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Black holes (BHs) traversing a dark matter cloud made out of a self-interacting scalar soliton are slowed
down by two complementary effects. At low subsonic speeds, the BH accretes dark matter, and this is the
only source of dragging along its motion, if we neglect the backreaction of the cloud’s self-gravity. The
situation changes at larger supersonic speeds where a shock appears. This leads to the emergence of an
additional friction term, associated with the gravitational and scalar pressure interactions and with the wake
behind the moving BH. This is a long distance effect that can be captured by the hydrodynamical regime of
the scalar flow far away from the BH. This dynamical friction term has the same form as the celebrated
Chandrasekhar collisionless result, albeit with a well-defined Coulomb logarithm and a prefactor that is
smaller by a factor 2=3. The infrared cutoff is naturally provided by the size of the scalar cloud, which is set
by the scalar mass and coupling, whilst the ultraviolet behavior corresponds to the distance from the BH
where the velocity field is significantly perturbed by the BH, which is determined by pressure effects. As a
result, supersonic BHs are slowed down by both the accretion drag and the dynamical friction. This effect
will be potentially detectable by future gravitational wave experiments as it influences the phase of the
gravitational wave signal from inspiralling binaries.
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I. INTRODUCTION

The ΛCDM model is the present established cosmo-
logical framework providing a comprehensive description
of the Universe’s large-scale structure and evolution.
Central to this model is cold dark matter (CDM), a
nonrelativistic component that exerts a significant gravita-
tional influence, shaping the formation of galaxies and
galaxy clusters. CDM constitutes approximately 27% of
the total energy content of the Universe [1,2] and plays a
crucial role in the clumping and development of cosmic
structures under gravitational effects.
Despite its success in explaining various cosmological

observations, the standard CDM paradigm encounters
challenges at smaller scales. Direct detection experiments
focusing on weakly interacting massive particles [3–8], a
prominent CDM candidate, are reaching their limitations
[9–12]. Moreover, at galactic scales, tensions arise as CDM
predictions deviate from observations, manifesting them-
selves in the core-cusp problem [13–17], the missing
satellite problem [18–21], and the too-big-to-fail problem
[22–25]. While introducing realistic baryons and baryonic
feedback in CDM simulations offers potential solutions,
these effects may not be sufficient to explain fully the
observed discrepancies. As a result, researchers have
explored alternative approaches, including investigating
alternative dark matter scenarios such as primordial
black holes [26–30], axions [31–36], and sterile neutrinos
[37–42], or considering modifications to gravity theories.

The ultralight dark matter paradigm [43–47], particularly
fuzzy dark matter (FDM), has emerged as a promising
alternative. FDM introduces ultralight scalar particles with
masses around 10−22 eV, characterized by large de Broglie
wavelengths. These particles form solitonic solutions at the
centers of dark matter halos [48–75], providing a potential
resolution to many of the tensions observed at galactic
scales [43–47] while recovering the success of the CDM at
cosmological scales [43,76–82]. However, recent observa-
tions, including the Lyman-α forest and galaxy rotational
curves [65,83–86], constrain the FDM particle mass to be
above 10−21 eV, suggesting that FDM alone may no longer
suffice to resolve fully the smaller-scale cosmological
discrepancies.
A closely related alternative is self-interacting scalar-

field dark matter (SFDM), where scalar dark matter
possesses repulsive self-interactions [48,87–96]. This
model offers means to reconcile the success of FDM while
introducing distinct behaviors at galactic scales. Within this
scenario, solitonic solutions no longer remain in equilib-
rium solely due to the balance between self-gravity and
quantum pressure. Instead, repulsive self-interactions intro-
duce an effective pressure, influencing the equilibrium
state. In the Thomas-Fermi regime [97,98], the repulsive
self-interactions dominate over quantum pressure, resulting
in equilibrium being determined solely by self-gravity and
the effective pressure [52]. A promising method to detect
possible signs of such dark matter involves studying its
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gravitational effects on black hole observations, for exam-
ple by using gravitational waves [99–101] or observational
estimates around black holes (BHs) [102–104].
Dynamical friction and mass accretion play significant

roles in astrophysics, impacting various astrophysical
phenomena. Extensive research on dynamical friction
and mass accretion has been conducted for both FDM
[44,105–113] and CDM, treated as collisionless particles
[114]. In this context, these investigations have provided
valuable insights and constraints on dark matter models,
including applications to the Fornax globular cluster timing
problem [115], a discrepancy observed in the Fornax
galaxy where the expected strong dynamical friction,
predicted by the standard CDM model, fails to reproduce
the observations of slowly migrating globular clusters
toward the galaxy center, and their relevance to gravita-
tional waves where dynamical friction can slow down
binary systems and induce phase shifts in gravitational
wave emission.
In this paper, we explore the effects of dynamical friction

and mass accretion experienced by a Schwarzschild black
hole moving within a self-interacting scalar dark matter
cloud at supersonic velocities. Our primary focus is on the
Thomas-Fermi regime, where self-interactions are signifi-
cant and the wavelike effects of the scalar field are
negligible. This regime results in dark matter dynamics
within the solitonic solution behaving more like a gas than
FDM, although it retains distinctive characteristics. This
study of the supersonic regime complements our previous
investigation in the subsonic case [116], offering relevance
to ongoing research on gravitational waves. The implica-
tions of mass accretion and dynamical friction on binary
systems can be critical, potentially detectable by upcoming
gravitational wave detectors such as DECIGO or LISA
[101,117–120]. Additionally, the application of such results
to the Fornax globular cluster timing problem, where the
CDM dynamical friction appears too strong, is of particular
interest.
The outline of the paper is as follows. Section II

introduces scalar-field dark matter with quartic self-
interactions, discussing its equations of motion and
equilibrium solitonic solutions. Section III compares the
subsonic and supersonic regimes and calculates the large-
distance expansions of the dark matter flow for both the
upstream and downstream regions, including the appear-
ance and location of shock fronts and boundary layers.
Section IV describes the relation between these asymptotic
expansions and the BH accretion rate and derives the drag
force exerted on the BH. Section V discusses the accretion
rate in comparison with the radial case and with the
classical Hoyle-Lyttleton prediction, and highlights the
two regimes obtained at moderate and high Mach numbers.
Section VI compares the magnitudes of the accretion drag
and dynamical friction, while Sec. VII provides an inde-
pendent computation of the dynamical friction from the

gravitational force exerted by the BH wake. Section VIII
presents a numerical computation of the density and
velocity fields for a moderate Mach number, to illustrate
the behavior of the system with a bow shock upstream of
the BH. Section IX compares our results with the behaviors
of other systems (collisionless, perfect fluid and FDM
cases). Finally, we conclude our study in Section X.

II. DARK MATTER SCALAR FIELD

A. Scalar-field action

As in our previous work [116], we consider a scalar-field
dark matter scenario described by the action

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
; ð1Þ

with a quartic self-interaction,

VðϕÞ ¼ m2

2
ϕ2 þ VIðϕÞ with VIðϕÞ ¼

λ4
4
ϕ4: ð2Þ

Here m is the mass of the scalar field and λ4 its coupling
constant, which is taken positive. This corresponds to a
repulsive self-interaction, which gives rise to an effective
pressure that can balance gravity. This allows the formation
of stable static equilibria, also called boson stars or solitons.
Thus, in this paper we consider the supersonic motion of
a BH inside such an extended soliton, or quasistatic dark
matter halo.
The parameters m and λ4 determine the characteristic

density and radius,

ρa ¼
4m4

3λ4
; ra ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρa

p : ð3Þ

The dynamics that we study in this paper will only depend
on this combination ρa and on the mass and velocity of the
BH. Thus, different dark matter models with the same ρa
show the same large-scale dynamics. We refer to [116] for a
presentation of the regions in the parameter space ðm; λ4Þ
where our computations apply, for various BH masses. We
briefly recall below the equations of motion of the scalar
field in the relativistic and nonrelativistic regimes.

B. Relativistic regime

As in [116], we neglect the gravitational backreaction of
the scalar cloud, and we consider the steady-state limit, that
is, the growth and the displacement of the BH are small as
compared with the BH mass and the dark matter halo
radius. Then, working with the isotropic radial coordinate
r, the static spherically symmetric metric can be written as

ds2 ¼ −fðrÞdt2 þ hðrÞðdr2 þ r2dΩ⃗2Þ: ð4Þ

BOUDON, BRAX, and VALAGEAS PHYS. REV. D 108, 103517 (2023)

103517-2



Close to the BH, below a transition radius rsg, the BH
gravity dominates, and the isotropic metric functions fðrÞ
and hðrÞ read as

rs
4
< r ≪ rsg∶ fðrÞ ¼

�
1 − rs=ð4rÞ
1þ rs=ð4rÞ

�
2

;

hðrÞ ¼ ð1þ rs=ð4rÞÞ4; ð5Þ

where rs ¼ 2GMBH is the Schwarzschild radius. In these
coordinates, the BH horizon is located at radius r ¼ rs=4.
Far from the BH, beyond the transition radius rsg, the dark
matter self-gravity dominates but is nonrelativistic, and
we have

r ≫ rsg∶ f ¼ 1þ 2ΦN; h ¼ 1 − 2ΦN; ð6Þ

where the Newtonian gravitational potentialΦN is given by
the Poisson equation, ∇2ΦN ¼ 4πGρ.
In the relativistic regime, the scalar-field dynamics are

governed by the nonlinear Klein-Gordon equation

∂
2ϕ

∂t2
−

ffiffiffiffiffi
f
h3

r
∇ · ð

ffiffiffiffiffiffi
fh

p ∇ϕÞ þ f
∂V
∂ϕ

¼ 0: ð7Þ

For the spherically symmetric and static metric (4) and the
quartic self-interaction (2), one obtains in the large-scalar
mass limit the solution [95]

ϕ ¼ ϕ0ðr; θÞcn½ωðr; θÞt −Kðr; θÞβðr; θÞ; kðr; θÞ�; ð8Þ

where cnðu; kÞ is the Jacobi elliptic function [121,122] of
argument u, modulus k, and period 4K, and KðkÞ is the
complete elliptic integral of the first kind, defined by
KðkÞ ¼ R π=2

0 dθ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 θ

p
for 0 ≤ k < 1 [121,122].

Here we noted Kðr; θÞ≡K½kðr; θÞ�. Equation (8) is the
leading-order approximation in the limit

mrs ≫ 1; ð9Þ

that is, the Compton wavelength of the scalar field is much
smaller than the BH horizon. We focus on this regime in
this paper. The expression (8) means that the usual
trigonometric functions encountered in the free case, for
a quadratic potential VðϕÞ, are replaced by the Jacobi
elliptic functions in the anharmonic case, when the quartic
self-interaction (2) is important. This corresponds to the
Duffing equation [123] associated with a cubic nonlinear-
ity. This regime corresponds to a dark matter density ρ ∼ ρa
and a modulus k ∼ 1. At low density, ρ ≪ ρa, the self-
interaction potential is small, we have k ≪ 1 and the Jacobi
elliptic function converges to a trigonometric function
as cnðu; 0Þ ¼ cosðuÞ.
Substituting the expression (8) into the Klein-Gordon

equation (7) gives the two conditions

ð∇βÞ2 ¼ h
f

�
2ω0

π

�
2

−
hm2

ð1 − 2k2ÞK2
; ð10Þ

λ4ϕ
2
0

m2
¼ 2k2

1 − 2k2
: ð11Þ

C. Nonrelativistic regime

In the nonrelativistic weak-gravity regime, it is conven-
ient to write the real scalar field ϕ in terms of a complex
field ψ as [44,94]

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðe−imtψ þ eimtψ⋆Þ: ð12Þ

In this regime, where typical frequencies ψ̇=ψ and
momenta ∇ψ=ψ are much smaller than m, the complex
scalar field ψ obeys the Schrödinger equation,

iψ̇ ¼ −
∇2ψ

2m
þmðΦN þΦIÞψ ; ð13Þ

where ΦI is the nonrelativistic self-interaction potential,
given by

ΦI ¼
mjψ j2
ρa

: ð14Þ

It is also convenient to express ψ in terms of the amplitude
ρ and the phase s by the Madelung transformation [52,124],

