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It has been shown that both scalar and tensor modes with non-Bunch-Davies initial states can enhance
the amplitudes of the primordial bispectra compared to those with the Bunch-Davies state, especially for
wave number modes in a flattened triangle configuration. However, in the case of the non-Bunch-Davies
scalar modes, it has also been found that those enhancements in Fourier space are somewhat reduced
in bispectra of cosmic microwave background (CMB) fluctuations. In this paper, we show that the
enhancement resulting from the tensor modes is partially reduced to a degree differing from that of the
scalar modes, which makes the non-Bunch-Davies effects unobservable in gravitational theories with
the same quadratic and cubic operators of the tensor perturbations as general relativity. Furthermore, we
present examples of gravitational theories yielding enhancements that would potentially be detected
through CMB experiments.
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I. INTRODUCTION

Inflation [1–3] is regarded as a successful paradigm for
the early Universe, providing an elegant resolution for
various problems in the standard big bang cosmology and
the mechanism behind the generation of the rich structures
of our Universe. In the future, it is expected that cosmo-
logical observations will clarify which model of inflation
aligns best with the actual early Universe.
Correlations in the cosmic microwave background

(CMB) are anticipated to serve as distinctive fingerprints
for differentiating inflation models, and this has been a
focus of extensive research in the past [4–6]. While
temperature correlations have been observed with remark-
able precision, confirming nearly perfect Gaussian power
spectra and very small non-Gaussianity, the statistics of
polarization remains less certain. Significant improvements
in the accuracy of future observations are anticipated.
In this context, the study of non-Gaussianity stands at

the frontier of cosmology. The detection of higher-order
spectra, such as the bispectrum of polarization, can be
regarded as the final objective in CMB observations.
Specifically, given that B-mode polarization is not gen-
erated from curvature fluctuations but solely from gravi-
tational waves [7], the statistical nature of B-mode
polarization constitutes a vital area of research. This holds

the potential to significantly contribute to our understand-
ing of the physics of the extremely early Universe.
In this paper, we study the effects of the tensor modes

with non-Bunch-Davies initial conditions on the bispectra
of the CMB fluctuations. The primordial power spectra
and bispectra associated with the non-Bunch-Davies states
have been comprehensively studied [8–45]. In particular, in
Refs. [8–12,15,18,29,39,40,43–45], it has been demon-
strated that the primordial bispectra for nearly flattened
triangles can be enhanced in the presence of the modes that
deviate from the Bunch-Davies state. However, it has also
been found in Ref. [9] that a part of the enhancements in
the primordial scalar bispectra are reduced due to the
necessary angular average when deriving the CMB bispec-
tra. This reduction has not been discussed in the context
of the tensor non-Gaussianity yet. In addition, different
from the scalar non-Gaussianities, the tensor ones for the
exactly flattened triangle vanish, which has been shown
in Ref. [39]. (See also Ref. [45] for some debate about
subtlety.) Therefore, it is important to investigate how the
enhancements around the flattened triangles are reduced in
the observable quantities originating from the tensor non-
Gaussianities.
The primordial non-Gaussianities that peak around

flattened triangles are considered to be generated on
subhorizon scales. Thus, one might naively think that such
non-Gaussianities would be amplified more if there were
cubic operators involving higher derivatives. The cubic
operator is unique in a certain class of gravitational theories
(e.g., general relativity with a canonical scalar field),
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whereas additional cubic operators with higher derivatives
are in some extended theories [e.g., the Horndeski theory,
which gives the most general second-order field equations
for a scalar field and a metric [46–48], and its generalized
theory called Gleyzes-Langlois-Piazza-Vernizzi (GLPV)
theory [49–51]]. So far, tensor non-Gaussianities in such
extended theories have been analyzed in a unified way
within the GLPV theory by Ref. [39]. In this paper, in the
same way as in the literature, we first investigate the impact
of tensor non-Gaussianities on CMB bispectra in the
GLPV theory. Subsequently, we also see whether a further
extension of a gravitational theory with higher-derivative
cubic operators would result in further enhanced CMB
bispectra or not.
This paper is outlined as follows. In the following

section, we introduce our setup to describe scalar and
tensor perturbations with non-Bunch-Davies initial states.
In Sec. III, we first review the reduction of the enhancement
of the scalar non-Gaussianities in the process of angular
average. Then we extend the method used for the scalar
non-Gaussianities to the tensor ones and clarify how the
enhancements are reduced. In Sec. IV, we evaluate the
actual enhancements in CMB bispectra in GLPV and
beyond-GLPV theories, taking into account the aforemen-
tioned reduction. We summarize this paper in Sec. V.

II. SETUP

We begin with a spatially flat Friedmann-Lemaître-
Robertson-Walker spacetime and employ the following
Arnowitt-Deser-Misner (ADM) metric:

ds2 ¼ −N2dt2 þ γij
�
dxi þ Nidt

��
dxj þ Njdt

�
; ð1Þ

where N ¼ 1; Ni ¼ 0, and γij ¼ a2δij with a denoting
the scale factor at the background level. Throughout this
paper, we consider de Sitter inflation models where
the scale factor is a ≃ −1=ðHηÞ with the Hubble para-
meter H ≔ ðda=dtÞ=a ≃ const: and conformal time η.
The perturbed variables are defined in the unitary gauge,
ϕðt; x⃗Þ ¼ ϕðtÞ, as

N ¼ 1þ δn; Ni ¼ ∂iχ; ð2Þ

γij ¼ a2e2ζ
�
δij þ hij þ

1

2
hikhkj þ � � �

�
; ð3Þ

where one obtains the auxiliary fields δn and χ by solving
the constraint equations, and we denote the curvature per-
turbation by ζ and the gravitational waves by hij.
Throughout this paper, we consider the non-Bunch-

Davies initial states under which the quantized perturba-
tions are expanded as

ζðt;kÞ ¼ ζkbk þ ζ�kb
†
−k; ð4Þ

hijðt;kÞ ¼
X
s

h
ψ ðsÞ
k eðsÞij ðkÞbðsÞk þ ψ ðsÞ�

k eðsÞ�ij ð−kÞbðsÞ†−k

i
;

ð5Þ

where the transverse and traceless polarization tensor eðsÞij ðkÞ
satisfies eðsÞij ðkÞeðs

