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Tunneling-induced cosmic bounce in the presence of anisotropies
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If we imagine rewinding the universe to early times, the scale factor shrinks and the existence of a finite
spatial volume may play a role in quantum tunneling effects in a closed universe. It has recently been shown
that such finite volume effects dynamically generate an effective equation of state that could support a
cosmological bounce. In this work we extend the analysis to the case in which a (homogeneous) anisotropy
is present, and identify a criteria for a successful bounce in terms of the size of the closed universe and the

properties of the quantum field.
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I. INTRODUCTION

Our Universe is expanding, and on the largest scales it
appears homogeneous and isotropic with a small spatial
curvature [1]. In the standard paradigm, in which our
universe emerged from a cosmological singularity, inflation
provides a dynamical mechanism to achieve the current
state for a generic initial condition [2—4]. However, the
success of inflation is not entirely independent of the initial
conditions—some models require a certain level of homo-
geneity in order to proceed (see [5] for a review), and all
inflationary potentials will fail to create an exponential
expansion for an initially collapsing state in the absence of
a violation of the null energy condition (NEC) [6-9]. An
alternative paradigm, that of ekpyrosis [10-12], commonly
uses a mechanism of slow contraction to provide the
smoothing of inhomogeneities in the case of a non singular
cosmic bounce, (see [13] for a review). Such models also
necessitate a violation of the NEC in order to transition to
expansion. Therefore mechanisms that violate the NEC in
the early universe are of interest for such scenarios.

Most mechanisms for NEC violation require additional
exotic components or a modification of general relativity
(GR) [8]. Recently, a mechanism has been proposed in
which the NEC is violated by finite volume effects, which
necessarily occur for a scalar field with a Higgs-like
potential in standard quantum field theory (QFT) on an
FLRW background with a closed topology [14]. The effect
arises from tunneling between two degenerate vacua, which
is allowed if the field is confined in a finite spatial volume."

'Note that this effect is distinct to the well known Casimir
effect [15]. Although both are based on the finite-volume
assumption, tunneling is independent of the geometry/topology
of the spatial unit cell. For a comparison between the two effects,
see [16].
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One nice aspect of this mechanism is that it “turns off” in a
period of expansion, meaning that after a cosmological
bounce it would quickly become suppressed—it therefore
naturally favors expansion over contraction. We note here
that alternative quantum effects, involving fermion dynam-
ics, have been proposed to induce NEC-violation and
potentially lead to a cosmological bounce [17-20].

A key question is whether the mechanism described
in [14] could also provide some kind of smoothing of
inhomogeneities or anisotropies, and to what extent it must
dominate over these in order for the bounce to be
successful. In this work we will discuss the (homogeneous)
anisotropic case, and explain why the energy of the
quantum fluid must already dominate over the anisotropy
before the bounce in order for it to proceed (effectively, this
is just the requirement that the equation of state parameter
w < 1 to avoid chaotic mixmaster behavior from dominat-
ing [21]). As in other bounce scenarios, a scalar field that is
dominated by its kinetic energy or other stiff fluid with
equation of state w > 1 could play the role of a smoother in
a preceding slow contraction phase [13]. This then requires
some transition between such a component and the effects
that cause the bounce dominating—in our model, for
example, it may be possible that the field itself could be
responsible for smoothing at an earlier kinetic dominated
field (for example, as it rolls down into one of the minima
of the potential, at which point the tunneling effects
dominate).” However, the description we use here is only
valid in the vicinity of the bounce, and so more work is
required to quantify out-of-equilibrium effects and the
impact of inhomogeneities at an earlier stage. These aspects

*Also, gravitational particle creation tends to rapidly suppress
irregularities in the geometry, which can be seen with semi-
classical backreaction effects [22].

© 2023 American Physical Society


https://orcid.org/0000-0003-3499-7534
https://orcid.org/0000-0001-8841-1522
https://orcid.org/0000-0001-8286-8118
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.103515&domain=pdf&date_stamp=2023-11-14
https://doi.org/10.1103/PhysRevD.108.103515
https://doi.org/10.1103/PhysRevD.108.103515
https://doi.org/10.1103/PhysRevD.108.103515
https://doi.org/10.1103/PhysRevD.108.103515

JEAN ALEXANDRE, KATY CLOUGH, and SILVIA PLA

PHYS. REV. D 108, 103515 (2023)

are more difficult to treat and need to be explored further in
future work, as well as considering the possible origins of
the fluctuations that are observed on larger scales, and their
consistency with observations from the CMB and other
cosmological probes. In this work we simply assume that
by the time the universe is nearing the bounce, the
anisotropies are suppressed, and consider what this implies
for the properties of the quantum field that must drive the
process.

