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The Universe at the present epoch is found to be a network of matter overdense and underdense regions.
Usually, the overdense regions are dominated by the dark-matter (DM) filaments where massive
gravitationally bound structures such as groups and clusters of galaxies form at the nodes. At the
cosmological timescales, the baryonic matter follows the flow of DM only, and together they form the
cosmic web. To date, this picture of the Universe is best revealed through cosmological large-volume
simulations and large-scale galaxy redshift surveys, in which, the most important step is the appropriate
identification of structures. So far, these structures are identified using various group finding codes, mostly
based on the friend of friends (FoF) or spherical overdensity (SO) algorithms. Although, the main purpose
is to identify gravitationally bound structures, surprisingly, the mass information has hardly been used
effectively by these codes. Moreover, while it is an established fact that the bound structures can best be
formed at some particular mass overdense regions and practically the large-scale structures are barely
spherical in shape, the methods used so far either constrain the overdensity or use the real unstructured
geometry only. Even though these are key factors in the accurate determination of structures-mass
information that can precisely constrain the cosmological models of the Universe, hardly any attempt has
been made as yet to consider these important parameters together while formulating the grouping
algorithms. In this paper, we present our proposed algorithm called the measure of increased tie with
gravity order which takes care of all the above-mentioned relevant features and ensures the bound structures
by means of physical quantities, mainly mass and the total energy information. Unlike the usual FoF
method where a statistically chosen single linking length is used for all grouping elements, we introduced a
novel concept of physically relevant arm length for each element depending on their individual gravity
leading to a distinct linking length for each unique pair of elements. This proposed algorithm is thus
fundamentally new such that, not only able to catch the gravitationally bound, real unstructured geometry
very well, it does identify it roughly within a predefined physically motivated density threshold. Such a
thing could not be simultaneously achieved before by any of the usual FoF or SO-based methods. We also
demonstrate the unique ability of the code in the appropriate identification of structures, both from large
volume cosmological simulations as well as from galaxy redshift surveys, highlighting the fact that it
mitigates a few shortcomings of the basic FoF and SO algorithms and strengthens the foundation of
clustering or halo-finding methods in general.
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I. INTRODUCTION

The abundance of large-volume cosmological simula-
tions (e.g., Millennium [1], Millennium-II [2], Bolshoi [3],
Cosmo-OWLS [4], IllustrisTNG-300 [5], etc.,) as well
as the accessibility of increasingly large observational
surveys (e.g., SDSS [6,7], KiDS-1000 [8], Euclid [9,10],

LSST [11,12], etc.) in recent times have enabled the
extensive study of dynamics and evolution of structures
at large scales (≳100 Mpc) of the Universe. Concurrently,
they provide a unique opportunity for quantitative tests for
the structure formation theories along with unraveling the
fabric of the Universe. The key structural elements that
truly reveal the evolutionary scenario of the Universe are
the dark-matter (DM) halos in cosmological simulations or
the clusters of galaxies in large galaxy surveys. With the
appropriate structure-mass information, such as the halo
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mass function [13–15], one can precisely constrain the
standard cosmological model parameters [16–18] or even
may come up with an alternative evolutionary model for the
Universe, e.g., [19,20], etc. The cluster counts as a function
of their velocity dispersion and redshift, significantly
constraining the dark energy models [21]. Moreover, the
extraction of more accurate information about the location,
mainly the position, the extent, and the bulk velocity of
these structures leads to a fair understanding of their
dynamics and the energy budget. Thus an obvious and
very fundamental question that springs to mind is how to
appositely identify these cardinal cosmic structures.
Historically, efforts have been made in this direction

primarily through grouping or halo finding [13,22–25]. In
the last few decades, many halo finders have been devel-
oped by several authors (see [26–28] and the references
therein) to identify the structures and substructures from
the copious simulated cosmological datasets. Likewise,
various algorithms were developed to extract galaxy
groups and clusters from the galaxy catalog or large galaxy
surveys [29–34]. Ideally, halo finders search locally over-
dense, gravitationally bound systems in the matter density
field (dark matter or darkþ baryonic matter), either gen-
erated in the simulated realizations (N-body/hydrodynamic
or hybrid-codes) or within any large galaxy-redshift
surveys. Although numerous halo finders have been devel-
oped so far, nearly all of them have their foundation either
in the spherical overdensity (SO) algorithm [13] or in the
friends-of-friends (FoF) algorithm [22]; otherwise, they are
the derivatives or combinations of these two basic methods.
The classical SO algorithm locates the density peaks in