0Þ�
ij ðkÞ ¼ δss0 , the subscript s denotes the

two helicity modes of the gravitational waves, and b†k (bðsÞ†k )

and bk (bðsÞk ) stand for the creation and annihilation
operators of the scalar modes (tensor modes), respectively.
Also, those operators satisfy the canonical commutation
relations,

�
bk; b

†
k0
� ¼ ð2πÞ3δðk − k0Þ; ð6Þ

�
bðsÞk ; bðs

0Þ†
k0

� ¼ ð2πÞ3δss0δðk − k0Þ; ð7Þ

others ¼ 0: ð8Þ

The mode functions with the non-Bunch-Davies states
are obtained from those with the Bunch-Davies one via
Bogoliubov transformations. In particular, when uk and
vk stand for the positive frequency mode function of the
curvature perturbations and tensor perturbations, respec-
tively, we have

ζk ¼ αkuk þ βku�k; ð9Þ

ψ ðsÞ
k ¼ αðsÞk vk þ βðsÞk v�k; ð10Þ

where the Bogoliubov coefficients satisfy the following
normalization conditions:

jαkj2 − jβkj2 ¼ 1; ð11Þ

jαðsÞk j2 − jβðsÞk j2 ¼ 1: ð12Þ

The explicit forms of the mode functions depend on a
concrete model, which will be defined later.

III. REDUCTION OF NON-BUNCH-DAVIES
EFFECTS

If the initial perturbations were in the Bunch-Davies
state, the solution of the mode function is represented by
the positive frequency mode. In contrast, if they began in
the non-Bunch-Davies states, the solution includes both
positive and negative frequency modes. The interplay
between these modes has been shown to yield enhance-
ments of the primordial bispectra, the quantity calculated
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in Fourier space [8–12,15,18,29,39,40,43–45]. However,
it has been shown that the enhancements of the scalar
autobispectrum are somewhat reduced in the CMB (tem-
perature) bispectrum, the quantity obtained after projecting
the primordial scalar bispectrum onto the two-dimensional
celestial surface [9]. In the following subsection, we first
review a method used in Ref. [9] to clarify the reduction for
the scalar autobispectrum. Then we extend that method
to the tensor autobispectrum and quantify the extent of
reduction in enhancements.

A. Scalar bispectrum

Let us review the analysis in Ref. [9]. The primordial
bispectrum of the curvature perturbations Bζ is defined by

�
ζðk1Þζðk2Þζðk3Þ

	 ¼ ð2πÞ3δðk1 þ k2 þ k3ÞBζ: ð13Þ

The three-point correlation function can be obtained by
following the in-in formalism. The authors of Ref. [9]
considered the scalar-field model where the quadratic
action of curvature perturbations is of the form

Sð2Þζ ¼
Z

dtd3xa3


GSζ̇

2 −
F S

a2
ð∂iζÞ2

�
: ð14Þ

The mode function can be derived from the above as

uk ¼
1ffiffiffi

2
p

aðGSF SÞ1=4
ffiffiffi
π

p
2

ffiffiffiffiffiffiffiffiffiffi
−csη

p
Hð1Þ

3=2ð−cskηÞ; ð15Þ

where Hð1Þ
3=2 is the Hankel function of the first kind of order

3=2 and c2s is the square of the propagation speed of the
curvature perturbations defined by c2s ≔ F S=GS. Here, it
has been assumed that GS, F S are constants. In this

framework, the resultant primordial bispectrum includes
the following term [9]:

Is ≔ fsðkiÞ
Z

0

η0

dηð−ηÞne−icsk̃jη; ð16Þ

where k̃j ≔ −kj þ kjþ1 þ kjþ2 with j being defined mod-
ulo 3 and η0 is the conformal time when the perturbations
are on subhorizon scales, −cskiη0 ≫ 1. We assume that
the theories considered in the present paper are valid up
to the cutoff scale Λ ¼ k=aðη0Þ ≃ ð−kη0Þ ·H. Note that,
unlike in the case of the Bunch-Davies state where k̃j
takes the value kj þ kjþ1 þ kjþ2, the coefficient of kj in k̃j
has the opposite sign to the others due to mixing between
the positive and negative frequency modes. Seen from
the above equation, the condition −csk̃jη0 ≪ 1 leads to a
nonoscillating integrand, which produces a peak around
k̃j ¼ 0. We call k̃j ¼ 0 (i.e., kj ¼ kjþ1 þ kjþ2) the exact-
flattened configuration.
Equation (16) is a key integral to evaluate the enhance-

ment of the primordial scalar bispectrum and its reduction
for the CMB bispectrum. The other terms in the primordial
bispectrum are irrelevant to the arguments on the enhance-
ment and the reduction, which we do not consider here.
Equation (16) yields the term proportional to ð−kiη0Þnþ1

in the primordial bispectrum for the flattened triangle,
whereas it has been shown in Ref. [9] that the CMB
bispectrum receives Oðð−kiη0ÞnÞ enhancement, i.e., one
power of ð−kiη0Þ is reduced in the quantity observed by
CMB experiments. In the following, we first review the loss
of one power of ð−kiη0Þ in the CMB bispectrum originating
from the curvature perturbations.
The contribution from Eq. (16) to the three-point

correlation function of CMB fluctuations reads

hal1m1
al2m2

al3m3
i ¼ ð4πÞ3ð−iÞl1þl2þl3

Z
d3k1

ð2πÞ3
d3k2

ð2πÞ3
d3k3

ð2πÞ3 T l1ðk1ÞT l2ðk2ÞT l3ðk3ÞY�
l1m1

ðn̂1ÞY�
l2m2

ðn̂2Þ

× Y�
l3m3

ðn̂3Þð2πÞ3δðk1 þ k2 þ k3ÞBζ

⊃ ð4πÞ3ð−iÞl1þl2þl3

Z
d3k1

ð2πÞ3
d3k2

ð2πÞ3
d3k3

ð2πÞ3 T l1ðk1ÞT l2ðk2ÞT l3ðk3ÞY�
l1m1

ðn̂1ÞY�
l2m2

ðn̂2Þ

× Y�
l3m3

ðn̂3Þð2πÞ3δðk1 þ k2 þ k3ÞI s; ð17Þ

where alm are the expansion coefficients of the CMB
fluctuations in terms of the spherical harmonics, n̂i are unit
vectors defined by n̂i ≔ ki=jkij (i ¼ 1, 2, 3), and T lðkÞ
denotes a transfer function of the temperature fluctuation
or the E-mode polarization originating from the scalar
perturbations.

