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In Q. Vigneron, Non-relativistic regime and topology: Topological term in the Einstein equation, we
proposed and motivated a modification of the Einstein equation as a function of the topology of the
Universe in the form of a biconnection theory. The new equation features an additional “topological term”
related to a second nondynamical reference connection and chosen as a function of the spacetime topology.
In the present paper, we analyze the consequences for cosmology of this modification. First, we show that
expansion becomes blind to the spatial curvature in this new theory; i.e., the expansion laws do not feature
the spatial curvature parameter anymore (i.e., Ω≠K ¼ 1; ∀ ΩK), while this curvature is still present in the
evaluation of distances. Second, we derive the first order perturbations of this homogeneous solution.
Two additional gauge invariant variables coming from the reference connection are present compared with
general relativity: a scalar and a vector mode, both sourced by the shear of the cosmic fluid. Finally,
we confront this model with observations. The differences with the Lambda cold dark matter model are
negligible; in particular, the Hubble and curvature tensions are still present. Nevertheless, since the main
difference between the two models is the influence of the background spatial curvature on the dynamics, an
increased precision on the measure of that parameter might allow us to observationally distinguish them.
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I. INTRODUCTION

In Ref. [1], we showed that the nonrelativistic limit of the
Einstein equation is only possible if the spatial topology is
Euclidean, i.e., for which the covering space is E3. We
argued that this result can be interpreted as a signature of an
inconsistency of general relativity in non-Euclidean topol-
ogies (see Sec. 4.3 in [1]). We then raised the following
question: What relativistic equation admitting a nonrela-
tivistic limit in any topology should we consider? The main
requirements we drew for the new relativistic equation were
the following: (i) It should reduce to the Einstein equation
in a Euclidean topology, and (ii) it must be second order in
the metric derivatives. In that same paper [1], we proposed
an answer to the above question in the form of a bicon-
nection theory similar to the one introduced by Rosen [2].
It is composed of one physical Lorentzian structure ðg;∇Þ
and one nondynamical reference connection ∇. The equa-
tions in this theory are the same as in [2]; in particular, the
Einstein equation is modified such that the physical
spacetime Ricci curvature Rμν is replaced by the difference
between that curvature and the reference Ricci curvature
R̄μν arising from the reference connection [see Eq. (6)].

The fundamental difference between Rosen’s theory and
the approach of [1] is in the choice of reference connection
which [1] takes to be related to the spacetime topology.
This theory only differs from general relativity in the case
of non-Euclidean topologies, for which R̄μν ≠ 0, and
should be considered instead of the latter if one wants to
study a model universe compatible with the nonrelativistic
regime in any topology.
The goal of the present paper is to derive the equations

of the cosmological model that result from this biconnec-
tion theory (presented in Sec. II) and confront them with
observational data. Within the Standard Model of cosmol-
ogy, three main sets of equations are used:

(i) The homogeneous and isotropic solution of the
Einstein equation to describe global expansion.

(ii) The weak field limit to describe the linear regime of
inhomogeneities in the early Universe, and in the late
Universe on large scales. These equations allows us to
test the model using the cosmic microwave back-
ground (CMB) data, baryonic acoustic oscillation
(BAO) data, and supernovae (SN1a) data in particular.

(iii) The nonrelativistic equations (cosmological Newton
equations) to describe nonlinear structure formation
in the late Universe. N-body simulations performed
using these equations allow us to test the model by
comparing mock catalogs with catalogs of galaxies.
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These sets of equations need to be derived within the
framework of the biconnection theory for a complete
cosmological model.
The nonrelativistic equations resulting from the bicon-

nection theory were already derived in [3,4]: For Euclidean
and non-Euclidean topologies, they correspond to the
cosmological Newton equations and the non-Euclidean
Newtonian equations, respectively. The latter theory
describes Newtonian (i.e., nonrelativistic) gravitation on
non-Euclidean topologies (e.g., spherical, hyperbolic, etc).
It is shown in [4] how it could be used to study nonlinear
structure formation in spherical topologies.
To complete the cosmological model related to the

biconnection theory of [1], it remains to derive the homo-
geneous and isotropic solution (to describe expansion),
along with the weak field limit of the biconnection theory
(to describe the linear regime of inhomogeneities). The
former is derived in Sec. III, where we show, in particular,
that the curvature parameter ΩK is not present anymore in
the expansion law (i.e., Ω≠K ¼ 1; ∀ ΩK) compared to
the same solution derived from the Einstein equation
(i.e., Ω≠K þ ΩK ¼ 1): Expansion is blind to the spatial
curvature. As a complementary result, we show in
Appendix that this expansion law also holds for a general
nonperturbative inhomogeneous solution in the nonrelativ-
istic limit. The weak field limit of the biconnection theory is
derived in Sec. IV where we show that, as for the back-
ground solution, the presence of the curvature parameter
in the equations is significantly changed compared to the
Standard Model.
On scales where nonlinearities are important, the effects

of the background spatial curvature and topology are
expected to be smaller than current observational precision.
Since the difference between general relativity and the
biconnection theory developed in [1] is related to these two
parameters, we expect observational differences to appear
only on large scales, i.e., on scales described by the linear
approximation. Therefore, while an N-body simulation
seems not relevant to test the cosmological model related
to the biconnection theory,1 a direct comparison with CMB
data (in particular) using the weak field equations derived in
Sec. IV would provide a first test of this new theory. This
test is performed in Sec. V. We conclude in Sec. VI.

II. THE BICONNECTION THEORY OF [1]

The biconnection theory introduced in [1] is defined on a
4-manifold M ¼ R × Σ where Σ is a closed 3-manifold,
which we equip with

(i) a physical Lorentzian metric g and its connection ∇.
It defines the physical (spacetime) Riemann tensor

Rμ
αβν, the physical Ricci tensor Rμν ≔ Rα

μαν, and the
physical scalar curvature R ≔ gμνRμν.

(ii) a nondynamical reference connection ∇. It defines
the reference (spacetime) Riemann tensor R̄μ

αβν and
the reference Ricci tensor R̄μν ≔ R̄α

μαν. No reference
scalar curvature can be defined from ∇ alone.

