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Underdetermination of dark energy
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There is compelling evidence that the Universe is undergoing a late phase of accelerated expansion. One
of the simplest explanations for this behavior is the presence of dark energy. A plethora of microphysical
models for dark energy have been proposed. The hope is that, with the ever increasing precision of
cosmological surveys, it will be possible to precisely pin down the model. We show that this is unlikely and
that, at best, we will have a phenomenological description for the microphysics of dark energy. Furthermore,
we argue that the current phenomenological prescriptions are ill-equipped for shedding light on the

fundamental theory of dark energy.
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I. INTRODUCTION

Evidence for the accelerating expansion of the Universe
has been steadily accumulating since its discovery in
1998 [1-7]. While these observations are still consistent
with a cosmological constant, there are other proposals that
seek to account for this accelerating expansion by postulat-
ing the existence of dark energy [8]. Dark energy typically
refers to an exotic form of matter, represented by additional
fundamental field(s) that dynamically evolve over time
and may (or may not) modify gravity on cosmological
scales [9], depending on the exact nature of the field.

Characterizing this accelerating expansion usually
begins by defining the equation of state.
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where P is the pressure and p is the energy density of
whatever is sourcing the accelerating expansion. If expan-
sion is driven by a cosmological constant, then the equation
of state is locked in at the value w = —1. If, on the other
hand, expansion is driven by a dynamical field, then it will
evolve over time and the equation of state can then be
described as a function of a, the scale factor of the Universe,
so that w = w(a).

Ultimately, one would like to be able to extract the
detailed time dependence of the equation of state in the form
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of w(a) or w(z) where z is the redshift, 1 +z =a~! and,

indeed, there have been attempts at doing so [10,11]. In
practice there is limited information that one can extract
about the evolution of w(a) and, as a result, this has led to
the wide-spread adoption of a very natural and popular
parametrization known as the Chevallier-Polarski-Linder
parametrization [12,13], given by

w(a) =wy+w,(1 —a). (2)

This parametrization approximates the dark energy equation
of state close to today (a ~ 1); where w, gives the value of
the equation of state now and w, characterizes the temporal
evolution of dark energy. This allows for a very useful
description of dark energy models in terms of the param-
eters (wg, w,). Figure 1 shows the current constraints on
these parameters. A cosmological constant, A, is of course
given by w, = 0 and wy = —1, while various dynamically
driven dark energy possibilities occupy the rest of the
parameter space.

One interesting thing to note is that, while a cosmologi-
cal constant is still favoured, there is a tremendous amount
of open parameter space and future work that must be done
in order to measure (wg,w,). This invites the following
question: what can pinning down the values of (wg, w,)
teach us about the microphysical nature of dark energy? As
others have noted [14], constraining down to w, ~ 0 and
wqy ~ —1 strongly points towards a cosmological constant
but can never fully eliminate dynamically driven dark
energy as a possibility because it may simply not yet have
entered a stage of temporal evolution that is observable to
us. There is of course another possibility. What if future
surveys indicate that wy # —1 and that there is significant
temporal evolution captured in w,?

Clearly, observing w, # 0 with statistical significance
would rule out the basic cosmological constant scenario

Published by the American Physical Society
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FIG. 1. Current constraints on the (wg,w,) parameter space.
Broadly speaking, this parameter space can be divided up into a
few regions. “Freezing” quintessence corresponds to the region of
the parameter space where w, > 0 and refers to models where the
dark energy equation of state is evolving asymptotically towards
wpg =~ —1, while “thawing” quintessence corresponds to the
region where w, < 0 and refers to models where the dark energy
equation of state is evolving away from wpg >~ —1 to less negative
values. The region given by w < —1 is known as the phantom
region. It requires more exotic physics to describe and will not be
a focus of this study. As we can see, most of the viable parameter
space is locating in the thawing region.

and point towards the existence of dark energy driven
expansion. However, would such observations allow us to
definitively say anything more specific about dark energy,
other than inferring its dynamical nature? Most obviously,
we would like to gain an understanding of the fundamental
microphysics responsible of dark energy [14-25]. This
presumably (in keeping with the field theoretic paradigm
of modern physics) would be captured in a Lagrangian
expression; one that includes structural information con-
cerning the relevant types of dynamical field(s), the
couplings to gravity and other material fields, and the
forms of the respective kinetic and potential terms. To
this end, the shear volume of dark energy models that have
been explored is extensive: a by no means exhaustive list
includes canonical quintessence, k-essence, a-attractors,
f(R) gravity, Horndeski scalar-tensor gravity, DHOST
theories, Einstein-Aether theories, bimetric theories, and
many more [8,9,26-34]. Furthermore, many of these
theories have a large number of specific realizations.

It is hard to overstate the value of gaining such access to
the fundamental microphysics of dark energy. For exam-
ple, if dark energy is caused by some exotic field, this
could allow us to situate dark energy within the standard
model of particle physics. Such information might give us
crucial information regarding persistent conundrums such

the Hierarchy problem or what further symmetry princi-
ples are at play in particle physics [35,36]. If modifications
to gravity are at play, this could give us information
regarding gravity’s renormalizability [29]. Cosmologically
speaking, it could indicate the ultimate fate of the universe
itself: will the Universe continue in an accelerating
expansion forever (as in the cosmological constant sce-
nario or particular “freezing” realizations of dark energy)
or will the Universe stop accelerating (as in “thawing”
realizations of dark energy) [14]; or could it even poten-
tially begin contracting [37,38]?

In this article, we will attempt to shed some further light
concerning the degree to which constraining and determin-
ing the values of the parameters wy and w, will inform us
about the fundamental microphysics driving dark energy.
Our verdict is largely pessimistic: it is unlikely that
constraining the (wg, w,) plane will ever allow us to single
out a specific theory of dark energy, even if we were to
detect clear evidence of dynamical behavior (wy # —1
and w, # 0).