In Ref. [9], the manipulations for the argument on the
reduction have been performed in an analytical way as
follows. The time integral in Is is sharply peaked at the
flattened configuration, contrasting with other components
such as T lðkÞ; Y�

lmðn̂Þ, and fsðkiÞ. Consequently, the
dominant contribution comes from the time integral in
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Eq. (16) for the flattened triangle. In light of this, after performing kjþ2 integral for any j via the delta function, the authors
of Ref. [9] took the flattened limit of T lðkÞ; Y�

lmðn̂Þ, and fsðkiÞ,

Y�
ljmj

ðn̂jÞY�
ljþ1mjþ1

ðn̂jþ1ÞY�
ljþ2mjþ2

ðn̂jþ2Þ → Y�
ljmj

ð−n̂jþ1ÞY�
ljþ1mjþ1

ðn̂jþ1ÞY�
ljþ2mjþ2

ðn̂jþ1Þ; ð18Þ

and kjþ2 ¼ jkj − kjþ1j → jkj − kjþ1j in T lðkÞ and fsðkiÞ. Then, they performed the angular integral with respect to n̂j (the
angle between kj and kjþ1) as

Z
d2n̂jIsðk̃jÞ ¼ 2π

Z
0

η0

dηð−ηÞn 1

c2skjkjþ1η
2

�
e2icskjþ1η

�
1 − icsðkj þ kjþ1Þη

�
−
�
1 − icsðkj − kjþ1Þη

��
∝ ð−η0Þn; ð19Þ

indicating that one power of jkη0j in the primordial
bispectrum is diminished in the CMB bispectrum since
Bζ ∝ ð−η0Þnþ1. Indeed, similar reductions in the exponent
have been reported in numerical calculations given in a
previous study [11]. In the following subsection, we adopt a
similar analytical approach to evaluate the three-point
function of the tensor perturbations.

B. Tensor bispectrum

The three-point function of the tensor perturbations is
defined by

�
ξðs1Þðk1Þξðs2Þðk2Þξðs3Þðk3Þ

	 ¼ ð2πÞ3δðk1 þ k2 þ k3ÞBh;

ð20Þ

where ξðsÞðkÞ ≔ hijðt;kÞeðsÞ�ij ðkÞ, and Bh is the primordial
bispectrum of the tensor perturbations. Throughout this
paper, we focus on the gravitational theories that yield the
standard form of the quadratic action,

Sð2Þh ¼
Z

dtd3xa3


GTḣ

2
ij −

F T

a2
ð∂khijÞ2

�
: ð21Þ

General relativity is the simplest example giving this
quadratic action with GT ¼ F T ¼ M2

Pl. The Horndeski
theory, which yields the most general second-order field
equations [46–48], and the GLPV theory [50,51] also have
Eq. (21) as their quadratic action. (See also Ref. [52] for a
review for these frameworks.) Furthermore, we will also
consider a beyond-GLPV class having the above quadratic
action in this paper.
In this framework, the mode function is obtained as

vk ¼
2

aðGTF TÞ1=4
ffiffiffi
π

p
2

ffiffiffiffiffiffiffiffiffiffi
−chη

p
Hð1Þ

3=2ð−chkηÞ; ð22Þ

where c2h ≔ F T=GT , and we assumed that GT and F T are
constant similar to GS and F S. In the present setup, the
primordial tensor autobispectrum is proportional to k̃j and

vanishes for k̃j ¼ 0.1 (See Ref. [39] and the Appendix.) By
taking this into account, we apply a similar argument as
Eq. (16) to the tensor mode and get

Ih ≔ fhðki; siÞ
Z

0

η0

dηchk̃jð−ηÞne−ichk̃jη; ð23Þ

where i ¼ 1, 2, 3 and fh ≠ 0 for k̃j ¼ 0. Since the explicit
form of fh does not affect the powers of ð−kiη0Þ as in
Eq. (16), we will not provide it explicitly. A flattened con-
figuration for the tensor perturbations gives −chk̃jη0 ≪ 1.
While Is shows a sharp peak at the flattened configuration,
Ih does not since Ih ¼ 0 for k̃j ¼ 0. We treat Ih as a linear
combination of two functions, both exhibiting sharp peaks
at the flattened configuration, to evaluate the exponent of
ð−kiη0Þ. We then decompose Ih as

Ih ¼ Ih;1 þ Ih;2; ð24Þ

where

Ih;1 ≔ ifhðki; siÞ
Z

dη
d
dη

h
ð−ηÞne−ichk̃jη

i
; ð25Þ

1The authors of Refs. [43,45] obtained the three-point func-
tions that do not vanish at the flattened limit. In using the in-in
formalism, they first killed the contributions at η ¼ η0 to the
three-point function for all of the triangles by taking η0 →
−∞ð1þ iϵÞ and then took the explicit limits (e.g., the flattened
limit) to the function obtained after the time integral. In this case,
the resultant three-point function is singular at k̃j ¼ 0. However,
similar to the calculations performed in the context of the scalar
modes in Ref. [9], the authors of Ref. [39] kept η0 finite and
performed the time integrals separately for the non-flattened and
flattened triangles for which the integrand oscillates and does not
oscillate at η ¼ η0, respectively. The three-point function ob-
tained in this way is regular at k̃j ¼ 0 and picks up the contri-
butions at η ¼ η0 which are the consequence of interactions
among the subhorizon modes whose physical momenta are
k=aðη0Þ ∼ Λ. This discrepancy comes from the fact that
Refs. [9,39] count contributions from the partial circular contour
at large radius ð−η0Þ of the in-in formalism, but Refs. [43,45]
do not.
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Ih;2 ≔ infhðki; siÞ
Z

dηð−ηÞn−1e−ichk̃jη: ð26Þ

In the nonflattened configurations (where jchk̃jηj ≫ 1 on
the subhorizon scales), we have