the matter density field; the spherical shells are then stacked
up around these peaks until the enclosed average density
drops below a certain predefined threshold value. The
threshold value is assumed either as some multiples of the
mean density of the simulated volume or as the critical
density of the Universe at that redshift. Consequently, this
enforces a spherical geometry in SO halos, whereas, the
FoF halos are unstructured, as the FoF algorithm collects
the particles that are close to each other with respect to a
linking length, which is usually a fractional multiple of the
mean separation of the particles in the searched volume.
Certainly, each of these basic algorithms has its advantages
and limitations.
While the SO-based algorithms, by enforcing a spherical

symmetry, fail to capture the real shape of the halos,
undoubtedly they pick the halo centers as the density peaks,
fairly well, whereas, though the FoF algorithm is successful
in discerning the real geometry of the halos to a great
extent, it may not center the halos at the density peak of the
systems so accurately. This is largely because it locates
centers at the center of mass or simply at the mean position
vector of the final structure. Furthermore, the FoF algo-
rithm is fundamentally based on a free parameter called the
“linking length” (lf), which can be fine-tuned depending on

the scientific problems to be addressed. All trial values that
are assumed by various authors in this scheme are as yet
chosen statistically, e.g., the fraction of mean interparticle
separation in the volume of interest [lf ¼ bl̄, where
b∈ ð0; 1Þ and l̄ is the mean separation]. The major
limitation of this parameter “b” is that the choice mostly
has no physical relevance and may connect two nearby
gravitationally unbound structures into one, if the chosen
linking length is too large. Even, the widely used value,
b ¼ 0.2, which some of the authors have claimed to
roughly correspond to the halo over density of ∼200,
the value often assumed for the virialized systems, was
found to be not so consistent when tested using simulated
data with a different simulation setup. The difference may
be as large as 100–200 of the mean density as reported
by [35,36]. In general, no absolute relation has so far been
established between b and the overdensity of the halos.
This necessitates a physically motivated linking parameter
that would catch the real gravitationally bound systems.
Ironically, these methods ignore the mass information of
individual elements of the systems, while connecting them,
overlooking the fact that at large scales, gravitation is the
only and strongest entity that effectively holds the elements
together.
In this paper, we present our efforts to design an

advanced halo-finding method comprised of a few novel
features along with addressing aforesaid limitations of
previously developed algorithms, invoking physically
motivated grouping parameters. The paper is laid out as
follows. After introducing the paper in Sec. I, we begin
with the development of the proposed algorithm and
illustrate the methods to estimate the associated basic
physical properties of the identified halos in Sec. II. In
the first part of Sec. III, we elaborate on the application
of the proposed halo finder to the simulated data sample. In
the later part of the section, we present the applicability
of the algorithm (with a few essential modifications) to
the observed galaxy catalog of the Sloan Digital Sky
Survey (SDSS) in the region of the Saraswati supercluster.
Finally, we summarize our findings and conclude the paper
in Sec. IV.

II. METHODS

Our primary motivation behind developing a new halo-
finding algorithm is to connect it to more physical
parameters pertinent to both the simulated as well as
observational data. Moreover, the algorithm should have
powerful features from the basic FoF and SO methods, and
intrinsically it should be able to overcome some of the
crucial shortcomings in them. For instance, it should avoid
forcing a spherical symmetry in describing the halos; rather
it should keep the unstructured geometry as the DM halos
are not necessarily following the spherical symmetry
during their formation through accretion or violent mergers
inside the cosmic web. Furthermore, the code should follow
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the physically more relevant overdensity parameter in
describing the boundary of the halos, reducing the usual
dependence on many nonphysical free parameters.
The proposed halo finder namely the measure of

