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It has been shown that both scalar and tensor modes with non-Bunch-Davies initial states can enhance
the amplitudes of the primordial bispectra compared to those with the Bunch-Davies state, especially for
wave number modes in a flattened triangle configuration. However, in the case of the non-Bunch-Davies
scalar modes, it has also been found that those enhancements in Fourier space are somewhat reduced
in bispectra of cosmic microwave background (CMB) fluctuations. In this paper, we show that the
enhancement resulting from the tensor modes is partially reduced to a degree differing from that of the
scalar modes, which makes the non-Bunch-Davies effects unobservable in gravitational theories with
the same quadratic and cubic operators of the tensor perturbations as general relativity. Furthermore, we
present examples of gravitational theories yielding enhancements that would potentially be detected

through CMB experiments.
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I. INTRODUCTION

Inflation [1-3] is regarded as a successful paradigm for
the early Universe, providing an elegant resolution for
various problems in the standard big bang cosmology and
the mechanism behind the generation of the rich structures
of our Universe. In the future, it is expected that cosmo-
logical observations will clarify which model of inflation
aligns best with the actual early Universe.

Correlations in the cosmic microwave background
(CMB) are anticipated to serve as distinctive fingerprints
for differentiating inflation models, and this has been a
focus of extensive research in the past [4-6]. While
temperature correlations have been observed with remark-
able precision, confirming nearly perfect Gaussian power
spectra and very small non-Gaussianity, the statistics of
polarization remains less certain. Significant improvements
in the accuracy of future observations are anticipated.

In this context, the study of non-Gaussianity stands at
the frontier of cosmology. The detection of higher-order
spectra, such as the bispectrum of polarization, can be
regarded as the final objective in CMB observations.
Specifically, given that B-mode polarization is not gen-
erated from curvature fluctuations but solely from gravi-
tational waves [7], the statistical nature of B-mode
polarization constitutes a vital area of research. This holds
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the potential to significantly contribute to our understand-
ing of the physics of the extremely early Universe.

In this paper, we study the effects of the tensor modes
with non-Bunch-Davies initial conditions on the bispectra
of the CMB fluctuations. The primordial power spectra
and bispectra associated with the non-Bunch-Davies states
have been comprehensively studied [8—45]. In particular, in
Refs. [8-12,15,18,29,39,40,43-45], it has been demon-
strated that the primordial bispectra for nearly flattened
triangles can be enhanced in the presence of the modes that
deviate from the Bunch-Davies state. However, it has also
been found in Ref. [9] that a part of the enhancements in
the primordial scalar bispectra are reduced due to the
necessary angular average when deriving the CMB bispec-
tra. This reduction has not been discussed in the context
of the tensor non-Gaussianity yet. In addition, different
from the scalar non-Gaussianities, the tensor ones for the
exactly flattened triangle vanish, which has been shown
in Ref. [39]. (See also Ref. [45] for some debate about
subtlety.) Therefore, it is important to investigate how the
enhancements around the flattened triangles are reduced in
the observable quantities originating from the tensor non-
Gaussianities.

The primordial non-Gaussianities that peak around
flattened triangles are considered to be generated on
subhorizon scales. Thus, one might naively think that such
non-Gaussianities would be amplified more if there were
cubic operators involving higher derivatives. The cubic
operator is unique in a certain class of gravitational theories
(e.g., general relativity with a canonical scalar field),
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whereas additional cubic operators with higher derivatives
are in some extended theories [e.g., the Horndeski theory,
which gives the most general second-order field equations
for a scalar field and a metric [46—48], and its generalized
theory called Gleyzes-Langlois-Piazza-Vernizzi (GLPV)
theory [49-51]]. So far, tensor non-Gaussianities in such
extended theories have been analyzed in a unified way
within the GLPV theory by Ref. [39]. In this paper, in the
same way as in the literature, we first investigate the impact
of tensor non-Gaussianities on CMB bispectra in the
GLPV theory. Subsequently, we also see whether a further
extension of a gravitational theory with higher-derivative
cubic operators would result in further enhanced CMB
bispectra or not.

This paper is outlined as follows. In the following
section, we introduce our setup to describe scalar and
tensor perturbations with non-Bunch-Davies initial states.
In Sec. III, we first review the reduction of the enhancement
of the scalar non-Gaussianities in the process of angular
average. Then we extend the method used for the scalar
non-Gaussianities to the tensor ones and clarify how the
enhancements are reduced. In Sec. IV, we evaluate the
actual enhancements in CMB bispectra in GLPV and
beyond-GLPV theories, taking into account the aforemen-
tioned reduction. We summarize this paper in Sec. V.

