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According to the best-fit parameters of the Standard Model, the Higgs field’s potential reaches a
maximum at a field value h ∼ 1010−11 GeV and then turns over to negative values. During reheating after
inflation, resonance between the inflaton and the Higgs field can cause the Higgs field to fluctuate past this
maximum and run down the dangerous side of the potential if these fields couple too strongly. In this paper,
we place constraints on the inflaton Higgs field couplings such that the probability of the Higgs field
entering the unstable regime during reheating is small. To do so, the equations of motion are approximately
solved semianalytically, then solved fully numerically. Next, the growth in variance is used to determine the
parameter space for κ and α, the coupling coefficients for inflaton Higgs field cubic and quartic interactions,
respectively. We find the upper bounds of κ < 1.6 × 10−5mϕ ∼ 2.2 × 108 GeV and α < 10−8 to allow the
Higgs field to remain stable in most Hubble parameter patches during reheating, and we also find the
full two parameter joint constraints. We find a corresponding bound on the reheat temperature of
Treh ≲ 9.2 × 109 GeV. Additionally, de Sitter temperature fluctuations during inflation put a lower bound
on inflaton Higgs field coupling by providing an effective mass for the Higgs field, pushing back its hilltop
during inflation. These additional constraints provide a lower bound on α, while κ must also be nonzero for
the inflaton to decay efficiently.
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I. INTRODUCTION

The confirmation of the Higgs field particle at the LHC
means that, for the first time, we have a unitary theory of
particle physics—the Standard Model (SM). Combined
with the graviton, the theory appears to have internal
consistency down to the Planck scale. However, the
existence of the Higgs field, the first discovered scalar in
nature, opens up a new type of stability problem, as we now
recap. The dimension-four Higgs field potential is given by

Vh ¼ −
μh
2
H†H þ λ

4
ðH†HÞ2; ð1Þ

whereH is the Higgs field doublet. This work will focus on
the magnitude of H which will be denoted as the Higgs
field, h, while its angular components are reorganized into
the longitudinal modes of the W� and Z bosons and will

not play a direct role for us here. As is well known, this
potential has a nonzero local minimum at 246 GeV, which
is classically stable and denotes our vacuum.
At high energies, the Higgs field interactions with

various SM particles cause the value of the self-coupling
λ to evolve under renormalization group equations. For the
central values of SM parameters, this causes λ to turn
negative at large values of the Higgs field [1–5]. This means
the potential reaches a maximum at some large value of the
Higgs field hmax and then quickly drops to negative values.
Figure 1 provides a plot of the effective potential from
solving the two-loop renormalization group equations. This
shows that the peak occurs at energies ∼1010−11 GeV,
depending sensitively on the top quark mass. Here we plot
in black the central top mass, while the standard deviation
values are given by the dashed curves [6,7]. [Note that the
initial dip associated with the usual electroweak vacuum
is not directly relevant, as the μhh2=2 term in Eq. (1) is
negligible at such high energies.] The huge fluctuation
required for the Higgs field to go over or tunnel through
this hilltop implies that it is not an issue in the late
Universe where the Higgs field is centered at the electro-
weak scale 246 GeV.
However, in the very early Universe, it is anticipated that

the Universe was at such extremely high energies that the
Higgs field was in danger of fluctuation to the dangerous

*jyang58@uw.edu
†mark.hertzberg@tufts.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, 103524 (2023)

2470-0010=2023=108(10)=103524(12) 103524-1 Published by the American Physical Society

https://orcid.org/0000-0002-8496-7432
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.103524&domain=pdf&date_stamp=2023-11-17
https://doi.org/10.1103/PhysRevD.108.103524
https://doi.org/10.1103/PhysRevD.108.103524
https://doi.org/10.1103/PhysRevD.108.103524
https://doi.org/10.1103/PhysRevD.108.103524
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


side of the potential. Therefore, one should consider the
serious possibility that the Higgs field could have fluc-
tuated past hmax during an early era; of particular focus
here was an early era of inflation. If this had occurred, the
Higgs field could have run down the potential toward
infinity, and the Universe would presumably undergo a
catastrophic crunch. Important earlier work in this area
includes Refs. [8–18].
One may potentially avoid this problem by significantly

lowering the scale of inflation or utilizing a large effective
mass of the Higgs field during inflation, which we shall
discuss later. However, there is still a possible disaster that
can take place after inflation during pre- and/or reheating.
In particular, one anticipates a direct coupling between the
Higgs field and the inflaton, and this can cause (parametric
or tachyonic) resonance during reheating that exponentially
increases in the value of the Higgs field. In fact, a coupling
between the inflaton and Higgs field is required for efficient
reheating of the SM, as it is the only renormalizable way a
(gauge singlet) inflaton can couple to the SM. Potential
ways to handle this problem have been discussed in the
literature, including Refs. [19–26].
Altogether, constraints on inflaton Higgs field cou-

plings are needed to determine if a simple model in which
the SM is taken seriously to high scales is possible; this is
the focus of this work. We will examine all dimension-
four couplings between the Higgs field and the inflaton
and derive combined bounds on this parameter space
from demanding stability both during and after inflation
(the final result is the last figure in the paper). We use this
to place a bound on the reheating temperature and discuss
possible consequences.