increased tie with gravity order (MITRO) has analogous
basic features of the FoF algorithm. In the framework of
FoF, the nearest neighbor of, say the ith element (here, DM
particle or galaxy) is searched within a predefined radius
known as the linking length, lf. The jth’s elements in the
examined volume, that are located within the distance lf
with respect to the ith element, are considered as its friends
(the direct friends). Likewise, a further search is done for
the new friend(s) of these direct friends of the ith element
with the same linking length around them and are known to
be the indirect friend(s) of the ith element. The process is
repeated until no new friend(s), direct or indirect, are found
for the ith element in the searched volume. The final
configuration of these groups of friends (direct and indirect)
will be considered as a DM halo (in the case of cosmo-
logical simulations) or a cluster of galaxies (in the case of
galaxy surveys). In this setup, the FoF halos primarily
depend on the choice of a free parameter, called the linking
length. Choosing quite a small (or large) linking length will
potentially lead to the formation of smaller (or bigger) size
halos. Moreover, the enclosed overdensity of these halos
with such an arbitrarily chosen linking length provides no
absolute or even any general empirical relationship among
them (see [35,37–39] and references therein).

A. MITRO algorithm

The proposed algorithm MITRO introduces a new
concept of adaptive and unique linking length between
the pairs of particles in the search field. To visualize the
basic concept of this novel algorithm, let us take a practical
example. Imagine a flock (F ) of people sitting randomly on
the ground, and we need to search the groups of people in F
who can hold each other’s hands. The simplest way to do
this is to apply the basic FoF method in which, first a
connecting length is set, which in FoF is usually a weighted
fraction of the mean separation between the two people in
the flock F , and then the aforementioned steps of the FoF
algorithm are applied. As we have already mentioned, the
resulting FoF groups are very much sensitive to the chosen
linking length and therefore need a careful determination of
the parameter to produce meaningful results. For example,
in this case, if we choose twice the average arm length
as the connecting length for everyone in the flock, many
people with shorter arm lengths will be counted in the
group who in actual cases will hardly be able to hold
themselves together to form a connecting group. In fact,
arm length is an individual’s physical property that depends
on various parameters such as age, height, etc.; therefore,
the assumption of a fixed linking length would make the
group nonphysical.

The issue described above is not just a specific problem.
It has been noticed several times that to achieve a mean-
ingful grouping in galaxy survey data using FoF, the
adopted linking length may be very large [31,40]. Since
a single FoF linking length is used for the entire data,
irrespective of the mass of individual galaxies in the
sample, it is highly likely that many low-mass galaxies
in the sample may not have gravitational influence to such a
distance to make a bound system. In such a case, the groups
that are chosen by the FoF algorithm hardly represent a
gravitationally bound system in a physical sense.
To address this issue, one needs to rectify the friending

method which is so far based on a fixed linking length. For
simplicity, let us first assume that each person in the said
flock has as many arms as s/he demands to connect with the
neighbors. To get connected, they should stretch out their
arms and try to hold the hands of their neighbors without
changing their position on the ground. Here, two people are
called their direct friends if they are able to hold each
other’s hands. And the people are called friends of friends
(or indirect friends) if they are connected through inter-
mediate friends. In this way, the resulting interconnected
configuration of friendship circles is said to be the
physically connected groups of people.
In an analogous situation as stated above, the MITRO

algorithm addresses the same problem in a different and
more efficient way. Let us assume that in a given cosmo-
logical dataset, there are two particles (either the dark-
matter particle or the galaxy), A and B. Naturally, they may
have different masses, say MA and MB, and therefore in
general different arm lengths of LA and LB, respectively,
depending on the effective field of attraction of
these gravitating bodies as elaborated in Sec. II A 1.
Accordingly, the linking length between them will be
LAB ≡ LA þ LB. Now, if there is a third particle, say C,
of mass MC and arm length LC, the possible linking length
between A and C will be LAC (≡LA þ LC) and the same
between B and C will be LBC (≡LB þ LC). So, the
significant characteristic of the MITRO algorithm is the
introduction of the concept of arm length and the existence
of as many linking lengths as the number of unique
combinations of pairs of elements in the volume of interest.
Overall, one may consider MITRO as a cousin of FoF with
the major difference that the former adopts the concept of
distinct linking length for each unique pair of particles
instead of a common linking length for all the pairs, as is
the basis of the latter.
Now, while searching for friends, any two elements are