Ih ≃ Ih;2 ≃ infhðki; siÞð−ichk̃jÞ−nΓðnÞ; ð27Þ

Ih;1 ≃ 0: ð28Þ

Note that the contour of this integration is actually
displaced from the real axis, such as η0 → η0ð1þ iϵÞ,
due to the in-in formalism. Conversely, in the flattened
configurations (where jchk̃jηj ≪ 1 on the subhorizon
scales), we obtain

Ih ≃ −
chk̃jη0
nþ 1

fhðki; siÞð−η0Þn; ð29Þ

Ih;1 ≃ fhðki; siÞð−η0Þn
�
i − chk̃jη0

�
; ð30Þ

Ih;2 ≃ fhðki; siÞð−η0Þn
�
−iþ n

nþ 1
chk̃jη0

�
: ð31Þ

It is apparent that both Ih;1 and Ih;2 in the flattened
configuration are substantially larger than their nonflat-
tened counterparts, respectively. Therefore, Ih;1 and Ih;2

peak at the flattened configuration. The subsequent steps
follow a similar process to that in the case of curvature
perturbations. The contributions from Eq. (23) to the CMB
bispectrum can be written as [53]

D
aðs1Þl1m1

aðs2Þl2m2
aðs3Þl3m3

E
⊃
X2
i¼1

F i; ð32Þ

where

F i ≔ ð4πÞ3ð−iÞl1þl2þl3

Z
d3k1

ð2πÞ3
d3k2

ð2πÞ3
d3k3

ð2πÞ3
× T ðs1Þ

l1
ðk1ÞT ðs2Þ

l2
ðk2ÞT ðs3Þ

l3
ðk3Þ

× −s1Y
�
l1m1

ðn̂1Þ−s2Y�
l2m2

ðn̂2Þ−s3Y�
l3m3

ðn̂3Þ
× ð2πÞ3δðk1 þ k2 þ k3ÞIh;i: ð33Þ

Here, aðsÞlm are the expansion coefficients of the CMB
fluctuations in terms of the spin-weighted spherical harmon-

ics and T ðsÞ
l ðkÞ is the transfer function of the temperature

fluctuation, E-mode polarization, or B-mode polarization
originating from the tensor perturbations. After performing
the kjþ2 integral via the delta function and taking the

flattened limit of T ðsÞ
l ðkÞ;−s Y�

lmðn̂Þ, and fhðkiÞ, we perform
the n̂j integral as

F 1 ∝
Z

d2n̂jIh;1ðk̃jÞ ¼ 2π
kj − kjþ1

chkjkjþ1

ð−η0Þn−1; ð34Þ

F 2 ∝
Z

d2n̂jIh;2ðk̃jÞ ¼
2πn
1 − n

kj − kjþ1

chkjkjþ1

ð−η0Þn−1; ð35Þ

where we ignored rapidly oscillating terms such as eichkjþ1η

because they result in highly suppressed terms after the kjþ1

integral. For the flattened case (jchk̃jη0j ≪ 1), we have

Ih ∝ ð−η0Þnþ1; ð36Þ

indicating that the primordial bispectrum is proportional to
ð−η0Þnþ1, and thus two powers of jchkη0j are diminished
in the CMB bispectra originating from the tensor modes.
This is in contrast to the case of the scalar modes, where
only one power of ð−η0Þ is reduced. It should be noted
here that the leading-order contributions from both integrals
in Eqs. (34) and (35) do not cancel out each other,
i.e., ðF 1 þ F 2Þ ∝ ð−η0Þn−1.
The enhancement was investigated within the GLPV

theory in Ref. [39]. The theory includes two tensor cubic
operators in the form of h2∂2h and ḣ3. The former is present
even in the Einstein-Hilbert action (i.e., in general rela-
tivity), while the latter is induced, e.g., in the Horndeski
theory and in some classes beyond the Horndeski theory
such as the GLPV theory. In Ref. [39], it was found in the
GLPV theory that the former and latter operators yield the
jkiη0j dependence on the bispectrum as jkiη0j2 and jkiη0j3,
respectively. Given the previous argument on the reduction,
only the operator ḣ3 may retain the enhancement in the
bispectrum within the GLPV theory. On the other hand,
the effects of the non-Bunch-Davies tensor modes in the
theories with only the cubic operator h2∂2h are not
enhanced in the CMB bispectra. In the following section,
we first consider the GLPV theory and see whether the
enhancements remain in the CMB bispectra. We also
explore the potential to attain greater enhancements in
non-Gaussianities than those within the GLPV theory.

IV. POSSIBLE ENHANCEMENTS OF CMB
BISPECTRA

In this section, we investigate a potential for non-Bunch-
Davies effects to enhance CMB bispectra within the GLPV
and beyond-GLPV theories. To do this, we introduce the
following dimensionless parameter:

fCMB
NL ≔ fNL

�
chΛ
H

�
−2
; ð37Þ

where
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fNL ≔
Bh

ðP�
hÞ2

k31k
3
2k

3
3P

ik
3
i
; ð38Þ

with P�
h being the dimensionless tensor power spectrum Ph

evaluated at the end of inflation, and Ph is defined by

hhijðkÞhijðk0Þi ¼ ð2πÞ3δðkþ k0Þ 2π
2

k3
Ph: ð39Þ

In our setup, the power spectrum at the end of inflation
reads [39]

P�
h ¼

1

π2
H2

chF T

X
s

αðsÞk − βðsÞk

2 ¼ O
�

H2

chF T

�
; ð40Þ

where we have assumed jαðsÞk j; jβðsÞk j≲Oð1Þ since both
Bogoliubov coefficients satisfy the normalization condi-
tion, Eq. (12), and the backreaction constraint indicates

jβðsÞk j≲Oð1Þ which will be shown later. Equation (38)
is analogous to the conventional nonlinearity parameter
for the scalar non-Gaussianity. The factor ðchΛ=HÞ−2 is
required to discuss the amplitude relevant to the CMB
bispectra (i.e., to take into account the reduction of two
powers of jkiη0j). In the following subsections, we inves-
tigate whether fCMB

NL can be enhanced due to the non-
Bunch-Davies effects or not.
Hereafter, we consider both GLPV and beyond-GLPV

theories in the ADM formalism as described in several
studies [50,51,54].