II. INFLATON HIGGS FIELD COUPLING

In conventional models of inflation, the exponential
expansion of the Universe is driven by a heavy scalar
field ϕ—the inflaton. During inflation, the inflaton’s
potential was relatively constant with the field at very
large values. As a result, the inflaton dominated the
Universe, and so the energy density of the early
Universe can be approximated as simply the sum of the
inflaton’s kinetic and potential energy,

ρðtÞ ¼ 1

2
ϕ̇2 þ VϕðϕÞ: ð2Þ

As the Universe expanded, most fields fell down their
potential toward zero. However, since the inflaton potential
was roughly constant at this time, its field and, in turn,
ρðtÞ would have also remained roughly constant.
The Friedman equation

H2ðtÞ ¼ ȧ2ðtÞ
a2ðtÞ ¼

8πG
3

ρðtÞ; ð3Þ

where HðtÞ is the Hubble parameter and aðtÞ is the scale
factor, says that if ϕ undergoes sufficient Hubble parameter
friction and moves slowly, ρðtÞ is nearly constant, so the
solution for aðtÞ is approximately exponential aðtÞ ∝ eHt.
As the inflaton continues to roll, inflation will eventually

end. Our primary interest here is in the era immediately
following the end of inflation (although we shall also
consider further bounds from the inflationary phase itself).
During this subsequent era, the inflaton must have decayed
into the SM in order to reheat the Universe. Plausibly, this
was dominated by the inflaton’s decay into the Higgs field
as it is the only possible renormalizable channel (for a
gauge singlet inflaton). All other particles in the SM must
couple to the inflaton via higher order operators and
therefore may be highly suppressed.

A. Action and inflaton evolution

The action for gravity, the Higgs field, and the inflaton
(units ℏ ¼ c ¼ 1, signature þ − −−) is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−R

16πGN
þ 1

2
gμν∂μh∂νhþ 1

2
gμν∂μϕ∂νϕ

− VhðhÞ − VϕðϕÞ −
κ

2
ϕh2
�
: ð4Þ

The − κϕh2=2 term provides perturbative inflaton decay
into two Higgs field particles, as illustrated in the upper part
of Fig. 2. Moreover, it is critical for understanding how
the Higgs field will grow during reheating, which can be
resonant. The coefficient κ (which has units of mass)
specifies its strength. The only other allowed renormaliz-
able interaction is ∼ − αϕ2h2=2 and will be discussed in

FIG. 1. The two-loop renormalized effective potential of the
Higgs field within the SM. The turnover at high scales around
hmax [V 0

hðhmaxÞ ¼ 0] is focused on. Blue dashed curve is mtop ¼
172.5 GeV, black solid curve is mtop ¼ 172.9 GeV, and purple
dashed curve is mtop ¼ 173.3 GeV. After the turnover, the
potential runs negative.
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Sec. VIII (see lower part of Fig. 2). Other terms in the
action, including terms for all other SM particles and their
interactions, may be small during reheating because they
can only couple to the (gauge singlet) inflaton through
higher dimension operators and will not be included in our
simplified analysis.
With the above action, the following is the Heisenberg

equation of motion for the inflaton:

̈ϕ̂þ 3HðtÞ ˙̂ϕþ ∂Vϕ

∂ϕ̂
¼ 0: ð5Þ

To first approximation, the inflaton is a classical field with
small quantum fluctuations,

ϕ̂ðtÞ ¼ ϕðtÞ þ δϕ̂ðtÞ: ð6Þ

Since the quantum fluctuations relative to the classical
background are very small in standard inflationary models,
the inflaton can be approximated as simply its classical
background field ϕðtÞ when we study the impact on the
Higgs field.
During reheating, the inflaton’s potential can be approxi-

mated by a mass term around its minimum,

VϕðϕÞ ¼
1

2
m2

ϕϕ
2: ð7Þ

Using this potential in the (classical version of) Eq. (5)
gives

ϕ̈þ 3HðtÞϕ̇þm2
ϕϕ ¼ 0; ð8Þ

so the equation of motion is that of a damped harmonic
oscillator with the Hubble parameter acting as a fric-
tion term.