We will show that criteria for the success of the bounce
can be stated in terms of the size of the closed universe at the
point at which the net energy density is zero, and the
properties of the quantum field (mainly its mass and vacuum
energy). We focus on the case of anisotropy as a second
component since it is the component that dominates the
energy budget the quickest during a collapse, but we could
equally have considered other secondary components with
other equations of state. Roughly speaking, at the point of
zero net energy density, the size of the (closed) universe must
be comparable to the Compton wavelength of the field for its
pressure to be sufficient to turn around the collapse. We will
make this statement more precise in what follows, and give
the phenomenological consequences for the field in assum-
ing that this closed universe size is equal to or greater than
that of the observable universe.

We note that our model arises from the quantization of a
scalar field with different classical configurations, on a
classical background metric, unlike studies involving the
minisuperspace approach, which provide a toy model for
quantum gravity. In the latter, the path integral can also be
dominated by different classical configurations [23-25],
but for the metric rather than an additional scalar.
Anisotropies have also been discussed in the minisuper-
space context [26]. Furthermore, bouncing cosmological
models have been extensively reviewed in [27] in the
context of loop quantum cosmology and polymer quantum
mechanics (see also [28] for a comparison of different
models in Bianchi I spacetime).

The article is organized as follows: In Sec. II, we
summarize the background of tunneling in a finite volume,
in Sec. IIl we set out the standard description of a
homogeneous anisotropic cosmology, in Sec. IV we extend
the QFT description to the anisotropic case and in Sec. V
we describe the conditions for success in terms of the model
parameters and discuss phenomenology. We briefly provide
some numerical illustrations in Sec. VI and conclude with a
brief discussion in Sec. VIL

II. BACKGROUND I: TUNNELING IN AN FLRW
BACKGROUND WITH FINITE VOLUME

Spontaneous symmetry breaking, where the scalar field
is trapped above one vacuum, is only strictly valid in an
infinite volume, where tunneling to another degenerate
vacuum is completely suppressed. In a finite volume,
tunneling between two degenerate bare vacua ¢ = +v is

e
S
KA L
Uo r
v v
¢
FIG. 1. Schematic representation of the bare potential U(¢)

(blue line) and the effective potential U.(¢p) obtained from
tunneling between the vacua (orange dashed line). U, is given by
Eq. (3), from which we can see that the effective potential curve
reaches a lower value for a smaller volume. In this way the finite
volume effects act as a negative contribution to the energy
density, and can violate the NEC during a period of contraction.

possible, leading to an effective potential with a lower
overall minimum (see Fig. 1).

Using a semiclassical approximation for the partition
function, which is dominated by a dilute gas of instantons
and anti-instantons, it was shown in [16,29] that the
resulting effective theory is such that:

(1) the true vacuum is symmetric and occurs at ¢ = 0,
consistently with convexity of the effective potential
when several saddle points are taken into account
[30-40];

(2) the corresponding effective action is not extensive (it
is not proportional to the volume), but has a non-
trivial volume dependence;

(3) the resulting ground state fluid violates the NEC.
The above features arise from nonperturbative properties of
the partition function, since a convex effective potential
cannot be obtained from a bare double-well potential with
perturbative quantum corrections only.