A. GLPV theory

The ADM Lagrangian of the GLPV theory is of the
form [50,51]

LGLPV ¼ A2ðt; NÞ þ A3ðt; NÞK þ A4ðt; NÞ�K2 − K2
ij

�
þ B4Rþ A5

�
K3 − 3KK2

ij þ 2K3
ij

�

þ B5

�
Ki

jR
j
i −

1

2
KR

�
; ð41Þ

where Ai (i ¼ 2, 3, 4, 5) and Bi (i ¼ 4, 5) are arbitrary
functions of t and N, Kij and Rij are the extrinsic
and intrinsic curvature tensors, respectively, defined on
t-constant hypersurfaces, and K ≔ γijKij and R ≔ γijRij are
their traces. In particular, the above Lagrangian with con-
straints A4 ¼ −B4 − N∂B5=∂N and A5 ¼ ðN=6Þ∂B5=∂N
reproduces the Lagrangian of the Horndeski theory.
Equation (41) is written as a spatially covariant Lagrangian
respecting only three-dimensional covariance, but the
four-dimensional covariance can be restored using the
Stückelberg trick. (See, e.g., Ref. [50] for the GLPV
Lagrangian respecting the four-dimensional covariance.)
In this theory, the quadratic action takes the form of

Eq. (21) with

GT ¼ −2ðA4 þ 3A5HÞ; ð42Þ

F T ¼ 2B4 þ Ḃ5; ð43Þ

where a dot denotes differentiation with respect to t, and the
cubic Lagrangian is of the form

Lð3Þ
h;GLPV ¼ F T

4a2

�
hikhjl −

1

2
hijhkl

�
∂k∂lhij þ

A5

4
ḣijḣjkḣki:

ð44Þ

Here, we have assumed GT;F T ¼ const: in the de Sitter
background, which means A4; A5; B4; Ḃ5 ¼ const. In this
theory, the primordial bispectrum of the tensor perturba-
tions has been obtained in Ref. [39]. In particular, the
explicit form for the nearly flattened triangle up to the

leading order in βðsÞk reads2

Bh ¼ BF T
þ BA5

; ð45Þ

where

BF T
≃

2H4

c2hF
2
T

1

k31k
3
2k

3
3

ðs1k1 þ s2k2 þ s3k3Þ2Fðsi; kiÞ

×



I0ðk1; k2; k3Þ −

k1k2k3
2

c2hη
2
0Re

�
βðs1Þk1

��
; ð46Þ

BA5
≃
192A5H5

F 3
T

Fðsi; kiÞ
k1k2k3



1

K3
−
c3hη

3
0

6
Im

�
βðs1Þk1

��
; ð47Þ

with BF T
and BA5

being the bispectrum originating from
the first and second cubic operators in Eq. (44), respec-
tively. We also defined

I0ðk1; k2; k3Þ ≔ −K þ k1k2k3
K2

þ k1k2 þ k2k3 þ k3k1
K

;

ð48Þ

Fðsi; kiÞ ≔
1

64

K
k21k

2
2k

2
3

ðs1k1 þ s2k2 þ s3k3Þ2ðk1 − k2 − k3Þ

× ðk1 − k2 þ k3Þðk1 þ k2 − k3Þ; ð49Þ

with K ≔ k1 þ k2 þ k3. The kiη0-dependent terms in
Eqs. (46) and (47) are obtained from the time integral (23)
with n ¼ 1 and n ¼ 2, respectively. Considering our
previous argument on the reduction of jchkiη0j2, the

2The bispectrum includes the terms of higher order in βðsÞk ,
but those terms are at most the same magnitudes with Eqs. (46)
and (47) when βðsÞk takes the maximum value, which is Oð1Þ in
the present paper. Therefore, Eqs. (46) and (47) are sufficient to
consider when we estimate the amplitude of the bispectrum.
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nonlinearity (NL) parameter fCMB
NL derived from BFT

is no
longer enhanced, and thus we focus solely on BA5

. The
magnitude of the nonlinearity parameter contributed from

the excited modes (i.e., βðsÞk terms) can be computed as

fCMB
NL ¼ O

�
A5H
GT

βðs1Þk1

ð−chkiη0Þ
�
: ð50Þ

To discuss the potential enhancements in the observable
quantities, we investigate an upper bound on fCMB

NL . To do
so, we consider theoretical constraints on the magnitude of

βðsÞk and that of the coupling function of the cubic operator.
The first constraint comes from the argument on the
backreaction from the excited modes. The modes that
get excited from the Bunch-Davies state cause backreaction
to the inflationary background [55]. When the quadratic
action is of the form [Eq. (21)], the condition to prevent the
excited modes from disrupting the inflationary background
has been obtained as [39]

ch
a4ðη0Þ

Z
Λaðη0ÞβðsÞk

2k3dk≲M2
PlH

2: ð51Þ

For simplicity, we assume

βðsÞk ∼
�
β for k ≤ Λaðη0Þ
0 for k > Λaðη0Þ;

ð52Þ

where β is constant. Hence, Eq. (51) can be rewritten as3

jβj≲ ðP�
hÞ1=2

MPl

Λ
F 1=2

T

Λ
: ð54Þ

The second constraint can be derived from the following
perturbativity condition:

Lð2Þ
h > Lð3Þ

h ; ð55Þ

where Lð2Þ
h and Lð3Þ

h are the quadratic and cubic
Lagrangians of the tensor perturbations, respectively.
Equation (55) is necessary as long as the solution of the
linear perturbation is used. See also Ref. [56] for a similar
perturbativity argument. We evaluate Eq. (55) at η ¼ η0 in
the GLPV theory and get

A5H
GT

<
H
chΛ

jhijj−1jη¼η0
: ð56Þ

We estimate the amplitude of hij from the primordial power
spectrum as4

Oðjhijj2Þjη¼η0
¼

Z
aðη0ÞΛ dk

k
Phjη¼η0

¼ O
�
P�

h
c2hΛ2

H2

�
;

ð57Þ

where we used the following form of the power spectrum:

Phjη¼η0
¼ P�

hð1þ c2hk
2η20Þ ≃ P�

hc
2
hk

2η20: ð58Þ

Note that we can treat hij as perturbations at η ¼ η0 under
the condition

Λ2 ≪
ffiffiffiffiffiffiffiffiffiffiffiffi
GTF T

p
: ð59Þ

This condition stems from the requirement that jhijj ≪ 1.
Then, by combining Eqs. (54), (56), and (57), one can
evaluate the upper bound on fCMB

NL as

fCMB
NL ≲ jβjjhijj−1 ≲MPl

Λ
F 1=2

T

Λ
H
chΛ

: ð60Þ

Assuming GT;F T ∼M2
Pl as typical values, we find

fCMB
NL ≲H

Λ

�
MPl

Λ

�
2

: ð61Þ

In this case, Eq. (59) indicates Λ ≪ MPl. For a cutoff scale
enjoying H < Λ ≪ MPl, the resultant parameter fCMB

NL can
relatively be amplified. Under our setup, the perturbations
are on the subhorizon scales at η ¼ η0, and thus we take
Λ ∼ 102H [which implies jkiη0j≲Oð102Þ] as a possible
lowest cutoff scale. Then we find

fCMB
NL ≲Oð105Þ; ð62Þ

where we have assumed H2=M2
Pl ≲Oð10−10Þ in accor-

dance with the current constraint on the tensor-to-scalar

ratio, r≲Oð10−2Þ [6]. Note that βðsÞk ¼ Oð1Þ in the case of
the possible lowest cutoff scale.
Here, the primordial bispectrum explicitly depends on

η0, which implies that the flattened non-Gaussianity is
generated on the subhorizon scales. This might lead one to
expect that a higher-derivative cubic operator could yield
a larger fCMB

NL . In the following subsection, we investigate
whether fCMB

NL is further enhanced in an extended gravita-
tional theory yielding higher-derivative cubic operators.

3As has been shown in Ref. [39], the same form can be
obtained from the following ansatz:

βðsÞk ∼ β exp½−k2=ðΛaðη0ÞÞ2�: ð53Þ

4More specifically, we ignored the logðkUV=kIRÞ term com-
pared to the jchkUVη0j2 term where kUV ¼ aðη0ÞΛ stands for the
UV cutoff and kIR stands for the IR one.
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B. Beyond-GLPV theory

Let us consider the following Lagrangian:

L ¼ LGLPV þ Lex; ð63Þ

where

Lex ¼ C1KikKkjR
ð3Þ
ij þ C2



−
1

3
KðRð3Þ

ij Þ2 þ Ki
jR

ð3Þ
ki R

ð3Þ
kj

�

þ C3

�
Rð3Þ
ij

�
3; ð64Þ

where Ci (i ¼ 1, 2, 3) are the arbitrary functions of t and N,
and we assume that Ci’s are almost constant in de Sitter
background. Those terms are a subclass of the general
spatially covariant theory beyond the GLPV theory [54].
A property of this subclass is that the quadratic action of

the tensor perturbations is of the standard form [Eq. (21)],
while the cubic Lagrangian includes terms with higher
derivatives than those in the GLPV theory,5

Lð3Þ
h;beyond ¼ Lð3Þ

h;GLPV þ Lð3Þ
h;ex; ð65Þ

where

Lð3Þ
h;ex ¼ a3



−

C1

8a2
ḣikḣ

k
j∂

2hji þ
C2

8a4
ḣik∂

2hkj∂
2hji

−
C3

8a6
�
∂
2hij

�
3

�
: ð66Þ

In the general class of the spatially covariant theory, the
quadratic action is modified by the ð∂2hijÞ2 term [57,58].
Since our purpose here is to investigate the enhancements
from higher-derivative cubic operators, the extra Lagrangian
given by Eq. (64) is sufficient for this purpose.
Three-point correlation functions can be calculated

straightforwardly, and we leave the details of the calcu-

lations to the Appendix. The βðsÞk terms in the primordial
bispectra from the extra cubic operators take the following
forms:

BC1
∼
C1H6

c2hF
3
T

1

k6i
βðsÞk jchkiη0j3; ð67Þ

BC2
∼
C2H7

c4hF
3
T

1

k6i
βðsÞk jchkiη0j5; ð68Þ

BC3
∼
C3H8

c6hF
3
T

1

k6i
βðsÞk jchkiη0j6; ð69Þ

where the subscript in B• denotes which term from which
the bispectrum arises. From Eq. (55), we have

C1 <
GT

Λ2
jhijj−1; ð70Þ

C2 <
F T

ch

1

Λ3
jhijj−1; ð71Þ

C3 <
F T

Λ4
jhijj−1: ð72Þ

The explicit forms of GT , F T , and c2h are different between
the GLPV theory and the beyond-GLPV theory,

GT ¼ −2ðA4 þ 3A5HÞ; ð73Þ

F T ¼ 2B4 þ Ḃ5 þ 3C1H2 þ 2
d
dt
ðC1HÞ: ð74Þ

In Ref. [39], the backreaction constraint was obtained only
within the GLPV theory. Since the quadratic action of both
the GLPV and beyond-GLPV theory has the same form as
Eq. (21), we can use Eq. (54) in the beyond-GLPV theory
as well. Finally, combining Eqs. (54) and (70)–(72), we
derive

fCMB
NL;C1

≲MPl

Λ
F 1=2

T

Λ

�
H
chΛ

�
2

; ð75Þ

fCMB
NL;ðC2;C3Þ ≲

MPl

Λ
F 1=2

T

Λ
H
chΛ

; ð76Þ

where fCMB
NL;• stands for fCMB

NL originating from B•. The
requirement for the perturbation to be on the subhorizon
scales at η ¼ η0 is jchkiη0j ≫ 1, implying chΛ=H ≫ 1.
Thus, the more stringent condition on fCMB

NL is obtained
from Eq. (76). It should be emphasized here that Eq. (76)
is exactly the same as Eq. (61). Therefore, though the
resultant fCMB

NL can indeed be amplified when the cutoff
scale is close toH, one cannot easily enhance fCMB

NL even by
introducing higher-derivative cubic operators in extended
theories of gravity because of the perturbativity condi-
tion Eq. (55).
Before concluding this section, it is noteworthy to

highlight a potential advantage offered by the enhancement
in the flattened limit. In gravity theories devoid of parity
violation, the B-mode autobispectrum vanishes under the
geometrical condition of li ¼ ljði ≠ jÞ. The primordial
bispectrum enhanced around the flattened configuration
(k1 ¼ k2 þ k3) implies that the CMB bispectrum would
also be enhanced around l1 ≃ l2 þ l3, which does not