ψ ¼
ffiffiffiffi
ρ

m

r
eis: ð15Þ

Then, the real and imaginary parts of the Schrödinger
equation (13) give

ρ̇þ∇ ·

�
ρ
∇s
m

�
¼ 0; ð16Þ

ṡ
m
þ ð∇sÞ2

2m2
¼ −ðΦN þΦIÞ; ð17Þ

while the nonrelativistic self-interaction potential reads as

ΦI ¼
ρ

ρa
: ð18Þ

Defining the curl-free velocity field v⃗ by

v⃗ ¼ ∇s
m

; ð19Þ

Eqs. (16) and (17) give the usual continuity and Euler
equations,
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ρ̇þ∇ · ðρv⃗Þ ¼ 0; ð20Þ

˙v⃗þ ðv⃗ ·∇Þv⃗ ¼ −∇ðΦN þΦIÞ: ð21Þ

Thus, in the nonrelativistic regime, we can go from the
Klein-Gordon equation to the Schrödinger equation and
next to an hydrodynamical picture. In this regime, Eq. (10)
corresponds to the Bernoulli equation associated with the
integrated form of the Euler equation (21), where the
velocity reads as

v⃗ ¼ π

2

∇β

m
: ð22Þ

In the Hamilton-Jacobi and Euler equations (17) and (21)
we neglected the quantum pressure term

ΦQ ¼ −
∇2 ffiffiffi

ρ
p

2m2 ffiffiffi
ρ

p : ð23Þ

This is because we consider masses much greater than
10−22 eV, associated with fuzzy dark matter scenarios,
so that the de Broglie wavelength λdB ¼ 2π=mv is much
smaller than the scales of interest. This implies that wave
effects, such as interference patterns, are negligible.
However, the dynamics remain different from that of
CDM particles because of the self-interaction, which is
relevant up to galactic scales and balances gravity, allowing
for the formation of stable equilibrium configurations often
called solitons. See Ref. [116] for a derivation of the
regions in the parameter space ðm; λ4;MBHÞ where our
approximations are valid.

D. Nonrelativistic dark matter halo

On large scales, where the BH gravity is negligible as
compared with the dark matter self-gravity, the Euler
equation (21) admits hydrostatic equilibria, given by
∇ðΦN þΦIÞ ¼ 0. This can be integrated as

ΦN þΦI ¼ α; with α ¼ ΦNðRsolÞ: ð24Þ

Here we introduced the radius Rsol of the spherically
symmetric halo, also called soliton, where the density
vanishes. In the Thomas-Fermi limit (24) where the
quantum pressure (23) is negligible, the solution reads
as [52,94,95]

r ≫ rsg∶ ρðrÞ ¼ ρ0
sinðr=raÞ
ðr=raÞ

and Rsol ¼ πra; ð25Þ

and the transition radius rsg is given by

rsg ¼ rs
ρa
ρ0

≫ rs: ð26Þ

The bulk density ρ0 is set by the mass of this dark matter
halo, Msol ¼ ð4=πÞρ0R3

sol. This is the second dark matter
parameter, in addition to ρa, that enters the dynamics that
we study in this paper. It depends on the formation history
of the dark matter halo. In this regime, the effective pressure
associated with the self-interaction Φ also defines a sound
speed cs given by

c2sðρÞ ¼
ρ

ρa
≪ 1; ð27Þ

which corresponds to a polytropic gas of adiabatic index
γ ¼ 2. From Eq. (26) we can see that the sound speed in the
bulk is also related to the transition radius as

rsg ¼
rs
c2s0

; c2s0 ¼
ρ0
ρa

: ð28Þ

E. Radial accretion

Close to the horizon, the dark matter cannot remain static
and falls into the BH. The case of radial accretion around a
motionless BH was studied in [95]. Equations (10) and (11)
give the phase β and the amplitude ϕ0 as a function of the
modulus kðrÞ. The latter is next obtained from the con-
tinuity equation averaged over the scalar oscillations, that
is, from the condition of constant flux over all radii in the
steady state. Then, as for the Bondi problem of the radial
accretion of a perfect gas on a BH, the dark matter profile is
determined by the unique transsonic solution that matches
the quasistatic equilibrium soliton at large radius and the
free fall at the BH horizon. This gives the accretion rate [95]

ṀBH;radial ¼ 3πF⋆ρar2s ¼ 3πF⋆ρ0r2s=c2s0; ð29Þ

where F⋆ ≃ 0.66. The result (29) means that the dark
matter density near the horizon is of the order of the
characteristic density ρa while the radial velocity is of the
order of the speed of light.
This result is much lower than the Bondi accretion

ṀBondi ∼ ρ0r2s=c3s0 [125]. This is because the stiff poly-
tropic index γ ¼ 2 makes the repulsive self-interaction
strong enough to slow down the infall significantly.
Moreover, in contrast with the Bondi case with
1 < γ < 5=3, the sonic radius rc where the Mach number
jvrj=cs reaches unity is located within the relativistic
regime, where the hydrodynamical picture is no longer
valid and one needs to use the Klein-Gordon equation of
motion (7), or its large-mass limit (10) and (11).

F. Isentropic potential flow

Introducing as in [116] the dimensionless variables

r̂¼ r
rs
; ρ̂¼ 2

ρ

ρa
; β̂ ¼ π

2mrs
β; v⃗¼ b∇ β̂; ð30Þ
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the continuity equation (20) and the Bernoulli equation
associated with the Euler equation (21) coincide with
those of an isentropic potential flow with a polytropic
index γ ¼ 2,

b∇ · ðρ̂ v⃗Þ ¼ 0;
v2

2
þ V þH ¼ 0; ð31Þ

where the external potential Vðr̂Þ and the enthalpyHðρ̂Þ are
given by

Vðr̂Þ ¼ −
ρ̂0
2
−
v20
2
−

1

2r̂
; Hðr̂Þ ¼ ρ̂

2
: ð32Þ

Here and throughout this paper we work in the BH frame,
where the BH is at rest and the dark matter cloud moves
at the uniform velocity v⃗0 far from the BH. From the
Bernouilli equation (31) the density can be expressed in
terms of the velocity by

ρ̂ ¼ ρ̂0 þ
1

r̂
þ v20 − v2; ð33Þ

and substituting into the continuity equation (31) gives

b∇ ·

��
ρ̂0 þ

1

r̂
þ v20 − ðb∇ β̂Þ2

�b∇ β̂

�
¼ 0: ð34Þ

This equation holds in the nonrelativistic regime, beyond a
radius rm ∼ 40rs.

III. LARGE-DISTANCE EXPANSIONS

A. Subsonic and supersonic regimes

Although it is not possible to obtain the general solution
of the nonlinear equation of motion (34), we can derive
perturbative expansions in the large-distance limit. This
allows us to understand the main properties of the flow and
also to obtain analytical results for the BH dynamical friction.
Indeed, by conservation of mass andmomentum in the steady
state, the accretion rate and the drag force are related to the
influxofmatter andmomentum throughany surface enclosing
the BH, which can be taken to be a sphere of large radius.

1. Subsonic regime

In the subsonic regime, studied in [116], we obtained at
large distance an expansion of the form

β̂ ¼ β̂−1 þ β̂0 þ β̂1 þ…; with β̂n ∼ r̂−n; ð35Þ

where the dots stand for higher-order terms over 1=r̂ and

β̂−1 ¼ v0r̂u ð36Þ

is the leading-order term associated with the uniform flow
v⃗0. In the subsonic case, we then have

subsonic β̂0 ¼ f0ðuÞ; β̂1 ¼
f1ðuÞ
r̂

; ð37Þ

where we introduced the angular variable u, defined as

u ¼ cos θ; ð38Þ

and the functions fn are smooth over −1 < u < 1. The
first-order correction f0 is generated by the 1=r̂ term in
Eq. (34), associated with the BH gravity, coupled to the
zeroth-order uniform flow v0û. The latter being odd, this
gives an odd correction in u. The second-order correction
f1 contains both odd and even terms. In particular, the even
term is directly related to the mass and momentum influx at
large distance, and thus to the BH mass accretion and
dynamical friction. The first-order correction f0 is obtained
by expanding Eq. (34) over 1=r̂ and collecting the leading-
order terms of order 1=r̂2. This gives the linear differential
equation

∂
2β̂0
∂x̂2

þ ∂
2β̂0
∂ŷ2

þ
�
1 −

v20
c2s0

�
∂
2β̂0
∂ẑ2

¼ v0u
ρ̂0r̂2

; ð39Þ

where we work in the Cartesian coordinates, fx̂; ŷ; ẑg, with
v⃗0 ¼ v0e⃗z. As pointed out in [116], in the subsonic regime,
v0 < cs0, Eq. (39) is elliptic, whereas in the supersonic
regime that we study in this paper, v0 > cs0, Eq. (39) is
hyperbolic. In the subsonic regime, this gives a flow that is
regular over all space and determined by the boundary
conditions at infinity (the uniform velocity v⃗0) and at the
center (the matching radius rm somewhat above the
Schwarzschild radius).

2. Supersonic regime

As for hydrodynamical flows around moving bodies,
such as airplanes, in the subsonic regime acoustic waves
travel faster than the body and are able to propagate to all
points in space (after waiting for a long/infinite time as in
the steady state). This means that the fluid at any point
adapts to the presence of the moving body, the flow is
smooth, and it determined by the boundary conditions at
infinity and at the surface of the body (in our case the
Schwarzschild radius).
At supersonic velocities, acoustic waves cannot catch up

with the airplane speed and are deported downstream,
within the Mach cone. Then, the flow upstream remains
unperturbed and the matching to the boundary conditions
on the surface of the airplane is made possible thanks to a
shock, which originates at the front tip of the plane or
somewhat before. The shock discontinuity provides the
means for the flow to jump to a new pattern downstream,
which can match the boundary conditions on the plane.
A similar behavior appears in our case, when the BH

moves at supersonic speed inside the dark matter cloud. An
additional complication is that it is not possible to apply
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simple perturbative treatments as in Eq. (35) on both sides
of the shock, with junction conditions on the shock. Indeed,
we shall see that boundary layers, governed by nonlinear
effects, appear on both sides of the shock. Therefore, in the
supersonic regime, we must split the large-distance expan-
sions over four domains: (1) the upstream region far before
the shock, (2) the boundary layer just before the shock,
(3) the boundary layer just after the shock, and (4) the
downstream region far behind the shock.
The far upstream and downstream regimes can again be

analyzed through large-distance expansions such as (35).
As in the subsonic regime, this gives a standard perturbative
approach, where each order β̂n obeys a linear differential
equation with a right-hand side that involves the lower-
order terms β̂m withm < n. However, the functions β̂n now
take different forms in the upstream and downstream
regions, and they may contain logarithmic contributions
in lnðr̂Þ. The boundary layers require new expansions,
which take into account nonlinearities. The full solution is
obtained by matching together these four regions. This
involves two asymptotic matchings, between each boun-
dary layer and either the upstream or the downstream bulk
flow, and one junction condition along the shock between
the two boundary layers. We must also match with the
uniform velocity v⃗0 at infinity and simultaneously deter-
mine the location of the shock. The matching to the radial
inflow at the Schwarzschild radius appears in a natural
fashion as a constant of integration. We detail this pro-
cedure in the next sections.

B. Upstream region

1. Large-distance expansion

We first consider the far upstream region. As explained
above, because of the hyperbolic nature of the equation of
motion (39), this is no longer a boundary-value problem (as
in the subsonic case) but a Cauchy problem, with an initial
condition upstream at ẑ → −∞. Indeed, Eq. (39) now takes
the form of a wave equation,

∂
2β̂0
∂x̂2

þ ∂
2β̂0
∂ŷ2

−
1

c2z

∂
2β̂0
∂ẑ2

¼ v0u
ρ̂20r̂

2
; ð40Þ

with

v0 > cs0∶
1

c2z
¼ v20

c2s0
− 1; cz > 0; ð41Þ

where ẑ plays the role of time and cz the role of the
propagation speed.
Far from the boundary layer, the flow is smooth, and we

can again write a large-distance expansion as in (35).
However, we shall see that the terms β̂n can include
logarithmic factors lnðr̂Þ.