II. SETUP

We begin with a spatially flat Friedmann-Lemaitre-
Robertson-Walker spacetime and employ the following
Arnowitt-Deser-Misner (ADM) metric:

ds? = ~N2d7 + 7, (d + N'dr) (d + Nidr). (1)

where N =1,N; =0, and y,;; = a’5;; with a denoting
the scale factor at the background level. Throughout this
paper, we consider de Sitter inflation models where
the scale factor is a ~—1/(H#n) with the Hubble para-
meter H := (da/df)/a ~const. and conformal time 7.
The perturbed variables are defined in the unitary gauge,

b(1,%) = ¢(1), as

N:1—|—5n, Nl:()l)(, (2)
=a’e®*(5;+h lh h* 3
vij = arem (O A iy S ichy e ) (3)

where one obtains the auxiliary fields én and y by solving
the constraint equations, and we denote the curvature per-
turbation by ¢ and the gravitational waves by #;;.

Throughout this paper, we consider the non-Bunch-
Davies initial states under which the quantized perturba-
tions are expanded as

£(t.K) = Cuby + &by (4)
hir.) = 3 [ el (k)p) el (k).
(5)

where the transverse and traceless polarization tensor egy (k)

satisfies el(-;)(k)el(;/)*(k) = §,y, the subscript s denotes the
two helicity modes of the gravitational waves, and b; (bl(f)"')
and by (bf)) stand for the creation and annihilation
operators of the scalar modes (tensor modes), respectively.

Also, those operators satisfy the canonical commutation
relations,

[by.bl] = (27)*5(k — k'), (6)
(b, b0)T] = (27)36,06(k — K'), (7)
others = 0. (8)

The mode functions with the non-Bunch-Davies states
are obtained from those with the Bunch-Davies one via
Bogoliubov transformations. In particular, when u; and
v, stand for the positive frequency mode function of the
curvature perturbations and tensor perturbations, respec-
tively, we have

Cr = aguy + Pruy, 9)
v = o v+ B0 (10)

where the Bogoliubov coefficients satisfy the following
normalization conditions:

l? = B> =1, (11)
R - B0 = 1. (12)

The explicit forms of the mode functions depend on a
concrete model, which will be defined later.

III. REDUCTION OF NON-BUNCH-DAVIES
EFFECTS

If the initial perturbations were in the Bunch-Davies
state, the solution of the mode function is represented by
the positive frequency mode. In contrast, if they began in
the non-Bunch-Davies states, the solution includes both
positive and negative frequency modes. The interplay
between these modes has been shown to yield enhance-
ments of the primordial bispectra, the quantity calculated
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in Fourier space [8-12,15,18,29,39,40,43—-45]. However,
it has been shown that the enhancements of the scalar
autobispectrum are somewhat reduced in the CMB (tem-
perature) bispectrum, the quantity obtained after projecting
the primordial scalar bispectrum onto the two-dimensional
celestial surface [9]. In the following subsection, we first
review a method used in Ref. [9] to clarify the reduction for
the scalar autobispectrum. Then we extend that method
to the tensor autobispectrum and quantify the extent of
reduction in enhancements.

A. Scalar bispectrum

Let us review the analysis in Ref. [9]. The primordial
bispectrum of the curvature perturbations B; is defined by
<€(k1)C(k2)§(k3)> = (27)%5(k; + k, + ks;)B:. (13)
The three-point correlation function can be obtained by
following the in-in formalism. The authors of Ref. [9]

considered the scalar-field model where the quadratic
action of curvature perturbations is of the form

F
sY = / drd3xa’ [g 2 ——S(a 0) ] (14)
The mode function can be derived from the above as

Uy :m{\/ H3/2( cskn),  (15)

where H <31/)2 is the Hankel function of the first kind of order

3/2 and c? is the square of the propagation speed of the
curvature perturbations defined by ¢? := F/Gs. Here, it
has been assumed that Gg, Fg are constants. In this
|

&k, d°k, d°k;

framework, the resultant primordial bispectrum includes
the following term [9]:

= f,(k) / " dn(=n)

where l}j = —k; + kj1 + ko with j being defined mod-
ulo 3 and 7, is the conformal time when the perturbations
are on subhorizon scales, —ck;17y > 1. We assume that
the theories considered in the present paper are valid up
to the cutoff scale A = k/a(ng) ~ (—kny) - H. Note that,
unlike in the case of the Bunch-Davies state where l~cj

takes the value k; + k; | + k; ., the coefficient of k; in k j
has the opposite sign to the others due to mixing between
the positive and negative frequency modes. Seen from
the above equation, the condition c‘l~<,170 < 1 leads to a
nonoscillating integrand, which produces a peak around
k = 0. We call k =0 (e, kj = kj + kj;») the exact-
ﬂattened conﬁguratlon

Equation (16) is a key integral to evaluate the enhance-
ment of the primordial scalar bispectrum and its reduction
for the CMB bispectrum. The other terms in the primordial
bispectrum are irrelevant to the arguments on the enhance-
ment and the reduction, which we do not consider here.
Equation (16) yields the term proportional to (—k;ng)"+!
in the primordial bispectrum for the flattened triangle,
whereas it has been shown in Ref. [9] that the CMB
bispectrum receives O((—k;ny)") enhancement, i.e., one
power of (—k;ng) is reduced in the quantity observed by
CMB experiments. In the following, we first review the loss
of one power of (—k;1) in the CMB bispectrum originating
from the curvature perturbations.

