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We study the late-time cosmological tensions using the low-redshift background and redshift-space
distortion data by employing a machine learning (ML) technique. By comparing the generated observables
with the standard cosmological scenario, our findings indicate support for the phantom nature of dark
energy, which ultimately leads to a reduction in the existing tensions. The model-independent approach
also enables us to examine the combined background and perturbative history, where tensions are reduced.
Moreover, from a statistical perspective, we have shown that our results exhibit a better fit to the data when
compared to the ΛCDM model.
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I. INTRODUCTION

One of the major challenges in modern cosmology such
as the discrepancies between high-redshift observations
of the cosmic microwave background (CMB) [1,2], and
low-redshift surveys such as galaxy clustering and weak
gravitational lensing [3–6], prompt one to pose a question:
whether the cosmological constant (Λ) can be considered a
plausible candidate for dark energy (DE)?As supported by
most of the cosmological observations, the ΛCDM model
(where CDM refers to the cold dark matter) has recently
been subjected to intense scrutiny, particularly with respect
to the identification of a high expansion rate and less
matter-density clustering in the low-redshift observations.
For an instance, low-redshift observations such as
Supernovae H0, for the equation of state of DE (SH0ES)
[3] and Kilo Degree Survey (KiDS) [5,6] have challenged
Planck-18 estimates for the Hubble constant (H0) and the

matter density clustering (σð0Þ8 ) by revealing discrepancies
of about 5σ and 3σ, respectively [7–14]. These incon-
sistencies are not limited to the ΛCDM model but also
extend to weakly dynamical dark energy (DE) models that
mimics it. As a substantial range of models unable to
address these disparities, there are two potential explan-
ations for this: either there exists a systematic error in the
data or the ΛCDM model is not a suitable one.
In the literature, many alternative approaches, including

those based on modified gravity (MG) theories have

investigated the issue by considering the possibility that
the ΛCDM model itself may be responsible for these
inconsistencies. These approaches includes interactions
between dark energy and dark matter [15–17], modifica-
tions of gravity at early [18–20] or late times [21–23],
distinctive perspective on the dynamic vacuum energy
(DVE) concerning the dynamical dark energy [24–28]
and so on [10,29–46]. Some of these approaches also
consider phenomenologically constructed DE models.
However, despite the attempts to explain the low-redshift
data, these models often include inherent biases and
assumptions. Therefore it can also introduce biases in
the estimation of cosmological observables, which may
lead to model-specific results rather than the one which
can be largely applicable. Due to this potential lack of
concordance among several models, the investigation of
the tensions necessitates the consideration of a model-
independent approach.
In this paper, we adopt a novel model-independent

technique that only relies on the data such as the cosmo-
logical background and linear perturbative level to study the
evolution of the universe. In particular, we use a population-
based metaheuristic optimization algorithm that is inspired
by the process of natural selection, wherein a fitness function
evaluates the fitness (such as the goodness of fit) of
individuals (potential solutions) at each step [47–52]. This
approach makes use of multiple potential solutions. It
ensures that the population (number of solutions) maintains
diversity and prevents the optimal solution from becoming
trapped in local minima. Once the individuals from the
population are selected to reproduce, offspring of the next
generation, they may merge together or get themselves
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modified to enhance fitness. This process continues in an
effort to emulate the process of natural selection.
To start, we need an initial group of randomly created

mathematical functions. Each function in the population is
evaluated using a fitness function that measures how well
the function fits the given data points. Our approach
involves utilizing the χ2 statistic as the fitness function
to assess the “success” of reproducing next generation
solutions. After evaluating the fitness of each function in
the current population, the ones with higher fitness are
selected to become parents for the next generation. Once
this step is completed, pairs of different functions take part
in crossover to create new functions and the old nodes of
the tree gets replaced by the new ones. Mutation is also an
essential step in this process because it changes the
functions and checks if these changes improve their fitness.
The whole process continues until it either reaches the
maximum number of generations or when the functions
achieve their highest fitness level.
The degree of effectiveness for each solution, which just

depends on a single independent variable like redshift, is
based on its ability to align with the observational data. The
population which minimizes the χ2 is considered to have
the highest fitness. Therefore, our stochastic process aims
to proceed in the direction of minimization. It is worth
noting that the accuracy of the final optimal solution is
largely unaffected by changes in the initial population.
Regardless of the initial conditions, the optimization
process will generally lead to the same optimal solution,
unless any singularities are encountered along the way.
The main advantage of using this method is that it can
automatically discover most relevant complex features
from the data which may be beyond the capability of
standard parametric methods.
Our main objective in this paper is to determine if the

optimal solution deviates from the ΛCDM model, and if it
does, whether it also alleviates the cosmological tension(s).
To apply the aforementioned technique to simulate the
process of natural selection for the desired observables we
intend to use the cosmological background and redshift-
space distortion (RSD) data. Since in our approach there are
no parameters, so extracting the required DE information
from the optimal functional form is highly nontrivial. To
determine the cosmological parameters, we choose a
cosmological model that encompasses a wide range of
DE models and attempt to fit this model to the optimal
solution. An advantage of this approach is that when the
optimal solution is already identified, the goodness of fit
of the optimal solution is typically significantly better than
that of the parametric methods. This is due to the pre-
defined functional form in the latter. Once the optimal
solution is obtained, a chosen cosmological model can be
mapped with it which can essentially provide those fitted
parametric values of the model that align with the optimal
solution.