2. First-order correction

At large velocities v0, the effective pressure in the soliton
associated with the term ρ̂0 becomes negligible, and we
thus expect to recover the collisionless case. We describe
the behavior of fuzzy dark matter [44], that is, scalar-field
dark matter without self-interactions, in Appendix A. We
first recall in Appendix A 1 the results obtained in the
Schrödinger picture, from the classic scattering by a
Newton or Coulomb potential [44,126]. Then, we show
in Appendix A 2 how this behavior can be recovered from
the hydrodynamical approach that we use in this paper.
From the expression (A13) obtained in the free case, we
can expect a logarithmic dependence on the distance r̂ in
addition to the angular dependence, due to the long-range
character of the Newtonian 1=r potential. Then, at first
order we look for a solution of the form

β̂0 ¼ a lnðr̂Þ þ f0ðuÞ; ð42Þ

where a is a parameter to be determined. Substituting into
Eq. (34) and collecting the terms of order 1=r̂2, which
corresponds to substituting into Eq. (40), we obtain the
differential equation

ð1 − u2Þ½ð1þ c2zÞu2 − 1�f000 þ u½3þ c2z − 3ð1þ c2zÞu2�f00
¼ 1þ c2z

2v0
uþ a½1 − 2ð1þ c2zÞu2�: ð43Þ

This is a first-order equation in f00, with the general solution

f00 ¼
1 − 2v0au
2v0ð1 − u2Þ þ

b

ð1 − u2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ c2zÞu2 − 1

p ; ð44Þ

where b is an integration constant. Defining the Mach angle
θc by

0 < θc <
π

2
∶ sin θc ¼

czffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2z

p ¼ cs0
v0

¼ 1

M0

; ð45Þ

where M0 is the Mach number, which also gives

uc ¼ cos θc ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c2z
p ; tan θc ¼ cz; ð46Þ

the second term in Eq. (44) is singular on the upstream and
downstream Mach cones θ ¼ π − θc and θ ¼ θc. To avoid
the unphysical upstream singularity at π − θc, the constant
b must be zero. The angular velocity at order 1=r̂ is
vθ1 ¼ ð− sin θ=r̂Þf00ðuÞ. To avoid a singularity at θ ¼ π,
along the ẑ axis upstream, we must have a ¼ −1=ð2v0Þ.
This nonzero value shows that the logarithmic term a lnðr̂Þ
cannot be ignored, and we obtain
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f00ðuÞ ¼
1

2v0ð1 − uÞ ; f0ðuÞ ¼ −
lnð1 − uÞ

2v0
: ð47Þ

Here we discarded the irrelevant integration constant in f0
because the velocity potential β̂ is defined up to a constant

that plays no role, as only gradients b∇ β̂ appear in the
equations of motion. This gives the upstream solution

β̂0 ¼ −
lnðr̂ − ẑÞ

2v0
¼ −

ln½r̂ð1 − uÞ�Þ
2v0

ð48Þ

and

vr1 ¼ −
1

2v0r̂
; vθ1 ¼ −

1þ u

2v0r̂
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p ;

v21 ¼
1

r̂
; ρ̂1 ¼ 0: ð49Þ

Thus, at this first order, we actually recover the long-
distance solution of the collisionless case (A12). This is
because at this order 1=r̂, the density is not modified by the
deflection of the particle trajectories by the BH, ρ̂1 ¼ 0 (but
there will be corrections at higher orders). This implies that
at this order there are no pressure effects, because there are
no density gradients, and therefore we recover the results
obtained for the supersonic motion in plasmas [127] and
isothermal gas [128,129].
In contrast with the subsonic case, the solution (48) is

neither odd nor even. This is because of the logarithmic
term that introduces the factor au in Eq. (44). This loss of
parity is also expressed by the bow shock, which obviously
breaks parity. This is related to the hyperbolic nature of the
equation of motion (39), which distinguishes between the
limits ẑ → �∞, as only the far upstream region ẑ → −∞ is
associated with the initial condition of the Cauchy problem.
Although the logarithmic term is expected from the free
case described in Appendix A, we have seen above (47)
that it is required to obtain a smooth solution upstream.
Without this term, the regularity at u ¼ −1 would imply
b ≠ 0 in (44), which would give an unphysical singularity
on the upstream inverted Mach cone at θ ¼ π − θc.
Two other differences from the subsonic case [116], where

vr1 ¼ 0 and vθ1 > 0, are that we now have vr1 < 0 and
vθ1 < 0. Thus, whereas in the subsonic case the increased
pressure due to the self-interactions was strong enough to
slow down the flow as it moves closer to the BH (but remains
at large distance), in the supersonic case the BH gravity is
dominant and accelerates the darkmatter fluid, with v2 > v20.

3. Second-order correction

The second-order correction β̂1, of order 1=r̂, is obtained
by collecting the terms of order 1=r̂3 in Eq. (34) and using
the expression (48) for the first-order term β̂0. This gives
the linear differential equation

∂
2β̂1
∂x̂2

þ ∂
2β̂1
∂ŷ2

−
1

c2z

∂
2β̂1
∂ẑ2

¼ 1

2ρ̂0v0r̂3
: ð50Þ

In the upstream supersonic regime, the fields at a point r⃗
only depend on the properties of the flow further upwind.
In other words, we must solve Eq. (50) using the retarded
propagator of the linear wave equation. Thus we write

β̂1 ¼
c2z

2ρ̂0v0

Z
dx̂0dŷ0dẑ0

ðr̂02 þ a2Þ3=2
Z

dpxdpydω

ð2πÞ3

×
eipxðx̂−x̂0Þþipyðŷ−ŷ0Þ−iωðẑ−ẑ0Þ

ðωþ iϵÞ2 − c2zðp2
x − p2

yÞ
; ð51Þ

where ϵ → 0þ and a → 0þ. Here we used the Fourier-space
expression of the retarded propagator, andwe regularized the
small-scale divergence of the source 1=r̂3 with a smooth-
ing cutoff a > 0, by replacing 1=r̂3 → 1=ðr̂2 þ a2Þ3=2.
Performing the integrals and taking the limit a → 0þ we
obtain

β̂1 ¼ −
c2z

2ρ̂0v0r̂

Z
∞

1

dy

ðc2z þ y2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 θ þ y2 cos2 θ

p ; ð52Þ

which behaves indeed as 1=r̂. This expression only applies
to the half plane ẑ < 0. The integral (52) is even in ẑ (i.e.
in u), but its first derivative is discontinuous at u ¼ 0. This
means that we must instead use the analytic continuation
of (52) to extend this result to u > 0. Alternatively, we can
go back to the differential equation (50) and substitute the
ansatz

β̂1 ¼
f1ðuÞ
r̂

; ð53Þ

which we know to be correct from the result (52), which
ensures that there are no logarithmic corrections such as
ln r̂=r̂. This gives a second-order differential equation
over f1,

ð1 − u2Þ½ð1þ c2zÞu2 − 1�f001 þ u½5þ 3c2z − 5ð1þ c2zÞu2�f01
þ ð1þ c2zÞð1 − 3u2Þf1 −

1þ c2z
4v30

¼ 0: ð54Þ

The two integration constants are set by the requirement
that both f1ð−1Þ and f1ð−ucÞ be finite. We finally obtain
the expressions

−1≤ u≤−uc∶

f1ðuÞ¼
1þc2z

8cv30
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þc2zÞu2−1

p
×ln

�
1− ð1þc2zÞu−cz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þc2zÞu2−1

p
1− ð1þc2zÞuþcz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þc2zÞu2−1

p �
; ð55Þ
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− uc ≤ u ≤ uc∶

f1ðuÞ ¼ −
1þ c2z

4cv30
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þ c2zÞu2

p
×

�
π

2
− Arctan

1 − ð1þ c2zÞu
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þ c2zÞu2

p �
; ð56Þ

which agree with the integral expression (52). One can
obtain Eq. (56) from Eq. (55) by using the property
ArctanðxÞ ¼ i

2
ln 1−ix

1þix. This provides the analytic continu-
ation from u < −uc to u > −uc. To derive Eq. (56) we also
used the property Arctanð1=xÞ ¼ π=2 − ArctanðxÞ for
x > 0, to obtain an expression that is regular at u ¼
1=ð1þ c2zÞ (one needs to use the appropriate denomination
of arctan to obtain an expression that is regular over the
desired range of u). Near the shock, at u → uc, we obtain
the Taylor expansion

u → u−c ∶ f1ðuÞ ¼ −
πð1þ c2zÞ3=4

4
ffiffiffi
2

p
cv30

ffiffiffiffiffiffiffiffiffiffiffiffiffi
uc − u

p þ… ð57Þ

The singularity at uc, where the second-order velocities vr2
and vθ2 diverge, means that this perturbative approach
breaks down near the shock, close to the downwind
Mach cone.
As explained above, because of the hyperbolicity of the

equations of motion in the supersonic regime, the solution
in the upstream domain is fully determined by the local
properties of the fluid (the sound speed cs), the relative
velocity v0 and the long-range gravity of the BH. It is
independent of the boundary conditions at the
Schwarzschild radius and does not contain free integration
constants.

C. Downstream region

1. First-order correction

In the far downstream region, we again have a large-
distance expansion as in (35), with possible logarithmic
factors lnðr̂Þ.
The first-order upstream solution (48) is singular on the ẑ

axis downstream, at θ ¼ 0 and u ¼ 1. This is a signature of
the fact that it does not apply downstream, for θ < θs,
where θsðr̂Þ is the polar angle of the axisymmetric shock
front at radius r̂. The downstream solution still takes the
general form (42), with f00ðuÞ again of the form (44). The
velocity potential β̂ must be continuous across the shock.
This implies that the term a ln r̂ is identical in the upstream
and downstream functions, whence a ¼ −1=ð2v0Þ again.
The solution must now be regular at u ¼ 1, which
determines b, while the second integration constant for
f0 is set by the continuity at u ¼ uc. This gives

β̂0 ¼ −
1

2v0
ln r̂þ f0ðuÞ; ð58Þ

with

f0ðuÞ¼−
lnð1þuÞ

2v0
þ 1

2v0

×ln

�
1þð1þc2zÞu−cz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þc2zÞu2−1

p
−1þð1þc2zÞuþcz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þc2zÞu2−1

p �
; ð59Þ

and we obtain

vr1 ¼ −
1

2v0r̂
;

vθ1 ¼
−1

2v0r̂
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
�
1þ u −

2czffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2=u2c − 1

p �
;

v21 ¼
1

r̂
−

2cz
r̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2=u2c − 1

p ;

ρ̂1 ¼
2cz

r̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2=u2c − 1

p : ð60Þ

Thus, we can see that the scalar-field density is increased
behind the shock, by an amount that decreases at large
distance as 1=r̂, whereas the upstream density (49) was not
modified at this order. The radial velocity is continuous
through the shock. This is consistent with the continuity of
β̂ for a shock that has a fixed direction θs at leading order at
large distance.
The jump conditions for an isentropic potential flow

across a shock are different from the Rankine-Hugoniot
jump conditions that apply to the Navier-Stokes equations
(e.g. there is no energy equation and no entropy in our
system); see hydrodynamics textbooks such as [130]. The
jump conditions are the continuity of the velocity potential
β̂, which also implies the continuity of the tangential
velocity vt, and the continuity of the transverse mass flow
ρ̂vn, where vn is the normal velocity. In our case, at large
distance we have vt ¼ vr and vn ¼ vθ at leading order.
Thus, we recover the continuity of vr at this order, whereas
the condition of continuity of ρ̂vθ at order 1=r̂ gives the
angle of the shock,

r̂ → ∞∶ θs → θc; ð61Þ

where θc was defined in Eq. (45). Thus, as expected, at
large distance the shock follows the Mach cone.
We can see that the first-order angular velocity vθ1 and

density ρ̂1 of Eq. (60) diverge at uc, that is, on the
downwind Mach cone, as the function f0ðuÞ has the
expansion
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u → uþc ∶ f0ðuÞ ¼ −
lnð1 − ucÞ

2v0
−

ffiffiffi
2

p ð1þ c2zÞ3=4
czv0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u − uc

p

þ… ð62Þ

This signals that the perturbative analysis presented above
breaks down close to the shock, and we must take into
account nonlinear effects in a boundary layer just behind
the shock. This singularity appears at the first order f0,
whereas in the upstream case it only appeared at the second
order f1, in Eq. (57).