The contribution from Eq. (16) to the three-point
correlation function of CMB fluctuations reads

ne—icxfc/-n’ (16)

(@ym, Qlymy Atymy) = (4r)* (- )I'Hﬁl*/

(27)* (27)* (27)°

T, (k)T 1, (k2)T 1, (k3) Y7, (R1)Y],,, (712)

x Y}, (7 n3)(2m)38(ky + ko + k3) By
> (4 (e [ K S T (kT ()T, ()Y, 0¥ )

x Y7

l3ms

where a,, are the expansion coefficients of the CMB
fluctuations in terms of the spherical harmonics, 71; are unit
vectors defined by #; = k;/|k;| (i =1, 2, 3), and T,(k)
denotes a transfer function of the temperature fluctuation
or the E-mode polarization originating from the scalar
perturbations.

(3)(27) (k) + Kk, + k3)Z,, (17)

In Ref. [9], the manipulations for the argument on the
reduction have been performed in an analytical way as
follows. The time integral in Z is sharply peaked at the
flattened configuration, contrasting with other components
such as 7,(k),Y;,(7), and f(k;). Consequently, the
dominant contribution comes from the time integral in
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Eq. (16) for the flattened triangle. In light of this, after performing k;,, integral for any j via the delta function, the authors
of Ref. [9] took the flattened limit of 7,(k), Y7, (72), and f(k;),

A

*

Y*

* *

Lo ADYT o (A Y] e (Rja) = Y7 ()Y ()Y () (18)

and k;., = |k; — k| = |k; — k4| in T, (k) and f(k;). Then, they performed the angular integral with respect to 72; (the

angle between k; and k; ) as

/ @h,1(k) = 2n / " dn(=n)"

2 2
1o Cs kjkj+1’7

indicating that one power of |kn| in the primordial
bispectrum is diminished in the CMB bispectrum since
B o (—n0)"*". Indeed, similar reductions in the exponent
have been reported in numerical calculations given in a
previous study [11]. In the following subsection, we adopt a
similar analytical approach to evaluate the three-point
function of the tensor perturbations.

B. Tensor bispectrum

The three-point function of the tensor perturbations is
defined by

(00K )E) (ko)) () = (27)°6(k, + ko + k3) B,
(20)

where £ (k) == h;;(t. k)eﬁf)*(k), and By, is the primordial
bispectrum of the tensor perturbations. Throughout this
paper, we focus on the gravitational theories that yield the
standard form of the quadratic action,

s = / drd3xa? [gTh%j—F—ZT(akhij)z . (21)
a

General relativity is the simplest example giving this
quadratic action with Gy = F = Mj,. The Horndeski
theory, which yields the most general second-order field
equations [46—48], and the GLPV theory [50,51] also have
Eq. (21) as their quadratic action. (See also Ref. [52] for a
review for these frameworks.) Furthermore, we will also
consider a beyond-GLPV class having the above quadratic
action in this paper.
In this framework, the mode function is obtained as

2 E

=G F 2 Ve (=cikn). (22)

Vg

where ¢3 = F1/Gr, and we assumed that G; and F are
constant similar to Gg and Fg. In the present setup, the
primordial tensor autobispectrum is proportional to k; and

[eZicl\ijn(] —icy(k; + kj+1)’7) - (1 —icy(k; — ij)n)} « (=n9)",  (19)

vanishes for I~cj = 0." (See Ref. [39] and the Appendix.) By
taking this into account, we apply a similar argument as
Eq. (16) to the tensor mode and get

0 - o
I),:= fh(k,»,s,»)/ dl’[Chkj(—l’])"e_’Chk./”’ (23)

o

where i = 1,2, 3 and f}, # 0 for k; = 0. Since the explicit
form of f), does not affect the powers of (—k;ny) as in
Eq. (16), we will not provide it explicitly. A flattened con-
figuration for the tensor perturbations gives —c,k Mo < 1.
While Z; shows a sharp peak at the flattened configuration,
T, does not since Z, = 0 for I~<j = 0. We treat Z, as a linear
combination of two functions, both exhibiting sharp peaks
at the flattened configuration, to evaluate the exponent of
(=kno). We then decompose Z,, as

Iy =1y + Ly, (24)

where

L= ifilkis) [ dng[(=nreotn]. (25)