The outline of this paper is as follows: First, we study the
background expansion rate and then obtain the background
optimal solution for the Hubble parameter, we then obtain
the corresponding DE equation of state and matter density
parameter. Second, we implement the algorithm on the
RSD dataset, and obtain the corresponding cosmological
parameters. Based on the estimates, we then obtain the
bounds on the S8 parameter. Finally, by using the algorithm
assisted optimal solutions for the expansion rate and growth
of matter density perturbations we obtain a unified trajec-
tory between them which can be treated as a optimal one in
which the tension is reduced or absent.

II. COSMOLOGICAL BACKGROUND
EVOLUTION

In this section we will analyze the cosmological back-
ground data by using the genetic algorithm (GA) approach.
The main objective to consider the GA approach is to
remove any biases or the assumptions associated with a
chosen cosmological model. This allows one to look for
hidden information in the data without encounter the
constraints of a cosmological framework. For an example,
in the ΛCDM model, the present-day values of the Hubble
parameter or the Hubble constant H0 from the local
distance ladder and the cosmic microwave background
(CMB) measurements differ by an almost 4σ level. This
allows one to reconsider the choice of the ΛCDM model.
Hence, without resorting to a particular model, one can
have a better understanding of the underlying data. Our
main aim is to identify the patterns in the data using a
population-based algorithm that can reveal features not
easily noticeable in standard cosmological setup. For
this reason, we will utilize two different datasets for the
background analysis to figure out what does the data
actually infer.
Dataset-1: In order to execute the aforementioned

algorithm, in this case we use two datasets:
(i) Observational Hubble data (OHD) from different red-
shifts in the range 0.07 < z < 1.965. In particular, we
consider a compilation of 31HðzÞ measurements obtained
from the cosmic chronometric (CC) method (enlisted
in [21]). The main reason to use the CC dataset is that it
provides direct information about the Hubble parameter
at different times (redshifts). This is different from other
methods that only measure quantities like luminosity
distances etc. without directly studying HðzÞ. (ii) For the
SN1a dataset, we make use of the Hubble rate denoted as
EðzÞ ≔ HðzÞ=H0, which consists of six data points within
the range of redshift z from 0.07 to 1.5. These six data
points effectively contain the information from a larger set
of 1048 data points from the Pantheon catalog, as well as 15
data points from the CANDELS and CLASH Multi-Cycle
Treasury (MCT) programs obtained by the Hubble Space
Telescope (HST). Additionally, based on the arguments
presented in the Ref. [53], the data point at z ¼ 1.5 has been
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excluded from our analysis. The execution of the algorithm is done by incorporating the likelihood function, which
is given as

Lðχ2Þ ∝ e−χ
2=2 such that χ2 ¼

8>><
>>:

P
i

�
Hobs−Halg

σi

�
2

For OHD

P
i;j
½Ei − ðhalgÞi� · c−1ij · ½Ei − ðhalgÞi� For SN1a;

ð1Þ

where Hobs and Halg denotes the observed and algorithm
fitted Hubble parameter values, respectively, cij is the
covariance matrix, and halg is the algorithm assisted
reduced Hubble parameter.
Dataset-2: This compilation comprises three datasets:

(i) 31 measurements of CC, as previously mentioned.
(ii) SN1a dataset, for which we utilize the latest and most
comprehensive Pantheonþ dataset, which includes appar-
ent magnitudes calculated from 1701 light curves repre-
senting 1550 SN1a events across a redshift range of z
spanning from 0.001 to 2.26, obtained from 18 different
surveys. This dataset represents a substantial improvement
compared to the initial Pantheon sample of 1048 SN1a
events [54], particularly at lower redshift values. The
theoretical formula for the apparent magnitude mB, which
is related to the Hubble independent luminosity distance
DL, i.e.,

DLðzÞ ¼H0dLðzÞ; where dLðzÞ ¼ ð1þ zÞ
Z

z

0

dz̃
Hðz̃Þ ; ð2Þ

can be expressed as

mBðzÞ ¼Mþ 5 log10½DLðzÞ�þ 5 log10

�
H−1

0

1Mpc

�
þ 25; ð3Þ

where M is the absolute magnitude of SN. The χ2 for the
SN1a is thus can be written as:

χ2SN ≔ ΔmB · C−1
SN · ΔmB; ð4Þ

where C−1
SN is the inverse of the SN1a covariance matrix.