The reference connection ∇ is nondynamical in the sense
that it is the same for any physical metric and energy-
momentum tensor. In the approach of [1], that connection
depends on topological properties of M in the sense that it
is chosen to be related to the universal cover M̃ ¼ R × Σ̃
of M, where Σ̃ is the universal cover of Σ. The universal
cover does not determine the precise topology of M, but
only its class. Since we always consider globally hyper-
bolic spacetimes (i.e., M ¼ R × Σ), the choice of space-
time universal cover M̃ is equivalent to the choice of
spatial universal cover Σ̃.
The choice of ∇made in [1] is the following: We assume

that there exists a coordinate system fx0; xig adapted to a
foliation of Σ-hypersurfaces such that the reference
Riemann tensor writes2

R̄μ
ανβ ¼ δμaδiαδ

b
νδ

j
β
Σ̃R̄a

ibjðxkÞ; ð1Þ

where Σ̃R̄a
ibj is independent of x0 and corresponds to the

standard Riemann tensor of the covering space Σ̃. In the
cases of interest for the present paper, Σ̃ will either be
the Euclidean E3, the spherical S3, or the hyperbolic H3

covering spaces, but in general, five other types of topo-
logies are possible, as described by the Thurston decom-
position [5]. In these three cases, we, respectively, have

E3

R̄a
ibj ¼ 0; S3

R̄a
ibj ¼ δabh̄

S3

ij − δaj h̄
S3

ib ;

H3

R̄a
ibj ¼ δabh̄

H3

ij − δaj h̄
H3

ib ; ð2Þ

where h̄S
3

ij (respectively, h̄H
3

ij ) are homogeneous and iso-
tropic metrics on S3 (respectively, H3). Therefore, in this
paper, the reference Ricci tensor has the form

R̄μν ¼ 2Kδiμδ
j
νh̄ijðxkÞ; ð3Þ

with h̄ij a homogeneous and isotropic metric, andK ¼ 0, 1,
and −1 for, respectively, Euclidean, spherical, and hyper-
bolic topologies. From this formula, dim ½ker R̄μν� ¼ 3

(in the spherical and hyperbolic cases), and therefore
R̄μν defines a reference observer of 4-velocity Gμ such that
GμR̄μν ¼ 0. The presence of this vector will be important
for Sec. III A. Furthermore, as will be shown in that section,

1For this same reason, a parametrized-post-Newtonian calcu-
lation aimed at testing modified gravity theories on solar system
scales would not be relevant to test the biconnection theory.

2Throughout this paper, we denote indices running from 0 to 3
by greek letters and indices running from 1 to 3 by roman letters.
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the normalization factor of the reference Ricci curvature is a
gauge choice.
In this theory, the Einstein equation is modified to feature

the reference curvature as follows:

Gαβ ¼ κTαβ − Λgαβ þ T αβ; ð4Þ

where κ ≔ 8πG, Tαβ is the energy-momentum tensor, Λ the
cosmological constant, and T αβ is defined as

T αβ ≔ R̄αβ −
R̄μνgμν

2
gαβ: ð5Þ

Since the reference curvature directly depends on the space-
time topology by the choice (1), the term T αβ can be
considered a topological term. Equation (4) can be rewrit-
ten in the more convenient form

Rαβ − R̄αβ ¼ κ

�
Tαβ −

Tμ
μ

2
gαβ

�
þ Λgαβ: ð6Þ

We see from this equation that the difference with general
relativity is to replace the physical spacetime Ricci tensor
with the difference between that tensor and the reference
spacetime Ricci tensor. The main interpretation of that
equation is that matter does not curve spacetime anymore,
as in general relativity, but only induces a departure of the
physical Ricci curvature from the reference, topological,
Ricci curvature.
The additional term T αβ in the Einstein equation is

conserved:

gμν
�
∇μR̄να −

1

2
∇αR̄μν

�
¼ 0: ð7Þ

This equation, called the biconnection condition, constrains
the diffeomorphism freedom in the definition of R̄μν with
respect to gμν.
Equations (6) and (7) are equivalent to the ones of the

biconnection theory proposed by Rosen [2]. The only, but
fundamental, difference is the choice and motivation for the
reference connection: Rosen chose a reference connection
related to a de Sitter metric in order to remove singularities
from general relativity, while in our case, the reference
connection is topology dependent as it is related to the
universal cover of the spacetime manifold M.
In the case of a Euclidean topology, i.e., Σ̃ ¼ E3, we have

R̄μν ¼ 0, implying that Eq. (6) is equivalent to the Einstein
equation and that Eq. (7) is trivial. Therefore, general
relativity and the biconnection theory of [1] coincide for
Euclidean topologies, and differ for any other type of
topology. In terms of the cosmological model, this will
imply that the two theories will differ only if ΩK ≠ 0.

III. HOMOGENEOUS AND ISOTROPIC SOLUTION
OF THE BICONNECTION THEORY

A. Derivation

We assume g to be the Friedmann-Lemaître-Robertson-
Walker (FLRW) metric. Therefore, the covering space Σ̃ is
either E3, S3, or H3, and the reference Ricci curvature has
the form (3). We define n to be the 4-velocity of the
observer relative to the homogeneous foliation of g, for
which the spatial metric is denoted h. Note that at this stage,
h̄ij present in (3) is a priori different from hij, and these two
tensors are not necessarily related to the same foliation. The
relation between them will be constrained by Eq. (4).
Because of homogeneity and isotropy, we can write both

Tμν and T μν as3

Tαβ ¼ ρnαnβ þ phαβ; ð8Þ

T αβ ¼ ρ̄nαnβ þ p̄hαβ; ð9Þ

where ρ and p are, respectively, the energy density and
pressure of matter, and

ρ̄ ≔
1

2

�
nμnνR̄μν þ hμνR̄μν

�
; ð10Þ

3p̄ ≔
1

2

�
3nμnνR̄μν − hμνR̄μν

� ð11Þ

are the effective energy density and pressure coming from
the topological term. Then the expansion laws take the form

3H2 ¼ κρþ ρ̄þ Λ −R=2; ð12Þ

3ä=a ¼ −
κ

2
ðρþ 3pÞ − 1

2
ðρ̄þ 3p̄Þ þ Λ; ð13Þ

where R ¼ 6K=a2 is the scalar spatial curvature related
to the physical spatial metric h, with aðtÞ the scale factor
and H ¼ ȧ=a the expansion rate. It remains to find a more
explicit formula for ρ̄ and p̄.
The heat flux relative to the term T being zero implies

nμhανR̄μν ¼ 0. Coupled with the fact that dim ½ker R̄μν� ¼ 3

from relation (3), then nμR̄μν ¼ 0. This implies that the
observer related to the homogeneity foliation induced by the
FLRWmetric corresponds to the reference observer induced
by the reference spacetime curvature, i.e., Gμ ∝ nμ. Then,

using (9)–(11) along with T αβ ≔ R̄αβ −
R̄μνgμν

2
gαβ, we get

ρ̄ ¼ −3p̄ ¼ 1

2
hμνR̄μν; ð14Þ

3The most general solution a priori features heat fluxes qα and
q̄α from, respectively, Tαβ and T αβ constrained to be q̄α ¼ −qα by
Eq. (4). This corresponds to a tilted cosmological model: Both the
fluid and the reference observer defined by Gα are tilted with
respect to the homogeneous foliation.
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R̄αβ ¼ −2p̄hαβ: ð15Þ

In coordinates adapted to the foliation of homogeneity, the
second relation, along with (3), leads to

2Kh̄ij ¼ −2p̄hij: ð16Þ

Both K and p̄ being spatial constants, the above equation
implies

R̄ij ¼ Rij; ð17Þ

where R̄ij ¼ 2Kh̄ij is the Ricci tensor associated with h̄ij.
Furthermore, for K ≠ 0, the inverse of (16) leads to

h̄ij ¼ −
K
p̄
hij; ð18Þ

where h̄ij is the inverse of h̄ij (i.e., h̄ij ≠ h̄cdhcihdj). Then,
using Eq. (17) we get R ≔ Rijhij ¼ R̄ijhij, which, along
with relation (18), leads to