We support our argument in two primary ways: (i) we
demonstrate that there is significant underdetermination in
the (wgy,w,) plane in the sense that there is a complete
degeneracy between multiple realizations of dark energy
and their mapping over vast swaths of this parameter space;
and (ii) we highlight some shortcomings of using (wq, w,)
by demonstrating that this parametrization is remarkably
sensitive to the properties of the data used to constrain it,
introducing additional confounding factors.

With (i), it has been previously suggested in many places
in the literature that typical realizations of “freezing” and
“thawing” models of dark energy occupy small, well-defined
regions in the (wg,w,) plane; and that measurements of
these parameters would clearly indicate whether or not dark
energy was described by a simple realization (e.g. single
field, minimally coupled, canonical, etc.) of one of these
classes [14,39—42]. Furthermore, the typical understanding
holds that finding values for w, and w, outside these narrow
regions would indicate more complicated dynamics, exotic
physics, or highly unnatural fine-tuning.

We challenge this orthodoxy specifically regarding
thawing dark energy. We do so by exploring arguably
the simplest model of dark energy, a minimally coupled
scalar field with a quadratic potential. We analytically
demonstrate, using exact solutions in a matter-dominated
background, that this model can arbitrarily sweep across
huge sections of the (wy, w,) plane depending on simple
choices of model parameters. Furthermore, this model is of
particular interest because it can be understood as an
effective field theory approximation of a significant
number of other distinct models [43]; this means that it
provides a map between any space on the (wg, w,) plane
that it sweeps and many distinct models. We then show that
these conclusions hold more generally where we numeri-
cally integrate the equations for a mixed dark matter/dark
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energy universe thought to describe the actual Universe we
live in. Indeed, the difficulty of constructing a unique
potential from observational data has been noted in other
places (see e.g. [22]). Here we analytically and numerically
illustrate that determining a unique dark energy is almost
certainly impossible by using this simple model (and the
many models that it approximates) to cover significant
portions of the remaining viable parameter space.

Regarding (ii), we demonstrate that the wy,w, para-
metrization is very sensitive to the range of redshifts one
fits over. That is, we show that this parametrization captures
some w(a) evolutions for the quadratic model reasonably
well, but fairs far less successfully with others; making the
mapping between theoretical dark energy models and the
(wg, w,) phase space sensitively dependent on arbitrary
choices regarding the range of redshifts one fits over. We
illustrate this effect with a few different choices of survey
parameters.

The paper proceeds as follows. Section II provides an
overview of quintessence: we introduce two flavors of the
quadratic potential (“slow-roll” and “hilltop” variations),
derive their analytic solutions, and discuss how this model
can effectively approximate a huge variety of models with
distinct potentials. Section III derives analytic expressions
relating the quadratic potential to the (wg,w,) parameter
space and demonstrates that this model can sweep huge
portions of the (wy, w,) plane. We then numerically solve
the equations of motion and show that this conclusion holds
in a realistic Universe with both dark matter and dark
energy. Section IV discusses these results in light of current
surveys aimed at constraining w, and w,. Section V
concludes.

I1. QUINTESSENCE

Quintessence is perhaps the simplest theoretical proposal
for dark energy (see e.g. [44,45] for early papers on the
subject) and is characterized by a dynamical scalar field ¢
with a canonical kinetic term and a potential V(¢). The
theory is given by an action of the following form:

1 1
5= [ dx/ma MR- 300,000 V@) 5,

where M, is the reduced Planck mass, g is the determinant
of the metric g,,, R is the Ricci curvature scalar, and S, is
the action for matter. The scalar field minimally couples to
gravity through the metric determinant and is assumed to
have no direct coupling to matter fields.

The equation of state for dark energy wpg driven by such
a field is given by

P

p?/2 -V
WDEE_(p:(P/ (@)

Py - P V(g) @

where P, is the pressure and p,, is the energy density of the
scalar field ¢. Here, we can see that wpg will dynamically
evolve in time with the evolution of the scalar field.

The evolution of the scalar field is given by the scalar
field equation of motion:

$+3Hp+V'(p) =0, (5)

where V'(¢) = dV/dg and H gives the expansion rate of
the Universe through the first Friedmann equation:

w=(5) =5 0o Q

where a is the scale factor of the Universe and p is the
density of matter and radiation. Together, these equations
completely determine the dynamics of quintessence.
Solving for the dynamics of ¢ allows one to then determine
the evolution of wpg through Eq. (4).

The most extensively studied quintessence models fall
into two broad categories: freezing quintessence or thawing
quintessence. As the names suggest, freezing quintessence
describes dark energy evolution wpg which was different
from wpg ~ —1 in the past, but is now evolving asymptoti-
cally towards this value as the Universe expands (i.e.
“freezing in”) and broadly speaking falls in the w, > 0
part of the parameter space; thawing quintessence describes
dark energy evolution where wpg has been close to wpg ~
—1 in the past, but is now beginning to evolve towards larger
values as the Universe expands (i.e. “thawing out”) and
broadly speaking falls in the w, < 0 region of the parameter
space. Here, we will be particularly concerned with thawing
models as this is the less constrained part of the param-
eter space.

