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Terminal velocity reached by bubble walls in first-order phase transitions is an important parameter
determining both primordial gravitational wave spectrum and the production of baryon asymmetry in
models of electroweak baryogenesis. We developed a numerical code to study the real-time evolution of
expanding bubbles and investigate how their walls reach stationary states. Our results agree with profiles
obtained within the so-called bag model with very good accuracy; however, not all such solutions are stable
and realized in dynamical systems. Depending on the exact shape of the potential there is always a range of
wall velocities where no steady-state solutions exist. This behavior in deflagrations was explained by
hydrodynamical obstruction where solutions that would heat the plasma outside the wall above the critical
temperature and cause local symmetry restoration are forbidden. For even more affected hybrid solutions
causes are less straightforward. However, we provide a simple numerical fit allowing one to verify if a
solution with a given velocity is allowed simply by computing the ratio of the nucleation temperature to the
critical one for the potential in question.
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I. INTRODUCTION

Phase transitions are a common feature of particle
physics models. If they are first order they can open a
path to numerous phenomena such as the production of
both the baryon asymmetry [1–4] and a stochastic back-
ground of gravitational waves (GWs) [5–8]. Significant
progress has been made recently in understanding fine
details of the dynamics of such transitions necessary to
describe the intricate relation between these possibilities
[9–17]. Despite that, determining the bubble wall velocity
in the stationary state remains a problem. Given its impact
on both the amplitude of the GW signal as well as the
production of the baryon asymmetry, this issue needs to be
solved in order to finally pinpoint the interplay between
these two signals.
Contrary to nucleation temperature or transition strength,

the wall velocity is not a straightforward consequence of
the shape of the effective potential. The standard Wentzel-
Kramers-Brillouin (WKB) method of computing the veloc-
ity involves solving a set of Boltzmann equations in the
vicinity of the bubble wall in order to find the friction
the plasma will enact on the expanding wall. However, the
result still crucially relies on the hydrodynamical solution
for the plasma profile [13,15,18]. It is a standard practice
to use the plasma behavior obtained in the bag model in

these studies. The obvious drawback of this approach is
that the bag equation of state (EOS) inherently neglects all
knowledge of the potential except the energy difference
between its minima [19].
In this work, we investigate the impact that features of the

potential have on hydrodynamical solutions for the plasma.
To this end, we perform lattice simulations tracking the real-
time evolution of the scalar profiles coupled to the plasma that
describe a single expanding bubble. We use novel methods
that allow us to properly resolve shocks forming in the
fluid and prevent the appearance of unphysical artifacts. This
allows us to study for the first time in detail the evolution of
the system for relatively strong transitions and fastest walls
that still form heated fluid shells around bubbles. Increased
temperature results in large baryon yields while large tran-
sition strength and wall velocity provide a strong GW signal
making this part of the parameter space the most promising
for the realization of both [9,14,15,17]. We find that the
problem of hydrodynamical obstruction [20] persists for
stronger transitions and faster walls rendering a large class
of solutions unstable. This constitutes a forbidden range for
bubble wall velocities particularly impacting the most prom-
ising solutions with the fastest walls which still lead to a
formation of heated fluid shells surrounding the bubbles.

II. THE MODEL: SCALAR FIELD COUPLED
TO PERFECT FLUID

In this work, we investigate a system consisting of the
scalar field ϕ coupled to the perfect fluid described by its
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temperature T and local flow four-velocity u [21–25]. The
equation of state is given by

ϵðϕ; TÞ ¼ 3aT4 þ Vðϕ; TÞ − T
∂V
∂T

; ð1Þ

pðϕ; TÞ ¼ aT4 − Vðϕ; TÞ; ð2Þ

where a ¼ ðπ2=90Þg� and w≡ ϵþ p. For the effective
potential Vðϕ; TÞ we use a simple polynomial
potential augmented with high-temperature corrections
parametrized as

Vðϕ; TÞ ¼ 1

2
γðT2 − T2

0Þϕ2 −
1

3
δTϕ3 þ 1

4
λϕ4: ð3Þ

The energy-momentum tensor of the system is a sum of
energy-momentum tensors for the field and the fluid,

Tμν
field ¼ ∂

μϕ∂νϕ − gμν
�
1

2
∂αϕ∂

αϕ

�
; ð4Þ

Tμν
fluid ¼ wuμuν þ gμνp; ð5Þ

where p is the pressure of the perfect fluid.
The energy-momentum tensor of the system is conserved

ð∇μTμν ¼ 0Þ, however, both contributions are not con-
served separately due to extra coupling term parametrized
by the effective coupling of the fluid and scalar,