The (anti-)instantons considered in [16,29] depend only
on the Euclidean time, and the tunneling process is similar
to the one described in quantum mechanics, where tunnel-
ing of a particle in a double-well potential leads to a true
ground state energy which is lower than the ground state
energy in both individual degenerate wells (412

Following the same approximation for the partition
function, but in a flat and isotropic Friedmann-Lemaitre-
Robertson-Walker universe (FLRW), it was shown in [14]

Because the vacua are degenerate, the O(4)-symmetric Cole-
man bounce [42,43] does not play a role here, since it would
require a bubble with infinite radius. The tunneling mechanism
described in [16,29] is therefore not related to a first order
quantum phase transition, but rather to a second order phase
transition and happens uniformly in space.
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that the above mechanism dynamically generates a cosmic
bounce, which is followed by an asymptotic de Sitter phase
where tunneling is suppressed exponentially. In this con-
text, “finite volume” is provided by a unit cell in the form of
a 3-torus of volume V ;. Some recent works in cosmology
have considered the evidence for a closed universe, see for
example [44,45]. However, since we do not see any
periodicity in our observable universe, any closed volume
must be larger than its current size, so any finite volume
effects will now be negligible. The physical size of the
closed universe can of course be much smaller far in the
past, when our comoving volume was smaller, and thus
finite volume effects could have played a role in the early
universe.

In the isotropic case of [14], tunneling between the
minima of the double-well potential

A
U(¢) =k Ny + 20 (&7 = 03)°. (1)

leads to the convex effective potential

Uee(¢) = Ug + %szﬁz + O(¢*) (2)

where

e_a?su
U() = K_1A<1 - r3—/2>

Xiso
2 272

In the above expressions, 4,, A,, and v, have to be
understood as the bare parameters, while A, 4, and v are
the renormalized parameters.4 Also, k = 872G and we have
defined

4
Akv 3

"3 Tes O )

where X is the action of one instanton relating the bare
vacua and a is the FLRW scale factor (we consider
h = ¢ = 1). The potential is illustrated in Fig. 1.

Both r and X depend on the field parameters, but X is
also proportional to the volume V of the fundamental
spatial cell, which therefore needs to be finite for the
tunneling probability o exp(—a ) to be finite—that is, one

1SO0
requires a closed universe.

*For renormalization purposes, it is necessary to introduce the
bare vacuum energy A,. The renormalized vacuum energy A
arises from the scalar field self-interactions; it is not put by hand
but it is generated by quantum fluctuations. The latter are
dominated by ultraviolet effects and not infrared effects, such
that A can be assumed to be independent of V.

The present study extends the work of [14] to the
anisotropic case, and considers the impact of other compo-
nents being present. In this work, an adiabatic approxima-
tion is assumed, where the tunneling rate is large compared
to the expansion rate, which allows the use of equilibrium
QFT. This approximation is very good in the vicinity of the
bounce, which is the regime on which we focus.

Finally, we comment here on the stability of our solution
against small fluctuations of the spatial curvature ®)R < 2.
For & = 0, the bare potential is not modified and no change
would occur in our results. For & # 0 the presence of a small
non-vanishing curvature would slightly shift the position of
the true vacuum, which would imply a redefinition of the
cosmological constant, without changing the overall picture.
It is only for large spatial curvature fluctuations v* < G)R
that our model would break down: the vacua of the bare
potential would not be degenerate anymore, such that we
would have to take into account the formation of bubbles of
true vacuum inside the false vacuum.

III. BACKGROUND II: HOMOGENEOUS
ANISOTROPIC UNIVERSE DESCRIPTION

We review here features of the homogeneous but
anisotropic universe relevant to our study, and in particular
discuss how the anisotropy can be treated as an additional
matter component in the Friedmann equations, assuming an
appropriate equation of state. Starting with the anisotropic
Bianchi-I metric

ds? = —de*> + a}dx? + a3dy? + a3dz?, (5)
the Friedmann equations read (i, j = 1, 2, 3)

H1H2+H1H3 +H2H3:+Kp, (6)
(for i # j)

HH;+—+ - =—«p, (7)
a; aj

where H; = a;/a; and as above k = 8zG. Following
[46,47] we note that Eq. (6) can be written

K
H2:§p+02, (8)

where the averaged Hubble rate H and the anisotropy ¢ are
defined as

1

H :=—
3
2::i
18

(H, + H, + Hj),

o [(Hl — Hy)* + (Hy — H3)* + (H, —H3)2}- 9)

Equation (8) shows that 3x~'6? can be interpreted as an
energy density arising from anisotropy. Similarly, the trace
of Friedmann equations can be written
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H+H2=—g(p+3p)—202, (10)

such that 3x~'6? can also be interpreted as a pressure arising
from anisotropy. Anisotropy therefore plays a role similar to
a homogeneous perfect fluid with equation of state
w = p/p = 1, and we expect that the corresponding energy
density scales as a3(*") = g%, where a = (a,a,a3)"/>
is the average scale factor. This is consistent with Egs. (7)
from which one can show that

which implies (H; — H;) « a™ and thus 6* « a™.
Finally we note that, if a bounce occurs, then at this

bounce H = 0 and H > 0, such that the matter contribution
should satisfy at the bounce

3
p=—-"0><0
K
6 . )
p+3p=——(H+25%) <0, (12)
K

as in the isotropic case.