'The authors of Refs. [43,45] obtained the three-point func-
tions that do not vanish at the flattened limit. In using the in-in
formalism, they first killed the contributions at n =7, to the
three-point function for all of the triangles by taking 5, —
—oo(1 + ie) and then took the explicit limits (e.g., the flattened
limit) to the function obtained after the time integral. In this case,
the resultant three-point function is singular at k ;7 = 0. However,
similar to the calculations performed in the context of the scalar
modes in Ref. [9], the authors of Ref. [39] kept 7, finite and
performed the time integrals separately for the non-flattened and
flattened triangles for which the integrand oscillates and does not
oscillate at 1 = 75, respectively. The three-point function ob-
tained in this way is regular at I~<j = 0 and picks up the contri-
butions at 7 =1, which are the consequence of interactions
among the subhorizon modes whose physical momenta are
k/a(ny) ~A. This discrepancy comes from the fact that
Refs. [9,39] count contributions from the partial circular contour
at large radius (—#) of the in-in formalism, but Refs. [43,45]
do not.
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Ty = infy(k;,s;) / d’?("?)'l_le_ich%m- (26)

In the nonflattened configurations (where |c,,l~<jn| > 1 on
the subhorizon scales), we have

Iy =Ty~ infy (k. s;)(—icyk;)™T(n), (27)

Ty, ~0. (28)

Note that the contour of this integration is actually
displaced from the real axis, such as 5y — ny(1 + ie),
due to the in-in formalism. Conversely, in the flattened
configurations (where |chl~cj77| <1 on the subhorizon
scales), we obtain

T~ C”"f”°fh< ) (=n0)". (29)

Ly th(ki’ Si)("?o)" (i - Ch/;jﬂo)’ (30)

Zna = fulkiisi)(=no)" (‘l +— Cth’?()) (31)
It is apparent that both Z,, and Z,, in the flattened
configuration are substantially larger than their nonflat-
tened counterparts, respectively. Therefore, Z) ; and 7,
peak at the flattened configuration. The subsequent steps
follow a similar process to that in the case of curvature
perturbations. The contributions from Eq. (23) to the CMB
bispectrum can be written as [53]

<a§]m)| alzmzal;mg> ZF:’ (32)

where

3 3 3
fﬁwMﬁewng/é;QZ§é§

xT“Nhﬂﬁ”@»T?%h)
Y* (nl)—sz Y};mz (le)—s; Y};m3(ﬁ3)

lymy

X (271')\ 5(k1 + k2 + k3)Ih,i' (33)

Here, agf,z are the expansion coefficients of the CMB

fluctuations in terms of the spin-weighted spherical harmon-
ics and T;‘Y>(k) is the transfer function of the temperature
fluctuation, E-mode polarization, or B-mode polarization
originating from the tensor perturbations. After performing
the k; , integral via the delta function and taking the
flattened limit of ’TE‘” (k),_s Y;,(7), and f,(k;), we perform
the 7; integral as

K = ki

n—1
- , 34
e (34)

F| /d2ﬁjzh’1(1}j) =2z

2zn kj—kj+1 1
————(=no)"", 35
S DA

Fz X /dzﬁjl—h’z(i&j) =

where we ignored rapidly oscillating terms such as e¢#kj+1"
because they result in highly suppressed terms after the k; |

integral. For the flattened case (|chl~cj110| < 1), we have
Ty, o (=)™, (36)

indicating that the primordial bispectrum is proportional to
(=10)"*!, and thus two powers of |c,k#n,| are diminished
in the CMB bispectra originating from the tensor modes.
This is in contrast to the case of the scalar modes, where
only one power of (—7) is reduced. It should be noted
here that the leading-order contributions from both integrals
in Eqs. (34) and (35) do not cancel out each other,
ie., (Fi+F;) e (=n)"!

The enhancement was investigated within the GLPV
theory in Ref. [39]. The theory includes two tensor cubic
operators in the form of 720k and /*. The former is present
even in the Einstein-Hilbert action (i.e., in general rela-
tivity), while the latter is induced, e.g., in the Horndeski
theory and in some classes beyond the Horndeski theory
such as the GLPV theory. In Ref. [39], it was found in the
GLPYV theory that the former and latter operators yield the
|k;no| dependence on the bispectrum as |k;170|? and | k7o),
respectively. Given the previous argument on the reduction,
only the operator 4> may retain the enhancement in the
bispectrum within the GLPV theory. On the other hand,
the effects of the non-Bunch-Davies tensor modes in the
theories with only the cubic operator h?0*h are not
enhanced in the CMB bispectra. In the following section,
we first consider the GLPV theory and see whether the
enhancements remain in the CMB bispectra. We also
explore the potential to attain greater enhancements in
non-Gaussianities than those within the GLPV theory.

IV. POSSIBLE ENHANCEMENTS OF CMB
BISPECTRA

In this section, we investigate a potential for non-Bunch-
Davies effects to enhance CMB bispectra within the GLPV
and beyond-GLPV theories. To do this, we introduce the
following dimensionless parameter:

wen(@) o

where
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By kKK
(Pp)? 2k

with P; being the dimensionless tensor power spectrum P,
evaluated at the end of inflation, and P,, is defined by

S = (38)

(hij(K)h;;(K)) = (27)38(k + k’)2k7§277h. (39)

In our setup, the power spectrum at the end of inflation

reads [39]
2 H?
o),

ST

*

1 H? () _ als)
:;Ch]'—TZ‘ak _ﬁk

where we have assumed |a\”|, ﬁ,(f)| < O(1) since both
Bogoliubov coefficients satisfy the normalization condi-
tion, Eq. (12), and the backreaction constraint indicates

|ﬁ,<f)| < O(1) which will be shown later. Equation (38)
is analogous to the conventional nonlinearity parameter
for the scalar non-Gaussianity. The factor (c,A/H)™2 is
required to discuss the amplitude relevant to the CMB
bispectra (i.e., to take into account the reduction of two
powers of |k;o]). In the following subsections, we inves-
tigate whether f{M® can be enhanced due to the non-
Bunch-Davies effects or not.