So far everything has been completely general. One must
then specify a form of the potential function V(¢), which
will enable one to solve the equations of motion, as well as
give a particular realization of the relevant microphysics
driving dark energy and allow for a direct investigation of
any observables associated with the specific model(s).
Mirroring a similar situation with inflation [46,47], the
number of distinct models that are distinguished by their
potential function is large. The possible forms of the
potential include all imaginable varieties and combinations
of power laws, inverse power laws, exponentials, axions,
trigonometric functions, and many more. See e.g. [8,27,36]
for reviews on quintessence which mention many of these
potentials and [46] for an exhaustive review on inflationary
potentials, many of which can be similarly adapted to
quintessence. Furthermore, the exact form of the potential
holds important information regarding the microphysics
responsible for dark energy, the overarching structure and
integration of such a field into the standard model of
particle physics, and the ultimate fate of the Universe’s
evolutionary trajectory.
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However, in this article, we will only consider arguably
the simplest model of quintessence: dark energy driven by a
quadratic m?¢? potential. The reason for this is that this
model can be understood from an effective field theory
perspective as the leading order expansion of many other
distinct models. In other words, an arbitrary (analytic)
single-field model can be represented by an expansion:

1d?V
2 dg?

av
V=Vt —
0+d(p

2 1V
P4
=0 6 d¢y®

@+
=0

[ =0

(7)

However, this can often be cast in a form that resembles the
quadratic potential. For example, consider another well-
studied model described by an exponential potential V(@) =
Voe™ [45,48-50]. Expanding, we have that

V(¢):V0(1—A¢+§cp2...>. (8)

However, a simple field redefinition ¢ — ¢ — ¢,, where ¢
is constant, allows us to cast this in a quadratic form
resembling the m? potential. That is,

V=) = Vo1 +5 ) -pli= 2o +-). O

where ¢, can be chosen such that ¢, = 1/4 and the linear
term vanishes, and any constant terms can be absorbed
into the definition of V). Thus, we see that an exponential
potential can, under certain circumstances, be well-
approximated as a quadratic potential of the form V(¢)~
Vo +3m?p?, where in this case the “effective mass” is
given by 4>V, = V”. Similarly, one could consider the
potential of pseudo Nambu-Goldstone boson given by
V(p) = Volcos(e/f) + 1] [51-53] or the supergravity
motivated potential V(g) = V(2 — cosh v2¢) [54], and
find that under this expansion these models are also
approximated by a quadratic potential with a negative
sign in front of the mass term V(g) ~ V, — 1 m?¢?. Given
that this is an effective parametrization in a local region of
the potential, we do not need to concern ourselves with the
fact that V(¢) may be unbounded from below.

If the m?p> model can cover large swaths of the
parameter space in dark energy observables, then this also
implies a significant underdetermination in the form of the
potential and the underlying microphysics driving dark
energy. That is, any dark energy trajectories that can be
obtained by an m?p? model can also trivially be recast as
any number of other dark energy models (admitting such an
expansion of course) with distinct functional forms of their
potentials and different fundamental microphysics. As
indicated above, in the following we will consider two
variations of the quadratic model: (i) the positive m?¢p?

model, which is representative of the standard slow-roll
thawing quintessence models and (ii) the negative m?¢?
model, which is representative of so-called hilltop quintes-
sence models. Let us now flesh out our understanding of
these two branches of the quadratic potential.

A. Vy+ %mzq)z
We begin with the positive quadratic model as this is
representative of the most standard kind of thawing
quintessence. Standard thawing models are characterized
by a set of “slow roll” conditions (not to be confused with
the inflationary slow roll conditions) [55]. They are

1dv\?

(V@) <1, (10)
1 d?V
Vd—qﬂ« 1. (11)

These conditions are important because they ensure that the
potential is flat enough to yield wpg ~ —1 at early times,
before the field starts slowly rolling, driving wpg to larger
values at late time.

As mentioned earlier, our representative of standard,
slowly rolling thawing models will be given by the
quadratic potential:

1

Another benefit of this particular model is that, depending
on the dominant background energy component, Egs. (5)
and (6) can be solved exactly (see e.g. [56-58]). Here and
throughout this article, we work in dimensionless variables
t— Hyt, H— H/Hy,¢ = @/my,m — m/H,, where H,
is the Hubble constant today. We also take the ansatz
a(t) « t?, which is true in both radiation and matter
domination, leading to exact analytic expressions for ¢:

o(1) = ()2 (me) (AT, (md) + BY, (mr)),  (13)

where J,, and Y, are Bessel functions of the first and second
kinds, respectively, and n = (1/2)/9p>—6p+1. To
simplify, we work in a matter dominated background
(p=2/3, n=1/2). As we will show later though, our
results are generalizable to the accelerated expansion era.
The general solution for ¢(t) is of the form

olt) = étsin(mt) + ?cos(mt). (14)

The particular solution ¢(¢) for the initial value problem
with an initial value ¢;, an initial velocity ¢;, at some early
initial time #; (where we have written this using the small
parameter £ = mt; < 1) is
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p(t) = % [sin(mt— &) + Ecos(mt— )| + Z—iisin(mt —£).

(15)
Expanding in &, to leading order we find ¢(¢):
@i .
o(t) ~ o sin(mt),
mt)?
o) =0, (1- "5, (16)

where in the last line we have expanded again (this time in
mt) as we have used that mt < 1 so that the scalar field has
not entered the oscillatory regime (i.e. this region of the
potential will not produce wpg ~ —1). Equation (16) will
allow us to write down an analytic expression for Eq. (4) for
this quintessence model.

B. Vo - im?¢p?

While the slow roll conditions given in Egs. (10) and (11)
are sufficient to generate a typical thawing quintessence
model, they are not both strictly necessary. As described
first in [51], one can relax the condition given in Eq. (11)
and still maintain the qualitative features of thawing
quintessence, but with some notable differences. In this
scenario, the scalar field rolls down a local maximum of the
potential. Here, the model is such that the field remains
close enough to the local maximum that Eq. (10) is still
valid, but not necessarily Eq. (11). This has been dubbed
hilltop quintessence [51,59] in analogy with similar hilltop
models of inflation (see e.g. [60,61]).

