH for a binary PBH with
the same mass, induce a lower dipole amplitude at low
frequency and a larger amplitude at higher frequencies,
as expected.
In Fig. 6 we compare the angular power spectrum

obtained before to that corresponding to a mass function
arising from a value of σ20 such that fPBH ¼ 0.01 at a
frequency ν ¼ 100 Hz (the right plot shows the ratio of the
curves at a given σ20 to the standard case). There are no large
deviations between the angular power spectra besides an
overall amplitude shift due to the different weighting on the
PBH mass function. The single mass case has a Dirac-δ
peak mass function, while the other has a mass function
determined by σ20.
To study the effects of fH ≠ 1, we study the SGWB from

an fH-dependent mass function Ψðm; fHÞ to investigate
the effect of subhorizon formation on the angular power
spectrum. Figure 7 shows the angular power spectrum at
100 Hz for fH ¼ m−1, 1 ≤ m ≤ 7 and m∈N. The

amplitude of the angular power spectrum increases as
f−1H increases when f−1H ∈ ½1; 7�. Table I summarizes the
isotropic SGWB energy density values, σ20, σ

2
1, and As

required to match a given fPBH ¼ 0.01 for different fH
(including some fractional values of m).
We are also interested in the effect of subhorizon

formation on the angular power spectrum Cl at different
multipole l0s. We show the normalized Cl [i.e., the ratio
ClðfHÞ=ClðfH ¼ 1Þ] in Fig. 8, for different parameter sets
fMHf2H; νg, in which the first parameter sets the horizon
mass when PBHs form for different fH and the second
parameter is the observed frequency of the angular power
spectrum. The left panel employs f1M⊙; 100 Hzg while
the right panel f10−6M⊙; 10−4 Hzg. We also sampled
f10−2M⊙; 1 Hzg and f10−4M⊙; 10−2 Hzg, and found
almost identical results as for f10−6M⊙; 10−4 Hzg.
The choice of the parameter sets makes the observed

frequency below the merger frequency of the IMR wave-
form at a redshift z ¼ 0. We do not find a significant

FIG. 6. The angular power spectrum Cl at 100 Hz with PBH masses given by a mass function (fH ¼ 1 and σ20 ¼ 0.0101 such that
fPBH ¼ 0.01) and by a fixed PBH mass MPBH ¼ 1M⊙ (left). The ratio of Cl between the mass function cases and the single mass case
(right).

FIG. 7. The angular power spectrum at 100 Hz for different fH.
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difference for Cl at different multipole l when choosing
different fH. The behavior of the Cl ratio at 100 Hz is
different from the other cases we studied (ν ¼ 10−2 Hz,
10−4 Hz, and 10−6 Hz), which is, in turn, similar to the
behavior of Cl shown in Fig. 5. There exists a turn-around
frequency νta for a given fH and MPBH or effectively Mc
such that Cl decreases as ν increases when ν < νta, while Cl
increases when ν ≥ νta. Similarly, for a fixed observed
frequency ν and multiple fH and MH or equivalently
MPBH;max ¼ 2.05MH, we can define a minimal turn-around
frequency νta;min ¼ minfνtaðMH;if2H;iÞg and a maximal
turn-around frequency νta;max ¼ maxfνtaðMH;if2H;iÞg. If
ν < νta;min, Cl will generally decrease as MH increases.
If ν > νta;max, Cl will generally increase as MH increases.
The ratio ClðfHÞ=ClðfH ¼ 1Þ is an fH-dependent and

frequency-dependent object, as shown in Fig. 9. To
analytically understand this behavior, we first rewrite
jlðxÞ using the Limber approximation,

jlðxÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2lþ 1

r
δðx − ðlþ 0.5ÞÞ; ð33Þ

where δðxÞ is the Dirac δ function. Applying the
Limber approximation to Eq. (31) by replacing x ¼ kΔη ¼
kðη − η0Þ, we can integrate the conformal time integral by
using the Dirac δ-function, which gives