2. Second-order corrections

As we shall see in Sec. III D below, the matching
conditions along the boundary layers and the shock
generate logarithmic contributions that impact the down-
stream bulk flow. Therefore, as compared with the usp-
tream expression (53) the second-order expression of the

downstream velocity potential contains an additional log-
arithmic term,

β̂1 ¼
f1ðuÞ þ g1ðuÞ ln r̂

r̂
: ð63Þ

Substituting this expression into the equation of motion
(34), with the result (59) for the first order, and collecting
terms of order 1=r̂3 and ln r̂=r̂3 give two coupled linear
second-order differential equations over f1 and g1.
Regularity at u ¼ 1 determines an integration constant
for each of these two functions, and we obtain

g1 ¼
C2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ c2zÞu2 − 1
p ; ð64Þ

and

f1 ¼ −
3ð1þ c2zÞ2u

2v30½ð1þ c2zÞu2 − 1� þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ c2zÞu2 − 1
p �

C1 þ
C2

2
ln

�½ð1þ c2zÞu2 − 1�2½1þ ð1þ c2zÞu − cz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ c2zÞu2 − 1

p
�

ð1þ uÞ2½−1þ ð1þ c2zÞuþ cz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ c2zÞu2 − 1

p
�

�

þ 1þ c2z
4czv30

ln

� ð1þ uÞ3½−1þ ð1þ c2zÞuþ cz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ c2zÞu2 − 1

p
�4

½ð1þ c2zÞu2 − 1�2½1þ ð1þ c2zÞu − cz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ c2zÞu2 − 1

p
�3
�
þ ð1þ c2zÞ3=2

2czv30
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2z

p
uþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c2z
p

u − 1

��
; ð65Þ

where C1 and C2 are the two remaining integration
constants.

D. Shock front and boundary layers

1. Large-distance expansions

We have seen above that the large-distance expansions of
the upstream and downstream bulk flows diverge at
u → uc. Then, close to uc the first- or second-order velocity
corrections become greater than the zeroth-order velocity
v0, and the large-distance expansion (35) breaks down.
Therefore, on both sides of the shock a boundary layer
appears, where nonlinearities play a key role and we need
to go beyond the expansion (35).
As described in Appendix B, a careful analysis shows

that the boundary layers have a width Δu ∼ r̂−2=3. This
implies that we need to introduce expansions over powers
of r̂−1=3 and not only of r̂−1. Moreover, there are again
logarithmic contributions. To start with, we need to specify
the location θsðr̂Þ of the shock front, which we write as the
large-distance expansion

θsðr̂Þ ¼ θcþ
θ1
r̂2=3

þ θ2þψ2 ln r̂
r̂

þ θ3þψ3 ln r̂

r̂4=3
þ… ð66Þ

This defines in turn the expansion of usðr̂Þ ¼ cos½θsðr̂Þ�.
The zeroth-order terms θc and uc, defined in Eqs. (45)

and (46), were derived in Eq. (61) from the matching of the
first-order upstream and downstream bulk flows β̂0.
Because the width of the boundary layer is of order r̂−2=3,

we introduce the boundary-layer coordinate

U ¼ r̂2=3½u − usðr̂Þ�: ð67Þ

We can see from Eq. (57) that the upstream bulk flow
diverges as vθ ∼ r̂−2ðuc − uÞ−3=2, whereas from Eq. (62) the
downstream bulk flow diverges as vθ ∼ r̂−1ðu − ucÞ−1=2.
Thus, the singularity close to the shock appears at a lower
order in 1=r̂ on the downstream side. This asymmetry means
that whereas for the upstream boundary layer (i.e. just before
the shock) we have the expansion

U < 0∶ β̂ ¼ v0r̂u −
1

2v0
ln½r̂ð1 − uÞ� þ F2ðUÞ

r̂2=3

þ F3ðUÞ
r̂

þ…; ð68Þ

for the downstream boundary layer (i.e. just after the shock)
we have

U > 0∶ β̂ ¼ v0r̂u −
1

2v0
ln½r̂ð1 − ucÞ� þ

F1ðUÞ
r̂1=3

þ F2ðUÞ
r̂2=3

þ F3ðUÞ þ F 3ðUÞ ln r̂
r̂

þ… ð69Þ
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In both cases we keep the regular part over u of the bulk flow,
up to the orderwhere the expansion over 1=r̂ breaks down. In
the upstream case (68), this corresponds to the first two terms
of order r̂ and r̂0, whereas in the more singular downstream
case (69) this corresponds to the first term only, of order r̂
(and to the constant associated with the second term). This
implies that whereas the boundary-layer expansion in U
starts at order r̂−2=3 in the upstream case, it starts earlier at
order r̂−1=3 in the downstream case. One can check that there
are no logarithmic terms ln r̂ in the upstream boundary layer,
as there was no logarithmic term either in the upstream
second-order bulk flow (53). However, logarithmic terms
appear through nonlinear effects in both the shock curve (66)
and the downstream boundary layer (69).
As compared with standard one-dimensional boundary-

layer theory [131], r̂−1=3 plays the role of the small parameter,
and U is the boundary-layer coordinate that is stretched to
account for its infinitesimal width Δu ∼ r̂−2=3.
In Secs. Vand VI wewill compute the accretion rate onto

the BH and its dynamical friction. This involves surface
integrals on a sphere of radius R, where we take the limit
R → ∞ to use the large-distance expansions described
above. These integrals give rise to a geometrical area
prefactor r̂2. This implies that we must compute velocity
and density fields up to order 1=r̂2, to obtain the constant
term that determines the accretion rate and the dynamical
friction. This corresponds to the term of order 1=r̂ in the
velocity potential β̂. This is why we need to go to order 1=r̂
in the bulk flows (35) and in the boundary layers (68)
and (69).

2. Order θ1 and F1

We simultaneously compute the boundary-layer expan-
sions and the shock front order by order in r̂−1=3. At zeroth
order, there are no boundary layers, and we extend the
upstream and downstream bulk flows β̂0 up to the shock
front. As found in Eq. (61), the matching condition on the
shock front also determines the zeroth-order term θc in the
shock expansion (66).
The next order is associated with the term θ1=r̂2=3 in the

shock expansion (66) and with the terms F1=r̂1=3 in the
boundary-layer expansions (68) and (69). We can see that
the term F1 is absent in the upstream boundary layer. As
noticed above, this is because the singularity of the
upstream bulk flow appears at a higher order in 1=r̂ than
for the dowsntream bulk flow. Therefore, at this order, we
truncate the shock expansion (66) at the term θ1=r̂2=3, the
upstream bulk flow obtained in Sec. III B extends down to
the shock θs, and there is only one boundary layer behind
the shock, given by the expansion (69) truncated at the
term F1=r̂1=3.
The upstream bulk flow, given by Eqs. (47) and (56),

provides the boundary conditions on the shock, at the
angular location θs, that is, at U ¼ 0. Then, using the

downstream boundary-layer expression (69), the continuity
of the velocity potential β̂ and of the normal momentum
p̂n ¼ ρ̂vn give

F1ð0Þ ¼ 0; F0
1ð0Þ ¼ −

4v0θ1
9cz

: ð70Þ

Next, substituting the expansion (69) in the equation of
motion (34) and collecting the terms of order r̂−5=3, we
obtain the differential equation

�
U−

czθ1ffiffiffiffiffiffiffiffiffiffiffiffi
1þc2z

p �
F00
1þ

1

2

�
1−

9c2z
v0

ffiffiffiffiffiffiffiffiffiffiffiffi
1þc2z

p F00
1

�
F0
1¼ 0: ð71Þ

This differential equation is nonlinear, which shows the
importance of nonlinear effects in the boundary layer
that were not captured by the perturbative treatment in
Sec. III C 1. The solution can be expressed by the para-
metric representation in terms of the auxiliary variable Y,

U ¼ czθ1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2z

p þ 16v30θ
3
1 − 729c3zY3

243v0cz
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2z

p
Y2

;

F1 ¼
−64v30θ31 þ 729c3zY3

486v0cz
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2z

p
Y

;

with 0 < Y <
4v0θ1
9cz

; 0 < U < ∞; ð72Þ

where we used the boundary conditions (70) to determine
two integration constants.
Next, we write the expansion of this result at large U, in

powers of 1=U, in the rear of the boundary layer. Expressed
next in terms of u, this gives the expansion

β̂ ¼ r̂v0uþ
�
−
ln½r̂ð1 − ucÞ�

2v0
−

8v0θ
3=2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u − uc

p

35=2c1=2z ð1þ c2zÞ1=4
þ…

�

þ r̂−1
�
−

8czv0θ31
81ð1þ c2zÞ

1

u − uc
þ…

�
þ… ð73Þ

The dots in the brackets correspond to higher orders in
u − uc that are generated by higher orders in the boundary-
layer expansion (69) (the functions F2; F3; ...) while the
dots at the end correspond to higher orders in 1=r̂.
This must be matched to the expansion of the bulk

downstream flow (59)–(65) at u → uþc ,

β̂¼ r̂v0uþ
�
−
ln½r̂ð1−ucÞ�

2v0
−

ffiffiffi
2

p ð1þ c2zÞ3=4 ffiffiffiffiffiffiffiffiffiffiffiffi
u−uc

p
v0cz

þ…

�

þ r̂−1
�
−
3ð1þ c2zÞ

4v30

1

u−uc
þ…

�
þ… ð74Þ
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Both terms in θ1 in Eq. (73) match those in Eq. (74) for

θ1 ¼
�
3

2

�
5=3 ð1þ c2zÞ2=3

v4=30 c1=3z

: ð75Þ

This determines the coefficient θ1 and the location of the
shock (66) at this order. The fact that we can simulta-
neously match both θ1 terms in Eq. (73) provides a check of
the computation. This asymptotic matching procedure,
where we match the large-U behavior of the boundary
layer with the small u − uc behavior of the downstream
bulk flow (i.e., the rear of the boundary layer with the
behavior of the bulk flow close to the shock), allows us to
obtain the global solution over all space.
The width r̂−2=3 of the boundary layer is found from

Eq. (71). This is the scaling that ensures the balance
between the linear and nonlinear terms in Eq. (71), as
powers of r̂ cancel out. This is explained in more detail in
Appendix B. The regularization of the divergences at the
shock found in the perturbative treatment of the bulk flow
in Sec. III C is made possible by this nonlinearity.

3. Higher orders F2 and F3

We use the same method to compute the shock and the
boundary layers at orders fθ2;ψ2;F2g and fθ3;ψ3;F3;F 3g.
The additional ingredient is that we now have two boundary
layers. The functional formofF2,F3,F 3 is againobtained by
substituting into the equation of motion (34), while the
integration constants are determined by the junction con-
ditions.Wenowhave two asymptoticmatchings, between the
rear of each boundary layer and the bulk flow, and simple
junction conditions between both boundary layers on the
shock. A detailed computation shows that we need to
introduce the logarithmic terms in the expansions (66) and
(69) to satisfy these junction conditions. Then, this fully
determinesψ2 in the shock expansion (66) and the integration
constant C2 in the bulk downstream solution (64) and (65),
while the integration constant C1 in Eq. (65) is expressed in
terms of θ2, which remains undetermined.We do not give the
expressions of these higher-order results here, as they are
somewhat lengthy and not especially illuminating.