We will examine a hilltop quintessence model given by a
quadratic potential both because (as before) there are simple
analytic expressions for the scalar field dynamics and this
model approximates a tremendous variety of distinct dark
energy models as their leading order expansion. The
potential is given by

1
Vip) =Vo - Emzfﬂz- (17)
Equations (5) and (6) can again be solved exactly for matter
and radiation dominated backgrounds [62]. The only differ-
ence is the presence of the minus sign in front of m?;
resulting in similar analytic solutions this time given by

(1) = a(t)™2(m1)' (AL, (mt) + BK, (m1)), ~ (18)
where I, and K, are modified Bessel functions of the first

and second kinds, respectively. In the matter dominated era,
the general solution for ¢ is

(1) = ésinh(mt) + ?cosh(mt). (19)

The particular solution ¢(7) for the initial value problem
with an initial value ¢;, an initial velocity ¢;, at some early
initial time ¢#; (where we have written this using the small
parameter £ = mt; <K 1) is

o(r) = % [sinh(mz — &) + & cosh(mt — £)]

+ Z’ft sinh(mt — &), (20)

Expanding in ¢, to leading order we find

(1) = %sinh(mt). (21)

Notice that these are hyperbolic functions so we do not need
to demand that mt < 1 to avoid the oscillatory regime.
Similarly, Eq. (21) will allow us to write down an analytic
expression for Eq. (4) for this hilltop model. Having
obtained solutions for the scalar field, we will now proceed
to analyzing the evolution of the dark energy equation of
state in these respective models.

ITI. DARK ENERGY IN THE (wy,w,) PLANE

A. The wy-w, parametrization revisited

As mentioned earlier, the favored parametrization for
dark energy is given by

w(a) =wy+w,(1 —a).

Before we proceed, we need to be clear about how w, and
w, are actually determined. In practice, a given choice of
wy and w, will determine the time evolution of the dark
energy density, ppg or, in the case of quintessence, p,,. This
density, via the Friedmann equations, will determine the
expansion rate of the Universe as a function of time. Given
a set of observations—typically measurements of standards
candles over a redshift range—one can pin down values of
the expansion rate at different times, or redshift. One then
finds the wy and w, (and their associated uncertainties) that
best fit the observations. In other words, in practice, w, and
w, arise from fitting the data over a range of redshifts.

We can consider another parametrization of the equations
of state,

w(a) = wy + w,(l —a),
where

Wwo=w(a=1),

5 dw

Wa == (a=1).
One can then calculate the values of (W, w,) for different
choices of potentials, background expansions, and initial
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conditions. This can give us a useful, often analytic,
understanding of their features and how they relate to the
underlying theory. But it should be clear, from the outset
that the values obtained in this way, while indicative, will
not be the values one obtains through the fitting procedure
described above. We will bear this in mind as we proceed in
what follows and we will be particularly careful, by using
this notation, to distinguish between the two different
“types” of (wg, w,).

Let us now explore how the dynamics for different dark
energy models [as well as their mapping into the (W, W, )
parameters] can be straightforwardly understood from the
scalar field equation of motion,

¢+3Hp+V,=0,

where we have an “acceleration” term, a “friction” term, and
a “potential” term.

These terms will be important at different epochs depend-
ing on the classification of dark energy model. For example,
in freezing models at early times the evolution of the
potential term is significant as wpg # —1. Yet, as a freezing
model approaches wpg =~ —1, the potential becomes very
flat and the dynamics are dominated by the friction term.
The situation is different with thawing models as at early
times the equation of state is locked in at wpg ~ —1 and the
friction term is dominant. As a thawing model evolves away
from wpg ~ —1, the potential term becomes more important
as it is the field’s evolution through its potential that causes
dark energy to thaw.

This leads to well-defined bounds that typical (i.e. slow-
roll) freezing and thawing models respectively are thought
to live in throughout the course of their evolution, where
these bounds only span a tiny subset of the broader freezing
(w, > 0) or thawing (w, < 0) regions. In particular, the
thawing bounds are given by —1 < w,/(1 + W) < —3 and
it is commonly accepted in the literature that thawing
quintessence models are constrained to live within this
range (see e.g. [14,39—42]); which clearly represents only a
tiny fraction of the broader thawing region depicted in
Fig. 1. These bounds are largely determined by the back-
ground in which the scalar field evolves in. Essentially, one
can examine the ratios between the friction and acceleration
terms and the potential and acceleration terms, and conclude
that a slow-roll thawing model will be one for which this
lower bound obtains when in a radiation dominated back-
ground and this upper bound obtains when in a matter
dominated background (see e.g. [14,39,42] for further
discussion). Thus, a thawing quintessence model in a
matter-dominated universe will consequently evolve along
a narrow line given by w,/(1 + W) ~ =3.

However, most of the available parameter space in the
(Wg, W,) plane clearly lies outside of this given range. The
question is, can we find a way to use the V& m’gp?
models to fill in any of the remaining parameter space

outside of the typically quoted thawing bounds? The
answer, as we shall see below, is yes. This is because
hilltop models of the type considered above have notably
different evolutionary trajectories than the more standard
slow-roll thawing models [51].

B. Analytic expressions for w(a)

1. Vy+ %mzq)z
In order to determine the evolution of w(a) for the

positive quadratic model, we utilize Egs. (12) and (16) and
replace them in Eq. (4) to get

m’;
9V,

w(t) ~—1+ (mt)2. (22)

In order to determine the expression as a function of
the scale factor, we recall that during matter domination
t = tya’/? with respect to some reference time .

To determine (W, w,) we need

w(a) = =1 + X(mty)*a’, (23)
ZI—Z(a) = 3X(mty)*a?, (24)

where X = 'gz—fj. At a =1 and using Eq. (2), we find that

Wll
1+ o

= -3 (25)

As expected, the slow roll m?¢?> model evolves along
this previously quoted line in the (W, w,) plane with a
slope of —3.