δlðν; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
π

2lþ 1

r
ν

Ω̄gwðνÞρc
Lðη�; νsÞ
1þ z�

δm;kðη�Þ
k

; ð34Þ

where η� ¼ η0 − lþ0.5
k is the conformal time determined by

different sets of fl; kg such that the argument of the Dirac
δ-function in Eq. (33) is zero, and z� is the redshift
evaluated at η�. The angular power spectrum is thus
simplified in the following,

ClðνÞ ¼
2

2lþ 1

�
ν

Ω̄gwðνÞρc

�
2
Z

dk
L2ðη�; νsÞ
ð1þ z�Þ2

δ2m;kðη�Þ:

ð35Þ

For a fixed l and a fixed observed frequency ν but
different fH, the ratio of Cl is given by,

Clðν; fHÞ
Clðν; fH ¼ 1Þ ¼

�
Ω̄gwðν; fH ¼ 1Þ
Ω̄gwðν; fHÞ

�
2
�

Iðν; fHÞ
Iðν; fH ¼ 1Þ

�
2

;

ð36Þ

where Iðν; fHÞ ¼
R
dk L2ðη�;νs;fHÞ

ð1þz�Þ2 δ2m;kðη�Þ.
In the present scenario under consideration, the horizon

mass is increased by a factor of f−2H when PBHs are formed
in the radiation-dominated era, and thus the maximal PBH

TABLE I. Values of the isotropic SGWB energy density Ω̄gw at 100 Hz, the zeroth order and first order width, and the amplitude of
Dirac-δ curvature power spectrum for a fixed fPBH and different f−1H .

f−1H 1 1.2 1.4 1.6 1.8 2 3 4 5 6 7

Ω̄gw=10−9 1.26 1.61 1.98 2.36 2.73 3.11 4.93 6.49 7.77 8.63 9.04
σ20 0.0101 0.00988 0.00972 0.00959 0.00948 0.00938 0.00903 0.00882 0.00866 0.00854 0.00844
σ21 0.0101 0.0142 0.0191 0.0245 0.0307 0.0375 0.0813 0.141 0.217 0.307 0.413
As 0.0668 0.0357 0.0219 0.0150 0.0112 0.00913 0.00885 0.0736 0.149 0.103 1.76

FIG. 8. The angular power spectra of l ¼ 1; 251, 501, 751, and 1001 as a function of f−1H , normalized by ClðfH ¼ 1Þ for the
corresponding l, for f1M⊙; 100 Hzg (left) and f10−6M⊙; 10−4 Hzg (right).
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mass is also increased by the same factor. Note that in early
matter domination, the horizon mass would also be
increased, but by the smaller factor f−3=2H ; in a general
cosmology where the equation of state of the dominant

species is P ¼ wρ, the horizon mass varies as f−3ðwþ1Þ=2
H .

The mass function also depends on fH since the width of
the distribution PDFðδ1Þ depends on fH, i.e., σ0 ¼ σ0ðfHÞ
if As is given. Since PDFðδ1Þ is a Gaussian distribution, the
shape of the distribution is sensitive to the change in σ0
Therefore, the merger rate and the GW energy spectrum
depend on fH nontrivially in general: For example, the
merger rate depends on the total mass of the binary system
by M−32=37

tot , in which we suppose the two BHs have the
same mass, i.e., ηðm1; m2Þ ¼ 0.25 ¼ ηmax, but for different
fH the mass function is different, and it can peak at
different x ¼ MPBH=MH (see Fig. 2), so only using fH
cannot analytically predict the behavior of the merger rate.
However, by requiring a fixed fPBH, the σ20 is almost
determined, and varying fH only affects the horizon mass

when PBHs form and PBH formation time. For the GW
energy spectrum, varying fH will directly vary the spec-
trum amplitude—the spectrum amplitude is proportional to
M5=3

tot if m1 ¼ m2 for the inspiral phase where ν is smaller
than the merger frequency, and the shape of the spectrum,
e.g., the cutoff frequency shifts to a lower frequency for a
larger chirp mass Mc.
Even though σ20 is highly suppressed at a large f−1H ≳ 10