IV. ANISOTROPIC QUANTUM FLUID
DESCRIPTION

As discussed above, in the isotropic case (a; = a, =
az = a) and from the effective potential (2), the action for
the true ground state ¢ = 0 is

isotropic
S P

-
(4 iso
off = /d4x —gK_1A<1 - r(f/z) (13)

iso

In the anisotropic case (5), the only change to the instanton
action X is via the volume a®V = aa,a3V sy, such that
the action (13) must be modified as

—a o
Se—= [ dixvma Al 1-r). (14
eff / X gK ( V\/W ( )

where a; = a;Z'/3. The stress-energy tensor can be decom-
posed as

2 88 .
T,=— = = d s 2 ) 2 s 3 ’ 15
W= o iag(p,aip.azp.asp), (15)
and leads to the dimensionless energy density and pressure
Sk _ e
P=NT T
D = kp — 1 3/2 -’
p:x——1+r<2a3/2—a/)el (16)

where the average scale factor « is defined by
@ = ajaya5X. (17)

In the previous expressions and from its definition in
Eq. (4), r describes the quantum field—it is completely
determined once we specify its mass, vacuum energy and
self interaction strength (via the parameters v, A and 4). The
pressure and energy density are therefore determined by the
combination of field parameters r and the average size of

. 1/3
the universe aV /.

The Friedmann equations read, in terms of the rescaled
quantities, with the rescaled time 7 = ry/A/3,

HiH,  HiHs  HoH; _
= 1
3 3 3 +p» (18)
., HH; of 0‘}/ L
(for i # j) 3 +37a,-+£_ -D, (19)

where a prime refers to the derivative with respect to 7. We
can then define the rescaled average Hubble rate H and
anisotropy &2

1
H==§(H1+H2+H3),

1
5.2.

.:1—8[(H1 —H2)2+<H2—'H3)2+(’H1 —'H3)2], (20)

so that Eq. (18) can be simply written as
H? =p+ & (21)

We can see from Eq. (12) that p <0 and p+3p <0,
in order to balance out the anisotropy contribution
in the vicinity of the average bounce, defined by
H =0 and H' > 0. In what follows, we will study under
which conditions the cosmological bounce can be
induced.

V. CRITICAL SOLUTIONS

As discussed in the previous section, in a universe with
significant anisotropy, an additional contribution to the
energy density and the pressure of the spacetime exists.
Starting from some initial condition, several scenarios are
possible given the different scalings in @. The NEC
violation from tunneling does not necessarily win over
the anisotropy during the collapse (even where it is initially
larger)—a bounce requires not only that both contributions
cancel each other such that H = 0, but also that at this point
of equality, the pressure satisfies the necessary condition
for the universe to bounce (i.e., H' > 0). For this latter
condition to be true, the size of the universe at this point
must be sufficiently small (relative to the field parameters)
for finite volume effects to be significant, but not too
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small to avoid a collapse. In this section we derive the
specific requirements, and comment on the resulting
phenomenology.

A. Critical point

The critical solution of the Friedmann equations for
which a bounce occurs (p., p.,a.,52) can be found by
imposing the condition H = H' = 0. This critical point is
unstable: a value of a that is slightly larger than a, leads to a
bounce (the NEC violation « o~/ dominates) and a value
which is slightly smaller leads to a collapse (the anisotropy
x a~® dominates).