B. Higgs field evolution equations

The Heisenberg equation of motion for the Higgs field is

̈ĥþ 3HðtÞ ˙̂h −
∇2ĥ
a2ðtÞ þ

∂Vh

∂ĥ
þ κϕðtÞĥ ¼ 0: ð9Þ

For simplicity, the partial derivative of the Higgs field
potential can be dropped from the equation of motion. It
turns out that this term is around 5 orders of magnitude
smaller than κϕĥ when we expand around the Higgs field
vacuum. It therefore has a negligible effect during the
first stages of evolution. Of course, once the inflaton has
completely decayed into the Higgs field, the κϕĥ term goes
away and the shape of the Higgs field potential becomes
critical. If the Higgs field is on the other side of the hilltop
at that point, then it would run down the potential and cause
a disaster. Therefore, while the Higgs field potential can
be neglected during the first stages of reheating, it will be
critical in our understanding of the final analysis.
Therefore, we shall incorporate its effects qualitatively
by noting that this problem can occur. Ultimately, a more
precise analysis would involve the inclusion of this term
throughout the entire analysis. This renders the equations
nonlinear, with a ∼λĥ3 term. This could be handled with
full lattice simulations. However, this is beyond the scope
of the current work. Our results are therefore approximate
and can be improved upon with more detailed simulations.
However, the qualitative and semiquantitative results found
here are anticipated to provide a reasonable estimate.
In this absence of the regular Higgs field potential term,

the resulting equation is linear, so it is useful to take a
Fourier transform, and the equation of motion is then given
in terms of the wave number k as

̈ ˆ̃hk þ 3HðtÞ ˙̃̂hk þ
k2

a2ðtÞ
ˆ̃hk þ κϕðtÞ ˆ̃hk ¼ 0: ð10Þ

Since the equation of motion is now linear with respect
to the Higgs field, and the background metric and inflaton
are approximated as carrying spatial translation invariance,
the Higgs field can be solved in terms of mode functions
vkðtÞ, as follows:

ĥðx⃗; tÞ ¼
Z

d3k
ð2πÞ3

h
ðvkðtÞâk þ v�−kðtÞâ†−kÞeik⃗·x⃗

i
: ð11Þ

Since the annihilation and creation operators are constant in
time, they can be factored out; thus the mode functions
must satisfy the same equation of motion,

v̈k þ 3HðtÞv̇k þ
k2

a2ðtÞ vk þ κϕðtÞvk ¼ 0: ð12Þ

FIG. 2. Upper: Feynman diagram for the inflaton decay into
two Higgs field particles (κ

2
ϕh2). Lower: Feynman diagram for

inflaton annihilation into two Higgs field particles (α
2
ϕ2h2).
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Thus, one needs to solve this set of ordinary differential
equations in order to solve the theory at the linear level.
In the free theory, where the Higgs field and inflaton are

not coupled and κ ¼ 0, the solution to this equation of
motion is

vkðtÞ ¼
1

ai
ffiffiffiffiffi
2k

p exp

�
−ikt
ai

�
; ð13Þ

where the particular solution is chosen to maintain the
Higgs field’s commutation relations. In the coupled theory,
this solution is an initial condition that the Higgs field
evolves away from as the inflaton evolves.
We are interested in computing the evolution, as the

coupling to the inflaton may cause a radical growth in its
variance. This will imply the Higgs field would have a
significant probability of being on the dangerous side of the
effective potential Vh. The variance is readily calculated
from Eq. (11) to be

hĥ2i ¼
Z

d3k
ð2πÞ3 jvkðtÞj

2: ð14Þ

In the initial vacuum state and in absence of coupling, the
variance in the Higgs field can be calculated by inserting
Eq. (13) into Eq. (14),

hh2ifree ¼
Z

d3k
ð2πÞ3

1

2a2i k
; ð15Þ

or, after integrating out the angular components,

hh2ifree ¼
Z

dk
4a2i π

2
k: ð16Þ

While this integral is formally UV divergent, we will be
only interested in a smoothed field with a cutoff set by a
bubble size (to be discussed in Sec. V) so, in fact, the
relevant fluctuations are finite (the two-point correlation
function is finite on the scales of interest). Introducing
nonzero values of κ corresponds to solutions that evolve
away from Eq. (13). By dividing out the variance of the
interacting theory by the variance of the free theory, the
growth in variance can be determined.

III. SIMPLIFIED ANALYSIS

In the next section, we shall solve these equations
numerically. However, for now it is useful to gain intuition
and develop approximate semianalytical results.
The solution to Eq. (12) is different for each value of k.

We will choose a discrete value for k and then sum the
results. Equation (12) can first be approximated by treating
the time-dependent prefactors as varying adiabatically
slowly. This means it becomes a type of Mathieu equation.
Solving this gives a better understanding of the best range

of k values to sum over. The Mathieu equation has the
canonical form

d2y
dτ2

ðτÞ þ ðA − 2q cosð2τÞÞyðτÞ ¼ 0: ð17Þ

Its solutions are of the form

yðτÞ ¼ eμτf1ðτÞ þ e−μτf2ðτÞ; ð18Þ

where f1;2ðτÞ are periodic. If the so-called Floquet expo-
nent μ is real, the growth is exponential, otherwise the
growth is absent.
The Mathieu equation requires a harmonic driving term

that can come from the inflaton field. As in Eq. (7), the
inflaton potential resembles that of a harmonic oscillator
during reheating, and so the field can be approximated as