for a given As, we further study the regime where f−1H ≫ 1

for completeness, noting that this regime is also
theoretically motivated by several deeply subhorizon for-
mation mechanisms [20,21]. We note that since we require
fPBH ¼ 0.01 in the plots, the value of σ20 is almost
unchanged even for large f−1H by manually tuning As.
Figure 10 (left) shows the absolute angular power spectra
Cl × Ω̄gw of l ¼ 1 and fPBH ¼ 0.01 as a function of f−1H at
ν ¼ 10−4 Hz and f2HMH ∈ f10−6M⊙; 10−5M⊙; 10−4M⊙g,
while Fig. 10 (right) shows the similar angular
power spectra at ν ¼ 100 Hz and f2HMH ∈ f0.1M⊙;

FIG. 9. The angular power spectra for l ¼ 1 as a function of f−1H normalized by Clðν; fH ¼ 1Þ for different frequencies. The left panel
is using MH ¼ 1M⊙=f2H , while the right panel is using MH ¼ 10−6M⊙=f2H .

FIG. 10. The absolute value of angular power spectra as a function of f−1H at 10−4 Hz (left) and 100 Hz (right) for l ¼ 1 and different
values of f2HMH normalized by the corresponding Cl¼1 × Ω̄2

gwjfH¼1, with fHmin ¼ 5000−1 (left) and fH;min ¼ 300−1 (right). The black
solid line in the right panel indicates the value of 1.
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1M⊙; 10M⊙g. There is a manifest power-law behavior for
the left subplot across the whole range of f−1H and for the
right subplot right before the spectrum drops significantly
due to the fact that the observed frequency is far above the
cutoff frequency of the GW energy spectrum.
The fH-dependence or effectively MPBH-dependence of

the absolute angular power spectrum can be understood
as follows: First, when considering the observed frequency
in the inspiral phase of the IMR spectrum and the
two PBHs in the binary have the same mass, we notice
the fH-dependence of the isotropic SGWB energy density:

Ω̄gw;inspiral ∝ L ∝
dE
dν

����
inspiral

×R ∝ f−1.6H ; ð37Þ

where the power law index, 1.6 ≈ ð5
3
− 32

37
Þ × 2, is deter-

mined by the binary PBH mass dependence from both the
merger rate and GW energy spectrum, i.e., R ∝ M−32=37

b

and dE
dν jinspiral ∝ M5=3

b . By using the above power-law
fH-dependence, we can further show that the Cl × Ω̄2

gw

ratio (shown in Fig. 10) has the power-law behavior with
respect to fH:

Cl × Ω̄2
gwðfHÞ ∝ L2 ∝

�
dE
dν

����
inspiral

×R
�

2

∝ f−3.2H ; ð38Þ

where we have used the fact that fH-dependence on Cl is
subdominant compared to the one on Ω̄2

gw, which can be
found by considering the cancellation of fH-dependence
between Ω̄gw and L in Eq. (36) and can be cross-checked
by comparing Fig. 8 and Fig. 10 for ν ¼ 100 Hz and
10−4 Hz.
Finally, we show in Fig. 11 the angular power spectra as

a function of l given large values of f−1H ¼ 100, 700, and
5000 at fν ¼ 10−4 Hz;MH ¼ 10−6M⊙g (left panel), and
the corresponding ones for f−1H ¼ 10, 30, and 100 at

fν ¼ 10 Hz;MH ¼ 1M⊙g in Fig. 11 (right panel). There
is no unexpected behavior in the Cl ratio for different l
except the case for f−1H ¼ 100 in the right subplot. This is,
again, becauseMPBH increases with f−2H , and as a result the
cutoff frequency of the IMR waveform shifts to a lower
frequency which is far below the observed frequency.
We compare, in a summary plot, the expected sensitivity

of LISA with our predictions for varying subhorizon
formation parameters fH, as a function of frequency. We
choose a set of benchmark model parameters to generate
the angular power spectra of subhorizon collapsed binary
black hole mergers and compare them with LISA’s sensi-
tivity curve for quadrupole l ¼ 2 (Fig. 9 in Ref. [39]). We
show the resulting comparison in Fig. 12. Reference [40]
shows that the single space-based GW detector has
limited sensitivity to the odd multipole, but by combining
different satellites to form a space-borne network, such as
LISA-TianQin, the sensitivity to l ¼ 1 can be improved by
2–3 orders of magnitude.