4. Shock front

From the analytical solution derived in the previous
sections, we obtain the discontinuity of the density and
velocity across the shock,

Δρ̂ ¼ 24=3c2=3z v2=30

31=3ð1þ c2zÞ1=3
1

r̂2=3
þ…

Δvr ¼
31=3ð1þ c2zÞ5=6
21=3c2=3z v5=30

1

r̂4=3
þ…

Δvθ ¼
21=3ð1þ c2zÞ1=6
31=3c1=3z v1=30

1

r̂2=3
þ… ð76Þ

The discontinuity of the radial velocity appears at a higher
order over 1=r̂ because at large distance the radial velocity
is parallel to the shock front and conserved at leading order.
Going back to dimensional units, this gives the large-
distance scalings

Δρ ∼
�

r
rsg

�
−2=3

ρ0;

Δvθ ∼
�

r
rsg

�
−2=3

M−1
0 v0 ¼

�
r
rsg

�
−2=3

cs: ð77Þ

IV. DRAG FORCE ON THE BH

A. Relation between the accretion rate and the
large-distance expansion

As explained above, at the order that we need in this
paper, we now have the global solution of the flow at large
distance, except for an unknown parameter θ2, defined
from the expansion (66) of the shock, or equivalently an
integration constant in the downstream solution. This
remaining freedom is due to the fact that so far we have
not used the inner boundary condition close to the BH.
In fact, this parameter will simply be determined by the
accretion rate onto the BH, which is thus sufficient to
describe the boundary condition at the Schwarszchild
radius.
In the steady state, the accretion rate onto the BH is given

by the flux of matter through any closed surface that
surrounds the BH. Choosing a sphere of radius r̂, the
accretion rate writes as

˙̂MBH ¼ −2πr̂2
Z

1

−1
duρ̂vr: ð78Þ

Thus, we can relate ˙̂MBH to the large-distance expansion by
computing the radial momentum ρ̂vr up to order 1=r̂2. To
handle the fact that we have obtained separate expressions
for the scalar field profile over four domains, the upstream
and downstream bulk flows and the boundary layers, with
two asymptotic matchings in between, we define the
angular function

˙̂MBHðuÞ ¼ −2πr̂2
Z

u

−1
duρ̂vr; ð79Þ

so that the total accretion rate is ˙̂MBHðu ¼ 1Þ. Then, up to

integration constants, we obtain ˙̂MBHðuÞ in each domain
from the appropriate expression of the scalar-field flow.
Next, as for the flow, the integration constants are deter-
mined by the two asymptotic matchings at the rear of the
two boundary layers and by continuity at the shock

location. This determines the global function ˙̂MBHðuÞ
and the total accretion rate ˙̂MBHð1Þ. We obtain
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˙̂MBH ¼ −
4πczv0θ2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c2z
p −

πð20þ 12c2z þ
ffiffiffi
3

p
πÞ

3v0

−
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2z

p
3v0

ln

�
16ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2z

p
− 1Þ3v20

3c4zð1þ c2zÞ
�

−
2π

9v0
ln

�ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2z

p
− 1Þ18v160

21638c20z ð1þ c2zÞ11
�
: ð80Þ

As expected, we can see that the result (80) does not depend
on the radius r̂. All terms with higher powers of r̂
eventually cancel out, and the large-radius limit, r̂ → ∞,
gives a finite result. This agrees with the fact that the matter
flux does not depend on the choice of the surface enclosing
the BH, in the stationary regime.
As announced above, the expression (80) relates the

remaining large-distance unknown parameter θ2 to the

accretion rate ˙̂MBH. By construction the large-distance
expansion cannot know about the inner boundary condition
(which is beyond its domain of validity) and cannot

determine the accretion rate ˙̂MBH. However, the flow at
large distance remains sensitive to the accretion rate
because of the constant-flux condition in the steady state,
as explicitly shown by Eq. (80).

B. Accretion drag and dynamical friction

In [116], using the Euler equation associated with the
Bernoulli equation (31), we showed that the drag force on
the BH can be written as

F̂z ¼ −2πr̂2
Z

1

−1
duðρ̂vrvz þ P̂uÞ; ð81Þ

where we have chosen the surface of integration to be a
sphere of radius r̂. As for the accretion rate in Eq. (79), we
define a function F̂zðuÞ to compute the drag force in each
angular domain, up to integration constants. The junction
conditions and asymptotic matching then provide the
global function, and the full dynamical friction is obtained
from F̂zðu ¼ 1Þ. Using Eq. (80) to express θ2 in terms of
˙̂MBH, we obtain

F̂z ¼ ˙̂MBHv0 þ
2πc2z

3ð1þ c2zÞ
ln

�
ev40czr̂

2

18ð1þ c2zÞ2
�
; ð82Þ

where e ¼ expð1Þ is the base of the natural logarithm. In
dimensional units, this reads as

Fz ¼ ṀBHv0 þ
π

3
ρar2s

c2s0
v20

ln

�
ev40czr

2

18ð1þ c2zÞ2r2s

�
: ð83Þ

Thus, our computation recovers in a unified manner two
contributions to the total drag force,

Fz ¼ Facc þ Fdf ; ð84Þ

where the first term is directly related to the accretion of
matter, and therefore of momentum, by the BH, whereas
the second term is the classical dynamical friction, asso-
ciated with the long-range gravitational attraction from the
wake behind the BH when pressure forces are present.

V. TWO REGIMES FOR THE
BH ACCRETION RATE

As explained above, we must derive ṀBH by other
methods than the large-distance expansion, so as to handle
the boundary condition at the horizon. This requires a fully
relativistic treatment. We do not perform such a numerical
computation of the axisymmetric relativistic flow down
to the horizon in this paper, but we present a simple
approximation that should capture the main behaviors.

A. Self-regulated accretion at moderate
Mach numbers

As recalled in Sec. II E, in the radial case the accretion
rate is given by the expression (29). We showed in [116]
that this accretion rate remains valid in the subsonic regime,
up to v0 ≲ cs0. Indeed, below the transition radius rsg ≫ rs,
the flow quickly becomes approximately radial, and one
recovers the radial solution. This accretion rate is much
smaller than the spherical Bondi accretion rate [125],
ṀBondi ∼ ρ0r2s=c3s0, because of the steep effective adiabatic
index γ ¼ 2. In the supersonic regime, one usually expects
to recover the Hoyle-Lyttleton accretion rate [132,133]

ṀHL ¼ 4πρ0G2M2
BH

v30
¼ πρ0r2s

v30
: ð85Þ

However, for moderate Mach numbers this accretion rate is
of the order of the Bondi prediction and still much higher
than the radial accretion rate (29). The latter is the highest
possible flux (for radial symmetry) allowed by the effective
pressure associated with the self-interactions [95]. Lower
accretion rates are associated with solutions that are fully
subsonic (which is not physical because of the boundary
condition at the BH horizon) or fully supersonic. Therefore,
in the regime ṀHL > ṀBH;radial a bow shock appears that
slows down and deflects the dark matter and allows the
matching to the boundary conditions at the BH horizon
with their much smaller accretion rate. This creates a
subsonic region behind the shock and around the BH,
where the flow becomes approximately radial close to the
BH horizon and matches the accretion rate (29). We shall
present in Sec. VIII below numerical computations that
confirm this behavior. In a sense, because the maximum
possible accretion rate (29) is much smaller than the
incoming flow (85), the BH (dressed by the surrounding
scalar cloud with large self-interactions) acts like an
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obstacle, such as a solid sphere moving in a fluid or a space
shuttle in the atmosphere.

B. Bondi-Hoyle-Lyttleton accretion
at high Mach numbers

At high velocities, v30 > c2s0=ð3F⋆Þ, the Hoyle-Lyttleton
accretion rate (85) becomes smaller than the value (29),
associated with the highest possible flux. This means that
matter can directly fall into the BH along a fully supersonic
solution. Thus, the BH is no longer an obstacle but a sink
where matter can freely fall. However, on the z axis behind
the BH, there is still a wake and a conical shock as
streamlines coming from all directions converge toward the
symmetry axis but cannot cross. There is also a stagnation
point on the z axis behind the BH, where the velocity
vanishes, because the radial velocity must be negative and
of the order of the speed of light close to the horizon and
positive and close to v0 at large radii. This turning point
separates the streamlines that fall into the BH and those that
escape to infinity. Clearly this region is subsonic; therefore
we always have a subsonic region behind the BH. Thus,
we can expect that for high velocities the shock becomes
attached to the BH, with an upstream supersonic regime
that extends down to the horizon on the front side of the BH
and a narrow shock cone on the back side that contains a
subsonic region. This agrees with the accretion column of
the Hoyle-Lyttleton analysis [132,133]. We discuss in more
detail this regime in Appendix C. We find that pressure
forces do not modify the main properties of the Hoyle-
Lyttleton accretion and for v0 > c2=3s0 we have a narrow
accretion column on the rear side of the BH.
Therefore, we have the moderate and high-velocity

behaviors

v0 <
c2=3s0

ð3F⋆Þ1=3
∶ ṀBH ¼ 12πF⋆ρ0G2M2

BH

c2s0
; ð86Þ

v0 >
c2=3s0

ð3F⋆Þ1=3
∶ ṀBH ¼ 4πρ0G2M2

BH

v30
; ð87Þ

which we will use in the following.

VI. COMPARISON OF ACCRETION DRAG
AND DYNAMICAL FRICTION

A. Accretion drag

From Eqs. (83) and (86) and (87), the accretion drag on
the BH shows the low- and high-velocity behaviors

v0 <
c2=3s0

ð3F⋆Þ1=3
∶ Facc ¼

12πF⋆ρ0G2M2
BHv0

c2s0
; ð88Þ

v0 >
c2=3s0

ð3F⋆Þ1=3
∶ Facc ¼

4πρ0G2M2
BH

v20
: ð89Þ

B. Dynamical friction

For v0 ≳ cs0 the dynamical friction term in (83) reads as

Fdf ¼
8πρ0G2M2

BH

3v20
ln

�
ra
rUV

�
; ð90Þ

with

rUV ≃
ffiffiffiffiffi
18

e

r
rsgM

−3=2
0 ¼

ffiffiffiffiffi
18

e

r
rsv

−3=2
0 c−1=2s0 : ð91Þ

The effective small-scale cutoff rUV is explicitly obtained
from the analytical computation (83). Thus, the pressure
associated with the self-interactions damps the contribu-
tions from small scales to the dynamical friction and in
contrast with the collisionless result the Coulomb logarithm
does not show a small-scale divergence. On the other hand,
we still have a large-scale logarithmic divergence, as for the
seminal computation by Chandrasekhar for a stellar cloud
[114]. One often takes this large-scale cutoff to be the size
of the cloud. In our case, this is not a free parameter as it is
given by the soliton radius Rsol ¼ πra defined in Eq. (25).
We can check that the radius rUV is always greater than

the Schwarzschild radius as v0 and cs0 are smaller than the
speed of light. The comparison with Eq. (77) shows that the
radius rUV is the radius where the velocity is significantly
perturbed by the shock, with a relative discontinuity
Δvθ=v0 of order unity. As compared with the free colli-
sionless case, this explains the origin of the small-scale
cutoff in the Coulomb logarithm and why smaller radii do
not contribute significantly to the dynamical friction.
Thus, we find that that the accretion drag is negligible at

low velocity but of the same order as the dynamical friction
at high velocity,

v0 ≪
c2=3s0

ð3F⋆Þ1=3
∶ Facc ≪ Fdf ;

v0 >
c2=3s0

ð3F⋆Þ1=3
∶ Facc ∼ Fdf ; ð92Þ

where we used Eqs. (86) and (87), as also discussed in
Appendix C.