ϕðtÞ ≈ ϕampðtÞ cosðmϕtÞ: ð19Þ

The inflaton’s equation of motion (8), includes a Hubble
parameter friction term. This can be incorporated in this
approximation by allowing the envelope ϕamp to decrease
with time as the Universe expands. In particular, since
reheating is approximately a matter dominated era (as the
inflaton’s oscillations lead to the pressure averaging to zero),
theHubble parameter during this time can be approximated as

HðtÞ ≈ 2

3t
; ð20Þ

so that

aðtÞ ≈ aðtiÞ
�
t
ti

�
2=3

: ð21Þ

This approximation is not precise right at the start of
reheating, the end of inflation, but becomes more accurate
over time as the Universe transitions from the accelerating
phase to an effective matter dominated phase. Under these
approximations, ϕampðtÞ decreases as

ϕampðtÞ ¼ ϕi

�
aðtiÞ
aðtÞ

�
3=2

: ð22Þ

To ensure that these are reasonable approximations, they are
compared to numerical solutions for HðtÞ and ϕðtÞ from
solving Eqs. (2), (3), and (8). This is shown in Fig. 3.
As expected, these approximations become increasingly
accurate at later times (the late time offset in ϕ is just a
phase shift).
To generate these and other plots, we take the inflaton

mass to be mϕ ≈ 1.4 × 1013 GeV (a value expected
in chaotic inflation [27]). Calculations are done in units
of mϕ, such that the reduced Planck mass is
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MPl ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 2.4 × 1018 GeV ≈ 1.7 × 105mϕ, and

ϕi ¼
ffiffiffi
2

p
MPl is the field value at the end of inflation under

the quadratic potential approximation.
In addition to approximating the inflaton field as a

classically oscillating function, the expansion terms that
depend on time must be removed from Eq. (12) in order
to approximate it as a Mathieu equation. The adiabatic
approximation involves replacing in the inflaton field by
decreasing ϕamp with time according to Eq. (22) so as to
capture its effects. Similarly, aðtÞ can be removed from the
equation of motion with the following substitution:

kphysðtÞ ¼
k

aðtÞ : ð23Þ

Here, kphysðtÞ is the physical wave number at a particular
point in time and decreases as the Universe expands.
By allowing kphysðtÞ and ϕampðtÞ to decrease with time,
expansion will be approximately captured in the solution,
and so the Hubble parameter term can be dropped in this
first analysis.
Substituting these approximations into Eq. (12) gives

v̈kðtÞ þ ðk2phys þ κϕamp cosðmϕtÞÞvkðtÞ ¼ 0: ð24Þ

Comparing Eq. (24) to Eq. (17), the following change of
variables must be made to reproduce a Mathieu equation:

τ ¼ mϕt

2
; A ¼ 4k2phys

m2
ϕ

; q ¼ 2κϕamp

m2
ϕ

: ð25Þ

The resulting Floquet exponents μ are plotted as contours in
Fig. 4 as a function of kphysðtÞ and ϕampðtÞ for κ ¼ 4 × 10−5

mϕ. The red lines in Fig. 4 represent a discrete set of values
of comoving wave number k, which redshift to the left
according to kphysðtÞ ∝ 1=aðtÞ and downward according
to ϕampðtÞ ∝ 1=aðtÞ3=2 as the Universe expands. From this
approximation and further numerical analysis, the range
0.2 ≤ k=mϕ ≤ 3 and resolution Δk=mϕ ¼ 0.2 were found
to be sufficient, as all these lines pass through the yellow
bands of significant resonance.

IV. FULL NUMERICAL ANALYSIS

With a range of k values chosen, vkðtÞ can be numerically
calculated according to Eq. (12) and the Higgs field variance
can be calculated according to Eq. (14). The growth in the
Higgs field is measured as the ratio between the variance in
the coupled theory and the variance in the free theory,

growth ¼ hh2i
hh2ifree

: ð26Þ

For two values of κ, this growth is shown in the upper and
lower panels of Fig. 5. These plots illustrate how sensitive
the Higgs field is to a small change in κ as a factor of 2
causes a difference in growth of 105. To determine if the

FIG. 4. Floquet exponent for Higgs field resonance due to cubic
coupling decay for κ ¼ 4 × 10−5mϕ. Brighter yellow regions
represent regions of greater resonance and a larger characteristic
exponent as specified by the color legend. The red lines represent
how a particular wave number k evolves as kphysðtÞ and ϕampðtÞ
decrease with the expansion of the Universe.

FIG. 3. Upper: comparison of exact and approximate solutions
of the inflaton field. Lower: comparison of exact and approximate
solutions of the Hubble parameter.
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Higgs field will grow past hmax, only the end point of
the variance plots need to be considered. Figure 6 shows the
growth of the Higgs field at late times as a function of κ.
There appears to be a dip in Higgs field growth near
κ ≈ 10−5.7mϕ where the Higgs field apparently decreases
at late times. This is possible because the inflaton is oscillat-
ing, and so resonance may just coincidentally occur when the
inflaton is at a minimum for this value of κ. However, more
typically, larger κ tends to lead to much larger growth. In the
following section, the amount of growth required for the
Higgs field to go over its hilltop will be discussed.