From these conditions, the energy density and the
pressure at the critical point satisfy

De = :bc = _53' (22)

Also, from Egs. (16), we find that the averaged scale factor
a, is given by the implicit algebraic equation

40} + re=® (=3 +2a3) =0, (23)
and the anisotropy can be expressed as

1+ 2a}
A —— 24
O¢ 3-2a (24)
We can see from Eq. (23) that necessarily o < 3/2, and
one can identify the two regimes

a, — (3/2)'3 for r>1

37\ 2/3
.~ <Zr> for r < 1. (25)

One can understand the role of a, from the point of
view of the pressure. Assume that there is a time 7,
where H(z;) = 0:

(i) A bounce requires the condition H'(z;) > 0, and

thus |p(zy)| > |p(z;)], such that

403%(z)) + re™”™[-3 4+ 2a(z;)] > 0, (26)
which leads to a(z) > a,;

(i) A collapse follows in the situation where
H'(z1) <0, and thus |p(z;)| < |p(z;)|, such that

402 (7)) + re=® @) [=3 + 2a%(7))] < 0, (27)
which leads to a(7;) < a..

B. Comparison with the isotropic case

One can also infer a maximum value for the rescaled
scale factor a;y, at the bounce, which happens when the
anisotropy (and any other components if there are) are

15
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FIG. 2. A plot of the rescaled average scale factor at the bounce
a = aZ!/3 (which is related to the size of the closed universe)
versus r (which is determined by the properties of the field). We
plot the maximum «;, (orange line) and minimum «, (dashed
blue line) values, as a function of r. Although «. asymptotically
tends to (3/2)'/3, aq, is not bounded and goes to infinity when
r— oo.

negligible and the quantum field completely dominates.
We then have from Eq. (16)

& = re %o, (28)

iso
which leads to the two regimes

o ~ (In7)'/3 for r> 1 (29)

o ~ 13 for r<1, (30)

and we note that a;,, is not bounded when r — oco0. We
sketch a, and a;,, on Fig. 2, where the region between the
two curves represents the possible range of values of the
rescaled scale factor at which a bounce can occur for a
particular quantum field (as parametrized by r).

C. Size of the Universe at the bounce

From the previous results one can put bounds on the
typical physical size of the Universe at the bounce, for a
given field. The instanton action is of the order [16]

m3
X~—V.a, 31
1 cell ( )

where m = v4/4/3. The physical length L is given by
L=a(r) Viéa and its value at the bounce then satisfies

e <p, < g1/3 e (32)
m m

To get a feel for the phenomenological consequences of
the model, we can relate the field quantities m and A with
the size of the closed universe at the bounce L,

103515-5
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parametrized by the ratio r. For simplicity we assume here
that 2'/3 is of order 1.

The current size of the visible universe is ~10%° meters,
and we do not see any evidence of periodicity in it [50].
Any bounce must have happened before the electroweak
phase transition, at which point the size of our observable
universe was about 10'" meters. This therefore imposes a
minimum on the size of the closed universe at the bounce—
any smaller and we would see evidence for periodicity now.
However, a bounce could also have occurred much earlier
than this and so the universe could have been smaller. If
instead we take the bounce to occur at the era of grand
unification, the size of the closed universe would be of
order 1 meter or larger.

As can be seen from Fig. 3, for r = 1, if the bounce
occurred when L ~ 1 m, the scalar field would need a bare
mass of ~1077 eV and a vacuum energy A of order
107140272, therefore much smaller than the current cos-
mological constant. The plot illustrates how the values
change for different values of r, but in general one requires
a larger mass to be consistent with a smaller L, and small
values for the vacuum energy are required.

VI. NUMERICAL SOLUTIONS

In this section we numerically integrate the Friedmann
equations (18), both in the bouncing case (where NEC
violation dominates) and in the collapsing case (where the
anisotropy dominates), to illustrate the possible outcomes.