Hereafter, we consider both GLPV and beyond-GLPV
theories in the ADM formalism as described in several
studies [50,51,54].

A. GLPV theory

The ADM Lagrangian of the GLPV theory is of the
form [50,51]

Loipy = Ay (1,N) + A3(1, N)K + Ay (1. N) (K* — KF;)
+ B4R + As (K3 — 3KK? + 2K},

T |
ipJ
+ Bs <KjRi —EKR>, (41)

where A; (i =2, 3, 4, 5) and B; (i =4, 5) are arbitrary
functions of # and N, K;; and R;; are the extrinsic
and intrinsic curvature tensors, respectively, defined on
t-constant hypersurfaces, and K := y/K;; and R := y"/R;; are
their traces. In particular, the above Lagrangian with con-
straints A4 = —B4 - N@BS/ON and A5 = (N/6)0B5/0N
reproduces the Lagrangian of the Horndeski theory.
Equation (41) is written as a spatially covariant Lagrangian
respecting only three-dimensional covariance, but the
four-dimensional covariance can be restored using the
Stiickelberg trick. (See, e.g., Ref. [50] for the GLPV
Lagrangian respecting the four-dimensional covariance.)

In this theory, the quadratic action takes the form of
Eq. (21) with

gT - —2(A4 + 3A5H), (42)
Fr =2By+ Bs, (43)

where a dot denotes differentiation with respect to ¢, and the
cubic Lagrangian is of the form

3) Fr 1 As . . .
cEz,GLPV s (hikhjl - Ehijhkl) 0k0hij + Zhijhjkhki-
(44)
Here, we have assumed G, Fr = const. in the de Sitter
background, which means A4, As, B4, Bs = const. In this
theory, the primordial bispectrum of the tensor perturba-

tions has been obtained in Ref. [39]. In particular, the
explicit form for the nearly flattened triangle up to the

leading order in ﬂ,(f) reads”
Bh — B]:T + BAS’ (45)
where

2H* 1
AFF K

kykyk s
x [%(kl, ko ks) = =5 GniRe [ﬂ,ﬂ,‘)]} . (46)

B]:T ~ (S]k] +S2k2+53k3)2F(Si,ki)

192A5H5 F(si,kl'> |: 1
BA =

_ 62’78 Im[ﬂ(b‘])} (47)
STOFr kikks (K36 P
with Bz, and B, being the bispectrum originating from

the first and second cubic operators in Eq. (44), respec-
tively. We also defined

klk2k3 k1k2+k2k3 +k3kl

Zo(ky,ky k3) = =K +

K? K ’
(48)
1
F(s;, k;) = am(ﬁkl + $2ks + s3k3)2(ky — ky — ks3)
1727™3
x (ky = ky + k3)(ky + ky = k3), (49)

with K :=k; + k, + k3. The k;no-dependent terms in
Egs. (46) and (47) are obtained from the time integral (23)
with n =1 and n =2, respectively. Considering our

previous argument on the reduction of |c,k;nol?, the

The bispectrum includes the terms of higher order in [},({S),
but those terms are at most the same magnitudes with Eqgs. (46)
and (47) when /35(5') takes the maximum value, which is O(1) in
the present paper. Therefore, Eqgs. (46) and (47) are sufficient to
consider when we estimate the amplitude of the bispectrum.
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nonlinearity (NL) parameter fGY'® derived from B, is no
longer enhanced, and thus we focus solely on B, . The
magnitude of the nonlinearity parameter contributed from

the excited modes (i.e., ,B,(:) terms) can be computed as

AsH | s,
e 0<§T|ﬁ§<} >|<—chk,no)>. (50)

To discuss the potential enhancements in the observable
quantities, we investigate an upper bound on f{MB. To do
so, we consider theoretical constraints on the magnitude of

ﬂ,@ and that of the coupling function of the cubic operator.
The first constraint comes from the argument on the
backreaction from the excited modes. The modes that
get excited from the Bunch-Davies state cause backreaction
to the inflationary background [55]. When the quadratic
action is of the form [Eq. (21)], the condition to prevent the
excited modes from disrupting the inflationary background
has been obtained as [39]

/Aa(f7o)|ﬂl(:)|2k3dk < M%IHZ- (51)
a4(’70)

For simplicity, we assume
for k < Aa
0 for k > Aa(ny),

where f is constant. Hence, Eq. (51) can be rewritten as’

MP] _7:1/2

A A (54)