V. CREATING A BUBBLE

The probability distribution of any ground state in
quantum mechanics with a quadratic potential is Gaussian.
The Higgs field’s probability distribution can therefore be
approximated as a Gaussian, since its potential is primarily
quadratic with a quartic term that only contributes a small
correction. So, the probability that the field would grow
past hmax where the potential VhðhÞ peaks is approximately

Pðh ≥ hmaxÞ ∝ exp

�
−

h2max

2hh2i
�
; ð27Þ

where we use the fact that we will be typically in the tail
of the distribution, so an integral past the peak provides a
small correction.
To compute this value, it is important to first note that an

individual point in the Higgs field cannot grow independent
of the points around it due to field gradients. Rather, a type
of bubble will form with a characteristic size Rbub and grow.
The size of the bubble depends on its height. Numerically,
this can be explained by energy conservation. The energy
density of the Higgs field is given by

ρh ¼
1

2
ḣ2 þ 1

2
ð∇hÞ2 þ VhðhÞ; ð28Þ

where VhðhÞ is defined by Eq. (1). As the field fluctuates up
the potential, the field around it will tend to grow as well so
that the gradient and time derivatives balance this increase
in the potential and the energy density does not change too
quickly. Given that the field’s gradient is approximately
equal to its time derivative (for such relativistic bubbles),
this balancing act requires that 1

2
ð∇hÞ2 ∼ VhðhÞ. Noting

that the slope of the bubble is approximately its height
divided by its characteristic radius, the gradient can be
approximated as

ð∇hÞ2 ∼ h2bub
R2
bub

: ð29Þ

Therefore, balancing the gradient with the potential means
the height of a bubble is approximately proportional to the
inverse of the bubble’s size,

1

2

h2

R2
bub

∼
jλj
4
h4bub; ð30Þ

FIG. 5. Upper: growth in Higgs field variance hh2i=hh2ifree with
respect to time for κ ¼ 2 × 10−5 mϕ. Lower: growth in Higgs field
variance hh2i=hh2ifree with respect to time for κ ¼ 4 × 10−5 mϕ.

FIG. 6. Late time growth in the Higgs field variance hh2i=hh2ifree
as a function of κ=mϕ. Dotted lines represent where the Higgs field
grows by a factor of 20 (cyan), 100 (orange), and 3300 (red).
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which implies

hbub ∼
ffiffiffi
2

p

Rbub

ffiffiffiffiffijλjp : ð31Þ

Furthermore, the variance hh2i is also proportional to
1=Rbub. This is because, when calculating the variance for a
bubble according to Eq. (14), the integral only needs to be
computed up to wavelengths of about the size of the bubble.
Shorter wavelengths would not affect the overall shape of
the bubble and can therefore be neglected. For the vacuum,
this gives a variance of

hh2ifree ∼
1

4π2

Z 2π
Rbub

0

dkk ¼ 1

2R2
bub

: ð32Þ

So, it is clear that the size of the bubble will drop out from
the final probability calculations.
A more precise analysis has determined that the ratio of

field height to vacuum fluctuations is indeed of this order,
but with a corrected Oð1Þ prefactor [28]

h2bub
2hh2ifree

¼ 8π2

3jλj : ð33Þ

Generally, λ is a function of the Higgs field h, due to the
renormalization group flow of the effective potential. It is
convenient to have an approximate fitting function for it.
A useful form is [8]

λeff ≈ −
0.16
ð4πÞ2 ln

�
h2

h2max
ffiffiffi
e

p
�
: ð34Þ

For simpler calculations, λ can be approximated as a
constant λ ≈ −0.008. This gives a potential that is some-
what accurate in the regime VhðhÞ < 0, as seen in Fig. 7,
which is the region of interest due to the turnover in the
Higgs field potential.
In the vacuum, Eq. (33) can therefore be directly plugged

into Eq. (27) with

hbub → hmax ð35Þ

and λ ¼ −0.008 to find the probability of the Higgs field
going over its hilltop today, when the inflaton coupling has
no influence. The result is that P ∼ e−3300, which recovers
the well-known result that the Higgs field in the ordinary
vacuum today is very stable.