6p̄ ¼ −R: ð19Þ

This implies ρ̄ ¼ R=2. Finally, the expansion laws (12)
and (13) of an exact homogeneous and isotropic solution of
the biconnection theory are

3H2 ¼ κρþ Λ; ∀ K; ð20Þ

3ä=a ¼ −
κ

2
ðρþ 3pÞ þ Λ: ð21Þ

These expansion laws are the ones of a flat homogeneous
and isotropic model as derived with the Einstein equation,
but here they hold even in the nonflat cases, i.e., for all K.
While the biconnection theory has the additional field

R̄μν with respect to general relativity, we see that the exact
homogeneous and isotropic solution does not have an
additional parameter linked to this field. The only role
of R̄αβ is to set the topology, the equations being indepen-
dent of the value chosen for the reference scalar curvature
R̄ ≔ h̄ijR̄ij. Indeed, rescaling the choice (3) by a constant
factor, which would rescale R̄ by the same factor, only
results in a rescaling of the scale factor aðtÞ. Therefore, the
value of R̄ is just a gauge choice. This was not the case with
Rosen’s choice of reference curvature [2], where a refer-
ence cosmological constant was introduced.

B. Why is it expected?

Equation (20) shows that within the framework of the
present biconnection theory, the expansion scenario is the
same for a Euclidean, spherical, or hyperbolic universe.
While we discuss the consequences of this result in more
detail in Sec. III C, in the present section we explain why it

is expected from any relativistic theory which we require to
have a nonrelativistic limit in any topology.
Let us consider the first Friedmann equation resulting

from the Einstein equation, where we reintroduce the speed
of light c ≠ 1:

3H2 − κρ − Λþ c2R=2 ¼ 0: ð22Þ
We see that the curvature term appears as a −1 order in
1=c2, while the other terms are all zeroth order terms.
Requiring the nonrelativistic limit to exist corresponds to
requiring that this equation be written as a Taylor series of
1=c2, and therefore that each order needs to be independ-
ently zero. This implies

RðtÞ
2

¼ 0; ðorder −1Þ; ð23Þ

3H2 ¼ κρþ Λ; ðorder 0Þ: ð24Þ
Therefore, the solution necessarily needs to describe a flat
universe. This is a rough derivation of the result in [1] for
the specific case of a homogeneous and isotropic solution,
stating that no nonrelativistic limit of the Einstein equation
exists for a solution describing a non-Euclidean spatial
topology.
The role of the reference spacetime curvature added in

the Einstein equation is to allow for this limit to be possible.
In the present case of a homogeneous solution, the term T
adds an effective density in the Friedmann equations,
which, as shown in Sec. III A, cancels the spatial curvature
term. The consequence is that the expansion law does not
feature the negative order in 1=c2 anymore, and therefore,
from the Taylor series, we only obtain (24) without the zero
curvature constraint (23), i.e., without constraining the
topology to be Euclidean. For this reason, we expect the
expansion law (20) to hold for any relativistic theory
admitting a nonrelativistic limit in any topology, i.e., not
only with the biconnection theory of [1].

C. Expansion is blind to the spatial curvature

The expansion laws in our cosmological model
[Eqs. (20) and (21)] are a flat Lambda cold dark matter
ðΛCDM) model, regardless of the spatial curvature:

Ω ¼ 1; ∀ ΩK; ð25Þ

where Ω ≔ Ωm þ Ωr þΩΛ, with Ωm ≔ κρm=ð3H2Þ the
matter parameter, Ωr ≔ κρr=ð3H2Þ the radiation parameter,
ΩK ≔ −K=ða2H2Þ the curvature parameter, and ΩΛ ≔
Λ=ð3H2Þ the cosmological constant parameter. This result
also holds in the presence of inhomogeneities and non-
linearities if these are nonrelativistic (see Appendix).
Therefore, the expansion as predicted by the biconnection
theory is blind to the spatial curvature, while this curvature
still affects the measure of distances. Therefore, in the
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biconnection theory, spatial curvature has smaller effects on
the dynamics than in general relativity; the effect remains
essentially geometrical. This is a strong difference between
the two theories, which leads to two main questions:

(i) What is the value of the curvature parameter result-
ing from a reanalysis of the cosmological data with
relation (25)?

(ii) In the case where the reevaluated curvature param-
eter is not negligible anymore, are the values of other
cosmological parameters changed such that recent
observational tensions within the ΛCDM model can
be solved?

The first question is especially interesting in light of a
rising debate on the value of the spatial curvature that
should be inferred from the CMB data of the Planck space
observatory. As shown in, e.g., [6–12], the best fit of the
Planck CMB power spectrum at all scales seems to prefer4 a
value at current time of ΩK;0 ≃ −0.045, which differs from
the standard constraint jΩK;0j≲ 10−3 obtained when BAO
data are taken into account5 [14]. The main issue with this
result is that it leads to a value of the Hubble constantHCMB

0

inferred from the CMB that is particularly low, strongly
increasing the tension with the local supernovae measure-
ment HSN1a

0 [15]: from HSN1a
0 −HCMB

0 ∼ 5 km=s=Mpc to
HSN1a

0 −HCMB
0 ∼ 20 km=s=Mpc (with large error bars).

Since expansion is not directly affected by spatial curvature
in our model, one may expect that the preference for
nonzeroΩK when fitting the CMB alone could stay without
changing the Hubble constant, and thus not increasing the
Hubble tension.
The reason why H0 must change when ΩK ≠ 0 in an

analysis of CMB data comes mainly from the angular
diameter distance

dAðzÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffijΩK;0j

p
H0ð1þ zÞ SK

� ffiffiffiffiffiffiffiffiffiffiffiffi
jΩK;0j

q
H0

Z
z

0

dz0

Hðz0Þ
�
;

ð26Þ
where

SKðxÞ ¼

8><
>:

sin x; ΩK < 0;

x; ΩK ¼ 0;

sinh x; ΩK > 0:

ð27Þ

When evaluated at the recombination redshift, the angular
diameter distance sets the typical distance under which we
observe CMB angular anisotropies. The typical angular
scale of CMB anisotropies (the “sound horizon” θs) is very
well determined by Planck to subpercent precision [14].
As ΩK scales like ð1þ zÞ2, it does not affect the early
Universe, but can affect the angular diameter distance,
hereby changing θs. The degeneracy with H0 allows us to
compensate for the effect of ΩK at the background level.
In fact, this formula is common to both the ΛCDM

model and our model, but with the HðzÞ solution of either
ΩþΩK ¼ 1 (ΛCDM model) or Ω ¼ 1 ∀ ΩK (our
model). Therefore, for the Standard Model, spatial curva-
ture appears in two places in formula (26): as a geometrical
effect in the function SKðxÞ, and as a dynamical effect in
HðzÞ; while in our model, it only appears as a geometrical
effect in SKðxÞ. Consequently, if the shift from HSN1a

0 −
HCMB

0 ∼ 5 km=s=Mpc to HSN1a
0 −HCMB

0 ∼ 20 km=s=Mpc
obtained in, e.g., [7,8,10], comes mainly from the presence
of ΩK in SKðxÞ, this shift should still be present in our
model. However, if it comes from the presence of ΩK in
HðzÞ, this shift should disappear in our model, and the
curvature tension might be solved.
To properly determine which case we are in, and to

answer the above two questions, a full analysis of the CMB
data using a Boltzmann code is necessary. It is performed
in Sec. V. This requires the derivation of the first order
perturbation equations of the biconnection theory, which
are presented in the next section.