Bl < (P2 ==

The second constraint can be derived from the following
perturbativity condition:

£ >, (55)

where Ef) and Ef) are the quadratic and cubic
Lagrangians of the tensor perturbations, respectively.
Equation (55) is necessary as long as the solution of the
linear perturbation is used. See also Ref. [56] for a similar
perturbativity argument. We evaluate Eq. (55) at = 7 in
the GLPV theory and get

AsH _ H

hii|™!
G < oalml

(56)

n=no*

3As has been shown in Ref. [39], the same form can be
obtained from the following ansatz:

) ~ Bexpl=k/(Aa(ng))?]. (53)

We estimate the amplitude of 4;; from the primordial power
spectrum as”

a(m)A dk 2 A\?
Ol Plyen, = [ F il = 0 (P )
57

where we used the following form of the power spectrum:

= P(1 + cik*ng) = PreikPng.  (58)

P |’7:’70
Note that we can treat h;; as perturbations at n = n, under
the condition

N < /G Fr. (59)

This condition stems from the requirement that |;;| < 1.
Then, by combining Egs. (54), (56), and (57), one can

evaluate the upper bound on fMB as

My FY? H
CMB < 1 <27P
S ey wro I CU

Assuming Gr, Fy ~ M3, as typical values, we find

H (Mp)\?2
e sa (%) (61)

In this case, Eq. (59) indicates A < Mp,. For a cutoff scale
enjoying H < A << Mp, the resultant parameter fMP can
relatively be amplified. Under our setup, the perturbations
are on the subhorizon scales at n = 7, and thus we take
A~ 10*H [which implies |k;no| < O(10%)] as a possible
lowest cutoff scale. Then we find

R £0(10%), (62)

where we have assumed H?/M3 < O(1071%) in accor-
dance with the current constraint on the tensor-to-scalar
ratio, 7 < O(1072) [6]. Note that [J)](:) =
the possible lowest cutoff scale.

Here, the primordial bispectrum explicitly depends on
1y, which implies that the flattened non-Gaussianity is
generated on the subhorizon scales. This might lead one to
expect that a higher-derivative cubic operator could yield
a larger fQMB. In the following subsection, we investigate
whether f{MB is further enhanced in an extended gravita-
tional theory yielding higher-derivative cubic operators.

O(1) in the case of

*More specifically, we ignored the log(kyy/kr) term com-
pared to the |c,kyyo|? term where kyy = a(ny)A stands for the
UV cutoff and ki stands for the IR one.
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B. Beyond-GLPV theory

Let us consider the following Lagrangian:
L= Lerpy + Lex. (63)
where

3 3 o03) p(3
Lo = CKyKR + Co | =S K(R)? + KIR R

+ G5 (R, (64)

where C; (i = 1, 2, 3) are the arbitrary functions of 7 and N,
and we assume that C;’s are almost constant in de Sitter
background. Those terms are a subclass of the general
spatially covariant theory beyond the GLPV theory [54].

A property of this subclass is that the quadratic action of
the tensor perturbations is of the standard form [Eq. (21)],
while the cubic Lagrangian includes terms with higher
derivatives than those in the GLPV theory,5

3 3 3
Egz.g)eyond = [’Ez,()}LPV + £§1,ix’ (65)

C2 i 2 k200
e hS O] + = P h]

- () (6)

In the general class of the spatially covariant theory, the
quadratic action is modified by the (0%h;;)? term [57,58].
Since our purpose here is to investigate the enhancements
from higher-derivative cubic operators, the extra Lagrangian
given by Eq. (64) is sufficient for this purpose.
Three-point correlation functions can be calculated
straightforwardly, and we leave the details of the calcu-

lations to the Appendix. The [},((s> terms in the primordial
bispectra from the extra cubic operators take the following
forms:

C,H® 1

BCI .7:3 k6ﬁk |Chk 770 ) (67)
C,H 1

BCZ 42.7:3 k6ﬂk |Chkt’10 s (68)

>The Lagrangian proposed in Ref. [54] includes the GLPV
term with arbitrary coefficients, e.g., L D A,(t,N)K?,
A (t,N )K?/-, where the both coefficients are independent of each
other. Since such GLPV terms do not yield higher-derivative

cubic operators, we do not consider them in the present paper.