VI. LIMITS ON CUBIC COUPLING

To find the probability of the Higgs field reaching hmax
after resonance after inflation, the vacuum variance in
Eq. (33) (with hbub → hmax) needs to be rescaled by the

increased variance after resonance, which we earlier
computed. For a reasonable approximation, the probability
can therefore be given as

Presðh ≥ hmaxÞ ∝ exp

�
−
8π2

2jλj ×
� hh2i
hh2ifree

�−1�
: ð36Þ

A very generous limit would be to demand that

Pres < e−1; ð37Þ

which would put the Higgs field at ∼40% chance of
growing past hmax and becoming unstable. Solving for
the growth in variance for this limit gives

hh2i
hh2ifree

< 3300: ð38Þ

Meanwhile, the most conservative limits would have no
more than one Hubble parameter patch go over the hilltop.
This is a more reasonable requirement, because even if one
patch goes over it could expand to cause the rest of the
Universe into a crunch. Since there were about ∼e3Ne

Hubble parameter patches, where Ne ≈ 55, this would
correspond to

Pres < e−3Ne; ð39Þ

which leads to

hh2i
hh2ifree

< 20: ð40Þ

If one Hubble parameter patch were to fall down the Higgs
field potential, however, the patches around it could pull it

FIG. 7. Comparison of VhðhÞ ¼ λðhÞh4=4 for the fitting func-
tion λeffðhÞ versus using a simple constant λ ¼ −0.008. The latter
function requires some translations in field value in order to show
this approximate matching, but it is only the curvature determined
by λ that is of direct importance here.
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back to the safe side. Therefore, a more reasonable estimate
may allow for a little more growth than Eq. (39),

hh2i
hh2ifree

< 100: ð41Þ

Each of these limits is indicated in Fig. 6, where the
horizontal dotted lines represent where the Higgs field
growth is 20 (cyan), 100 (orange), and 3300 (red).
To satisfy the middle requirement (41), we find the

bound on the cubic coupling κ is

κ < 1.6 × 10−5mϕ ∼ 2.2 × 108 GeV: ð42Þ

(This result can be compared to Ref. [14] that also placed a
bound on this cubic coupling. Related work also includes
Refs. [8–13,15–26].) Here, we are assuming κ > 0, but the
case of negative κ is almost identical as the inflaton
oscillates, so the sign is relatively unimportant. So the
complete bound is jκj < 1.6 × 10−5mϕ ∼ 2.2 × 108 GeV.
However, in Sec. X, the positive κ case will be the focus.

VII. BOUND ON REHEAT TEMPERATURE

Limits on inflaton Higgs field couplings can also put
constraints on the reheat temperature of the Universe.
First, the inflaton decay rate can be calculated under the
reasonable assumption that a gauge singlet inflaton pri-
marily decays into the Higgs field. This is because it is
only to the Higgs field that one can form renormalizable
couplings, while other interactions are dimension five
and above, which are plausibly suppressed by a very high
scale, such as MPl. At late times, after any resonance has
occurred, perturbative tree-level decay into the Higgs field
from the cubic coupling can be most important,

Γðϕ → hhÞ ¼ gh
32π

κ2

mϕ
; ð43Þ

where gh ¼ 4 is the number of components in the Higgs
field. Using the bound on κ in Eq. (42) and assuming an
inflaton mass of ∼1.4 × 1013 GeV, this corresponds to a
bound on the decay rate of Γðϕ → hhÞ ≲ 2.2 × 1026 sec−1.
As the inflaton decays, the large amount of energy stored

in its mass is converted into kinetic energy in the signifi-
cantly lighter Higgs field and then the rest of the SM,
producing a bath of relativistic particles. These particles
will rapidly thermalize at time t ∼ 1=Γ. Since the Hubble
parameter at this time is around H ∼ 1=t as the Universe
becomes matter dominated during reheating, so it is true
that H ∼ Γ at this time. Given an approximate value for H,
the energy density of the thermal bath can be calculated
from the Friedman equation (3). The temperature of this
thermalized sea of radiation can then be calculated from its
energy density,

ρ ¼ π2

30
gT4; ð44Þ

where g ¼ 106.75 represents the degrees of freedom in
the SM (if other new degrees of freedom are present, we
assume it does not increase the total g too much). These
calculations give a reheat temperature of

Treh ≈ 0.5
ffiffiffiffiffiffiffiffiffiffiffi
ΓMPl

p
: ð45Þ

Therefore, the calculated constraints on κ from Eq. (42)
give a reheat temperature bound of

Treh ≲ 9.2 × 109 GeV; ð46Þ

where the uncertainty arises from the uncertainty in inflaton
mass. (This can be compared to the work in Ref. [14]
that also placed a bound on the reheat temperature.)
Interestingly, this temperature is well below the temper-
ature required in grand unified theory scale models of
baryogenesis that may help to explain the matter to
antimatter asymmetry, so this is potentially quite important.