5The Lagrangian proposed in Ref. [54] includes the GLPV
term with arbitrary coefficients, e.g., L ⊃ A4ðt; NÞK2;
Ã4ðt; NÞK2

ij, where the both coefficients are independent of each
other. Since such GLPV terms do not yield higher-derivative
cubic operators, we do not consider them in the present paper.
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conflict the condition above. Conversely, the primordial
bispectrum amplified around the squeezed (k1 ≃ 0) or
equilateral (k1 ≃ k2 ≃ k3) configuration results in the
CMB bispectrum peaking around l1 ≃ 0 or l1 ≃ l2 ≃ l3,
respectively, either of which are suppressed due to the
aforementioned geometrical condition. Hence, when
observing the B-mode bispectrum, one could anticipate
that the enhancement of the primordial bispectrum in the
flattened limit would exhibit a relative advantage over that
in the squeezed or equilateral limit.

V. SUMMARY

In the present paper, we first clarified that the ð−kiη0Þn
dependence in the primordial tensor bispectrum yields
ð−kiη0Þn−2 enhancement in the CMB bispectra. We then
found that the ð−kiη0Þn dependence obtained from the
cubic operators present in the Einstein-Hilbert action does
not lead to any enhancements in the CMB bispectra. We
also showed that the CMB bispectra can enhance, in
extended gravitational theories, the GLPV theory and its
extensions. In the case of the Bunch-Davies states, the
primordial tensor autobispectrum for the exact-flattened
triangle (k̃j ¼ 0) vanishes and that for the nearly flattened
one is not enhanced but just suppressed in proportion to k̃j.
Therefore, our results indicate that any detection of the
tensor flattened non-Gaussianities by CMB experiments
would support inflation models with non-Bunch-Davies
states in such extended theories of gravity involving higher-
derivative cubic operators.
In evaluating enhancement, we introduced a dimension-

less quantity fCMB
NL and derived its upper bound which is

determined from the backreaction constraint and the
perturbativity condition. Our analysis indicates that cubic
operators involving higher-order derivatives do not neces-
sarily lead to a larger fCMB

NL . This is due to the fact that
higher-derivative terms are significantly constrained by the
perturbativity condition. It would be interesting to look for
extended theories of gravity that can have more of an
impact on the CMB bispectra.
As a further study, it would also be important to compute

the CMB bispectra numerically and evaluate the signal-to-
noise ratio. The enhancement around the flattened triangle
occurs only for a very limited angle and, as estimated in
Ref. [9], some of the signals could be buried in noise. The
detailed analysis is beyond the scope of this paper, and we
will leave it for future work.
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APPENDIX: BISPECTRA FROM EXTRA TERMS

By using the in-in formalism, one can calculate the three-
point function of the tensor perturbations as

�
ξðs1Þðk1Þξðs2Þðk2Þξðs3Þðk3Þ

	

¼ −i
Z

0

η0

dηaðηÞ��ξðs1Þð0;k1Þξðs2Þð0;k2Þ

× ξðs3Þð0;k3Þ; HintðηÞ
�	
; ðA1Þ

where the interaction Hamiltonian Hint is defined by

Hint ≔ −
Z

d3xLð3Þ
h ; ðA2Þ

with Lð3Þ
h being the cubic Lagrangian of the tensor

perturbations. The primordial bispectrum in the GLPV
theory has been calculated in Ref. [39], and thus we here
show the results only from the extra terms in the beyond-
GLPV theory. For convenience, we define the resultant
bispectrum as

B• ¼ Re½B̃•�: ðA3Þ

First, we compute the bispectrum originating from the C1

term. By employing the in-in formalism, one can write the
bispectrum as

BC1
¼ Re½B̃C1

�; ðA4Þ

where

B̃C1
¼ −i

4C1chH6

F 3
T

1

k1k2k3
Πi

�
αðsiÞki

− βðsiÞki

�h
αðs1Þ�k1

αðs2Þ�k2
αðs3Þ�k3

IC1;1 þ βðs1Þ�k1
βðs2Þ�k2

βðs3Þ�k3
IC1;2

þ
�
αðs1Þ�k1

αðs2Þ�k2
βðs3Þ�k3

IC1;3 þ ðk1; s1 ↔ k2; s2Þ þ ðk1; s1 ↔ k3; s3Þ
�

þ
�
βðs1Þ�k1

βðs2Þ�k2
αðs3Þ�k3

IC1;4 þ ðk1; s1 ↔ k2; s2Þ þ ðk1; s1 ↔ k3; s3Þ
�i

Fðsi; kiÞ; ðA5Þ
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with

IC1;1 ¼
Z

dηη2ð−3þ ichKηÞeichKη; ðA6Þ

IC1;2 ¼
Z

dηη2ð3þ ichKηÞe−ichKη; ðA7Þ

IC1;3 ¼
Z

dηη2ð3 − ichk̃ηÞeichk̃η; ðA8Þ

IC1;4 ¼
Z

dηη2ð−3 − ichk̃ηÞe−ichk̃η; ðA9Þ

where k̃ ≔ −k1 þ k2 þ k3. First, we consider the non-
flattened limit enjoying jchk̃η0j ≫ 1. In this limit, we have

Re½IC1;i� ¼ 0; ðA10Þ

Im½IC1;1� ¼ Im½IC1;2� ¼ −
12

c3hK
3
; ðA11Þ

Im½IC1;3� ¼ Im½IC1;4� ¼
12

c3hk̃
3
; ðA12Þ

where K ≔ k1 þ k2 þ k3. Finally, we obtain

B̃C1
¼ −

48C1H6

c2hF
3
T

1

k1k2k3

h
Πi

�
αðsiÞki

− βðsiÞki

�i

×

��
αðs1Þ�k1

αðs2Þ�k2
αðs3Þ�k3

þ βðs1Þ�k1
βðs2Þ�k2

βðs3Þ�k3

� 1

K3

−
h�

αðs1Þ�k1
αðs2Þ�k2

βðs3Þ�k3
þ βðs1Þ�k1

βðs2Þ�k2
αðs3Þ�k3

� 1

k̃3

þ ðk1; s1 ↔ k2; s2Þ þ ðk1; s1 ↔ k3; s3Þ
i�

: ðA13Þ

Then, we consider the flattened limit enjoying jchk̃η0j ≪ 1.