2. Vy- jmep?
Similarly, we use Egs. (4), (17), and (21) to determine
w(a) for the hilltop model:

w(t)~—1+ M (sinh(mt) — mtcosh(mt))?.  (26)
Vo(mt)4
Also utilizing t = tya*/? and defining ¢ = (mzﬁ’;))z, we now

have that

ISee [51,59] for derivations of related, but more complicated
expressions for w(a) in hilltop models. The expressions derived
there represent approximate analytic solutions for w(a) assuming
that the universe evolves in a dark energy dominated background.
In this paper, we will focus on the exact analytic solution in a
matter dominated background and the full numerical solution for
a mixed dark matter/dark energy universe.
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2e
a®(mty)*
—mtya®? cosh(mtya®/?)]? (27)

w(a) = -1+ [sinh (mtga®/?)

and that

dw —6¢
%(a) - a*(mty)*
— mtya®? cosh(miya®/?)]

—12e¢
a’ (mty)*
— mtga®? cosh(mtya®?)]>. (28)

sinh (miga®?) [sinh(mtya’/?)

[sinh (mzya’/?)

At a=1 and using Eq. (2), the expression simplifies
considerably, giving

W, 3(mty)? sinh (mt,)
~ " sinh (mty) — (mty) cosh (mtg)

(29)

The behavior of the hilltop model will be notably different
than that of the slow roll model. For example, the behavior
for small m (or equivalently V” < 1) approaches w, ~
—3(1 + Wy). This is not surprising as this is the regime
in which the hilltop model approximates the slow roll
conditions in the previous model. However, as one
violates these conditions with larger m, the trajectory of
w(a) can change substantially.

A consequence of this is that these models can now look
significantly different in the (W, w,) plane and one can
quite easily tune the slope to be steeper depending on the
choice of m. For example, Eq. (29) indicates that the slope
would span between -3 <Sw,/(wy+ 1)< —15.5 for
.01 <mty <6. This (i) indicates that we can use the
quadratic hilltop model to essentially find any value we
want in the (W, w,) plane simply by selecting appropriate
mass/V” and V,, parameters. Furthermore, due to this
model’s ability to approximate any other model that
admits a Taylor expansion of the type considered in
Eq. (7), this (ii) similarly indicates that we can map
any distinct dark energy model within this family (quad-
ratic, exponentials, axions, etc.) to any point in the
(Wg, W,) plane that the quadratic model can reach through
any one of these models’ “effective” mass and V, terms.
Taken together, these point to a potentially serious under-
determination in the microphysics of dark energy with
respect to our observable parametrization of w(a). It
seems like no matter where we end up in the (W, w,)
plane within the broader thawing region, there are always
a multitude of models that can be easily mapped to any
point with a simple choice of parameters.

C. Covering the (w,,w,) plane

Let us now see more concretely how these models map
into the (Wwg, w,) plane. To begin with, it is instructive
to plot w(a) for different choices of parameters. If we
first consider the models with a positive quadratic term
[depicted in Fig. 2(a)], we see that, for a fixed Wy, the
evolution of the different solutions all converge to a single
trajectory and seem to have the same slope as a decreases.
This is qualitatively different for what happens for models
with a negative quadratic term; in Fig. 2(b), we plot a few
models with the same W, but with a range of different
slopes, as a decreases [see also [51] for further excellent
discussion on the w(a) evolutionary trajectories of hilltop
models]. This is a strong indication of what one should
expect when mapping each of these theories onto the
(Wg,W,) plane. The positive quadratic model will be
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(a) Slow-roll thawing quintessence trajectories.
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(b) Hilltop thawing quintessence trajectories.
FIG. 2. w(a) evolution for different choices of model param-

eters for the slow-roll/positive quadratic model and the hilltop/
negative quadratic model. The parameter m¢#, was varied and X
was chosen so that Wy~ .90. For the slow-roll models, all
converge on the same evolutionary track and will have the same
slope in the (W, w,) plane. All the hilltop models have very
different evolutions and the trajectories become steeper as mt, is
increased. Consequently, they will be represented differently in
the (W, W,) plane.
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FIG. 3. wy=w(a=1) and w, = —dw/da(a = 1) assuming
matter domination for both the slow-roll/positive quadratic model
and the hilltop/negative quadratic model. The slow-roll model
was randomly sampled for parameters mif,€[.01,1] and
X €[.1,2] and the hilltop model was randomly sampled for
parameters mtq € [.01,6] and e €[.0002,2]. The hilltop model
can arbitrarily sweep across huge swaths of the broader thawing
(W, < 0) region when compared to more standard slow-roll
models that only live along a narrow strip of this region given
by w, ~=3(Wg + 1).

locked in a narrow line along this plane as its parameters
are varied, while the negative quadratic model will sweep
out across the plane as its parameters are varied because
these variations will create substantially different w(a)
trajectories.

In order explore the (W, w,) plane, we first use the
analytic expressions we have derived, and sample over a
range different parameter values to fill in the (W, W,)
plane. As expected, the slow-roll model lies on the line with
a slope —3, depicted in Fig. 3. This model (and any others
that it approximates) are locked in this narrow region of the
W, W, parameter space.

The hilltop version of the quadratic model, on the other
hand, picks up where the slow-roll model leaves off and
sweeps over the steeper ranges of the (W, w,) plane as
Fig. 3 shows. This model (and similarly any of the other
many models that it approximates) can occupy large
swathes of parameter space and in principle can sweep
up to the “phantom” line (W, < —1), at which point more
exotic physics would clearly be required.

Our analytic results for a matter dominated universe are
already a clear indication that we can obtain almost any
value of (Wg,w,) with this simple model. Given that,
under general conditions for many models of thawing
quintessence, one can express the Taylor expansions of
their potentials as the potential described by this simple
model, this is confirmation that these models are under-
determined. In other words, many models will lead to the
same observational results.