VII. GRAVITATIONAL FORCE FROM THE
LARGE-DISTANCE BH WAKE

The dynamical friction is often estimated from the
gravitational force exerted on the moving object by the
overdensity created in its wake. For collisionless systems,
this was shown to give back the classical Chandrasekhar
result that was obtained from the deflection of distant
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orbits [134]. In our case, this neglects pressure effects, but
it should provide at least a correct order of magnitude at
high wave numbers. We focus on the high Mach number
regime, where the Mach angle is small and the accretion
proceeds through the accretion column at the rear of the
BH, as detailed in Appendix C. Then, considering a conical
accretion column of Mach angle θc ≪ 1 at large distance,
its gravitational drag force on the BH reads as

Fg ¼ GMBH

Z
drπðrθcÞ2

ρ − ρ0
r2

ð93Þ

¼ GMBHπθ
2
c

Z
drðρ − ρ0Þ; ð94Þ

where ρ is the typical density inside the column at
distance r. Let us estimate the contribution from large
radii, beyond the Hoyle-Lyttleton radius (C10), where the
shock is weak. Upstream of the shock, pressure effects are
small, and the streamlines follow the Keplerian orbits and
density (C1)–(C3). At first order over θc and 1=r, we obtain
at large distance

r ¼ b
θc

−
2GMBH

v0θ2c
; vr ¼ v0 −

GMBH

v0r
;

vθ ¼ −v0θc −
2GMBH

v0θcr
; ρ ¼ ρ0: ð95Þ

As expected, we find that upstream of the shock, there is no
modification of the density at order 1=r; see Eq. (49). These
expressions provide the boundary conditions fvr1 ; vθ1 ; ρ1g
upstream of the shock. The junction conditions are the
continuity of the longitudinal velocity vr and of the
transverse momentum ρvθ, while the Bernoulli
equation (C8) remains satisfied. Writing ρ2 ¼ ρ1 þ Δρ
and vθ2 ¼ vθ1 þ Δvθ, going up to second order over Δρ
and Δvθ, we obtain the solution

Δvθ ¼
8GMBH

3cs0r
; Δρ ¼ ρ0

8GMBH

3c2s0r
; ð96Þ

where we used θc ¼ cs0=v0 at first order. Substituting
ρ − ρ0 ¼ Δρ in Eq. (94), we obtain

Fg ¼
8πρ0G2M2

BH

3v20

Z
dr
r
: ð97Þ

Thus, we recover the exact expression (90), with the
Coulomb logarithm and the prefactor 8π=3, which differs
from the standard collisionless result 4π by a factor of 2=3.
Of course, this computation cannot compute the small-scale
cutoff rUV of Eq. (91).
The result (97) neglects the boundary layers and applies

the junction conditions at the shock between the upstream
and downstream bulk flows. Thus, we found in (77) that
along the shock the density jump actually decays as r−2=3

instead of r−1. However, the width of the boundary layer
also decreases as Δu ∼ r−2=3, which gives an angular width
Δθ ∼ r−2=3. Therefore, the contribution from the boundary
layer to the gravitational force takes the form

Fg;bl ∼ GMBH

Z
dr2πðrθcÞrΔθ

Δρ
r2

∝
Z

drr−4=3: ð98Þ

Thus, this contribution is finite and does not show a large-
distance logarithmic divergence. It is therefore subdomi-
nant at large distance. This is why the simple computation
(97) can recover the exact large-distance behavior of the
dynamical friction (90).

VIII. NUMERICAL COMPUTATION
AT MODERATE MACH NUMBER

To confirm the behavior of the system for moderate
Mach numbers, we perform a numerical computation of the
scalar dark matter flow around the BH using the public
AMRVAC code [135–137]. This is a parallel adaptive mesh
refinement framework aimed at solving partial differential
equations for use in computational hydrodynamics and
astrophysics. Similar studies for the Bondi-Hoyle accretion
of a polytropic gas have been presented in [138,139], using
also the AMRVAC code. They consider a polytropic gas of
index γ ¼ 5=3. As compared with our case, they also need
to supplement the continuity and Euler equations with the
energy equation, as the entropy is not conserved at the
shock. In contrast, we do not need this energy equation
because our fluid is not a perfect gas but a scalar field. In
particular, the velocity is always curl-free as it is defined as
the gradient of the phase β, which is the original field of
interest, with the amplitude

ffiffiffi
ρ

p
of the wave function ψ .

Thus, we solve the continuity and Euler equations of an
isentropic polytropic gas of index γ ¼ 2, from the mapping
described in Sec. II F in the nonrelativistic regime. The
boundary condition at large radii is set by the uniform flow
at density ρ0 and velocity v⃗0. The boundary condition
at the inner matching radius rm is set by the radial solution
(29). For the initial condition, we take for the density
ρ ¼ ρ0maxð1; rsg=ð2rÞÞ, which is an approximation of the
radial solution [95]. For the initial velocity we take vr ¼
−ṀB=ð4πρr2Þ þ v0 cos θ and vθ ¼ −v0 sin θ, that is, a
simple combination of the uniform flow v⃗0 with the radial
infall. Then, we solve the dynamics over time until the
results converge to a steady state.
We use a two-dimensional spherical mesh (thanks to the

axisymmetry there is no dependence on the azimuthal
angle φ), with a uniform stretching in the radial direction.
The upper radius is taken at 50rsg and the lower radius at
0.005rsg. We use a temporally first-order scheme, as we are
only interested in a steady state, and the HLLC flux scheme
[140]. We use the dimensionless coordinates and fields
r=rsg, ρ=ρ0, v=cs0, to work with quantities of order unity in
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the transition region. We checked that the Bernoulli
invariant (31) is constant throughout the computational
domain.
We show our results in Fig. 1 for the case v0=cs0 ¼ 1.2

and cs0 ¼ 0.05. We use the visualization tool VisIt
[141,142]. The maps of the local Mach number M in
the upper panels clearly show the formation of a bow
shock, upstream of the BH at a distance r ≃ 0.8rsg along the
z axis. After the shock, the velocity decreases while the
density and the local sound speed increase, which gives a
clear drop of the Mach number M ¼ v=cs. This is much
more apparent than in the density maps, which are
dominated by the radial increase close to the BH. The
Mach number first keeps decreasing closer to the BH, until
a radius 0.2rsg, and next increases as we move closer to
the supersonic regime, which is beyond the computational
domain. Indeed, as seen by the lower left panel, the Mach
number has not reached unity at the inner radius of the grid,
because we impose the boundary conditions at a matching
radius rm that is still in the nonrelativistic regime. However,
we can see that close to the BH the system becomes
spherically symmetric, as shown by the spherical color
contours of the Mach number.
For a perfect gas of index γ ¼ 5=3, [138,139,143] found

that the shock is attached to the BH (in their case the point
mass as they consider Newtonian gravity) for moderate
Mach numbers. In our case, we can clearly see that the bow
shock is detached from the BH horizon and located at a
radius of the order of rsg for v0 ∼ cs0. This is because of the

stiffer equation of state, γ ¼ 2, which also significantly
decreases the radial accretion rate (29) as compared with
the usual Bondi result, as explained in Sec. II E. This
property allows in turns the flow to become radial closer to
the BH and confirms the analysis presented in Sec. V for
moderate Mach numbers, with the accretion rate (86). The
pattern of the flow is clearly seen by the velocity field
shown in the lower-right panel, with a radial infall close to
the BH and a stagnation point behind the BH along the z
axis. At large distance the flow remains close to the uniform
velocity v⃗0.
In the upper-left panel, the black straight solid line

starting from the origin shows the Mach angle θc ¼
arcsinðcs0=v0Þ of Eq. (45). We can see that this agrees
with the slope of the shock front at large distance. The blue
solid line shows the sonic line where the Mach number
crosses unityM ¼ 1. Its left part, which follows the shock,
actually corresponds to the shock discontinuity where M
drops from Mupstream > 1 to Mdownstream < 1. Therefore,
although this line appears in the contour plot computed by
VisIt, the Mach number is not unity on this line but crosses
unity in a discontinuous manner. The right part, which runs
from the shock to the z axis in the downstream region, is a
true sonic line, where M ¼ 1. Indeed, whereas the shock
efficiently slows down the incoming flow not too far from
the BH, at large distance in the transverse plane the shock is
weak and the velocity remains close to v⃗0. Thus, close to
the z axis the flow becomes subsonic after the shock, while
it remains supersonic at large distance. Moreover, far

FIG. 1. Numerical computation of the scalar dark matter flow around a BH, as viewed in the BH frame with the dark matter coming
from the left at the uniform velocity v⃗0 parallel to the horizontal axis. We takeM0 ¼ v0=cs0 ¼ 1.2 and cs0 ¼ 0.05. The coordinates are
in units of the transition radius rsg. The upper and bottom-left panels show maps of the Mach numberM ¼ v=cs as we enlarge closer to
the BH. The lower-right panel shows a map of the velocity field.
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downstream behind the BH the flow converges to the bulk
velocity v⃗0 and becomes again supersonic. Therefore, there
is a finite-size region, behind the shock and enclosing the
BH, where the flow is subsonic. This is marked by the sonic
line shown by the blue solid line in the upper-left panel. It is
within this subsonic region that the flow slows down and
becomes approximately radial closer to the BH. Below the
matching radius rm and somewhat above the BH horizon,
not shown in the plots, the flow becomes supersonic again
and relativistic. Thus, there are actually two sonic lines.
As explained in Sec. V, at higher velocity we expect a

strong asymmetry down to the horizon, with a shock that is
no longer detached and a fully supersonic flow on the front
side of the BH. However, this high-Mach regime is beyond
the reach of our numerical code.We leave a detailed study of
the accretion flow near the BH at these high Mach numbers
to a futurework. This has no impact on the result (83), which
follows from the large-distance expansion, but it would be
interesting to check the details of the transition (86)–(87).
This regime is discussed in more detail in Appendix C,
adpating the standard Bondi-Hoyle-Lyttleton analysis
[132,133,144] to our case.

IX. COMPARISON WITH OTHER SYSTEMS

A. Mass accretion

The Bondi and Hoyle-Lyttleton accretion rates for a
perfect gas are often computed with the expression

ṀBHL ¼ 4πρ0G2M2
BH

ðc2s0 þ v20Þ3=2
; ð99Þ

which interpolates between the subsonic and supersonic
regimes [125,132,133]. As explained in Sec. V, at low
velocities we have a smaller accretion rate, because of the
more efficient self-interactions, whereas at high velocities
we recover the Hoyle-Littleton prediction,

v0 ≪ c2=3s0 ∶ ṀBH ≪ ṀBHL;

v0 ≫ c2=3s0 ∶ ṀBH ≃ ṀBHL: ð100Þ

B. Dynamical friction

For a collisionless system, when the BH moves at a
speed that is much greater than the velocity dispersion of
the cloud particles the classical dynamical friction obtained
by Chandrasekhar [114] (and confirmed by numerical
simulations [145,146]) reads as

collisionless∶ Ffree ≃
4πρ0G2M2

BH

v20
ln

�
bmax

bmin

�
; ð101Þ

where bmax and bmin are large-scale and small-scale cutoffs.
One usually takes bmax ¼ R given by the size of the cloud
and bmin ¼ 2GMBH=v20 the critical impact parameter,

associated with bound orbits if their angular velocity is
assumed to vanish when they meet the z axis behind the
BH [133]. More generally, bmin corresponds to orbits with a
deflection angle of order unity.
For the perfect gas, one obtains in the supersonic regime

[129,147] (also recovered numerically, e.g. [148–150])

perfect gas∶ Fgas ¼
4πρ0G2M2

BHI
v20

; ð102Þ

where I ¼ lnð1 − 1=M2Þ=2þ lnðbmax=bminÞ. In the case
ofM ≫ 1, the first term of I vanishes, and only the second
term (corresponding to a Coulomb logarithm) remains.
Thus, this result is the same as (101).
Finally, in the case of FDM, with scalar masses

around 10−22 eV where we can neglect dark matter self-
interactions and the de Broglie wavelength is large, the
dynamical friction is found to be [44]