(iii) The BAO dataset enlisted in [55], includes measure-
ments of various cosmological parameters such as the
Hubble distance DHðzÞ, transverse comoving distance
DMðzÞ, and volume-averaged distance DVðzÞ. These mea-
surements encompass a redshift range that ranges from
0.38 to 2.334. For this dataset we will adopt the parameter
Ωb ¼ 0.02242 [2] and utilize the sound horizon value at
the drag epoch rd ¼ 147.78 Mpc at z ¼ 1059 [56]. The
corresponding χ2 is given as:

χ2BAO ¼ ΔA · C−1
BAO · ΔA; ð5Þ

where A represents the observed quantity. The total χ2 is
thus expressed as:

χ2alg ¼ χ2OHD þ χ2SN þ χ2BAO: ð6Þ

As one can see thatHalg is not defined yet, this is because
through the evolutionary process we will try to find its best-
fit functional form without assuming any cosmological
restrictions. In order to obtain the desired form of Halg,
we first consider a set of some individuals in the form of
mathematical functions such as polynomials, exponentials,
etc., which goes through a process of merging and
modification. A population of N individuals undergoes
combinations after each iteration, and their fitness or
likelihood is calculated. Here we note that among the
population, individuals with higher fitness are then again
considered to generate the new combinations for the next
generation, but at the same time, the individuals having
lower fitness levels are not excluded from this process. As a
result, the algorithm has a tendency to continue searching
in the continuous search space in such a way that minor
modifications can significantly enhance an individual’s
fitness. Due to this very reason, one can assure that the
final solution does not prematurely converge and
approaches the global optima rather than the local one.
For the dataset-1, the best-fit solutions HalgðzÞ with

minimum χ2 value (corresponds to the maximum fitness) is
obtained as1:
For OHD:

HalgðzÞ¼ 72.76þ68.32z2−13.03z4

þ0.001z15 ½km=s=Mpc�; with χ2¼ 12.58: ð7Þ

For OHD+SN1a:

HalgðzÞ¼ 70.307expð0.850zÞþ0.769z8−5z6

−35.798z ½km=s=Mpc�; with χ2¼ 19.72: ð8Þ

Let us here note that for the ΛCDM, the χ2 value turns
around 14.5 for the OHD and 21.19 for OHD+SN1a,
therefore our result represents a significant improvement in
the fit by about 13% and 7% for OHD and OHD+SN1a,

1Here we mention that while the best-fit χ2 for each run may
vary slightly from other runs or require more generations to
converge, it consistently yields an almost indistinguishable
cosmological evolutionary scenario.
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respectively.2 Here, let us emphasize in order to try to
decrease variance or overfitting as well as the likelihood of
being trapped in the local minima, we have started each run
with a significant large population ∼Oð104Þ. Also, from
Eq. (7) the present-day (z ¼ 0) best-fit value for the Hubble
parameter (Halg) is determined to be 72.76 km=s=Mpc.
Since, this best-fit value fits better with the data as
compared to the ΛCDM model, it suggests a strong
preference for a gravitational modification in the late
universe over the ΛCDM and similar cosmological
frameworks.
In order to obtain the confidence limits for the above

nonparametric best-fit (7) we resort to the bootstrap
technique for error estimation. In particular, it generates
multiple bootstrap samples by randomly sampling with
replacement from the given dataset, and by using them we
get the standard deviations or confidence intervals for our
observable. The obtained 2σ profiles ofHalgðzÞwith best-fit
values are shown in Fig. 1. While the Hubble parameter in
Fig. 1(a) does follow the expected trend of decreasing with
z at higher redshifts, there is a noticeable deviation around
z ≃ 0.2 where the decrement of HalgðzÞ tends to decrease.
This contradicts the prediction of various DE models, which
suggest that the Hubble parameter will continue to decrease
till it becomes almost constant in the far future (which
corresponds to the de-Sitter universe). On the other hand,
in Fig. 1(b) we show the HalgðzÞ profile for OHD+SN1a
dataset. Here, we observe that the error profile becomes
narrower in the latter case, even then it exhibits a tendency
toward larger values of H0. The results of Fig. 1 signals

toward the fact that if a particular constituent of the universe,
which may be attributed to DE or a result of modified
gravity, is intrinsically responsible for the enhancement in
HðzÞ through a positive time-derivative, it could necessarily
exhibit a phantomlike behavior [57].
For the dataset-2, we again follow the same procedure to

obtain the best-fit functional form of HalgðzÞ followed by
the cosmological parametric values. In this case, we obtain
the following:

HalgðzÞ¼ 70.08ð1þ zð0.6715þ0.22zþ0.005z2−0.029z3

þ0.01z4−0.0013z6Þ2Þ ½km=s=Mpc�; ð9Þ

from which one finds that the Hubble constant is
70.08 km=s=Mpc. Whereas, for the ΛCDM, we have
obtained the best-fit value of the Hubble constant approx-
imately 68.9 km=s=Mpc. This represents a substantial
improvement of ΔHð0Þ ¼ 1.18 km=s=Mpc in the Hubble
constant when compared to the ΛCDM model, thus high-
lighting its significance in addressing the Hubble tension
problem. Furthermore, there is an almost Δχ2 ¼ χ2ΛCDM −
χ2alg ≃ 2 improvement compared to the ΛCDM model,

(a) (b)

FIG. 1. For Dataset-1, (a) and (b) show the evolutionary profiles of HalgðzÞ with z∈ ½0; 1� upto 2σ level for OHD and its combination
with the SN1a dataset. The solid line represents the best-fit curve. It clearly shows a notable difference in the Hubble expansion rate
when compared to the ΛCDM model, wherein the Hubble rate tends to be comparatively smaller.