VIII. INCLUDING QUARTIC COUPLING

While the resonance due to the −κϕh2=2 term in Eq. (4)
may dominate the growth in the Higgs field, an inflaton
annihilation term −αϕ2h2=2 in the action can also be
considered,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−R

16πGN
þ 1

2
gμν∂μh∂νhþ 1

2
gμν∂μϕ∂νϕ

− VhðhÞ − VϕðϕÞ −
κ

2
ϕh2 −

α

2
ϕ2h2

�
: ð47Þ

The Feynman diagram for this annihilation is given in the
lower part of Fig. 2. This changes the equation of motion
for the mode functions to

v̈kðtÞ þ 3HðtÞv̇k þ
k2

a2ðtÞ vk þ κϕðtÞvk þ αϕ2ðtÞvk ¼ 0:

ð48Þ

Following the same steps as before, the Mathieu approx-
imations can be used again to analyze the effects of varying
α by first setting κ ¼ 0 and noticing that

ϕðtÞ2 ≈ ϕampðtÞ2 cos2ðmϕtÞ ¼
ϕampðtÞ2

2
ð1þ cosð2mϕtÞÞ:

ð49Þ
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Thus, the change of variables for the pure α theory
analogous to Eq. (25) is

τ¼mϕt; A¼k2phys
m2

ϕ

þ α

2m2
ϕ

ϕ2
amp; q¼ α

4m2
ϕ

ϕ2
amp: ð50Þ

The Floquet exponent for α ¼ 10−8 (with κ ¼ 0) with
respect to ϕamp and kphys is shown in Fig. 8.
Figure 9 shows the numerically calculated growth for a

pure α theory as well as the previously discussed con-
straints. Unlike in the pure κ theory, the growth in the Higgs
fields fluctuates even as α increases steadily. The reason for
this may be due to the fact that the bands of resonance in
Fig. 8 are much more narrow than in Fig. 4. As result, the
Universe may spend very little time in the resonance bands
when κ ¼ 0. Meanwhile, ϕ is consistently oscillating as a
cosine, and so ϕ can accidentally pass through a maximum
or minimum as it redshifts through the instability bands. As
a result, a small shift in the bands can result in an altered
amount of resonance either up or down. However, the
overall trend for large α is growth.
Limiting the Higgs field growth to be a factor of around

100, as discussed earlier, gives the bound

α < 10−8: ð51Þ

(This result can be compared to Ref. [13], which also
placed a bound on this quartic coupling. Related work also
includes Refs. [8–12,14–26].) Note that here we are only
considering the case α ≥ 0, as the negative α case leads to

an unbounded inflation-Higgs field potential, which we do
not consider here.

IX. COMBINING CUBIC AND QUARTIC

Finally, the growth in the Higgs field with both cubic κ
and quartic α couplings included can be calculated numeri-
cally from Eq. (48). The resulting constraints are given in
Fig. 10. The plot recovers the limits as were previously
discussed in this paper, if one sets one of the parameters

FIG. 8. Floquet exponent for Higgs field resonance due to
quartic coupling for α ¼ 10−8 (and κ ¼ 0). Brighter yellow
regions represent regions of greater resonance and a larger
characteristic exponent as specified by the color legend. The
red lines represent how a particular wave number k evolves as
kphysðtÞ and ϕampðtÞ decrease with the expansion of the Universe.

FIG. 9. Late time growth in Higgs field variance hh2i=hh2ifree
as a function of α (with κ ¼ 0). Dotted lines represent where the
Higgs field grows by a factor of 20 (cyan), 100 (orange), and
3300 (red).

FIG. 10. Constraints on κ and α during reheating. The colored
regions correspond to violating hh2i=hh2ifree < 20 (conservative
bound, cyan), 100 (intermediate bound, orange), and 3300
(generous bound, red).
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toward zero. The contour lines again appear jagged, which
is due to the same reason the pure α (and to some extent
pure κ) results in Fig. 9 were not smooth.
Figure 10 is one of our primary results, however, we

shall constrain the allowed parameter space further in the
next section.

X. INSTABILITY DURING INFLATION

Apart from resonance caused by inflaton couplings
during reheating, the Higgs field is also at risk of going
over its hilltop during inflation due to the large energy
scales at this time. This is because, even though the inflaton
is slowly rolling during inflation and there is no resonance
into the Higgs field, there can be important quantum
fluctuations. Specifically, the Gibbons-Hawking de Sitter
temperature of inflation is [29]

TdS ¼ Hinf

2π
: ð52Þ

As a result, any light scalar field fluctuates as
ffiffiffiffiffiffiffiffiffi
hh2i

p
≈

Hinf=2π per Hubble parameter time. Since inflation lasted
aboutNe ≈ 55Hubble parameter times, the total fluctuation
after random walks becomes

ffiffiffiffiffiffiffiffiffi
hh2i

q
≈

ffiffiffiffiffiffi
Ne

p Hend

2π
; ð53Þ

where Hend represents Hubble parameter at the end of
inflation and may be close to ∼1013 GeV (it cannot be
significantly larger, as this would overproduce gravitational
waves). Such fluctuations already exceed the hmax values
seen in Fig. 1.
Interestingly, coupling to the inflaton can actually help

this issue. During inflation, the inflaton field is very large
and roughly constant. As a result, the coupling terms in the
potential ΔV ¼ 1

2
ðκϕinf þ αϕ2

infÞh2 can be interpreted as an
additional effective Higgs field mass,

m2
eff ≡ κϕinf þ αϕ2

inf : ð54Þ

This effective mass can push hmax to higher energies during
inflation and help to avoid causing an instability during
inflation. Combining this new effective contribution to
the Higgs field potential, with the renormalized potential,
we obtained the total Higgs field potential in Fig. 11.
In order to save the Higgs field from creating an

instability, it is necessary that hðinfÞmax ≫
ffiffiffiffiffiffiffiffiffi
hh2i

p
∼1013GeV.