said to be connected or are direct friends, if and only
if the Euclidean distance (Dij) between them is less than
or equal to the sum of their individual arm lengths,
i.e., Dij ≤ Li þ Lj. In this way, one computes the direct
friend(s) of ith element. Subsequently, the friend(s) and
further friend(s) of their friend(s) of ith particle are
altogether collected in a set. Finally, each disjoint set of
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friends will represent a group in the search volume.
Moreover, this method also keeps in mind that the friend-
ship between two individuals is not just the efforts of one;
instead, the effort should be from both sides. A pictorial
illustration of the above-discussed method can be seen in
the right panel of Fig. 1.
In Fig. 1, we pictorially mimicked a specific clustering

scenario with FoF (left panel) and with our proposed
algorithm (right panel). Nine elements with different
masses are randomly placed in a two-dimensional
Euclidean space. For better representation, the particles
of different masses are indicated by the filled dots of
different sizes with dots getting larger for the higher
masses. Colors are used for making them distinctly visible.
In the left panel, we applied the FoF algorithm with a fixed
linking length (lf), computed as the mean separation
between the particles in the represented area. As per the
usual FoF algorithm, as stated earlier, we obtained three
different groups: GF

1 : fP1; P2;P4g, GF
2 : fP3;P8g, and GF

3 :
fP6; P7; P9g, and an isolated particle, P5, surrounded by
the dashed-line circle. However, for the same set of
particles, when we applied our proposed MITRO algo-
rithm, we obtained only two different groups: GM

1 :
fP3; P8g, and GM

2 : fP6; P7; P9g and the rest as the isolated
particles, as demonstrated in the right panel of Fig. 1. Here,
the arm lengths (Li) have been computed by scaling with
the mass of individual particles, as proposed in the MITRO
algorithm. Naturally, elements differing in mass have
different arm lengths. Since, by definition of MITRO, an
examined pair becomes friends only when the arm of one

overlaps or at least touches the other, thus accordingly the
groups are formed. The results obtained in MITRO seem
physically more relevant. Though FoF flags particles
fP1; P2; P4g as groups, namely GF

1 , these are very small
masses compared with the other elements in the set and in
the actual case may not have enough potential to make a
bound system, and therefore our proposed algorithm has
truly flagged them out as isolated particles. We will further
elaborate on this issue in various sections throughout
the paper.

1. The concept of arm length

Since the major goal of running halo finder codes in
large-scale matter distribution is to find the gravitationally
bound systems, the first thing to ensure is that the elements
of a group are under the gravitational field of influence. The
basic theory of gravity says that particles with different
masses will have different fields of influence. Therefore, in
a system of particles with different masses, the heavier
mass particles have a greater impact on the trajectories of
other nearby smaller mass particles. This seeds the idea that
in a gravitating system, the most effective physical para-
meter, which is definitely the mass of the elements (DM
particles or galaxies), should determine the distance of
influence. We call this as the effective radius or the arm
length of the mass element. This in turn will decide the final
possible linking length between any unique pair of particles
in our proposed algorithm. Linking length is thus no more a
free parameter, unlike in FoF, but rather an intrinsic
physical property of the individual pair of particles in
the system.
As a preliminary test step, we considered the gravita-

tional potential as the measure of influence and determined
the arm length. For any arbitrary mass M, the associated
gravitational potential (V) at any distance r is given by
V ¼ − GM

r , where G is the universal gravitational constant.
The maximum arm length can therefore be taken as the
distance from the particle where its influence almost
vanishes, which is, by definition, at an infinite distance.
However, a finite arm length is essential to get a meaningful
clustering. For simplicity of calculation, one can attempt to
get a distance at which the increment in the gravitational
potential, i.e., ∂V

∂r ≡ GM
r2 , becomes considerably low.