FIG. 2. For dataset-2, the figure show the evolutionary profiles
of HalgðzÞ with z∈ ½0; 1� upto 2σ level.

2It is important to mention that our algorithm’s nonparametric
nature prevents us from utilizing information criteria like AIC and
BIC. These methods impose penalties based on the number of
parameters, which is not applicable in our case since our
approach does not involve such parameters. Therefore, applying
AIC or BIC directly to nonparametric methods is not straightfor-
ward because these criteria lack a fixed number of parameters.
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making our results again more favorable when using the
combined dataset. It is also worth emphasizing that due to
the chosen Ωb and rd that corresponds to the best-fit result
of Planck ΛCDM, there is some level of influence of the
ΛCDM model in the above obtained form of the Halg.
Nevertheless, the obtained profile is depicted in Fig. 2, where
it is evident that the Planck ΛCDM best-fit falls within a 2σ
confidence interval. Notably, the discrepancy with the
SH0ES estimate 73.04� 1.04 km=s=Mpc has been reduced
to within a 2σ level when considering the CC with full
Pantheonþ and BAO dataset.
In Fig. 3 we show the observed ΔmB for Pantheonþ

dataset with up to z ¼ 2. The blue-dashed line represents
the difference between the apparent magnitudes of for (9)
and ΛCDM model. One can see that ΔmB changes sign
around z ¼ 2.5, preferring slightly small mB near the
current epoch than the concordance model. This is mainly
attributed to the fact that Halg > HΛCDM as can be seen
from Fig. 2.
To quantitatively measure the effective contribution and

dynamical nature of dark energy (DE), it becomes essential
to employ a standard Hubble parameter form. However, our
approach does not involve any free parameters, which
prompts the need to select a specific cosmological frame-
work for estimating the cosmological parameters which
corresponds to the above fit. After obtaining the HðzÞ
profiles from two datasets, our next step involves deriving
the corresponding cosmological parameters out of it.

A. Cosmological background parameter estimations

To ensure unbiased estimates of the parameters, unaf-
fected by the choice of a specific observable form, we
compare the evolution of HalgðzÞ with the standard frame-
work of the flat-wCDM expression of the Hubble param-
eter, denoted as HðzÞ. The comparison between HðzÞ and
HalgðzÞ involves the evaluation of parametric and non-
parametric forms of the Hubble parameter to deduce
the parametric values. It is important to note that direct
inference of cosmological parameters like wDE is not

feasible from the Halg alone, unless one has the prior

knowledge of Ωð0Þ
m or Ωð0Þ

DE values [1]. For a fairly general
setup,3 the Hubble parameter can be written as [58]:

HðzÞ¼H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωð0Þ

m ð1þ zÞ3þð1−Ωð0Þ
m Þð1þ zÞ1þwDE

q
; ð10Þ

where H0 denotes the Hubble constant, and Ω
ð0Þ
m represents

the current density parameter. Assuming a flat universe
with pressureless dust, the total equation of state parameter
wT of the system is related to wDE as wT ¼ ΩDEwDE.
To obtain the values of cosmological parameters that

correspond to the best-fit form generated by the algorithm,
denoted asHalgðzÞ, we aim to minimize the sum of squared
errors, defined as follows:

ζ ≔
X
i

ðHalgðziÞ −HðziÞÞ2; ð11Þ

where zi ∈ ½0; 1� and we divide the range of z into bins of
size 0.01. Also, the prior distribution of the parameters are
given as:

H0 ∈ U½60;80�; Ωð0Þ
m ∈ U½0.2;0.5�; wDE ∈ U½−1.5;−0.8�:

ð12Þ
By using the Markov Chain process as a sampling technique
we obtain the distribution and best-fit of parameters:

fH0;Ω
ð0Þ
m ; wDEg. It is worth noting that our estimation of

H0 aligns with the findings of direct measurements from
the distance-ladder technique, such as SH0ES (H0 ¼
73.04� 1.04 Km=s=Mpc) and other low-redshift observa-
tions such as theMegamaser Cosmology Project (MCP) [59],
H0 Lenses in COSMOGRAIL’sWellspring (H0LiCOW) [4].
These observations measure H0 ¼ 73.9� 3 Km=s=Mpc,
and 73.3þ1.7

−1.8 Km=s=Mpc, respectively.
Let us emphasize that the significant enhancement in the

value of H0 (as shown in Fig. 4) and the effectively
resolution of the Hubble tension can be attributed primarily
to the phantom behavior of dark energy, rather than relying
on the commonly speculated under-density of matter at
low-z [60]. This is due to the fact that in our estimations, the

best-fit values of Ωð0Þ
m are found to be around 0.35 (see

Fig. 4). In fact, the enhancement inH0 as well as Ω
ð0Þ
m leads

to an approximate 6% increase in the total (local) matter
density, given byΩmh2, compared to what is predicted from
the Planck results. On the other hand, the large negative
values of equation-of-state-parameter support the phantom-
like nature of DE. In a nutshell, the significant level of

FIG. 3. This figure represents the evolution of ΔmBðzÞ with
z∈ ½0; 2�. The error bars correspond to the Pantheonþ dataset,
and the blue dashed line is the difference between ΛCDM and our
best-fit results obtained from the dataset-2.