IV. WEAK FIELD LIMIT

A. Gauge invariant variables and equations

In this section, we recall the definitions and the gauge
invariant equations used in the weak field limit. We follow
the notation of [16]. The limit is a first order perturbation of
a FLRW metric gμν ¼ gFLRWμν þ δgμν with

gFLRWμν ¼ a2
�−1 0

0 hij

�
ð28Þ

and

δgμν ¼ a2
� −2ϕ DiB − Si
DiB − Si −2ψhij þ 2DiDjEþ 2DðiFjÞ þ 2fij

�
; ð29Þ

4Although, this depends on the likelihood used. With the Planck “Camspec” (and the new NPIPE) [9,13], there is less preference for a
curved universe than the conventional “plik” likelihood [14].

5Let us mention that because of the tension between Planck and BAO data regarding curvature, it has been argued that it may not be
statistically consistent to combine both datasets [10].
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where DcSc ≔ 0, DcFc ≔ 0, fcc ≔ 0, and Dcfci ≔ 0. The
FLRWmetric is written in conformal time τ. The expansion
rate is denoted H ¼ a0=a where the prime derivative is
with respect to conformal time. We stress that in the
present convention (which we consider for all of Sec. IV),
hij is the comoving spatial metric with Di its connection,
and all the spatial indices are raised and lowered with that
metric.
Under a gauge transformation, which can be described

by an infinitesimal change of coordinates xμ → xμ þ ξμ, the
gauge invariant variables related to the metric are

Ψ ≔ ψ þHσ; ð30Þ

Φ ≔ ϕ −Hσ − σ0; ð31Þ

Qi ≔ Si þ F0
i; ð32Þ

with σ ≔ E0 − B. The tensor mode fij is already gauge
invariant.
The components of the energy-momentum tensor take

the form

T0
0 ¼ −ðρþ δρÞ; ð33Þ

T0
i ¼ ðρþ pÞðDivþ vi þDiB − SiÞ; ð34Þ

Ti
j ¼ ðpþ δpÞδij þ

�
DiDj −

1

3
δijΔ

�
Π

þ 1

2

�
DiΠj þDjΠi

�þ Πi
j; ð35Þ

where ρ and p are the homogeneous energy density and
pressure, Π, Πi, and Πij are, respectively, the scalar, vector,
and tensor parts of the anisotropic stress. The gauge invariant
quantities related to the energy-momentum tensor are

δρσ ≔ δρ − ρ0σ; ð36Þ

V ≔ vþ E0; ð37Þ

δp=¼ad ≔ δp − c2sδρ; ð38Þ

qi ≔ ðρþ pÞðvi − SiÞ; ð39Þ

with c2s ≔ p0=ρ0. The anisotropic stress variables are already
gauge invariant. We also define δ ≔ δρσ=ρ.
Then, the first order gauge invariant equations from the

Einstein equation Gμν ¼ κTμν, in which we include Λ in
Tμν, are

(i) for scalar modes

ðΔþ 3KÞΨ ¼ a2
κ

2
ρδþ 3HðΨ0 þHΦÞ; ð40Þ

Ψ0 þHΦ ¼ −a2
κ

2
ðρþ pÞV; ð41Þ

Ψ00 þ 2HΨ0 þHΦ0 þ ð2H0 þH2ÞΦ − KΨ

¼ a2
κ

2

�
c2sρδþ δp=¼ad þ

2

3
ΔΠ

�
; ð42Þ

Ψ −Φ ¼ a2κΠ; ð43Þ

(ii) for vector modes

ðΔþ 2KÞQi ¼ −a22κðρþ pÞðVi −QiÞ; ð44Þ

Q0
i þ 2HQi ¼ a2κΠi; ð45Þ

(iii) for tensor modes

f00ij þ 2Hf0ij þ ð2K − ΔÞfij ¼ a2κΠij: ð46Þ

The first order gauge invariant equations from the con-
servation law ∇νTμν ¼ 0 are

(i) for scalar modes

δ0 þ 3H
�ðc2s − wÞδþ δp=¼ad=ρ

�
þ ð1þ wÞðΔV − 3Ψ0Þ ¼ 0; ð47Þ

V 0 þHð1 − 3c2s ÞV þΦþ 1

ρþ p

	
c2sρδþ δp=¼ad

þ 2

3
ðΔþ 3KÞΠ



¼ 0; ð48Þ

(ii) for vector modes

q0i þ 4Hqi ¼ −
1

2
ðΔþ 2KÞΠi; ð49Þ

where we defined w ≔ p=ρ. In a noninteracting
multifluid approach, these last three equations are
fulfilled for each fluid component.

The goal of the next sections is to derive the same
gauge invariant equations as (40)–(49) in the case where the
Einstein equation features the topological term T μν ≔
R̄αβ −

R̄μνgμν

2
gαβ. For this, we can treat T μν as an additional

effective energy-momentum tensor with zeroth order
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quantities ρ̄ and p̄, and first order gauge invariant quantities δρ̄σ , V̄, δp̄=¼ad, q̄i, Π̄, Π̄i, and Π̄ij. Then, Eqs. (40)–(46) are
changed as follows:

δρσ → δρσ þ
1

κ
δρ̄σ; ðρþ pÞV → ðρþ pÞV þ 1

κ
ðρ̄þ p̄ÞV̄; δp=¼ad → δp̄=¼ad þ

1

κ
δp̄=¼ad; qi → qi þ

1

κ
q̄i;

Π → Πþ 1

κ
Π̄; Πi → Πi þ

1

κ
Π̄i; Πij → Πij þ

1

κ
Π̄ij: ð50Þ

It remains to find the first order quantities associated with
the topological term.

B. Gauge invariant quantities of the topological term

As shown in Sec. III, for a homogeneous and isotropic
solution, in a coordinate system where the physical space-
time metric can be written as (28), the reference spacetime
curvature takes the form R̄μν ¼ 2Kδiμδ

j
νhij (i.e., the refer-

ence spatial metric h̄ij corresponds to the comoving
spatial metric). In the framework of the weak field limit,
this formula corresponds to the zeroth order of R̄μν. As
presented in Sec. II, that tensor is nondynamical; i.e., it is
fixed for a given topology and is not affected by the physics
behind Tμν and gμν. Nevertheless, this does not mean that
R̄μν is only a zeroth order term within the weak field limit.
Indeed, the first order of the physical metric (29) and the
first order of the energy-momentum tensor (33)–(35) not
only come from physics, but also from gauge freedom. This
implies that R̄μν has, in general, a nonzero first order term
solely coming from gauge freedom, i.e.,

R̄μν ¼ R̄
0

μν þ LXR̄
0

μν; ð51Þ

where Xμ is a first order 4-vector, LX is the Lie derivative

along X, and R̄
0

μν ¼ 2Kδiμδ
j
νhij. We direct the reader to

Appendix F of [1] for a more detailed justification of (51).
This is done within the framework of the nonrelativistic
limit, but the derivation is equivalent to that with the weak
field limit.