FDM∶ FFDM ¼ 4πρ0G2M2
BHCðβ; krÞ
v20

: ð103Þ

Here, Cðβ; krÞ is given in terms of confluent hypergeo-
metric functions, β ¼ GMBHm=v0 and k ¼ mv0. For β ≪ 1
and kr ≫ 1 one obtains C ∼ lnðkrÞ, which gives again an
expression of the form of (101).
Therefore, in the supersonic regime all these systems

give a dynamical friction that is similar to the
Chandrasekhar result (101), except that the Coulomb
logarithm can vary. This prefactor is usually difficult to
estimate, and the infrared and ultraviolet cutoffs are often
the result of an educated guess rather than an explicit
derivation. In our case, the ultraviolet cutoff (91) is
explicitly obtained from the analytic result (83). This is
because in the steady state momentum conservation allows
us to relate the drag force to the flux of momentum at large
distance. Then, we have seen that rUV is indeed the radius
where the incoming velocity of the dark matter is signifi-
cantly perturbed. This plays the role of the critical impact
parameter bmin ∼ GMBH=v20 of the collisionless case.
However, rUV depends on the physics of the system and
on the behavior of the self-interactions, as shown by its
dependence on cs0 in (91). The infrared cutoff is then taken
as the size of the cloud, as in other systems, with the
peculiar property that this is not an additional parameter
because for scalar dark matter with a quartic self-interaction
it is independent of the mass of the cloud; see Eq. (25).
The radius rUV of Eq. (91) is greater than the collision-

less critical impact parameter bmin ∼ GMBH=v20,

rUV ∼ bmin

ffiffiffiffiffiffi
v0
cs0

r
: ð104Þ

This is because of the collective pressure effects, which
significantly modify the velocity field on small scales as
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compared with the collisionless case, as discussed in
Sec. VI B. This makes the Coulomb logarithm (90) smaller
than for the collisionless case, (101).
Apart from the logarithmic term, the prefactor in Eq. (90)

is smaller than that in Eq. (101) by a factor of 2=3. This
value is confirmed by the computation (97) of the gravi-
tational force from the BH wake at large distance. It is due
to the physics of the dark matter fluid, where the self-
interactions play a key role, as shown by the factor cs0 in
the velocity and density jumps (96). In particular, it is
determined by the effective polytropic equation of state
γ ¼ 2 of an isentropic flow, with its specific junction
conditions. Thus, for a fixed cloud size the dynamical
friction associated with SFDM is smaller than for CDM by
at least a factor of 2=3.

X. CONCLUSION

We have completed the study, started in [116], of the
motion of a BH in a scalar dark matter cloud. Here we focus
on the supersonic regime. This requires a deeper analysis
than for the subsonic regime due to the appearance of a
shock, as is usual for supersonic dynamics. Moreover, we
found that at large distance this shock front is surrounded
by two boundary layers, which introduce terms that scale
as powers of r−1=3 instead of r−1 in the large-distance
expansion of the velocity potential. We have performed
these large-distance expansions up to order r−2 for the
density and velocity fields.
We showed how the large-distance expansions of the

density and velocity fields can be related to the BH
accretion rate, which is set by the small-scale boundary
conditions at the Schwarzschild radius. This determines the
remaining integration constant of the large-distance expan-
sion, which is then closed in terms of the incoming velocity
v0 and of the accretion rate ṀBH. However, the value of
ṀBH must be obtained by other means.
The large-distance expansion also provides the expres-

sion of the drag force experienced by the BH, thanks to the
conservation of momentum. We find that the final result
takes a simple form, which can be split as the sum of an
accretion drag force, due to the accretion of dark matter by
the BH, and a dynamical friction that takes a form similar
to the classical Chandrasekhar result. However, the ampli-
tude is decreased by a factor of 2=3, and the Coulomb
logarithm is finite, as it does not requite the introduction of
small- and large-scale cutoffs. The large-scale radius is set
by the size Rsol of the dark matter soliton, which is a
function of the combination m4=λ4 of the scalar-field
parameters. The small-scale radius rUV is generated by
the dynamics of the flow and corresponds to the radius
where the velocity field is significantly modified, with
respect to the incoming velocity v⃗0. This radius is always
much greater than the BH horizon, for nonrelativistic
incoming velocities v0 or sound speed cs0. Thus, the

self-interactions provide a significant damping of the
dynamical friction.
For moderate Mach numbers, v0 < c2=3s0 , we find that the

accretion rate is still given by the radial prediction, which is
much smaller than the Bondi-Hoyle-Lyttleton prediction.
This is because of the stiff effective equation of state, with
an adiabatic index γ ¼ 2, which regulates the infall onto the
BH near the Schwarzschild radius. Then, the bow shock is
detached from the BH and located upstream of the BH.
Behind the shock there is a subsonic region that encloses
the BH and a stagnation point downstream. In this region
the flow becomes approximately radial close to the BH.
Closer to the Schwarzschild radius the flow becomes
supersonic again, as in the radial case. This is confirmed
by a numerical simulation for M0 ¼ 1.2.
For high Mach numbers, v0 > c2=3s0 , we recover the

Hoyle-Lyttleton accretion rate, which is then smaller than
the one obtained in the radial case. Then, as in the classical
Hoyle-Lyttleton analysis, most of the accretion takes place
in the accretion column behind the BH, and the flow
remains strongly asymmetric down to the Schwarzschild
radius. The shock is then attached to the rear of the BH and
forms the boundary of this narrow accretion column.
The mass accretion and dynamical friction provide

invaluable insights about the surrounding environment of
binary BHs, particularly the properties of the dark matter
surrounding them. The dynamical friction exerted by the
dark matter overdensity formed in the wake of the BHs
introduces modifications to the waveforms, leading to a
phase shift. The accretion of matter onto the BHs affects
gravitational wave emission in a similar manner, but at a
different post-Newtonian order. To exploit fully these
effects and utilize them as probes of dark matter environ-
ments, improving our knowledge on the different dark
matter models and enhancing the sensitivity of gravitational
wave detectors is crucial. Advanced and upcoming detec-
tors, such as Advanced LIGO, LISA and DECIGO, hold
promising potential to enhance significantly our capacity to
detect and analyze these effects. This analysis has been
carried out for binary BHs in a companion paper [101].
Future research in this direction holds great promise in
shedding further light on the nature of dark matter and the
astrophysical processes that shape the dynamics of binaries
in galaxies.
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APPENDIX A: FREE CASE

In this Appendix, we consider the behavior of a cloud
of fuzzy dark matter, that is, a scalar field without
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self-interactions, moving at velocity v⃗0 around a BH. This
provides a reference point for comparison with the case of
quartic self-interactions, i.e. the focus of this paper.

1. Schrödinger picture

Going back to the equation of motion in the form of the
Schrödinger equation (13) for the complex scalar field ψ ,
the scattering of the incoming dark matter flux by the BH
reads in the Newtonian regime

iψ̇ ¼ −
∇2ψ

2m
þmΦNψ ; ΦN ¼ −

GMBH

r
: ðA1Þ

There is no self-interaction potential ΦI, as we consider the
free case in this appendix, and we neglect the self-gravity
of the dark matter. This is a classic Coulomb scattering
problem and we briefly recall the solution below [44,126].
We look for a steady-state solution of the form

ψðx⃗; tÞ ¼ e−iEtψ̂ðx⃗Þ; ðA2Þ

which is solution of the time-independent Schrödinger
equation

∇2ψ̂ þ
�
2mEþ 2m2

GM
r

�
ψ̂ ¼ 0: ðA3Þ

The background case, without the BH, where the dark
matter moves with the uniform velocity v⃗0 ¼ v0e⃗z, is
given by

¯̂ψ ¼
ffiffiffiffi
ρ̄

m

r
eikz; k ¼

ffiffiffiffiffiffiffiffiffiffi
2mE

p
¼ mv0: ðA4Þ

Factoring out the background, one can check that the
Schrödinger equation (A3) admits solutions of the form

ψ̂ ¼
ffiffiffiffi
ρ̄

m

r
eikzFðuÞ; u ¼ r − z; ðA5Þ

where FðuÞ is solution of the differential equation

uF00 þ ð1 − ikuÞF0 þ βkF ¼ 0; β ¼ GMBHm2

k
: ðA6Þ

One can recognize the differential equation satisfied by
the confluent hypergeometric equation Φðα; γ; zÞ, and we
obtain

ψ ¼
ffiffiffiffi
ρ̄

m

r
e−iEtþikzΦðiβ; 1; ikðr − zÞÞ; ðA7Þ

in agreement with [44]. At large distance, this gives the
asymptotic form [126]

ψ ∼
ffiffiffiffi
ρ̄

m

r
e−iEtþikz−iGMBHm2

k ln½kðr−zÞ�: ðA8Þ

The well-known logarithmic divergence of the correction
to the background term is due to the long-range character
of the Newton and Coulomb 1=r potentials.

2. Hydrodynamical picture

We now describe how this result can be recovered within
the hydrodynamical picture used in this paper, in the large-
scalar mass limit. Thus, we start from the Hamilton-Jacobi
equation (17), where we take ΦI ¼ 0 and ΦN is given by
Eq. (A1). At zeroth-order over the BH gravity, we recover
the background solution (A4),

ψ̄ ¼
ffiffiffiffi
ρ̄

m

r
eis̄; s̄¼−Etþkz; k¼

ffiffiffiffiffiffiffiffiffiffi
2mE

p
¼mv0: ðA9Þ

We factor out the background by introducing ŝ with

s ¼ −Etþ kzþ ŝðx⃗Þ; ðA10Þ

and we obtain at lowest order

∂ŝ
∂z

¼ GMBHm2

kr
: ðA11Þ

Looking again for a solution of the form ŝðuÞ with
u ¼ r − z, we obtain

ŝ ¼ −
GMBHm2

k
ln½kðr − zÞ�; ðA12Þ

and hence

ψ ¼
ffiffiffiffi
ρ̄

m

r
e−iEtþikz−iGMBHm2

k ln½kðr−zÞ�: ðA13Þ

We recover the asymptotic result (A8), with the logarithmic
first-order correction that is characteristic of the 1=r
Newtonian potential. This is only the leading-order result,
upstream of the BH, and higher-order terms are generated
by the nonlinearity of the continuity and Euler equa-
tions (16)–(17). We do not investigate this hydrodynamical
approach further, as we focus on the case with nonzero self-
interactions in this paper, and the free case is more
conveniently described by the linear Schrödinger equation
with the solution (A7).
We note however that in the large-mass limit the

Hamilton-Jacobi equation provides a convenient tool to
include general relativistic effects on the streamlines, as in
Eq. (10), as it can be solved for the exact Schwarzschild
metric functions f and h, without the need to use the
Newtonian gravity approximation (6). This is because we
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can explicitly solve the geodesic equations in the spheri-
cally symmetric Schwarzschild metric.