The same probability arguments from earlier can be applied

to find the required hðinfÞmax . For a generous constraint,

Pinf ∝ exp

 
−
ðhðinfÞmax Þ2
2hh2i

!
< e−1 ð55Þ

would put the probability the Higgs field growing too large
during inflation at around 40%. This corresponds to

hðinfÞmax >
ffiffiffiffiffiffiffiffiffiffiffi
2hh2i

q
≈ 2 × 1013 GeV: ð56Þ

For a very conservative estimate, the probability of reach-

ing hðinfÞmax can be set again to e−3Ne so that only one Hubble
parameter patch may become unstable,

Pinf < e−3Ne: ð57Þ

This puts the hilltop at

hðinfÞmax >
ffiffiffiffiffiffiffiffi
3Ne

p ffiffiffiffiffiffiffiffiffiffiffi
2hh2i

q
≈ 3 × 1014 GeV: ð58Þ

By adding the effectivemass to the Higgs field potential, the

turnover hðinfÞmax can be determined as a function of κ and α.
The generous constraint corresponds to meff > mcrit ¼

1.6 × 1012 GeV, while the conservative constraint corre-
sponds to the bound meff > mcrit ¼ 2.8 × 1013 GeV. An
intermediate value can be taken to be meff > mcrit ¼
1013 GeV. Note that toward the end of inflation, ϕ
decreases to the value ϕinf , decreasing meff and, therefore,
this provides the tightest bound. By estimating the end of
inflation as ϕinf ¼

ffiffiffi
2

p
MPl, the following constraint can be

put on the coupling coefficients:

ffiffiffi
2

p
κMPl þ 2αM2

Pl > m2
crit: ð59Þ

FIG. 11. Higgs field potential including additional effective
masses of 0 (solid black), 1.6 × 1012 GeV (dashed red),
1013 GeV (dashed orange), and 2.8 × 1013 GeV (dashed cyan).
This is for the central top mass value of mtop ¼ 172.9 GeV. The
red, orange, and cyan correspond to the generous, intermediate,
and conservative limits on the effective mass, respectively.
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These constraints can be added to Fig. 10 to produce
Fig. 12, which is our primary result. This figure extends
beyond existing results and is useful to summarize the
space of allowed couplings.
In this figure, the white (blank) region is allowed, as the

Higgs field is sufficiently stable. While the colored regions
are ruled out, due to either an instability during reheating
(upper right) or an instability during inflation (lower left).
Here we focus on κ > 0; for κ < 0, the constraints from
inflation are more severe, as this coupling worsens the
problem (we are adopting the convention that ϕinf > 0).
Figure 12 implies that α must be nonzero in order to

avoid instabilities during inflation. At the same time, it
must be true that κ is nonzero in order for inflaton decay to
properly reheat the Universe. While κ ¼ 0 would not cause
an instability during reheating or during inflation, it would

mean that the inflaton could only produce Higgs field
particles via annihilation. This process requires two infla-
ton particles to find each other, which becomes less and less
probable with time.

XI. CONCLUSION

In this work, we have taken the SM seriously to high
energies. Under this assumption, we have shown that
(for weak couplings) the inflaton cubic coupling to the
Higgs field must have a coupling strength of at most
κ < 1.6 × 10−5mϕ ∼ 2.2 × 108 GeV, while the coefficient
for the quartic coupling is constrained by α < 10−8. This
arises from demanding that the probability of the Higgs
field going over its hilltop remains low despite resonance
effects. The upper bound on κ also places a bound on the
reheat temperature of Treh ≲ 9.2 × 109 GeV, since in this
framework inflaton decays into Higgs field would domi-
nate. This may have important implications for classes of
models of baryogenesis, which often appeal to extremely
high temperatures. Further constraints arise during inflation
from de Sitter fluctuations, implying α must be nonzero,
while κ must also be nonzero for the inflaton to decay
efficiently.
Further work includes considering other possible cou-

plings between the inflaton and SM particles. Although
these would be higher dimension operators, it would be
important to determine under what conditions this may
impact the results found here.
Other directions include the work in Ref. [26], where it

was found that if the inflaton Higgs field cubic coupling κ is
significantly larger than that focused on here (namely,
κ ∼ 0.5mϕ), and if the inflaton is moderately light (mϕ ≲
1012 GeV), one can cure the Higgs field potential entirely
(this would be in a region far to the right of that displayed in
Fig. 12). It would be useful to explore a larger portion of
parameter space to consider all these possibilities.
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