Because R̄
0

μν is purely spatial and its time derivative is
zero, only the spatial components of Xμ remain in the first
order. Therefore, we have

R̄μν ¼ 2K

�
0 Diχ

0 þ χ0i
Diχ

0 þ χ0i hij þ 2DiDjχ þ 2DðiχjÞ

�
; ð52Þ

where δiμXμ ≕Diχ þ χi with Dcχ
c ≔ 0. Under a gauge

transformation, we have

R̄μν!ξ R̄μν þ LξR̄μν

!ξ R̄
0

μν þ LXþξR̄
0

μν

!ξ 2K

�
0 Diðχ0 þ ξ0Þ þ χ0i þ ξ0i

Diðχ0 þ ξ0Þ þ χ0i þ ξ0i hij þ 2DiDjðχ þ ξÞ þ 2Dði½χjÞ þ ξjÞ�
�
; ð53Þ

where ξμδiμ ≕Diξþ ξi with Diξ
i ≔ 0. So, χ and χi are not

gauge invariant but transform as, respectively, χ → χ þ ξ
and χi → χi þ ξi. Therefore, the following quantities
defined from the reference Ricci curvature are gauge
invariant:

C ≔ χ − E; ð54Þ

Ci ≔ χi − Fi: ð55Þ

These variables are interpreted in Sec. IV D. We have

a2T 0
0 ¼ −3K − 2KΔC − 6Kψ ; ð56Þ

a2T 0
i ¼ −2K

�
DiC0 þ C0i þDiσ þQi

�
; ð57Þ

a2T i
j ¼ −Kδij − 2Kδijψ þ 4KDiDjC

þ 2K
�
DiCj þDjCi

�
− 4Kfij: ð58Þ

Using the above equations along with (33)–(39), the first
order gauge invariant quantities (which we denote δρ̄σ , V̄,
δp̄=¼ad, q̄i, Π̄, Π̄i, Π̄ij) defined from T μν are
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δρ̄σ ¼
2K
a2

ðΔC þ 3ΨÞ; V̄ ¼ −C0;

δp̄=¼ad ¼ 0; Π̄ ¼ 4K
a2

C; ð59Þ

q̄i ¼ −
2K
a2

C0i; Π̄i ¼
4K
a2

Ci; ð60Þ

Π̄ij ¼
4K
a2

fij: ð61Þ

We recall that the zeroth order quantities are derived in
Sec. III A and are ρ̄ ¼ 3K=a2 and p̄ ¼ −K=a2.

C. Gauge invariant equations of the biconnection theory

Introducing the gauge invariant quantities (59)–(61) of
the topological term in Eqs. (40)–(49) as presented in (50),
the first order gauge invariant equations of the biconnection
equation (4), in which we include Λ in Tμν, are

(i) for scalar modes

ΔΨ ¼ a2
κ

2
ρδþ 3HðΨ0 þHΦÞ þ KΔC; ð62Þ

Ψ0 þHΦ ¼ −a2
κ

2
ðρþ pÞV þ KC0; ð63Þ

Ψ00 þ 2HΨ0 þHΦ0 þ ð2H0 þH2ÞΦ

¼ a2
κ

2

�
c2sρδþ δp=¼ad þ

2

3
ΔΠ

�
þ KΔC; ð64Þ

Ψ −Φ ¼ a2κΠþ 4KC; ð65Þ

(ii) for vector modes

ðΔ − 2KÞQi ¼ −a22κqi þ 4KC0i; ð66Þ

Q0
i þ 2HQi ¼ a2κΠi þ 4KCi; ð67Þ

(iii) for tensor modes

f00ij þ 2Hf0ij þ ð6K − ΔÞfij ¼ a2κΠij: ð68Þ

The conservation of the topological term∇νT νμ ¼ 0 leads to

C00 þ 2HC0 − ðΔþ 4KÞC ¼ Φ −Ψ; ð69Þ

C00i þ 2HC0i − ð2Δþ 4KÞCi ¼ −ðQ0
i þ 2HQiÞ: ð70Þ

Combining these last two equations with, respectively, (65)
and (67), we obtain

C00 þ 2HC0 − ΔC ¼ −a2κΠ; ð71Þ

C00i þ 2HC0i − 2ΔCi ¼ −a2κΠi: ð72Þ

These are wave equations for C and Ci that are sourced,
respectively, by the scalar and vector parts of the anisotropic
stress. Finally, since the conservation equations (47)–(49) do
not depend on the Einstein equation, they are unchanged in
the biconnection theory.

D. Interpretation of C and Ci

Compared to the Einstein equation, the weak field limit
of the biconnection theory features two additional varia-
bles: the scalar mode C and the vector mode Ci, which are
constrained by the wave equations (71) and (72). These
variables quantify the additional degrees of freedom
appearing with the introduction of the reference curvature
R̄μν. In particular, they can be related to properties of the
reference observer induced by R̄μν, in the cases K ≠ 0. We
recall that this observer is defined by a 4-velocity Gμ such
that6 GνR̄μν ≔ 0 and GμGνgμν ¼ −1. We have

Gμ ¼ 1

a
ð1 − ϕ;−Diχ0 − χi0Þ: ð73Þ

To have a better view of the link between C, Ci, andGμ, let us
also introduce the vector normal to the foliation of constant
time nμ, i.e., the foliation relative to the coordinates in
which (28) and (29) hold, along with the 4-velocity uμ of the
fluid described by the energy-momentum tensor (33)–(35):

nμ ≔
1

a
ð1 − ϕ;−DiBþ SiÞ; ð74Þ

uμ ≔
1

a
ð1 − ϕ;Divþ viÞ: ð75Þ

The tilt between these three vectors is

uμ − nμ ¼ 1

a
ð0;DiðV − σÞ þ Vi −QiÞ; ð76Þ

nμ −Gμ ¼ 1

a
ð0;DiðC0 þ σÞ þ Ci0 þQiÞ; ð77Þ

uμ −Gμ ¼ 1

a
ð0;DiðC0 þ VÞ þ Ci0 þ ViÞ; ð78Þ

where we introduced the gauge invariant variable
Vi ≔ vi þ F0

i. We see that C and Ci quantify part of the
tilt between the constant time, the fluid, and the reference
observers. The 4-acceleration of the latter is given by

6While the property dimðkerðR̄μνÞÞ ¼ 1 defines, up to a factor,
a reference vector field Gμ, we are unsure if this vector can be
normalized to be timelike with respect to the physical spacetime
metric everywhere. However, the fact that it is possible at zeroth
order, as Gμ ∝ nν, suggests that it is not unphysical to consider
that property to hold at first order. In any case, the weak field
equations of Sec. IV C do not depend on the existence of such a
normalization.