FIG. 11. The angular power spectra as a function of mutipole l for f−1H ¼ 100, 700, 5000 with fν ¼ 10−4 Hz;MH ¼ 10−6M⊙g (left)
and for f−1H ¼ 10, 30, 100 with fν ¼ 10 Hz;MH ¼ 1M⊙g (right).

FIG. 12. The LISA sensitivity curve for quadrupole l ¼ 2 is
shown at the top, while the curves at the bottom are the predicted
anisotropic SGWB energy density spectra from subhorizon
collapsed binary black hole mergers, using horizon mass
MH ¼ 1M⊙ × f−2H . f−1H ¼ 1 is corresponding to the standard
scenario.
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In particular, by using Eq. (4.44) in [39], we estimated
the signal-to-noise ratio (SNR) for different subhorizon
formation models as

hSNRi2l ¼ T
Z

∞

0

df

2
64

ffiffiffiffiffiffiffiffiffiffi
CGW
l

q
ΩGWðfÞh2

Ωl
GW;nðfÞh2

3
75
2

; ð39Þ

where T is the observation time, CGW
l is the angular power

spectrum,ΩGWðfÞ is the isotropic SGWB energy density at
frequency f, h is the dimensionless Hubble parameter, and
Ωl

GW;nðfÞ is the LISA sensitivity to the anisotropic signal at
multipole l. We found the SNR for a ten-year observation of
LISA using the sensitivity given in Fig. 12 for l ¼ 2, and
f−1H ¼ 1; 2;…; 7, which is shown in Table II.

IV. DISCUSSION AND CONCLUSION

We performed, for the first time, a comprehensive study
of the behavior of the isotropic SGWB energy density
spectrum and the angular power spectrum of PBH binary
mergers for PBH forming from the collapse of subhorizon
patches. We introduced a model-independent parameter fH
characterizing the fraction of the wavelength of the per-
turbation mode in units of the horizon radius where the
patch gravitationally collapses into a BH. The standard
scenario is recovered for fH ¼ 1, whereas values fH < 1
correspond to subhorizon collapsing regions. We illustrated
our findings using a simple Dirac-δ peak curvature spec-
trum, but the spectrum shape can be modified easily

depending on the specific subhorizon PBH formation
mechanism. One of the limitations in our results is the
assumption of a spherically symmetric distribution of
overdensities, which in general can be nonspherically
distributed when entering the regime of very small fH.
We found that the subhorizon PBH formation in general

enhances the isotropic SGWB energy density Ω̄gw and the
absolute angular power spectrum Cl × Ω̄2

gw. However, the
almost monotonic increases in both Ω̄gw and Cl × Ω̄2

gw, as
fH decreases, cease when the chirp mass of binary PBHs
reaches a mass threshold determined by a given observed
frequency, such that the isotropic SGWB energy density
spectrum significantly drops above that specific cutoff
frequency. The important effect of the subhorizon forma-
tion is changing the PBH mass (distribution) and also the
formation time or redshift of PBHs, which in turn affects
the GW observables, including both Ω̄gw and Cl × Ω̄2

gw.
We investigated the isotropic SGWB energy density

spectrum and the angular power spectrum at various
frequencies, PBH masses, and horizon size fractions fH
during PBH formation. When the observed frequency sits
at the frequency range of the inspiral phase of the IMR
waveform, the isotropic SGWB energy density spectrum
and the absolute angular power spectrum at that frequency
have fH-dependent power-law behaviors, i.e., Ω̄gw ∝ f−1.6H

and Cl × Ω̄2
gw ∝ f−3.2H .

By introducing a subhorizon formation scenario in the
calculation of Ω̄gw and Cl × Ω̄2

gw, one can study the rich
phenomenology of PBHs formed by nonstandard mecha-
nisms across the universe’s history and provide a way to
potentially test PBH formation mechanisms upon the
hopefully forthcoming detection of an SGWB signal.
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