3Here we are restricting ourselves for a class of theories which
does not take into account the features of dynamical vacuum
energy [24–28]. In these cases, the EoS exhibits quintessence or
phantom behavior, through by contributions from bosons and
fermions in the loop calculation.
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discrepancy in the measurement of cosmological parame-
ters between parametric and nonparametric methods at the
background level is primarily attributed to the inherent
biases present in models such as the ΛCDM. If these biases
can be mitigated to some extent, the phantom phase, which
may not necessarily be mild, aligns more favorably with the
observed data.
For the sake of verification, we have also checked the

validity of our results, i.e., if the phantomlike behavior is
necessarily the reason for the enhancement of the Hubble
constant value or is it just the artifact of the choosing
wCDM template. In order verify this we consider a more
general as well as a theoretically motivated interacting DE-
matter scenario which appears in a large class of modified
gravity theories. In this scenario, the coupling takes the
form of Qρmϕ̇ [1], and which does not assume a constant
equation-of-state-parameter for DE. In fact, in this case the

DE equation of state depends on the coupling as well as on
the matter density parameter and is evolving in nature.
When compared with the dataset-2 obtained HalgðzÞ func-
tional form (9), we have found that its corresponding best-
fit of wDE is around −1.087, which is even slightly larger
than what we have found earlier. This consistency in the
results from two different cosmological frameworks with
two different sets of background level data indicates that
our results are not specific to a given framework. Moreover,
our result also corroborate with Ref. [61] where it was
shown that in order to alleviate the tension the DE equation
of state must reside in the deep phantom regime.

B. Possible physical interpretations
of the Hubble parameter form

Let us now look for the conceptual implications of
the class of theories to which the Hubble parameter

(a)

(b)

(c)

FIG. 4. (a)–(c) illustrate the parameter values allowed by comparingHalgðzÞ andHðzÞ using the Monte Carlo method for OHD and its
combination with SN1a dataset and Pantheonþ BAO dataset. The solid line showcase their respective best-fit results.
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expressions (7)–(9) may be more closely associated. While
these derived expressions are entirely numerical in nature,
we have also demonstrated their preference for the phan-
tomlike characteristics of DE. This DE source can poten-
tially originate from single (or multi) field(s) cosmological
scenarios, in various class of scalar-tensor equivalent
modified gravity theories [62,63]. This characteristic can
also appear in disformal coupling between baryonic and
dark matter [21,22] which does not assume any extra
degrees of freedom. However, identifying which scenario is
more preferable to give rise to the algorithm assisted
Hubble parameter form at the observational level poses a
formidable challenge. Therefore, at this point we can only
anticipate that the observed behavior of the Hubble
parameter may emerge within some specific, well-defined
cosmological scenarios. If it has to be stemmed out within
the Einstein frame, there must be atleast two minimally-
interacting scalar fields with the matter sector, whether
they are in canonical or noncanonical form, such as one
considers in the standard quintom scenarios.4 On the other
hand, the phantom nature can also manifest in nonmini-
mally interacting scenarios (or within the Jordan frame),
depending upon the chosen coupling(s) between the scalar
field and gravity. Furthermore, in disformal coupling
scenarios as discussed in [21], it is possible to achieve
phantom dark energy behavior when one of the fluids, like
baryonic matter, adheres to the geodesic of the Jordan
frame, while dark matter follows that of the Einstein frame,
and through the disformal coupling it gives rise to phantom
DE in the Jordan frame. The model-independent Hubble
parameter form allows us to look for a more general
cosmological scenario that can address current cosmologi-
cal tensions. However, determining their consistency with
the field equations relies entirely on the specific character-
istics of DE. Given that both baryonic and cold dark matter
evolve according to ð1þ zÞ3, any segment of the observed
HalgðzÞ that remains after subtracting this component can
be attributed to the “effective” dark energy for the flat-
universe, i.e.,

ρDEðzÞ≡
3H2

algðzÞ
8πGN

− ρmðzÞ; where ρmðzÞ ¼ ρð0Þm ð1þ zÞ3:

ð13Þ

It is also worth noting that the various “fitness levels”
or the χ2 involved in the final optimization process may
correspond to specific cosmological scenarios, at least
those closely approaching the optimal value. For instance,
a particular fitness level might align with a specific
cosmological model, like quintessence models. However,

if it exceeds their fitness, it suggests the possibility of a
better theoretical model that can more accurately fit
the data.