QUENTIN VIGNERON and VIVIAN POULIN PHYS. REV. D 108, 103518 (2023)

103518-8



Gaμ ≔ Gν∇νGμ

¼ 1

a2
δμi
�
DiðΦ − C00 −HC0Þ − ðCi0 þQiÞ0

−HðCi0 þQiÞ�; ð79Þ

and its vorticity is

Ωμν ≔ bα½μbβν�∇βGα

¼ −aδi½μδ
j
ν�DiðC0j þQjÞ; ð80Þ

with bμν ≔ gμν þ GμGν. We can also compute the curvature
perturbation δRðGÞ of the reference observer. It is defined as
the first order of the scalar spatial curvature in a gauge choice
where the scalar part of the tilt between nμ and Gμ is zero,
i.e., σ ¼ −C0. We have

δRðGÞ ¼ 4

a2
ðΔþ 3KÞðΨþHC0Þ: ð81Þ

Therefore, ΨþHC0 quantifies the curvature perturbation of
the reference observer rest frames.
As seen with Eq. (6), the main difference between

general relativity and the biconnection theory is that matter
only induces a departure of the physical curvature from the
reference curvature. Therefore, it seems more relevant to
consider not directly the perturbation of the spatial scalar
curvature, i.e., δRjσ¼−C0 , but rather the perturbation of the
spatial scalar curvature departure, i.e., δðR − bμνR̄μνÞjσ¼−C0

,

which is

δðR − bμνR̄μνÞjσ¼−C0
¼ 4

a2
ΔðΨþHC0 − KCÞ: ð82Þ

Therefore, Eqs. (78), (79), and (82) suggest the intro-
duction of the following gauge invariant variables:

(i) Φ̃ ≔ Φ − C00 −HC0, i.e., the scalar mode of the
acceleration of the reference observer.

(ii) Ψ̃ ≔ ΨþHC0 − KC, i.e., the perturbation of the
spatial scalar curvature departure of the reference
observer rest frames.

(iii) δ̃ ≔ δ − 3Hð1þ wÞC0, i.e., the density perturbation
in the reference observer rest frames.

(iv) Ṽ ≔ V þ C0, i.e., the scalar mode of the tilt between
the reference observer and the fluid.

(v) Ṽi ≔ Vi þ C0i, i.e., the vector mode of the tilt
between the reference observer and the fluid.

(vi) Q̃i ≔ Qi þ C0i quantifying the vorticity of the refer-
ence observer.

What is remarkable is that by introducing these variables in
the system (62)–(67), the scalar mode C, which is still
sourced by Π with Eq. (71), becomes the only source for
the reference gravitational slip Ψ̃ − Φ̃, and disappears from
the rest of the scalar mode equations

ΔΨ̃ ¼ a2
κ

2
ρδ̃þHð4Ψ̃0 − Φ̃0 þ 3HΦ̃Þ; ð83Þ

Ψ̃0 þHΦ̃ ¼ −a2
κ

2
ðρþ pÞṼ; ð84Þ

Ψ̃00 þ 2HΨ̃0 þHΦ̃0 þ ð2H0 þH2ÞΦ̃

¼ a2
κ

2

�
c2sρδ̃þ δp=¼ad þ

2

3
ΔΠ

�
; ð85Þ

Ψ̃ − Φ̃ ¼ ðΔþ 3KÞC: ð86Þ

The vector modes equations become

ðΔ − 2KÞQ̃i ¼ −2a2κðρþ pÞðṼi − Q̃iÞ þ ðΔþ 2KÞC0i;
ð87Þ

Q̃0
i þ 2HQ̃i ¼ 2ðΔþ 2KÞCi: ð88Þ

The conservation equations for matter become

δ̃0 þ 3H
�ðc2s − wÞδ̃þ δp=¼ad=ρ

�
þ ð1þ wÞðΔṼ − 4Ψ̃0 þ Φ̃0Þ ¼ 0; ð89Þ

Ṽ 0 þHð1 − 3c2s ÞṼ þ Φ̃þ 1

ρþ p

	
c2sρδ̃þ δp=¼ad

þ 2

3
ðΔþ 3KÞΠ



¼ 0: ð90Þ

In a noninteracting multifluid approach, these last two
equations are fulfilled for each fluid component.
Unfortunately, a priori, C and Ci cannot be totally

removed from the equations by a change of gauge invariant
variables. Therefore, in the general case of our model, there
necessarily are two additional variables with respect to the
weak field limit of the Einstein equation.

Remark 1. The weak field equations (62)–(67), i.e.,
written as functions of Φ, Ψ, V, and Vi, reduce to the
standard weak field equations of general relativity in the case
K ¼ 0. However, the tilde variables Φ̃, Ψ̃, Ṽ, and Ṽi do not
reduce to the nontilde ones. This means that if the usual scale
invariant initial conditions taken for Ψ are shifted to Ψ̃, then
even the case K ¼ 0 can lead to a different prediction on the
CMB power spectrum from with the Standard Model.
However, it is not clear to us if a proper justification of
this change of initial conditions from Ψ to Ψ̃ can be found.

Remark 2. Reference [1] showed that Gμ corresponds to
the 4-velocity of a Galilean observer, i.e., defining the
Newtonian notion of inertial frames in the nonrelativistic
limit. Therefore, in the case C ¼ 0 ¼ Ci, the usual gauge
invariant variables have an elegant interpretation: Φ
describes the acceleration of inertial frames, Ψ their
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curvature perturbation, Qi their vorticity, and V and Vi the
tilt of the fluid with respect to these frames.

V. BLIND CURVATURE AND COSMOLOGICAL
DATA

In this section, we fit our model with CMB, BAO, and
SN1a data. Throughout the section, the “0” subscript for
current time values of the Ω-cosmological parameters will
be omitted.

A. Methods

We make use of a modified7 version of the public CLASS
8

code [18] and run Markov-chain Monte Carlo runs using
the Metropolis-Hasting algorithm implemented in MONTE

PYTHON V39 [19,20]. We consider various combinations of
the Planck TT/TE/EE and “conservative” lensing potential
power spectra [14], measurements of the BAO from
the CMASS and LOWZ galaxy samples of BOSS DR12
at z ¼ 0.38, 0.51, and 0.61 [21], and the BAO measure-
ments from 6dFGS at z ¼ 0.106 and SDSS DR7 at z ¼
0.15 [22,23]; the Pantheonþ SNIa catalog compiles infor-
mation about the luminosity distance to over 1600 SN1a
in the redshift range 0.01 < z < 2.3 [24]. In all runs, we
use large flat priors on H0, the baryon and cold dark
matter energy density ωb and ωcdm, respectively, and vary
the curvature density fraction ΩK ∈ ½−0.5; 0.5�. When
considering Planck, we also include the amplitude and
tilt of the scalar perturbations As and ns, respectively (see
next section for a proper definition), and the reionization
optical depth τreio. We model free-streaming neutrinos as
two massless species and one massive with mν ¼ 0.06 eV.
We use HALOFIT to estimate the nonlinear matter clus-
tering [25,26]. We consider chains to be converged using the
conventional Gelman-Rubin criterion jR − 1j≲ 0.01 [27].
To analyze the chains and produce our figures, we use
GetDist [28].

B. Initial conditions

From the wave equations (71) and (72), we see that C and
Ci are sourced by the scalar and vector parts of the fluid
anisotropic stress. This leads to three possible situations.