Until now we have based our reasoning on analytic
expressions for the Taylor expansion of w(a) in the matter
era; they tell us exactly what drives the changes in slope in

terms of the parameters of the microphysics theory. But, of
course, the Universe is no longer matter dominated so it
will be important to make sure that these conclusions hold
up under a more realistic scenario. To check that is the case,
we numerically integrate Eq. (5) for a mixed dark matter/
dark energy universe. Instead of assuming a predetermined
evolution for a, we solve the Friedman equation in the
presence of the scalar field so that

H(a) = (pmoa-3 gt v<¢>). (30)

We choose initial conditions (at some suitably early time)
such that ¢ ~ 0, and a value of ¢, that leads to Qpg ~ .7 and
H =1 at the end of the integration (at a = 1). We then
generate w(a) numerically for a wide variety of parameters
and find (Wg, w,) for both models.

The numerical integration for the positive quadratic,
slow-roll model yields a similar result: this model lives on
a very thin strip of parameter space. However, the line it
traces out is w,/(Wwy + 1) ~ —1.5 (again at a = 1), rather
than w,/(Wo + 1) ~ =3 as in the matter dominated case.
This is because in a universe with a substantial dark energy
component, the Hubble friction term will be enhanced;
meaning that the evolution of w(a) will be suppressed
when compared to the matter dominated case for the
same choice of parameters [see Fig. 4(a)]. Notice also,
that this numerical integration shows that for a mixed dark
matter/dark energy universe, the evolution of w(a) for
the positive quadratic model is far more linear than the
matter dominated universe. Thus, the resulting line behavior
in the (W, w,) plane will be less than the matter dominated
value. This w,,/(Wwy + 1) ~ —1.5 result for thawing quintes-
sence in a mixed dark matter/dark energy universe is
consistent with what was found in [16,25,55,63] for similar
kinds of models that can be said to represent more typical
realizations of thawing quintessence.

The numerical integration for the negative quadratic,
hilltop model in a mixed dark matter/dark energy universe
also yields a similar result when compared with the
analytic solution for a matter dominated universe: this
model sweeps out a wide swath of the (W, w,) plane. As
with the positive quadratic model, the friction term is
enhanced meaning that the evolution of w(a) is suppressed
when compared with the matter dominated case for the
same choice of parameters [see Fig. 4(b)]. Here, the
evolution of w(a) for the negative quadratic model is still
nonlinear, but the evolution is not quite as steep. Thus, we
expect the resulting area that the model sweeps in the
(Wo.W,) to be somewhat smaller to the matter dominated
case. Here, we find, for this numerical evolution and
mty€[.01,6], —=1.5 <w,/(wy + 1) < —10 (Fig. 5).

Thus we have shown, both analytically and with numeri-
cal solutions, that we can generate an incredibly broad
family of possible behaviors for the equation of state, w(a).
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(a) Slow-roll thawing quintessence trajectories.
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(b) Hilltop thawing quintessence trajectories.

FIG. 4. w(a) numerical integration for both the slow-roll/
positive quadratic model and the hilltop/negative quadratic model
in a mixed dark matter/dark energy universe compared to their
respective matter dominated analytic solution for the same choice
of parameters. In both cases, we see that the numerical solution
does not evolve quite as much. This is because the Hubble friction
term is enhanced when dark energy becomes a significant part
of the scalar field equation of motion when compared with the
matter dominated solution.

Specifically, we have shown that we can get nearly any
arbitrary value of W, and W, with a quadratic model for the
dark energy potential, both analytically in a matter domi-
nated universe and numerically in a mixed dark matter/dark
energy universe thought to be a good description of our
current universe. This means that our conclusions implying
a significant underdetermination of the microphysics under-
lying dark energy with respect to the observables ¥, and W,
also hold in a realistic description of the Universe, as these
numerical solutions for the quadratic model will similarly
map many distinct dark energy models onto the exact same
regions of the (W, w,) plane just as well as the analytic
solutions in a matter dominated universe. Furthermore, it is
also worth emphasizing that these results can be understood
as being broadly consistent with some other studies in the
literature that have considered the (W, w,) parametrization
from different perspectives than the one we have adopted

0.00

——slow-roll model

-0.05 I hilltop model at a=1

-0.10
-0.15
3 -0.20
-0.25
-0.30

-0.35

—0.40 -
-1.000 -0.975 -0.950 -0.925 -0.900 -0.875 -0.850 —0.825 —0.800

Wo
FIG. 5. This is the result for wy=w(a=1) and w,=
—dw/da(a = 1) determined after numerically integrating

Eq. (30) for a universe with Qpg ~.7 for both the slow-roll/
positive quadratic model and the hilltop/negative quadratic model.
Both models are qualitatively similar in their behavior, with the
slow-roll model now living on W, ~—1.5(Wy + 1) while the
hilltop model takes values roughly between —1.5(wg + 1) S w, S
—10(wg + 1) and sweeps across the parameter space.

here. For example, [25] takes the Chevallier-Polarski-Linder
parametrization as a starting point in order to determine
which scalar field models can reasonably correspond to it
and finds that a number of potentials V(¢) are consistent
with w, ~—=1.5(Wy + 1) because many potentials will
exhibit sufficiently linear behavior when ¢ only rolls over
a small enough region of the potential. Another interesting
study [24] adapts the flow equation formalism from
inflation to a very generic description of quintessence
and also concludes that quintessence models can be found
in many regions in the (Wy, w,) plane outside the typical
freezing and thawing bounds, where they calculate (W, W, )
from the best-measured principal components (see [64]) of
the w(a) trajectory.