Assuming the radial rate of change of gravitational poten-
tial at a distance R (as FR) to be such a limit, we get

FR ¼
���� ∂V
∂r

����
r¼R

≡GM
R2

: ð1Þ

This leads to an arm length of

R ¼
ffiffiffiffiffiffiffiffi
GM
FR

s
≈ 3.73 × 10−9 kpc

�
M
M⊙

�
1=2

F−1=2
R : ð2Þ

FIG. 1. The colored dots in the figure represent the particles in
two-dimensional Euclidean space, where the color code and the
size of the colored dots are indicative of the mass of the respective
particle. Left panel: demonstrates the clustering with FoF
algorithm. Big circles around the colored dots represent the
linking length (lf) of each particle. Right panel: demonstrates
the clustering with MITRO algorithm. Here, big circles around
the colored dots represent the arm length (Li) of the individual
particle based on its mass property. In both panels, the dashed
circles represent the isolated particles while the solid circles are
representing those who found their friend(s) or companion. The
different colors for the solid circles are to differentiate the
identified groups. FoF groups: fP1;P2;P4g, fP6;P7;P9g, and
fP3; P8g. MITRO-identified groups: fP6;P7;P9g and fP3;P8g.
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For the assumed cosmological setup and simulated dataset
used in this study, we found that FR ≤ 10−7 produces a
meaningful clustering.1 However, the number (i.e., ≤ 10−7)
obtained here is through trial and error and needs some
robust method to compute such a limit, which is out of the
scope of this study. Moreover, it should also be physically
motivated. This led us to define the arm length in a generic
way by relating it to the basic cosmological definition for
the spherically collapsed objects.
We define the arm length as the radius, RΔ, of a sphere

around the particle of mass M within which we uniformly
distribute the mass such that the mean density of the sphere
becomes Δ times the critical density (ρcz):

M
4
3
πR3

Δ
¼ Δ × ρcz: ð3Þ

Here, the critical density, ρcz corresponds to the redshift of
the particle and the assumed cosmology. The arm length is
sensitive to the choice of Δ; however, its value can be
limited to any physically motivated situation. For instance,
if one needs to search for the structures at large scales (≳ a
few 10’s of Mpc), Δ∈ ½2; 2000�. The arm length for each
particle can be determined as

RΔ ¼
�

M
4
3
πΔρcz

�
1=3

: ð4Þ

An important advantage of overdensity mediated arm
length is that it also enables us to fairly constrain the
enclosed overdensity ratio (ρ̄=ρc) of the identified
halos using the MITRO halo finder (discussed later in
Sec. II B 4).

2. Unbinding process

Locating halos using a spatial clustering algorithm
usually ensures the positional proximity of the halo
elements. However, such clustering does not guarantee
that all the elements in the halos are energetically bound to
the system. Rather, the position-space-based halo finder
will always include a few high-velocity particles which
could be dynamically unrelated to the system [28].
Identification and removal of such unbound particles
in a halo are known as the unbinding procedure.
Implementation of the unbinding procedure allows us to
make the halo catalogs free from significant contamination
of spurious small objects and therefore an essential practice
for filtering subhalos out of the main halo as well as
computing more accurate halo centers and its bulk

velocities [41]. In our approach to this process, a particle
is said to be unbound to the system (i.e., a halo identified by
MITRO), if its rest-frame velocity is greater than or equal to
the escape velocity computed at the particle position. So, in
the formed cluster C, with particles, Pj; j∈C, the particle
Pj is flagged as an unbound particle if the kinetic energy of
Pj is greater than or equal to the total gravitational potential
of the system at the particle position due to the rest of the
particles in C. Such particles will then be deflagged from
the member list of C. Since in the large-scale structures
of the Universe, material flows along the filaments con-
necting the galaxy clusters and the whole network are in
general in motion, to compute the kinetic energy of the
particles, we have first corrected the velocity components
(vi’s) by subtracting the bulk flow of the cluster. The kinetic
energy of the “jth” particle in the rest frame of cluster (C) is
therefore given by

KEj ¼
1

2
Mj

X
i∈ fx;y;zg

ðvij − Vbulk
i Þ2 ∀ j∈C; ð5Þ

where Mj is the mass of the jth particle in C, and Vbulk
i

denotes the ith velocity component of the bulk flow of the
cluster C which is evaluated as

Vbulk
i ¼

X
j∈C

vijMj ∀ i∈ fx; y; zg: ð6Þ

Although for a faster computation of gravitational potential
one may use the tree code, the particle number being not so
large (≤ 106) in our specific problem, as well as, for a more
precise evaluation of the same, we compute it as