CH® 1

Bc3 ]__3 k6ﬁ |Chki’70

‘, (69)

where the subscript in B. denotes which term from which
the bispectrum arises. From Eq. (55), we have

Gr _
<F|hij| L (70)
1
csz i (71)
f‘
C; < A—j|h,-j|—1. (72)

The explicit forms of G, F, and c,2z are different between
the GLPV theory and the beyond-GLPV theory,

Gr = —2(A4 + 3AsH), (73)

d
Fr=2By+ Bs +3C H> +2—

P (CH). (74)

In Ref. [39], the backreaction constraint was obtained only
within the GLPV theory. Since the quadratic action of both
the GLPV and beyond-GLPV theory has the same form as
Eq. (21), we can use Eq. (54) in the beyond-GLPV theory
as well. Finally, combining Egs. (54) and (70)—(72), we
derive

Mp Fy? 2
CMB Pl 75
fNL Cl ~ A A <chA> ’ ( )
1/2
CMB < M nfr (76)
NL,(C,,C3) A A ChA
where fQME stands for fQMP originating from B.. The

requirement for the perturbation to be on the subhorizon
scales at n =g is |cpking| > 1, implying ¢, A/H > 1.
Thus, the more stringent condition on f{M® is obtained
from Eq. (76). It should be emphasized here that Eq. (76)
is exactly the same as Eq. (61). Therefore, though the
resultant fQMB can indeed be amplified when the cutoff
scale is close to H, one cannot easily enhance fCMB even by
introducing higher-derivative cubic operators in extended
theories of gravity because of the perturbativity condi-
tion Eq. (55).

Before concluding this section, it is noteworthy to
highlight a potential advantage offered by the enhancement
in the flattened limit. In gravity theories devoid of parity
violation, the B-mode autobispectrum vanishes under the
geometrical condition of /; = [;(i # j). The primordial
bispectrum enhanced around the flattened configuration
(k; = ky + k3) implies that the CMB bispectrum would
also be enhanced around /| ~ [, 4[5, which does not
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conflict the condition above. Conversely, the primordial
bispectrum amplified around the squeezed (k; ~0) or
equilateral (k; ~ k, ~ k3) configuration results in the
CMB bispectrum peaking around [; ~0 or [} ~1, ~ 1,
respectively, either of which are suppressed due to the
aforementioned geometrical condition. Hence, when
observing the B-mode bispectrum, one could anticipate
that the enhancement of the primordial bispectrum in the
flattened limit would exhibit a relative advantage over that
in the squeezed or equilateral limit.

V. SUMMARY

In the present paper, we first clarified that the (—k;ng)"
dependence in the primordial tensor bispectrum yields
(=k;no)" enhancement in the CMB bispectra. We then
found that the (—k;n)" dependence obtained from the
cubic operators present in the Einstein-Hilbert action does
not lead to any enhancements in the CMB bispectra. We
also showed that the CMB bispectra can enhance, in
extended gravitational theories, the GLPV theory and its
extensions. In the case of the Bunch-Davies states, the
primordial tensor autobispectrum for the exact-flattened
triangle (I~cj = 0) vanishes and that for the nearly flattened
one is not enhanced but just suppressed in proportion to k i
Therefore, our results indicate that any detection of the
tensor flattened non-Gaussianities by CMB experiments
would support inflation models with non-Bunch-Davies
states in such extended theories of gravity involving higher-
derivative cubic operators.

In evaluating enhancement, we introduced a dimension-
less quantity fMB and derived its upper bound which is
determined from the backreaction constraint and the
perturbativity condition. Our analysis indicates that cubic
operators involving higher-order derivatives do not neces-
sarily lead to a larger fMB. This is due to the fact that
higher-derivative terms are significantly constrained by the
perturbativity condition. It would be interesting to look for
extended theories of gravity that can have more of an
impact on the CMB bispectra.

As a further study, it would also be important to compute
the CMB bispectra numerically and evaluate the signal-to-
noise ratio. The enhancement around the flattened triangle
occurs only for a very limited angle and, as estimated in
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APPENDIX: BISPECTRA FROM EXTRA TERMS

By using the in-in formalism, one can calculate the three-
point function of the tensor perturbations as

(E6D (k)62 (K,)E0) (kg))
=i / " dna(){ [€69(0,k,)£52)(0, k)

Mo

x £09(0,ks), Hin()] ). (A1)

where the interaction Hamiltonian H;, is defined by

Hmz_/&uﬁ, (A2)

with Lf) being the cubic Lagrangian of the tensor
perturbations. The primordial bispectrum in the GLPV
theory has been calculated in Ref. [39], and thus we here
show the results only from the extra terms in the beyond-
GLPV theory. For convenience, we define the resultant
bispectrum as

B. = Re[B.]. (A3)
First, we compute the bispectrum originating from the C,
term. By employing the in-in formalism, one can write the
bispectrum as

Ref. [9], some of the signals could be buried in noise. The B¢, = Re[B¢, |, (A4)
detailed analysis is beyond the scope of this paper, and we
will leave it for future work. where
> ACic,H® 1 () O\ [ (51 (s2)% (s3)% (51)% a(52)% o(s3)%
Be, = ~i  Fy kikoks (= B") [akl @, ay e BB B ez
+ (0‘1(:]1)*0‘1(;2)* l(;})*ICI.S + (k1,51 <> ko, 55) + (ki 51 < k3753))
(BB A ey a + (ki Kavsa) + (Kissy < ka.3) )| Flsi ). (A3)
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with
I, q :/dﬂﬂz(—3+iChK’1)eic”K’7v (A6)
leo= [ w3+ iene ok (A7)
I3 —/dﬂﬂ2(3—ich/~€"l)eichb’, (A8)
Ic 4 = /dﬂﬂz(—?’ — icykn)eib, (A9)

where k := —k; + k, + ks. First, we consider the non-
flattened limit enjoying |c,kno| > 1. In this limit, we have