(i) (Π ¼ 0; Πi ¼ 0) and (C ¼ 0; Ci ¼ 0): This is the
simplest case. The cosmological model defined via
this system along with the expansion laws (20)
and (21) has the same number of variables as the
ΛCDM model with curvature, the only difference
being the presence or not of the coupling terms with
that curvature.

(ii) (Π ¼ 0 and/or Πi ¼ 0) and (C ≠ 0 and/or Ci ≠ 0):
Choosing C ¼ 0 ¼ Ci without anisotropic stress
is a restriction to the generality of the weak field
equations. In particular, the gravitational slip, i.e.,
Ψ −Φ, is not necessarily zero but sourced by C. It is
not clear to us if this choice is physical, especially
since C and Ci vanish in the nonrelativistic limit, as
shown in Appendix F of [1].

(iii) (Π ≠ 0; Πi ≠ 0) and (C ≠ 0; Ci ≠ 0): The presence
of anisotropic stress necessarily implies the presence
of C and Ci, as shown by the wave equations (71)
and (72), and therefore implies the presence of
additional parameters with respect to the weak field
equations of general relativity.

Since anisotropic stress plays a non-negligible role in the
CMB power spectrum due to the presence of free-streaming
neutrinos (see, e.g., [29]), we will consider this third case
when fitting Planck data with this cosmological model.
Furthermore, with anisotropic stress being zero initially, we
will consider a zero initial condition for C and Ci. A proper
justification for a more complex initial condition on these
variables remains to be given, and is left for a future work.
In the ΛCDM model, the parametrizations of the

primordial power spectrum for nonflat cases is debated
(e.g., [30–33]), essentially because there is no consensus on
a nonflat inflationary scenario. Given the lack of such a
scenario in the context of our model, the issue remains.
Therefore, we assume for simplicity the standard para-
metrization used by CLASS:

ΔðkÞ ¼ As

�
k
k⋆

�
ns−1

; ð92Þ

with k⋆ ¼ 0.05h=Mpc−1 the conventional pivot scale. As
mentioned previously, we vary As and ns within broad flat
priors in analyses that include Planck data.

C. Results

We perform three sets of analyses: Planck TT/TE/EE (no
lensing), BAO+SN1a on their own, and finally the combi-
nation of Planck TT/TE/EE+lensing+BAO+SN1a. For each
of these combinations of datasets, the fits are performed
with the ΛCDM model (dubbed “normal curvature”) for
comparison and with our model (dubbed “blind curva-
ture”). We provide the mean (best fit) �1σ error recon-
structed for each parameter in Tables I and II.
Figure 1 presents the posterior distributions of the Planck

alone (filled) and BAOþ SN1a (empty) fits for ΛCDM

7Note that the correspondence between the Newtonian gauge
variables used in CLASS, defined in Ma and Bertschinger [17] and
our notation is

ΨMa ¼ Φ; ΦMa ¼ Ψ; δMa ¼ δ;

θMa ¼ −k2V; σMa ¼ 2

3

k2Π
ρþ p

; ð91Þ

where k is the wave number of the harmonic decomposition.
8https://lesgourg.github.io/class_public/class.html.
9https://github.com/brinckmann/montepython_public.
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(orange/red) and the blind model (light/dark blue). The
main difference brought by the blind model is an increase
of the uncertainty, while the average values of the param-
eters remain approximately the same. In particular, the
curvature tension mentioned earlier between the Planck
and the BAO+SN1a datasets is still present in the blind
model, even slightly enhanced. Interestingly, the degen-
eracy directions between H0 and ΩK in the BAOþ SN1a
analysis are opposite between the two models. This can be
understood from the first order in ΩK of the angular
diameter distance formula (26) (which is the main formula
governing the BAOþ SN1a fit), assuming Ωm and ΩΛ as
fixed variables independent of H0 and ΩK , which leads to

ΩΛCDM
K ¼ −

6I1ðzÞ
I3
1ðzÞ − 6I2ðzÞ

þ 6ð1þ zÞdAðzÞ
I3
1ðzÞ − 6I2ðzÞ

H0 þOΩ2
K;

ð93Þ

Ωblind
K ¼ −

6

I2
1ðzÞ

þ 6ð1þ zÞdAðzÞ
I3
1ðzÞ

H0 þOΩ2
K; ð94Þ

where

I1ðzÞ ≔
Z

z

0

1

½Ωmð1þ yÞ3 þΩΛ�1=2
dy > 0; ð95Þ

I2ðzÞ ≔
Z

z

0

ðzþ 1Þ2=2
½Ωmð1þ yÞ3 þΩΛ�3=2

dy > 0: ð96Þ

In our model, the degeneracy (of ΩK as a function of H0)

has a positive slope with factor 6ð1þzÞdAðzÞ
I3
1
ðzÞ . In the ΛCDM

model, this slope is 6ð1þzÞdAðzÞ
I3
1
ðzÞ−6I2ðzÞ and can be negative if

I3
1ðzÞ < 6I2ðzÞ, as is the case with BAOþ SN1a data.

The slope of the degeneracy depends on the redshift, which

TABLE II. Mean (best fit) �1σ errors in the ΛCDMþ Ωk
model with normal or blind curvature, reconstructed from
BAOþ SN1a.

BAO+SN1a

Curvature? Normal Blind

h 0.715ð0.697Þþ0.03
−0.046 0.770ð0.851Þþ0.079

−0.071
ΩK 0.0199ð0.085Þþ0.067

−0.068 0.086ð0.150Þþ0.17
−0.1

Ωm 0.353ð0.389Þþ0.046
−0.049 0.406ð0.457Þþ0.13

−0.073

FIG. 1. 2D posterior distributions of fh;ΩK;Ωmg in the
standard case (red/orange) and in the blind curvature (blue)
model. We compare constraints from Planck (filled) alone to that
obtained from BAO+SN1a (empty).

TABLE I. Mean (best fit) �1σ errors in the ΛCDM þΩk model with normal or blind curvature, reconstructed from either Planck or
Planck+BAO+SN1a.

Planck Planck+BAO+SN1a

Curvature? Normal Blind Normal Blind

h 0.543ð0.544Þþ0.035
−0.041 0.499ð0.466Þ � 0.048 0.6758ð0.6738Þ � 0.0062 0.6756ð0.6744Þ � 0.0069