III. LINEAR GROWTH RATE OF MATTER
DENSITY PERTURBATIONS

Several recent low-z observations of the large-scale
structure allow us to figure out the extent of matter density
clustering in the universe. In order to analyze it, we utilize
the same optimization algorithm to analyze data pertaining
to matter perturbation, specifically focusing on redshift-
space distortions (RSD). For this dataset, we have used the
compilation of fσ8ðzÞ observations, where f is the growth
factor of matter perturbations, and σ8 is the amplitude of
power spectrum in 8h−1 Mpc] [64], and is related to the
Power spectrum PðkÞ via [1]

σ28 ¼
1

2π

Z
W2

sk2PðkÞdk; ð14Þ

where k is the comoving wave number, and Ws is the
window function. We consider the growth-gold compila-
tion of fσ8 measurements obtained from various galaxy
surveys within the redshift interval of z∈ ½0.02; 1.94� [65].
The main reason for opting for this specific subset of data is
due to its uncontaminated nature, lack of anomalies and
widely usage (see Refs. [12,34,66]). The χ2 for the same is
defined as:

χ2 ≔ ViC−1
ij V

j; where V ≡ fσ8ðzÞ − ½fσ8ðzÞ�alg; ð15Þ

where ½fσ8ðzÞ�alg represents the best-fit of the algorithm,
and Cij is the covariance matrix between different data
points. In line with the background analysis, we have
carried out multiple simulations using the identical pro-
cedure applied to the cosmological background level.
Furthermore, we have also examined various initial values
to determine whether the resulting fit exhibit any
differences with each other. The best-fit function and it
corresponding minimized χ2 is given as

½fσ8�algðzÞ ¼ 0.537e0.159z − 10−5z4 þ 0.098z3 − 0.359z2

þ 0.216z − 0.163; with χ2 ¼ 11.91;

ð16Þ

For the obtained ½fσ8�algðzÞ fit, we depict its evolutionary
profile up to 1σ level in Fig. 5. Let us note that at the present
epoch, Eq. (16) gives

½fσ8�algð0Þ ¼ 0.374� 0.017; ð17Þ

which is significantly lower (a level > 2σ) than the Planck
result of 0.474� 0.015. Since in obtaining the result (17)

4It is important to highlight that in [27,28] it is shown that the
phantom DE may emerge as an effective behavior originating
from the quantum vacuum.
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no parametric or functional form was assumed, and it still
shows a significant level of tension with the Planck’s result,
it certainly lead to the conclusion that the discrepancy exists
at the level of the observations. As we have observed that
the discrepancy in H0 measurements at the background
level is associated with the predominantly phantomlike
nature of DE, one may ask: whether the same parameter
reflects a similar discrepancy at the perturbative level? In
order to verify this wewill proceed with the same procedure
of parameter estimations.

A. Growth rate parameter estimations

In order to comprehend the implications of Fig. 5 in
terms of cosmological parameters associated to the growth

of matter perturbations, such as Ωð0Þ
m , σð0Þ8 , and wDE,

we reconsider the flat-wCDM model. For the latter,
the equation of motion of matter density contrast is
given by [67]

δ00m þ 1

2
½1 − 3ð1 − ΩmðaÞÞwDE�δ0m ¼ 3

2
Ωmδm; ð18Þ

where 0 denotes the derivative with respect to logðaÞ and a
is the scale factor. In general form, the analytical solution of
the matter density contrast δm can be found as

δm
a

¼ 2F1

�
wDE − 1

2wDE
;
−1
3wDE

; 1−
5

6wDE
;a−3wDE

�
1−

1

Ωð0Þ
m

��
;

ð19Þ

where 2F1 is the Hypergeometric function. Using this one
can calculate the theoretical growth rate as

fσ8ðzÞ ¼ fðzÞσð0Þ8

δðmÞðzÞ
δðmÞð0Þ : ð20Þ

Here again, we adopt the same approach to statistically
compare fσ8ðzÞ with Eq. (20). In particular we try to
minimize the squared-difference between the ½fσ8�algðzÞ
and fσ8ðzÞ. The estimated values are given as follows5:

wDE ¼ −1.596� 0.099; Ωð0Þ
m ¼ 0.338� 0.083;

σð0Þ8 ¼ 0.795� 0.072: ð21Þ

Here also, we see that the equation of state for DE favors
its phantom nature by leaning slightly toward lower values

(< −1). On the other hand, the value of σð0Þ8 is significantly
higher than what was predicted by low-redshift observa-
tions such as KiDS-450 [5] and KiDS-1000 [6]. As already

mentioned that the KiDS-450 estimate of σð0Þ8 ¼ 0.745�
0.039 exhibits a tension of more than 2σ with Planck

TT;TE;EEþ lowEþ lensing estimate σð0Þ8 ¼ 0.811�
0.006 [2]. Notably, our estimate on σð0Þ8 does not show

any tension with Planck’s σð0Þ8 result and is in agreement
with the latter. In Fig. 6 we depict the accuracy of the best-
fit values obtained from the parametric estimations (21)
in relation to the algorithm-predicted fσ8ðzÞ profile. The
figure demonstrates that the profiles of both the estimations
and the algorithm prediction are in alignment, indicating

FIG. 5. Optimized growth of matter density clustering with
redshift z within the 1σ limit, and Planck’s proposed trajectory.
Both trajectories merge together at the high-redshifts.

Eq. (15)
Eq. (20)

FIG. 6. The figure shows the degree of accuracy in fitting
the curve of the wCDM model, using the estimated parameter
values (21), with the algorithmically predicted profile of
fσ8ðzÞ (16). The solid line represents the predicted profile of
fσ8ðzÞ generated by the algorithm, while the dashed line
represents the fitting of the wCDM model to the aforementioned
prediction. The nearly identical evolutionary patterns of these
two curves suggest that our estimates closely match the form
generated by the algorithm (16). The corresponding Planck’s
ΛCDM curve is shown in Fig. 5.