∇μT
μν
field ¼ −∇μT

μν
fluid ¼

∂V
∂ϕ

∂
νϕþ ηuμ∂μϕ∂νϕ; ð6Þ

where η is a constant parametrizing strength of this
interaction [26].
We use spherical coordinates in space as they capture

the symmetry of a single growing bubble that we intend
to simulate. The final form of equations of motion and
their discretization is described in the Supplemental
Material [30].
The key parameters characterizing the transition are

the nucleation temperature Tn at which at least one bubble
appears per horizon and the amount of the vacuum energy
released in the transition normalized to the energy of the
radiation bath ρr. In the fluid approximation, it can be
defined as

α ¼ θs − θb
ρr

����
T¼Tn

; ð7Þ

where θ is the trace anomaly in the symmetric (s) and
broken (b) phase, given by the expression,

θ ¼ 1

4
ðϵ − 3pÞ: ð8Þ

Note, that this definition of the trace anomaly applied to
the equation of state (1) and (2) corresponds to the standard
definition of α ¼ 1

ρr
ðΔV − T

4
Δ ∂V

∂TÞ [54,55].

III. ANALYTICAL APPROXIMATION:
BAG MODEL

A simple model describing analytically many important
features of the late-time evolution of our system is the bag
model [19]. It neglects the scalar field approximating its
profile as a step function connecting the two vacua. The
equation of state reads

ϵs ¼ 3asT4
s þ θs; ϵb ¼ 3abT4

b þ θb; ð9Þ

ps ¼ asT4
s − θs; pb ¼ abT4

b − θb; ð10Þ

where θs and θb correspond to the symmetric phase outside
the bubble and broken phase inside, respectively. Assuming
that the vacuum energy vanishes in the broken phase as
the field is in the global minimum of the potential we
have θb ¼ 0.
Therefore, the strength of the transition can be consis-

tently defined with the Eq. (7). Assuming that the plasma
is locally in equilibrium, the energy-momentum tensor
can be parametrized for the perfect fluid as in Eq. (5).
Conservation of Tμν

fluid along the flow and its projection
perpendicular to the flow, respectively, give

∂μðuμwÞ − uμ∂μp ¼ 0; ð11Þ

ūνuμw∂μuν − ūν∂μp ¼ 0; ð12Þ

with ūμuμ ¼ 0 and ū2 ¼ −1. As there is no characteristic
distance scale in the problem, the solution should depend
only on the self-similar variable ξ ¼ r=t, where r denotes
the distance from the center of the bubble and t is the time
since nucleation. Changing the variables, Eqs. (11) and (12)
take the form

ðξ − vÞ ∂ξϵ
w

¼ 2
v
ξ
þ ½1 − γ2vðξ − vÞ�∂ξv; ð13Þ

ð1 − vξÞ ∂ξp
w

¼ γ2ðξ − vÞ∂ξv; ð14Þ

and using the definition of the speed of sound in the
plasma c2s ≡ dp

dT =
dϵ
dT can be combined into the single

equation describing the plasma velocity profile vðξÞ in
the frame of the bubble center

2
v
ξ
¼ γ2ð1 − vξÞ

�
μ2

c2s
− 1

�
∂ξv; ð15Þ
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with μ ¼ ξ−v
1−ξv denoting the Lorentz-transformed fluid

velocity. Solutions of Eq. (15) in general depend only
on the transition strength α and bubble wall velocity in the
stationary state ξw. In a similar way, analytical profiles for
the enthalpy w, temperature T and other thermodynamical
quantities can be obtained. Later we will refer to them
to compare the results of our simulations with the
analytical solutions. Detailed derivations are described
in [15,19,56,57]. In general, there exist three types of
the bubble wall profiles:
(1) Deflagrations are the solutions with subsonic bubble

wall velocity ξw. In such a case, the expanding
bubble pushes the plasma in front of it, while behind
the bubble wall plasma remains at rest. Typically, the
value of v decreases with ξ in the range ½ξw; cs� and
vanishes for ξ > cs. Therefore, a shock front at
ξ ¼ cs may appear if the transition is strong enough.

(2) Detonations are supersonic solutions, for which
bubble wall velocity exceeds the Jouget velocity
cJ [see Eq. (16)]. In this type of profile, the wall hits
plasma which remains at rest in front of the bubble.
As fluid enters the broken phase, it is accelerated
with its velocity decreasing smoothly and reaching
zero at ξ ¼ cs.

(3) Hybrids are combinations of the two types men-
tioned above. They are realized for ξw ∈ ½cs; cJ�
and possess features of deflagrations (shock front
in front of the wall) and detonations (nonzero
plasma velocity behind the wall known as a rarefac-
tion wave).