Re[lc, ;] =0, (A10)
Imfle ] = Imle o] = — 2 (A1)
cl = 2l == ,
c K3
12
Imilc,s] = Inflc, o] = v (A12)

where K := k; + k, + k5. Finally, we obtain

- 48C H® 1 (s)) (s))
b - -
G C%f%‘ k1k2k3 <aki ﬂki )
5 )k 1
(ol ol A A )
1

[l

+ (k1,51 <> ko, 52) + (ki,sp < k3,s3)} } (A13)

e ﬂk;g +ﬁk ﬁ,(;)*a(: )k3

Then, we consider the flattened limit enjoying |c,kn,| < 1.
|

. 24CHT 1 (
T AR kkok

-4 {( o gl ol 4 g gl
ki

In this case, we obtain

Re[lcl’l} == Re[lcl,z] == O, (A14)
Re[lcls] = —Re[ICIA] = —7’]8, (AIS)
me ] = Im{lp ] = — 2 (A16)
milc 1| =MMilc 2] = ——373,
1 1 CzKS
o=y
Im[lcl,?)] = Im[ICIA] = —Echk?]o, (A17)
and hence we have
> 48C,H® 1 (s;) (s;)
B = = |:Hl — ! i|
“ i Fr {klkaS (a” = 4)
(s1)x (s2)% (s3)* 53)
X |:(ak1) al(‘z) a]({g) +ﬁk ﬁk2 ﬁk >Kf;
i * (s s
12Ch’70 (“kl ! ﬂ ﬂk,l ﬂk k3 )}
x F(s;, kl-)} , (A18)
k=0
where we used
RC[ICI.(&A_)] > Im[[Cl’(3_4)]. (A19)

The integral that characterizes the 7, dependence of the

bispectrum is
/dm]ze"”h’;”.

One can compute the bispectra from the other two terms
similarly, and thus we show only the results below. Regard-
ing the C, term, the bispectrum evaluated at the nonflattened
and flattened limits are obtained, respectively, as

(A20)

N kky + ks + ks
) <3+4 .

S s 1
= (@l a2 p A )?<3+4 !

kst < ks, sgﬂ }F<s,-, k).

and

5 24GHT [ 1 () _ ) | (0% (2)
Be, = s {k kzksni<a"f _ﬂkf> <“k1 %

30ch(k +kiky + K3 ( W) ﬂﬁ;j”*ﬂﬁjz'ﬁ*a,g» }

— koky — ki k
323 L +(klvsl (—)k2,S2)
k
(A21)
o o) kiks + koks + Kok
O‘kx +ﬂk ﬂk ﬂk )f<3+4 : 12<23 1 3)
(A22)
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The integral that defines the 7, dependence of the bispectrum is

/ d7]714eich7m )

(A23)

Regarding the C5 term, the bispectrum evaluated at the nonflattened and flattened limits are obtained, respectively, as

_ Hi< (si) _ (s[)) ( (s1)x (s2)% (s3)
C3 sz%—v k] k2k3 ak,- ﬂki ak] akz k

klkz +k2k3 +k1k3 k k2k3 * Ky 8§59 )k 853 )% 1
X (1 +3 e k1 ozk2 ﬂk; +ﬂk ﬂ,(;) a,(;) )T

k3
k1k2k3>

- 96C;H® 1
B _ 3

* S1)% p(82)% H(s3)* 1
+ﬁl(<1 ) ﬁl(;) ﬁ](%s) )F

kiky — koks — kik
x <1+3 172 ]%23 155 (ky,s1 < ko, 52) + (ky, s <—>k3,s3)]}F(s,-,k,-), (A24)
and

1
I

- _96C3H8 { 1 (

— D% (s2)% (s3)
ST TSR kikok -4 )[(“kl T %o

y (1 kbt ks Hhiks 15k1k2k3)

1
K2 K3 _4_8c2k1k2(k1 +k2)’78

X (ag{'j‘) (A25)

The integral that sets the 7, dependence of the bispectrum is

/ dm,IS eichl}r] )

Here, the Lagrangian in Eq. (64) is included in the general spatially covariant theory in Ref. [54]. In this framework, the
primordial tensor bispectrum in the presence of only the positive frequency mode has been calculated in Ref. [58]. By

choosing Re[af)] = 1,Im[a§f)] =0, and ﬁ,(:) = 0, one can see that our results reproduce those in Ref. [58]. We also note
that the resultant bispectra with the Bunch-Davies initial state vanish for the flattened triangles k ; = Osince F(s;, k;) k j

*al(‘?)*ﬁ](‘?)* + ’65‘? )*ﬁg)*al&?)*)] F(s;, k,-)}

k—0

(A26)

and are suppressed around I}j =0.
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