5The obtained minimized χ2 value is better than that of the
correspondingΛCDMmodel and the wCDMmodel. The primary
objective of the estimations is to illustrate the potential range of
values achievable for the fitting (16).
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that the estimations (21) are reasonably accurate and
exhibit a significant level of goodness of fit.

B. S8 constraints

The weighted magnitude of matter density perturbations

(S8) captures the degeneracy between Ωð0Þ
m and σð0Þ8 and is

formulated as [66]:

Sð0Þ8 ¼ σð0Þ8

ffiffiffiffiffiffiffiffiffi
Ωð0Þ

m

0.3

s
: ð22Þ

In the framework of the ΛCDM model, measurements of

CMB anisotropy by the Planck 2018 have yielded Sð0Þ8 ¼
0.834� 0.016 [2]. In contrast, a number of surveys of RSD

consistently suggests Sð0Þ8 values that tend to be lower than
those inferred from CMB measurements, falling within
the range of [0.703, 0.782]. However, when using the
estimates (21) in Eq. (22), and using the error-propagation
technique, we find

Sð0Þ8 ¼ 0.833� 0.188; ð23Þ

for the RSD dataset shown in Fig. 7. This indicates a

notable increase in the value of Sð0Þ8 (although with a
considerable level of uncertainty) and approaches the

estimation by Planck TT;TE;EEþ lowE of Sð0Þ8 ¼
0.834� 0.016 [2]. This suggests that if not be due to
systematics, any disagreement or tension between the high
and low redshift data might be due to the choice of the
cosmological model which is used to describe the universe
at late times.

IV. JOINT BACKGROUND AND PERTURBATIVE
LEVEL EVOLUTION

As we have earlier shown that in order to address the
tension at both the background and linear perturbative
levels, it is important to deviate from the standard ΛCDM
model toward a more phantomlike behavior. It is also
important to note that both the estimates obtained from
background and perturbative level data for parameters such
as Ωð0Þ

m and wDE are consistent with each other. This
indicates that both sets of data align with each other and
allow us to find a unified trajectory for the evolutionary
history of the universe, accounting for both the growth of
large-scale structure and the rate of expansion. Therefore,
by using the Eqs. (7) and (16), we can analyze how the
quantities ½fσ8�algðzÞ and HalgðzÞ change together over a
range of redshifts. This will give us the hint for the possible
evolutionary profile of the universe which is required for
reducing or rather resolving the existing tensions between
the measurements. It will also allow us to examine the joint
background and perturbative evolution of the universe
without being limited by any constraints on the parameter.
The obtained profile is shown in Fig. 8 in which we

have also depicted the evolution of linear perturbation
with the background expansion by utilizing the Planck
TT;TE;EEþ lowEþ lensing best-fits (dotted curve) with

Ωð0Þ
m ¼ 0.315 and σð0Þ8 ¼ 0.8111 [2]. The figure illustrates

that both trajectories (fitted one and that correspond to the
Planck’s best-fit) have followed similar behavior in the
past. However, a noticeable deviation from each other is
observed at z ≤ 0.4. Also, the growth rate of matter
perturbations for the Planck tends to be less suppressed
than our case, and therefore reaches a peak value that is
higher than what is predicted by our analysis almost at the
same redshift value.
As we have seen that the joint evolution of fσ8ðzÞ and

HðzÞ is unique in the sense that it corresponds to those
cosmological parametric values at the current epoch which
relieves the tensions. This is in contrast to most scenarios

where the particular correlation between the H0 and σð0Þ8

estimates for a given model tends to worsen the one while
solving the other.

FIG. 7. The figure illustrates the parametric region between

Ωð0Þ
m and σð0Þ8 , which is allowed based on the Monte Carlo method.

The Monte Carlo method generates values distributed normally
around the best-fit values (21). The solid region represents the
Planck allowed region within a 3σ range. The curved lines in the

plot correspond to different values of Sð0Þ8 , and the values are
indicated on each curve. The color bar on the right side of the
figure provides the corresponding values of the equation of state
for dark energy for each colored point shown in the plot.

FIG. 8. Evolution of fσ8ðzÞ is shown versus HðzÞ for z∈ ½0; 1�
for Planck and for our case.
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To assess the compatibility between the two observables,
namely HðzÞ and fσ8ðzÞ, and to determine the profile
suggested by the background data for fσ8ðzÞ, one needs to
know the background parameters, such as Ωð0Þ

m and wDE, to
use in Eq. (18). By utilizing the best-fitting values of the
background parameters obtained in Sec. II A in Eq. (20),
and comparing it with the fσ8ðzÞ profile derived from the

RSD data estimations (21), we find σð0Þ8 ≃ 0.77. This value
is in agreement with the estimated value given in Eq. (21).
Consequently, our background and perturbative-level
analyses align with each other, indicating consistency in
our results.
In order to assess whether the fσ8ðzÞ profiles obtained

from the background data estimations are compatible with
the one that is obtained using the RSD dataset, we use a
simple technique that calculates the area between any two
functional profiles. The area which denotes the divergence
between two profiles is given by A ¼ R

z jfðzÞ − gðzÞjdz.
Hence, larger the area the less compatibility between two
profiles, or vice-versa. After applying this technique, we
have found that thevalue ofA for the estimations (21) and the
background estimations (II A) is approximately Oð10−3Þ,
whereas when compared with the ΛCDM estimations, A is
of the order of Oð10−2Þ. The comparatively large compat-
ibility between our background and linear perturbative-level
estimations agrees to the fact that there is a significant level
of deviation from the ΛCDM model toward the phantom.