The Jouget velocity cJ at which the shell around the
bubble disappears and the solution shifts from hybrid to
detonation is given by Chapman-Jouguet condition [15,58]

cJ ¼
1ffiffiffi
3

p 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3α2 þ 2α

p

1þ α
: ð16Þ

This is a crucial threshold as in particle physics models
the friction typically grows with the temperature. Thus, if
for a given potential the strength is large enough for the
wall to accelerate above this velocity, the disappearance
of the heated fluid shell around the bubble also lowers the
friction substantially. As a result, in simple extensions
of the Standard Model, one does not expect to find
detonations with wall velocity significantly below the
speed of light. While such very fast walls are optimal for a
strong GW signal they do not generate a significant
baryon asymmetry. In fact, it is the velocity just below cJ
that prove to produce the largest baryon yield due to
increased temperature in the plasma surrounding the
bubble [14–17]. However, for the purpose of our scans,
the nonequilibrium part of the friction is a free parameter
and we adjust it to obtain all stable solutions including
detonations.

IV. RESULTS FROM NUMERICAL SIMULATIONS

In this section, we will discuss the results of our
numerical simulations. Every simulation is performed
on the lattice with spacing δr ¼ 0.01 GeV−1 and time step
δt ¼ 0.001 GeV−1. The time duration of the evolution is
large enough to asymptotically achieve stationary states
and is set to tmax ¼ 120 GeV−1. Similarly, the physical size
of the lattice is fixed as R ¼ ctmax which is large enough to
prevent reaching the boundaries by the bubbles, since they
expand subluminally.
We initialize each simulation with the recently nucleated

bubble, fixing the field configuration to the critical profile
and setting T ¼ Tn and v ¼ 0 everywhere. The procedure
for determining nucleation temperature Tn and the critical
profile is described in Supplemental Material [30].
We have begun with the validation of our method on two

benchmark points studied in the existing literature. We also
compared our stationary states and those predicted by the
bag model described in the previous section finding very
good agreement. Results and details of both comparisons
can be found in the Supplemental Material [30].
The exact relation between the wall velocity ξv and the

friction parameter η is not unique and depends not only
on the strength of the transition α, but also on other
parameters defining the scalar potential. We start with the
dependence of the results on the vacuum expectation value
of the scalar field. We verified that the friction scales
proportionally to the inverse of field value in the true
vacuum. This fully determines the position of the gap in
terms of friction parameter and to provide general results
we will use the normalized value of the friction v0η
already including this scaling.
Next, we move on to the much more interesting depend-

ence of the results on the nucleation temperature Tn. We
study a set of different potentials for which the transition
strength α and the critical temperature Tc, at which the two
minima in the potential are degenerate, are both fixed. The
other parameters in the potential are chosen such that they
predict a set of different nucleation temperatures. The value
of the friction parameter depends on the field content of
the model and as a result, we keep it as a free parameter.
We logarithmically vary it in the range η=Tc ∈ ½0.01; 1�,
independently checking around 75 values for every scalar
potential which is enough to map all the allowed classes of
solutions in each case.
Relations between the friction η and wall velocity ξw in a

range of Tn are shown the upper panels of Figs. 1 and 2 for
α ¼ 0.05 and α ¼ 0.1, respectively.
There we can see that higher nucleation temperatures

lead to a wider velocity gap, while for lower temper-
atures, almost the entire range of wall velocities can be
covered. Note that nucleation temperatures very close to
the critical temperature limit the bubble wall velocity for
both deflagrations and hybrids so the speed of sound is
never reached.
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This dependence is made clearer in the lower panels of
Figs. 1 and 2, where we show values of temperature at the
peak of the bubble wall profile for different nucleation
temperatures and values of α. As we see in general it is not
possible to find a stationary state if the temperature in the
profile significantly exceeds the critical temperature. This is
an important condition for the part of the velocity gap
below cs and indeed this hydrodynamical obstruction was
already proposed in the small velocity limit [20], where the
authors derived an approximation for the maximal subsonic
wall velocity. Our results agree roughly with this limit
when the nucleation temperature is very close to the critical
one. However, we found that a similar behavior continues
for much lower temperatures and also supersonic solutions
are affected. The mechanism itself in those cases becomes
less straightforward as the instability sets in when the
temperature reached within the shells is significantly below
the critical one.
Our results show that a range of wall velocities is

forbidden and the width of the gap depends on the relation
between the critical and nucleation temperatures. The
forbidden region is shown in Fig. 3 for the relatively large
values of the transition strength which we studied. The
upper limit showing the slowest possible detonations is

FIG. 2. Relation between the friction parameter η and bubble
wall velocity in the stationary state ξw (upper panel) and the
maximum of the plasma temperature along the profile (lower
panel). Potentials are chosen such that the strength of the
transition is fixed to α ¼ 0.1. The value of the nucleation
temperature Tn is encoded with the color.