IV. FITTING wy, AND w,

We do not directly measure w, and W,. In practice, as
discussed above, we fit w, and w, over a range of redshifts.
The parameter space depicted in Fig. 1 is determined in this
way. Typically one has a range of distance measurements—
such as the angular diameter distance or luminosity distance
of structures or objects—which are integrals of the expan-
sion rate and which, in turn, are a function of the energy
density of dark energy. One then infers the properties of the
dark energy component from how well a given model fits
the distance measurements.

There are a number of stage IV surveys that have
been proposed to further our understanding of dark
energy [65-67]. To simplify, we emulate a typical stage
IV survey and assume that the results are measurements of
the Hubble parameter as a function of redshift. Our
conclusions would be no different if we had used distance

103519-9



WILLIAM J. WOLF and PEDRO G. FERREIRA

PHYS. REV. D 108, 103519 (2023)

0.00

= slow-roll model
hilltop model with H(z) fit
0 hilltop model at a=1

—0.05

—0.10 A

—0.15 A

—0.20 A

Waq

—0.25 A

—0.30 1

—0.35

—0.40
-1.000 -0.975 -0.950 -0.925 -0.900 —0.875 -0.850 —0.825 -0.800
Wo

FIG. 6. The light blue shaded region depicts the result for w;
and w, determined by numerically integrating w(a) for the hilltop
model in a universe with Qpg ~.7 and finding the best fit for
Egs. (31) and (32) over z € [.15, 1.85]. This is overplotted against
the Wy =w(a=1), w,=—dw/da(a =1) result (dark gray
shaded region) for the same hilltop model and choice of
parameters depicted in Fig. 5. This indicates that there is an
ambiguity in how these hilltop models are represented in the
(wg, w,) plane as the exact size of the swept region (for the same
choice of parameters) will sensitively depend on the range of
redshifts that one fits over due to the highly nonlinear evolution of
w(a) in these hilltop models. Fitting over a more restricted range
of more recent redshifts would cause the fitted results to more
closely resemble the a = 1 results. By contrast, the slow-roll
models (dark blue line) still lie in the same narrow strip as their
location is insensitive to the choice of fitting procedure as their
evolution is highly linear.

measurements themselves. As an example, we take the
redshift range and forecast uncertainties in [68].

The model we need to fit is the Friedman equation in
the form

H2(a) _ H% [Qma—?: 4 (1 _ Qm>e3wa(a—l)a—3(l+wo+wa)] )

(31)

And we approximate the negative logarithm of the
likelihood as

—2ID£EZ(HObS(Zi) ;H(Zi))z, (32)

O

where H (z) is the observed H, H(z) is the computed H
from Eq. (31) as a function of the w, and w, parameters,
and o; refers to the uncertainty at the redshift bin i.
Assume now that the observed H(a) corresponds to a
particular model of thawing quintessence for which we
have full numerical solutions. Let us then generate numeri-
cal evolutions for w(a) and determine the best wy, w, fit
using Egs. (2), (31), and (32) for redshifts z €[.15, 1.85]
(corresponding to the redshift bins from [68]). We begin

with the positive quadratic model first and then proceed to
the negative quadratic model.

For the positive quadratic model, this fitting procedure
produces results that are very similar to what we found
earlier: the wy, w, values for the quadratic model lie on a
very narrow strip of the (wg,w,) plane right around
w,/(wo + 1) ~—=1.5 (again consistent with other studies
such as [16,25,55,63]). Upon reflection, this should not be
terribly surprising. After all, as we have seen in Fig. 4(a), the
numerical solution w(a) for the positive quadratic model in
a mixed dark matter/dark energy dominated universe like
our own is highly linear. Thus, its mapping into the (wg, w, )
plane will not change substantially between only taking
these values at a = 1 or fitting them over a quite significant
range of redshifts.

The negative quadratic model, on the other hand, maps
quite differently into the (wg,w,) plane when this fitting
procedure is employed. Qualitatively, we still see that
various parameter choices for this model will produce a
“cloud” in the parameter space (rather than a narrow line as
with the positive quadratic model). However, this cloud is
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FIG. 7. Comparison between the w, and w( values depicted in
the (wg,w,) plane of Fig. 6. This shows how the values
determined by fitting H(z) through Egs. (31) and (32) and those
determined by W, and W, map onto each other. In other words,
this fitting procedure squeezes the representation of the hilltop
model in the (wy, w,) plane. The exact degree to which the swept
region is squeezed depends on the range of redshifts included
in the fit.
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significantly more narrow than we saw in the @ = 1 case as
it very roughly lies between —1.5 Sw,/(wy + 1) < =2.5.
Figure 6 depicts the (wg, w,) plane for the same numerical
evolution as Fig. 5, except that w, and w, have been
determined by fitting over z €[.15, 1.85] rather than by
determining the values W, and W, at a = 1; whereas we saw
this choice of parameters previously swept across
—1.5 <w,/(Wwy+ 1) < —10. Figure 7 depicts how the
Wo, W, values map onto the fitted parameters w, and w,;
and there we can clearly see how this fitting procedure
“squeezes” the (wgy,w,) phase space that these hilltop
models live in.

While this does not change the broader conclusion—that
there is a significant amount of parameter space for which
the microphysics of dark energy is severely underdeter-
mined because many distinct microphysical models can
sweep significant parts of this parameter space—this does
reveal that exactly how a model of dark energy maps into
the (wg, w,) plane can potentially be sensitively dependent
on somewhat arbitrary choices for fitting procedure. This
surprising sensitivity can be traced to the fact that the w(a)
evolution in the hilltop model has significant nonlinearities.
Consequently, as a linear parametrization, wy and w, may
not necessarily provide a good description of a dark energy
model that does not feature a fairly linear evolutionary
trajectory w(a) (see also [25,51]). This immediately allows
us to understand that the wy, w, parametrization will not
provide a good description over that range of redshifts for
the hilltop model, because the vast majority of w(a)’s
evolution is weighted at very recent redshifts [e.g. recall
Figs. 2(b) and 4(b)].