V. CONCLUSION

We have conducted two comprehensive independent
analyses to identify the reasons behind two tensions related

to parameters H0 and σð0Þ8 using a metaheuristic optimiza-
tion technique. To determine the necessary requirement(s)
that align(s) most favorably with the optimized form of the
observables obtained by our algorithm, we have chosen
the wCDM model for simplicity. However, we have also
demonstrated that the outcomes are also consistent with
interacting dark energy scenarios. Notable, our cosmologi-
cal model-agnostic findings have demonstrated that the
phantom nature of a dynamical DE is required to relax both
of the tensions. We have also shown that in order to tackle
both the tensions together a specific profile of a trajectory
between HðzÞ − fσ8 is required.
Regarding the background evolution, we have obtained

the fitting using the metaheuristic optimization algorithm
for the HðzÞ for two separate cases to figure out if the
results are indeed pointing toward the same physics or not.
Hence, in first analysis we take distance-ladder measure-
ments and its combination with SN1a dataset, and in the
second case we take the combination of the former with full
Pantheonþ and BAO dataset. After obtaining the optimized
functional form of HalgðzÞ from the simulation, we have
then searched for the corresponding cosmological scenario,
which can or at least try to resemble it. For the purpose of

estimation, we choose wCDM model, and with multiple
simulations, we have obtained an average values for the
same, which correspond to the optimized fitting profiles of
HðzÞ. We have explicitly shown that because of the natural
emergence of the phantom nature of DE the H0 tension is
relaxed/reduced in CCH and its combination with SN1a
dataset and BAO dataset. Here we also want to mention that
for the CC+SN1a+BAO dataset the observed mild phantom
behavior indicated by the dark energy equation of state,
denoted as wDE ¼ −1.087, is primarily a result of fixing the
sound horizon to the best-fit value of the ΛCDM model for
the BAO dataset. As a result, this significant biasing effect
effectively limits the degree to which the CC+SN1a dataset
can penetrate into the phantom regime. The extent to which
phantom nature can exhibit without the BAO dataset has
been explicitly demonstrated by our use of the CC+SN1a
dataset in the case of dataset-1. Moreover, our overall
conclusion is in contrast to the point of view that the tension
might be due to the low-matter density in the universe. This
is due to the fact that in all different set of combinations

of dataset, we have found Ωð0Þ
m ∈ ½0.33; 0.35�. Since the

corresponding results agree with both sets of data thereby
establishing their reliability, while having the potential to
alleviate/reduce the H0 tension. Here it is also important to
mention that late-time modifications or considering the
alternatives of ΛCDM are necessary due to the fact that the
early-time possible resolutions for tackling the Hubble
tension suffers with various issues and does not fully
resolve the tension [20].
As to the linear growth of matter density perturbations,

we have carried out a similar procedure for finding out
the cosmological parameters using RSD dataset. Here also,
we have shown that the corresponding optimized fitting
surpasses the fitting of the ΛCDM by a significant margin.
We have then obtained the corresponding parameters using
the latter and it strongly supports the phantom nature of DE.
It is also in tune with the large σð0Þ8 value, which eventually
reduces the tension. Furthermore, by using the obtained
constraints, we have constrained the Sð0Þ8 parameter and
showed that its best-fit also lies toward the Planck’s
estimate. We have also shown that our results obtained
using RSD dataset are compatible with the background
ones. In summary, we have shown that both at the back-
ground and linear perturbative levels, the tensions can be
alleviated if one chooses a suitable candidate for DE which
exhibits a phantom nature at late times.
Let us emphasise that our analysis, which involves

multiple datasets and their combinations, consistently
demonstrates a better fit when compared to the ΛCDM
model. This suggests the potential necessity for DE to
exhibit phantomlike behavior. Furthermore, aligning the
model-independent observables with two distinct cosmo-
logical templates strengthens our argument. This approach
is better in the sense that it allows us to obtain even small
features of the observables in the data without relying on
initial model-dependent assumptions.
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There are still some unanswered questions that remain:
(i) What insights can the optimized fitting provide regard-
ing the interaction between dark energy (DE) and matter?
(ii) If a model is capable of reproducing the corresponding
results, will it exhibit stability? (iii) What will happen if the
sound horizon is not fixed in prior? We are looking forward
to answering these questions and trying to report on them in
the near future.
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vacuum energy in cosmological spacetime: Implications for
the cosmological constant problem, Eur. Phys. J. C 82, 551
(2022).

[27] C. Moreno-Pulido and J. Solà Peracaula, Equation of state
of the running vacuum, Eur. Phys. J. C 82, 137 (2022).

[28] C. Moreno-Pulido, J. Solà Peracaula, and S. Cheraghchi,
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