ΩK −0.044ð−0.042Þþ0.020
−0.015 −0.057ð−0.072Þþ0.029

−0.019 0.0005ð0.0002Þ � 0.0019 0.0003ð−0.0001Þþ0.0017
−0.0016

Ωm 0.442ð0.563Þþ0.043
−0.053 0.528ð0.424Þþ0.071

−0.099 0.3137ð0.3158Þ � 0.0055 0.3135ð0.3143Þ � 0.0056

ωcdm 0.1182ð0.1183Þ � 0.0015 0.1182ð0.1169Þ � 0.0015 0.1200ð0.1202Þ � 0.0013 0.1199ð0.1199Þ � 0.0013
102ωb 2.258ð2.258Þ � 0.017 2.257ð2.274Þ � 0.017 2.235ð2.243Þ � 0.015 2.235ð2.245Þ � 0.015
109As 2.067ð2.089Þ � 0.035 2.065ð2.048Þ � 0.035 2.101ð2.089Þ � 0.030 2.101ð2.109Þ � 0.029
ns 0.9701ð0.9702Þ � 0.0048 0.9698ð0.9728Þ � 0.0047 0.9643ð0.9636Þ � 0.0044 0.9646ð0.9649Þ � 0.0043
τreio 0.0486ð0.0539Þ � 0.0083 0.0482ð0.047Þ � 0.0081 0.0545ð0.0507Þ � 0.0072 0.0546ð−0.0001Þ � 0.0072
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explains why it is different between the Planck data and the
BAOþ SN1a data sets.
Figure 2 presents the posterior distributions for the

combined Planckþ BAOþ SN1a fit in the ΛCDM normal
curvature model (red) and the blind model (blue). No
significant difference can be found between the two
models. In particular, the curvature is still tightly con-
strained around zero.
In all the fits, we find that the additional gauge invariant

variables present in our model at the level of perturbations
play a negligible role, the difference with ΛCDM coming
mainly from the modified background expansion laws (25).
Overall, the difference with respect to the best fit with the

ΛCDMmodel and our model is not significant. In particular,
while we still have a preference for a spherical universe when
Planck data alone are used, the increase in the Hubble
tension is still present. With respect to the discussion in
Sec. III C, this shows that the main constraints given by
cosmological data on the value of the curvature parameter
come from the geometrical effects of that curvature.

VI. CONCLUSION

We derived the homogeneous and isotropic solution of
the biconnection theory developed in [1], in which a term
related to topology is added in the Einstein equation. The
new expansion laws do not feature the curvature parameter
anymore, regardless of its value, i.e., Ω≠K ¼ 1; ∀ ΩK .
In other words, in this cosmological model, the expansion
scenario is equivalent for a Euclidean, spherical, or hyper-
bolic universe: I.e., expansion is blind to the spatial

curvature. The first order perturbations around this homo-
geneous solution features two new gauge invariant varia-
bles compared to the Standard Model. A scalar and a vector
mode, both sourced by the anisotropic stress of the fluid,
and which can be related to a reference observer.
We tested our model against observations. In the different

combinations of datasets, no significant differencewas found
between our model and the ΛCDM model. In particular, the
curvature tension between the Planck and the BAO datasets
remains present within our model, and is even slightly
increased, with Planck preferring a closed universe with
ΩK;0 ¼ −0.057� 0.025 and H0 ¼ 50� 5 km=s=Mpc.
Overall, these results show that removing the curvature

parameter from the expansion laws does not significantly
change its estimation from current cosmological data. Since
the presence or not of spatial curvature is the main differ-
ence between our cosmological model and the ΛCDM
model, only a better precision of the measurement of that
parameter might enable us to distinguish between these two
models, and therefore distinguish between general rela-
tivity and the biconnection theory of [1]. The study of a
nonflat inflationary scenario under the framework of this
theory is also an interesting perspective, especially since
the flatness problem is not present with the blind expansion
law anymore.
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APPENDIX: NO EFFECTIVE SPATIAL
CURVATURE IN THE NEWTONIAN

EXPANSION LAW

1. Motivation

In Newtonian gravitation, expansion is constrained by
the averaged second Friedmann equation

3ä=a ¼ −
κ

2
hρiΣ þ Λ − ΞcdΞcd; ðA1Þ

FIG. 2. 2D posterior distributions of fh;ΩK;Ωmg in the
standard case and in the blind curvature model for the combined
analysis Planckþ BAOþ SN1a.
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where h·iΣ is the spatial average over the whole (spatial)
volume of Σ, and Ξcd is traceless-transverse and represents
anisotropic expansion. We will not consider Ξij further.
That law is valid both for Newtonian gravitation on a
Euclidean topology [34–36] or for Newtonian gravitation
on a non-Euclidean topology [3] and consequently was
shown to derive from the nonrelativistic limit of, respec-
tively, general relativity and the biconnection theory.
However, while the second Friedman equation is explicitly
obtained from the equations of Newtonian gravitation, the
first Friedmann equation (i.e., featuring H2) is only
retrieved after integrating the former equation, as is well
known in Newtonian cosmology, leading to

3H2 ¼ κhρiΣ þ Λþ C=a2; ðA2Þ

where C is an integration constant mimicking a spatial
curvature term. To our knowledge, textbooks and refer-
ences talking about Newtonian cosmology always assume
that C is free (even though it is generally taken to be zero).
Since the main result of the present paper is the fact that

spatial curvature should not be present anymore in the
expansion law once we consider a theory compatible with
the nonrelativistic limit in any topology, then there seems to
be a contradiction with (A2). The goal of this section is to
show that this is not the case. We will show that a “hidden
condition” can be found from the first order in the non-
relativistic limit of either the Einstein equation or the
biconnection theory, which will constrain the integration
constant C to be zero (in either the Euclidean, spherical,
or hyperbolic cases), thus retrieving the law (20). In
other words, the expansion laws of nonrelativistic (i.e.,
Newtonian) gravitation, if required to be compatible with
either general relativity (Euclidean case) or the biconnec-
tion theory (non-Euclidean case) must not feature an
effective spatial curvature term.

2. Derivation

The derivation of that result requires the nonrelativistic
limit based on Galilean invariance that was developed
by [37]. We will not reintroduce this limit in the present
paper. Rather, we will directly use some formulas obtained

in [1], which were derived from this limit. The Newtonian
expansion law (A1) corresponds to the volume average of
the zeroth order (in 1=c2) of the time-time components of
the Einstein/biconnection equations (6) (in other words, the
average of the zeroth order of the Raychaudhuri equation).
The first Friedmann law is obtained with the volume
average of the first order of the spatial trace of (6) [in
other words, the average of the first order of the trace of the
(3þ 1)-Ricci equation]. That first order equation is given
by the trace of Eq. (135) in Appendix E of [1], which gives

3ðḢ þ 3H2Þ þDiPi ¼ 3

�
κ

2
ρþ Λ

�
; ðA3Þ

where Pi is a vector depending on (post)-Newtonian terms
that we do not need to detail, and Di is the spatial
connection related to a constant curvature metric equivalent
to hij of Sec. III.
Equation (A3) is valid for Newtonian gravitation in

either a Euclidean topology (i.e., from the nonrelativistic
limit of the Einstein equation) or in a spherical/hyperbolic
topology (i.e., from the nonrelativistic limit of the bicon-
nection theory). As a local equation, it does not constrain
the Newtonian dynamics more even if the density is
present; i.e., it does not need to be considered on top of
the Poisson equation. Rather, it is a dictionary to calculate
Pi, which can be related to the first order of the spatial
curvature tensor [1]. However, because the divergenceDiPi

vanishes with an averaging procedure, the global property
of this equation gives additional constraints on the global
dynamics. Taking the spatial average of (A3) and using the
acceleration law (A1), we obtain

3H2 ¼ κhρiΣ þ Λ: ðA4Þ

This is the first Friedmann equation without a curvature
term or integration constant, and, again, is obtain for
Newtonian gravitation in any topology. This shows that,
as for the homogenous solution of the biconnection theory,
the expansion law of any inhomogeneous (non-inear)
solution of Newtonian gravitation is also blind to the
spatial curvature.
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