FIG. 1. Relation between the friction parameter η and bubble
wall velocity in the stationary state ξw (upper panel) and the
maximum of the plasma temperature along the profile (lower
panel). Potentials are chosen such that the strength of the
transition is fixed to α ¼ 0.05. The value of the nucleation
temperature Tn is encoded with the color.

FIG. 3. Forbidden wall velocities (shaded regions) for two
values of α ¼ 0.1 (orange) and α ¼ 0.05 (red). Dashed lines
indicate the Jouguet velocities cJ [see Eq. (16)] and the speed of
sound cs. At high temperatures, hydrodynamic obstruction limits
the velocities of both detonation and deflagration solutions. At
lower temperatures detonations are realized above the Jouguet
velocity as expected, however, we find the obstruction limiting
the maximal velocity of hybrids persists resulting in a range of
hydrodynamical solutions that are not realized. High-temperature
part of the limit relies on extrapolation (dotted lines) and should
be treated as a qualitative trend.
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explained through the Jouguet velocity at low temperatures
and excessive heating when approaching the critical tem-
perature. The lower limit corresponding to the fastest
solutions predicting a heated fluid shell around the bubble
is our main result. At high temperatures, it also corresponds
to heating of the shell above the critical temperature yet it
persists into supersonic solutions where the maximal
temperature does not reach the critical one.
Figure 4 shows the maximal wall velocity reached by the

deflagration/hybrid solutions as a function of the nucleation
temperature for different transition strengths. Given that in
limit of relatively large strength the result for hybrids does
not depend significantly on α we found a simple fit

ξmax
w ¼

�
1 −

Tn

Tc

�
k

with k ¼ 0.2768� 0.0055; ð17Þ

also shown in the plot, which can be used as a rough
approximation for the upper bound for wall velocities.
Direct verification of this mechanism in particle physics

models is beyond the scope of this work, however, to assess
its impact we checked our criterion against the points
from scans of the Standard Model plus a neutral singlet
presented in Ref. [17]. We found that nearly all wall
velocities predicted there will be lowered as the walls
cease to accelerate due to the obstruction before achieving
the velocities predicted by the WKB approximation. We
discuss the details of this comparison in the last section of
the Supplemental Material [30].

V. SUMMARY

We investigate the fluid solutions realized in the presence
of growing bubbles in cosmological first-order phase
transitions. We use numerical lattice simulations using

spherical symmetry of the system and compare results to
the well-known analytical solutions.
We found good agreement between the analytical pro-

files and our numerical results whenever the latter exist.
Our key result, however, is that the hydrodynamical
obstruction preventing the realization of fast hybrids is
very generic. In fact, we always find some solutions to be
forbidden and the gap in solutions becomes wider as the
temperature at which bubbles nucleate predicted by the
potential is closer to the critical temperature at which
the minima in the potential are degenerate. In extreme cases
where the temperatures are very close, no hybrid solutions
are realized and as the friction drops the allowed solutions
jump from subsonic deflagrations straight to detonations.
The mechanism behind the obstruction is well understood
in the case of deflagrations where the temperature profiles
in the gap that are not realized would simply heat the
plasma above the critical temperature and reverse the
transition. In the case of hybrids the mechanism is more
complicated and even solutions that do not reheat to such
dangerous levels are not realized.
While the effect is yet to be confirmed directly in

particular models we expect it to be general. Our calcu-
lations were performed for a simple toy potential, however,
we express them in terms of general characteristics shared
by all models predicting a first-order transition.
The existence of the velocity gap will have a crucial

impact on predictions of models realizing electroweak
baryogenesis. This is due to the fact that the fastest walls
that did not accelerate enough to become detonations
are the ones most likely to be affected and the effect would
persist even in low temperatures. Such solutions were
recently shown to predict the largest baryon yields. Thus
our results are likely to exclude parts of the parameter space
of models most promising for electroweak baryogenesis
and impact their viability as solutions to the problem of
baryon asymmetry.
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FIG. 4. The maximal wall velocity on the deflagration/hybrid
branch computed in numerical simulations as a function of the
nucleation temperature Tn together with the fit from Eq. (17)
(solid line) and its variation within 3σ of the best-fit parameters
(dashed lines).
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