In this case, we obtain

Re½IC1;1� ¼ Re½IC1;2� ¼ 0; ðA14Þ

Re½IC1;3� ¼ −Re½IC1;4� ¼ −η30; ðA15Þ

Im½IC1;1� ¼ Im½IC1;2� ¼ −
12

c3hK
3
; ðA16Þ

Im½IC1;3� ¼ Im½IC1;4� ¼ −
1

2
chk̃η40; ðA17Þ

and hence we have

B̃C1
¼ −

48C1H6

c2hF
3
T

�
1

k1k2k3

h
Πi

�
αðsiÞki

− βðsiÞki

�i

×
h�

αðs1Þ�k1
αðs2Þ�k2

αðs3Þ�k3
þ βðs1Þ�k1

βðs2Þ�k2
βðs3Þ�k3

� 1

K3

−
i
12

c3hη
3
0

�
αðs1Þ�k1

αðs2Þ�k2
βðs3Þ�k3

− βðs1Þ�k1
βðs2Þ�k2

αðs3Þ�k3

�i

× Fðsi; kiÞ
�

k̃→0

; ðA18Þ

where we used

Re½IC1;ð3;4Þ� ≫ Im½IC1;ð3;4Þ�: ðA19Þ

The integral that characterizes the η0 dependence of the
bispectrum is

Z
dηη2eichk̃η: ðA20Þ

One can compute the bispectra from the other two terms
similarly, and thus we show only the results below. Regard-
ing the C2 term, the bispectrum evaluated at the nonflattened
and flattened limits are obtained, respectively, as

B̃C2
¼ 24C2H7

c4hF
3
T

1

k1k2k3
Πi

�
αðsiÞki

− βðsiÞki

���
αðs1Þ�k1

αðs2Þ�k2
αðs3Þ�k3

þ βðs1Þ�k1
βðs2Þ�k2

βðs3Þ�k3

� 1

K3

�
3þ 4

k1k2 þ k2k3 þ k1k3
K2

�

−
h�

αðs1Þ�k1
αðs2Þ�k2

βðs3Þ�k3
þ βðs1Þ�k1

βðs2Þ�k2
αðs3Þ�k3

� 1

k̃3

�
3þ 4

k1k2 − k2k3 − k1k3
k̃2

�
þ ðk1; s1 ↔ k2; s2Þ

þ ðk1; s1 ↔ k3; s3Þ
��

Fðsi; kiÞ; ðA21Þ

and

B̃C2
¼ 24C2H7

c4hF
3
T

�
1

k1k2k3
Πi

�
αðsiÞki

− βðsiÞki

�
�
αðs1Þ�k1

αðs2Þ�k2
αðs3Þ�k3

þ βðs1Þ�k1
βðs2Þ�k2

βðs3Þ�k3

� 1

K3

�
3þ 4

k1k2 þ k2k3 þ k1k3
K2

�

−
i
30

c5hðk21 þ k1k2 þ k22Þη50
�
αðs1Þ�k1

αðs2Þ�k2
βðs3Þ�k3

− βðs1Þ�k1
βðs2Þ�k2

αðs3Þ�k3

��
Fðsi; kiÞ

�
k̃→0

: ðA22Þ
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The integral that defines the η0 dependence of the bispectrum is

Z
dηη4eichk̃η: ðA23Þ

Regarding the C3 term, the bispectrum evaluated at the nonflattened and flattened limits are obtained, respectively, as

B̃C3
¼ −

96C3H8

c6hF
3
T

1

k1k2k3
Πi

�
αðsiÞki

− βðsiÞki

���
αðs1Þ�k1

αðs2Þ�k2
αðs3Þ�k3

þ βðs1Þ�k1
βðs2Þ�k2

βðs3Þ�k3

� 1

K3

×

�
1þ 3

k1k2 þ k2k3 þ k1k3
K2

þ 15
k1k2k3
K3

�
−

�

αðs1Þ�k1
αðs2Þ�k2

βðs3Þ�k3
þ βðs1Þ�k1

βðs2Þ�k2
αðs3Þ�k3

� 1

k̃3

×

�
1þ 3

k1k2 − k2k3 − k1k3
k̃2

− 15
k1k2k3
k̃3

�
þ ðk1; s1 ↔ k2; s2Þ þ ðk1; s1 ↔ k3; s3Þ

��
Fðsi; kiÞ; ðA24Þ

and

B̃C3
¼ −

96C3H8

c6hF
3
T

�
1

k1k2k3
Πi

�
αðsiÞki

− βðsiÞki

�
�
αðs1Þ�k1

αðs2Þ�k2
αðs3Þ�k3

þ βðs1Þ�k1
βðs2Þ�k2

βðs3Þ�k3

� 1

K3

×

�
1þ 3

k1k2 þ k2k3 þ k1k3
K2

þ 15
k1k2k3
K3

�
−

1

48
c6hk1k2ðk1 þ k2Þη60

×
�
αðs1Þ�k1

αðs2Þ�k2
βðs3Þ�k3

þ βðs1Þ�k1
βðs2Þ�k2

αðs3Þ�k3

��
Fðsi; kiÞ

�
k̃→0

: ðA25Þ

The integral that sets the η0 dependence of the bispectrum is

Z
dηη5eichk̃η: ðA26Þ

Here, the Lagrangian in Eq. (64) is included in the general spatially covariant theory in Ref. [54]. In this framework, the
primordial tensor bispectrum in the presence of only the positive frequency mode has been calculated in Ref. [58]. By

choosing Re½αðsÞk � ¼ 1; Im½αðsÞk � ¼ 0, and βðsÞk ¼ 0, one can see that our results reproduce those in Ref. [58]. We also note
that the resultant bispectra with the Bunch-Davies initial state vanish for the flattened triangles k̃j ¼ 0 since Fðsi; kiÞ ∝ k̃j
and are suppressed around k̃j ¼ 0.
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