APPENDIX B: WIDTH OF THE
BOUNDARY LAYER

In this Appendix, we describe how we can obtain the r̂2=3

scaling of the downstream boundary layer. At first order in
the large-distance expansion, we have obtained in
Sec. III C 1 the downstream bulk flow, given by Eq. (58).
The velocity potential has a square-root singularity at the
shock location uc, as seen in Eq. (62). This leads to the
divergent angular velocity (60) at uc. Close to uc, this first-
order velocity perturbation vθ1 becomes greater than the
zeroth-order velocity v0. This signals the breakdown of this
perturbative expansion. Therefore, nonlinear terms that
have been neglected in this expansion must become
important and regularize the angular velocity. Indeed, at
sufficiently large distance we expect the shock to become
increasingly weak and the velocity to converge to v⃗0
(i.e., there is no divergence in the exact solution). Thanks
to the factor 1=r̂ in Eq. (60) for vθ1, the breakdown of the
perturbative treatment appears at values u that are increas-
ingly close to uc at large distance. Therefore, the nonlinear
correction to the divergent expression (60) occurs in an
increasingly small region in u. This corresponds to a
boundary-layer phenomenon, where nonlinear effects are
restricted to a small region and permit the matching of a bulk
solutionwith an adverse boundary condition. In our case, 1=r̂
plays the role of the small parameter ϵ of standard one-
dimensional boundary-layer theory. The scaling of the
boundary-layer width is often a power law of ϵ (here 1=r̂),
but the exponent depends on the form of the nonlinear terms.
At lowest order, the shock front is located at uc and the

boundary-layer physics happens in the transverse direction,
parallel to the angular velocity. Then, as in (58), we write
for the phase

β̂ ¼ v0r̂u −
ln r̂
2v0

þ frðuÞ; ðB1Þ

but we do not assume that frðuÞ is of order r̂0 in r̂, which is
why we added the subscript r. Instead, the dependence on r̂
is one of the boundary-layer scalings that we are looking
for. As explained above, at lowest order the boundary-layer
physics happens along the angular direction e⃗θ; the radial
velocity remains finite, and it is only the angular velocity
that diverges in (60). Therefore, derivatives will be domi-
nated by angular derivatives. Besides, as the equation of

motion (34) only involves b∇ β̂, fr only appears through its
derivative, which we denote gðuÞ,

gðuÞ ¼ f0rðuÞ: ðB2Þ

We also define the transverse coordinate x as

u ¼ uc þ x; ðB3Þ

and we focus on the boundary layer with x ≪ 1. To recover
the flow v⃗0 at large distance, the last term in Eq. (B1) must
be subdominant with respect to the first term. This implies
g ≪ r̂, that is, g grows more slowly than r̂ at large radii. On
the other hand, the breakdown of the naive large-distance
expansion of Sec. III C 1 means that we have g ≫ 1. In the
boundary layer, we have strong gradients as the fields
evolve on the scale set by the boundary-layer width Δu,
instead of the radius r̂; g0 ∼ g=ðΔuÞ ≫ g=r. Thus, we have

x ≪ 1; 1 ≪ g ≪ r̂; g0 ≫ g=r̂: ðB4Þ

Then, we substitute the ansatz (B1) into the equation of
motion (34), and we use the hierarchies (B4) to collect the
dominant terms. This yields

xg0 þ 1

2
g − agg0 ¼ 0 with a ¼ 3c2z

2v0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2z

p
r̂
: ðB5Þ

We need to keep these three terms, as we do not know
a priori the hierarchy between x, g and g0. Other terms in
the equation of motion are suppressed with respect to one
of these three terms by powers of x or g=r̂.
In the large-distance expansion described in Sec. III C 1,

we set a ¼ 0 because of its 1=r̂ factor. This gives
xg0 þ g=2 ¼ 0, with the solution g ∝ 1=

ffiffiffi
x

p
. We recover

the inverse square-root divergence of vθ1 in Eq. (60) and of
f00 from Eq. (62). Clearly, in this approximation, when
x → 0þ the term agg0 becomes greater than g=2, in spite of
the smallness of a, and can no longer be neglected. This
nonlinear term will then regularize the behavior at x → 0þ.
It is possible to obtain the exact analytical solution of the
nonlinear differential equation (B5) in the implicit form

0<x<∞; −
b
2a

<g< 0; x¼ 2a
3
gþ b3

12a2
g−2; ðB6Þ

where b is an integration constant. From this expression we
can derive the asymptotic expansions

x → 0þ∶ g ¼ −
b
2a

þ x
2a

þ…;

x → ∞∶ g ¼ −
b3=2

2
ffiffiffi
3

p
a

ffiffiffi
x

p þ… ðB7Þ

Thus, we can see that gðxÞ is now regular at x → 0þ. The
divergence of the angular velocity has been regularized,
and it remains finite up to the shock front. On the other
hand, the asymptotic matching of the large-x behavior (B7)
with the u → uþc behavior of the bulk flow (62) determines
the integration constant b,
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b ¼ 3c2=3z ð1þ c2zÞ1=6
21=3v4=30 r̂2=3

: ðB8Þ

The asymptotic scalings (B7), or the implicit solution (B6),
show that the width of the boundary layer and the
characteristic amplitude of g are

Δu ¼ Δx ∼ b ∝ r̂−2=3; g ∼
b
a
∝ r̂1=3: ðB9Þ

These two scalings justify the r̂2=3 in the definition of the
boundary-layer coordinate (67) and the r̂−1=3 that multiplies
the F1 term in Eq. (69) (so that it contributes at the order
r̂1=3 in ∂β̂=∂u). Equation (B5) corresponds to Eq. (71),
with different notations and the neglect of the shock
curvature θ1.
The analysis above closely follows standard one-

dimensional boundary-layer theory, and 1=r̂ plays the role
of a small external parameter. As we go to higher orders,
we need a more systematic approach that can handle our
2D problem, as radial derivatives and the curvature of
the shock front start to contribute. This is done through
the expansions (66)–(69). Because of the powers r̂1=3 that
appear in (B9), we need a general expansion in powers of
r̂−1=3. In addition, we must pay attention to the fact that
logarithmic terms may appear. In Eqs. (66) and (69) we
directly wrote those that are nonzero, after the computation
is performed. The results obtained in Sec. III D 2 also show
that the shock curvature θ1 actually already contributes at
the lowest order F1. However, this does not change the
scalings (B9). Instead, this determines the scaling r̂−2=3 for
the first curvature term in the expansion (66). We write a
similar expansion (68) for the upstream boundary layer but
as explained in the main text it starts at order r̂−2=3 instead
of r̂−1=3 because the singularity of the upstream bulk flow at
the shock is weaker.

APPENDIX C: ACCRETION COLUMN

1. Hoyle-Lyttleton accretion rate

We discuss in this Appendix the accretion on the BH in
the high Mach number regime (87), where it proceeds
through an accretion column on the rear side of the BH, as
in the classical Hole-Lyttleton analysis. We use dimen-
sional coordinates and closely follow the presentation of
[133], adapted to our case. In the hypersonic regime,
upstream of the shock front pressure effects are negligible
and the dynamics follows the Keplerian orbits of the
collisionless case. This gives for the streamline of impact
parameter b the hyperbolic orbit

r ¼ b2v20
GMBHð1þ cos θÞ þ bv20 sin θ

; ðC1Þ

with the radial and angular velocities

vr ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v20 þ

2GMBH

r
−
b2v20
r2

r
; vθ ¼ −

bv0
r

; ðC2Þ

and the density

ρ ¼ ρ0b2

r sin θð2b − r sin θÞ : ðC3Þ

At high v0 the accretion column is a roughly conical
cylinder around the downstream z axis behind the shock
front, with a narrow angle θs ≪ 1 that converges at large
distances to the Mach angle θc of Eq. (45). From Eq. (C1),
the orbit of impact parameter b crosses the donwstream z
axis θ ¼ 0 at the radius

r1 ¼
b2v20

2GMBH
; ðC4Þ

with the velocities

vr1 ¼ v0; vθ1 ¼ −
2GMBH

bv0
: ðC5Þ

This gives the boundary conditions upstream of the shock
front, where we take θs ≃ 0, while the density reads as

ρ1 ¼
ρ0GMBH

sin θsbv20
: ðC6Þ

The junction conditions across the shock are the continuity
of the tangential velocity and of the transverse momentum.
Taking again θs ≃ 0 this gives just behind the shock

vr2 ¼v0; vθ2 ¼−
c2s0

sinθsv0
; ρ2¼

ρaGMBH

r
¼ρ02G2M2

BH

b2v20c
2
s0

;

ðC7Þ

where we used the Bernoulli equation

v2

2
þ ρ

ρa
−
GMBH

r
¼ v20

2
þ ρ0
ρa

: ðC8Þ

Indeed, in the subsonic regime just behind the BH we
have v2 ≪ c2s ¼ ρ=ρa, which implies ρ ≃ ρaGMBH=r for
r≲ GMBH=v20. For θs ∼ θc defined in Eq. (45) we obtain

ρ1 ∼
ρ0GMBH

bv0cs0
; vθ2 ∼ −cs0: ðC9Þ

If we neglect vθ2 and assume that the dark matter will be
accreted if it is bound to the BH, v20=2 − GMBH=r < 0,
we obtain the Hoyle-Lyttleton radius and impact
parameter [133]
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rHL ¼ 2GMBH

v20
; bHL ¼ 2GMBH

v20
; ðC10Þ

which gives the Hoyle-Lyttleton accretion rate ṀHL ¼
ρ0v0πb2HL of Eq. (85).

2. Approximate lower bound on the accretion rate

A more detailed analysis of the accretion column
suggests that the accretion rate can be somewhat smaller
[133]. From Eq. (C4), the mass flux that enters the
accretion column through the shock between radii r and
rþ dr is

Fdr ¼ ρ0v02πbdb ¼ 2π
GMBHρ0

v0
dr: ðC11Þ

Denoting μdr the mass in the accretion column between
radii r and rþ dr and v the mean longitudinal velocity in
the column, the conservation of matter gives

d
dr

ðμvÞ ¼ F; ðC12Þ

whereas the conservation of longitudinal momentum gives

d
dr

ðμv2Þ ¼ −
GMBHμ

r2
þ d
dr

ðπr2⊥PÞ þ Fv0; ðC13Þ

where the first term on the right-hand side is the gravita-
tional attraction from the BH, the second term is the
pressure force, and the third term is the momentum
inflow as v2 ¼ v0 on the shock. As the pressure reads
P ¼ ρ2=ð2ρaÞ, we find that in contrast with the Bondi-
Hoyle analysis [133,144] the pressure is a priori of the
same order as the gravitational energy, r2⊥P ∼ GMBHμ=r∼
ρ0G2M2

BH=v
2
0. However, for a conical shock with a constant

angle θs we have r⊥ ∝ r while P ∝ ρ2 ∝ r−2, so that the
derivative of the pressure term vanishes. Therefore, the
pressure term is suppressed as compared with the gravi-
tational term, and the analysis can proceed as in [133,144].
The mass conservation equation (C12) can be integrated as

μv ¼ Fðr − r0Þ; ðC14Þ

where r0 is the location of the stagnation point behind the
BH. The momentum conservation equation (C13) can be
written as

v
dv
dr

¼ −
GMBH

r2
þ vðv0 − vÞ

r − r0
: ðC15Þ

Then, requiring the velocity to be a monotonic function,
from −1 close to the BH to v0 at infinity, implies [133]

r0 >
GMBH

v20
: ðC16Þ

Then the accretion rate is bounded from below by

ṀBH ¼
Z

r0

0

drF ¼ Fr0 >
2πρ0G2M2

BH

v30
; ðC17Þ

which is twice as small as the Hoyle-Lyttleton accretion
rate (85).

3. Velocity threshold for the
accretion-column regime

At radii of the order of the Schwarzschild radius inside
the accretion column we have ρ ∼ ρa and v ∼ −1. As seen
from the Bernoulli equation (C8), these are the highest
possible density and velocity (at the limit of the
Newtonian regime). They are also reached in the radial
accretion case. The solid angle Ω of the accretion column
at a radius of the order of rs is then related to the accretion
rate by

Ωr2sρa ∼ ṀBH ∼ ρ0G2M2
BH=v

3
0; ðC18Þ

which gives

Ω ∼
c2s0
v30

; whence Ω≳ 1 when v0 ≲ c2=3s0 : ðC19Þ

Thus we recover the two regimes (86)–(87). For v0 > c2=3s0
the accretion column is narrow behind the BH and the
accretion rate is of the order of the Hoyle-Lyttleton pre-
diction. For v0 < c2=3s0 the accretion column is large and
actually engulfs all sides of theBH.There is nowabow shock
upstream of the BH, as seen in the numerical computation
displayed in Fig. 1, and the accretion rate is much smaller
than the Bondi-Hoyle-Lyttleton prediction, because of the
strong impact of the self-interactions in this subsonic
region.
From Eqs. (C1)–(C3) we can see that in the high Mach

regime, v0 > c2=3s0 , the density and the velocity at r ∼ rs on
the upstream face of the BH, at θ ¼ π, are

vr ∼ 1; ρ ∼ ρa
c2s0
v0

< ρac
4=3
s0 ≪ ρa: ðC20Þ

This confirms that this regime is very asymmetric, with a
low infall rate on the upstream face of the BH, low densities
and negligible self-interactions. This allows the matter to
fall directly into the BH while remaining in the supersonic
regime and without crossing a shock, over most of the BH
surface. However, most of the accretion rate comes from
the narrow accretion column at the back of the BH, which is
associated with an attached shock and a finite-size subsonic
region.
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