We choose the initial anisotropy %(z,) as one of the
parameters. For simplicity, we will consider a, (zy) = a(7)
and H,(z¢) = H(zo). Hence from (20) we find for all times

Hl - H + V 352, (33)

H, = H. (34)

Hy=H F Vv 362, (35)

The initial value of H can then be determined by equa-
tions (21) and (16), namely

e —a’(7g)

H*(z9) = 6%(7) + 1 — ro?T(ro)'

(36)

We take the negative root H(zy) < 0 since we want to start
from a contracting phase. As a consequence, the initial

>This assumption is not necessarily justified for an axionlike
particle, with a potential of the form M*cos(¢/f). Indeed, a
small mass « M?/f compared to 1 €V [48] implies an extremely
small self-coupling constant o« M*/ f*. However, there are axion
models not requiring such a small self coupling, as for example in
the string-inspired model presented in [49]. Our results can easily
be adapted to other values for A depending on the model.
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FIG. 3. These plots illustrate consistent values of the field
parameters and the size L, of the closed universe at the bounce
for different values of the field parameter r. The upper plot shows
the relation between A and m. The lower plot shows the relation
between the maximum value for L, and m (the minimum of L,
has very similar values and is not represented for the sake of
clarity—thus the range of possible values between the limits in
Fig. 2 all lie close to the lines in this plot). We note that the
function L, (m) is almost independent of r for r > 1, whereas it
changes significantly for r < 1.

Hubble rates are entirely determined by 5% (z), and for the
numerical analysis the quantities we fix are 5>(z), a(z)
and r.

We take r < e, so that we are before the point of equality
in the energy densities in the anisotropy and the quantum
field. For these values of r, we choose the initial average
scale factor such that o’(zy) = a;(r9) (7o) az(7y) = 1.
This allows the bounce to happen soon after the initial
time, compared to the typical timescale of the whole
process. A larger initial scale factor would shift the time
when the bounce occurs.

Figure 4 shows an example of a bouncing solution. We
include the time evolution of the scale factors «;, and
Hubble rates #;, the anisotropy &2, and the energy density
p. We choose r =2, and initial conditions at 75 =0
a;(79) = {2/3,1,3/2}, and &*(zy) = 0.05.
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FIG. 4. Bouncing case: In the two upper panels we show the
time evolution of the rescaled scale factors @; and the rescaled
Hubble rates H; with the initial conditions given in the main text.
The lower panel shows the time evolution of the anisotropy &2
and energy density p.

Figure 5 shows an example of a case where the bounce is
not reached, due to the anisotropy dominating, but that is
close to the critical case. The initial conditions are r = 2,
a;(t9) = {2/3,1,3/2} and &*(zy) = 0.18247.

VII. DISCUSSION

In this work we have studied the possibility of a cosmic
bounce occurring in a universe in which there is a
significant (but not dominant) anisotropy, in addition to
the presence of a scalar field which is subject to finite
volume effects in a closed universe. We have shown that
criteria for the success of the bounce can be stated in terms
of the size of the closed universe at the point at which the
net energy density is zero, and have studied the properties

@;

FIG. 5. Near critical no-bounce case: In the two upper panels
we show the time evolution of the rescaled scale factors «; and
the rescaled Hubble rates H; with the initial conditions given in
the main text. The lower panel shows the time evolution of the
anisotropy 5> and energy density p. The initial conditions are
close to the critical point and for a time the value of the rescaled
average Hubble rate H remains near zero. However, eventually
the average scale factor grows, leading to another collapsing
phase in which the anisotropy diverges.

of the quantum field (mass and vacuum energy) that permit
a bounce of a size consistent with our own cosmological
history.

At the point of zero net energy density, the size of the
universe must be roughly comparable to the Compton
wavelength of the field for its pressure to be sufficient to
turn around the collapse, so values smaller than ~1075 eV
are needed for the mass. We also find that the vacuum
energy of the field must be extremely small, even in
comparison to the current day cosmological constant.
After the bounce, the universe transitions to expansion
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and the contribution of the quantum field to the
energy density reduces to its vacuum energy, with finite
volume effects completely suppressed. The fact that
this vacuum energy is smaller than the current value is
therefore consistent with what we observe (it could be a
small contribution to its value), but the smallness
of the value seems to require some further explanation—
although this is of course true of the cosmological constant
itself.

Examples of further consequences of tunneling effects in
finite volume are as follows: One could involve an out-of-
equilibrium QFT description of tunneling in the back-
ground of a time-varying metric, which would allow a more
accurate study away from the bounce. Then, the inclusion
of the Casimir effect due to the finite volume V. could

give rise to new effects, with possible cosmological
relevance. Also, the effect of spatial curvature should be
included, in the situation where the space fundamental cell
is a 3-sphere instead of a 3-torus. These studies are left for
future works.
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