Clearly the redshift range of the data plays a significant
role in the range of wgy,w, one obtains from thawing
quintessence. Paradoxically, but not surprisingly, Fig. 8
shows that, if one narrows the range of redshifts (in this
case from z € [.15, 1.85] to z € [0.15, 0.25]) we can see that
we get a closer approximation with the Wy, W, parametri-
zation to the full w(a) evolution. Consequently, one can
repeat the procedure we have done in this section, but fit
over a smaller range of redshifts. One then finds that doing
so will result in a wider sweeping of the (wg, w,) plane that
much more closely resembles (W, w,) the more one
restricts the range of redshifts to those where the most
significant w(a) evolution occurs as the fit now “sees” the
steeper part of the trajectory. The reason one might want to
do this is that, as Fig. 8 clearly shows, this is a far better
parametrization of the actual w(a) trajectory. However, in
practice, the attendant costs of doing so would require
utilizing less survey data and significantly increasing the
uncertainties of the observations. With all these consid-
erations though, it is clear that there is some ambiguity in
how hilltop models of the type considered here will map
into the (wg, w,) plane as different fitting procedures will
result in the models sweeping different areas of the plane.
Consequently, we should seek alternative parametrizations

-0.90
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—0.96 A

—0.98 A

-1.00 T T T T
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FIG. 8. Evolution of w(a) compared with two different fits for
the w(a) = wy + w,(1 — a) parametrization. The yellow line
was determined by fitting H(z) through Egs. (31) and (32) for
z€[.15,1.85], while the green line was determined by fitting
from z €[0.15, 0.25]. We can see that fitting over the more recent
range of redshifts better captures the w(a) evolution for the
steeper hilltop models considered here. Consequently, we can
understand why the swept area of Fig. 6 is squeezed when fit
over a large range of redshifts: the fit for wy and w,, in that case
does not fully capture the steeper part of the w(a) trajectory that
occurs at the more recent redshifts and consequently maps these
model into a less steep part of the (wy, w,) plane. The smaller
and more recent the range of redshifts included in the fit, the
closer that the fitted (wg, w,) values will be to the (W, W, ) values
determined at a = 1.

for the microphysics of dark energy that are not so
dependent on such a choice of fitting procedure.

V. CONCLUSION

One of the goals of modern cosmology is to determine
the microphysical model that underpins the accelerated
expansion of the Universe. The most popular proposal is
that it is driven by some form of dark energy which can be
characterized by an equation of state. The guiding prin-
ciple has been that, with current and future cosmological
observations, we will be able make accurate measurements
of the equation of state and, as a result, pin down the right
microphysical model of dark energy. In this paper, we have
focused on a very broad class of models of dark energy—
thawing quintessence—and showed that future observa-
tions will inevitably underdetermine the microphysics of
dark energy.

By focusing on a widely used parametrization of the
cosmological dark energy—w, and w,—we have shown
that we can get almost any value of these parameters with a
simple quadratic model for the potential. Thus, contrary to
what has often been claimed in the literature, simple
realizations of thawing quintessence are not confined to a
small region of the (wy, w,) phase space. Furthermore, this
does not require any highly exotic physics, unusual fine-
tuning, or inordinately complicated dynamics. Essentially,
one just needs a simple single field model of canonical
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quintessence with a quadratic potential, and in particular the
hilltop flavour of this model which was first investigated in
detail by [51]. As we have seen, this model can find nearly
any spot in the thawing region of the (wy, w,) plane with a
judicious choice of basic model parameters. We showed this
using exact solutions for ¢ in the matter dominated universe
as well as numerically integrating the scalar field equations
of motion for a mixed dark matter/dark energy universe.
This indicates that there is a significant underdetermi-
nation with respect to this model and any other model that
can be placed anywhere within the (wg, w, ) plane that this
quadratic model can sweep. As we demonstrated earlier,
we already know of several distinct microphysical models
of dark energy that can be mapped into this exact same
region of the parameter space because the quadratic model
approximates all of the many models that admit of a Taylor
expansion of the form Eq. (7) where the potential is
expanded to quadratic order. Thus, these models will be
indistinguishable from the quadratic model considered here
from the point of view of observables in the (wg, w,) plane.
Given that we can fill out the parameter space with the
quadratic model and map between that model’s predictions
for the parameter space and many other models, this deflates
some of the motivation for investigating models with
different potentials. There could certainly be interesting
or even compelling theoretical reasons or nonempirical
motivations for pursuing specific models (coherence,
explanatory power, aesthetics, problem-solving capabilities
etc; see e.g. [69-77]). For example, there are specific
potentials that are pursued for their ability to resolve
outstanding fine-tuning problems [78] or that possess

particularly attractive theoretical qualities such as having
radiative stability due to their symmetries [53]. However, it
is unlikely that strictly empirical methods will single out a
unique potential.

Our work does not rule out the possibility of structure
formation [79-83], gravitational waves [84-90], fifth force
tests [91-93] etc. pointing us towards more specific micro-
physical realizations of dark energy. For example, non-
minimal couplings could conceivably show up in any of
these different types of measurements and could be used to
narrow down the possible microphysical models one might
consider [18]. Furthermore, if we are interested in learning
something about the microphysics of dark energy, we
should seek alternative parametrizations of w(a). As we
have seen with the hilltop models considered here, the wy,
w, parametrization of dark energy is ambiguous in terms of
how it represents certain classes of dark energy models in its
parameter space due to these parameter’s sensitive depend-
ence on distance measurements. Parametrizing in terms of
(Vo, V") could potentially be a more powerful approach and
shed further light on the fundamental mechanism at play
which is driving accelerated expansion [11,22].
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