PEj ¼
X
k≠j

G
MjMk

jr⃗jkj
∀ k∈C: ð7Þ

Now, for each particle Pj in cluster C, wherever
KEj ≥ PEj, it will be untagged from the membership of C.
We iterate the process of unbinding till all such unbound
particles are removed from the system C.
Nevertheless, switching on the unbinding process is not

an absolutely necessary step for a halo finder. It mostly
depends on the scientific problem that one deals with. The
halo properties that are based on gravitating matters only,
such as gravitational lensing, x-ray properties, Sunyaev-
Zeldovich, etc., actually require all the particles that are
positioned in the configuration, even if they are not bound
to the system [41]. Moreover, if one is interested in
studying the diffuse streaming or turbulence properties
inside the group medium, the running unbinding
process may even turn out to be detrimental as such
calculations rather than have an absolute requirement for
those high-velocity particles that are present in the system.

1FR in Eq. (2) does not express any direct physical quantity;
rather it signifies the slope of the gravitational potential at some
arbitrary distance R due to the particle of mass M. In other words,
FR may be realized as force (dynes, in cgs. units) applied on a
unit mass of test particle placed at distance R from mass M.
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Consequently, we introduced the unbinding process as an
optional step in our code.

B. Computed halo properties in MITRO-algorithm

1. Halo position

The successful determination of precise representative
halo centers is an important task of a halo finder. This is
mainly because of the fact that almost all basic halo
properties such as radius, mass, bulk velocity, etc., are
primarily computed on the basis of the chosen halo centers.
In our proposed algorithm, we do it by implementing two
different concepts: (i) the commonly used mass-weighted
average position of all member particles of a halo, i.e., rcom
(the center of mass, c.m. position, hereafter), and (ii) the
position of the halo member at the lowest gravitational
potential, i.e., rlgp (the lowest gravity point, LGP position,
hereafter), as the halo center. The latter one will be our main
method to compute the halo positions, since this method
was found to provide the halo centers closer to the actual
matter density peak in the halo, in comparison with the
former one as determined by the center offset study (see
more detail in Sec. III A 3).

2. Halo overdensity ratio

In large-scale structures, the overdensity ratio is a key
parameter that helps in defining roughly the regions that are
successfully able to withstand the Hubble expansion and
may eventually be collapsed to bound objects when their
overdensity reaches a certain critical value [13]. In our
proposed algorithm, we compute the overdensity ratio of a
halo as the ratio of the matter density in the volume enclosed
by the halo to the critical density of the Universe at the halo
redshift. In our method, no spherical geometry for the
halos has been enforced; rather it keeps the intrinsic shape of
the surface that encloses all the halo-fellow particles.
We construct the envelope which encloses halo members

using the convex hull algorithm. For any given set of points
X in 3D-Euclidean space, the convex hull algorithm selects
the smallest number of convex set of points (Qhull ⊂ X )
which encloses the given set X in a closed convex surface,
the minimum possible volume enclosing X . For our case,
we make use of the SciPy quick-hull algorithm [42] to
construct the convex hull and subsequently compute the
corresponding volume, V, within the convex surface
planes. However, in the MITRO algorithm, the set of
points X is not simply the set of positions of the halo
members as used in the usual convex hull setup. In the
proposed algorithm, we assign arm length to the individual
particles, and therefore they assume a spherical shape of
radius equal to their respective arm lengths (Sec. II A 1).
Since these spheres will have non-negligible sizes, to
meticulously compute the volume V, one needs to apply
the convex hull for a set of spheres instead of a set of points.
Furthermore, these spheres being of different sizes

may even overlap with each other, demanding a very
complex and modified convex hull method. To avoid such
complexity, as it is out of the scope of this work, we have
rather used a heuristic approach. We made a new set of
points X 0 taking the point on the spherical surface of each
halo member that is farthest from the center (LGP center) of
the host halo. In this way, instead of applying convex hull
on the set of halo-member positions, we apply it on this
new set of farthest points, i.e., X 0 and compute the volume
V of the halo.
With this, the mean density (ρ̄) of the halos is then

computed as the ratio of the total enclosed mass (ΣMi)
to its volume, V. The overdensity ratio (℘halo) is therefore
defined as

℘halo ¼
ρ̄

ρc
where ρ̄ ¼ 1

V

X
i∈X

Mi: ð8Þ

3. Halo radius and mass

The halo radius in our code is calculated in a very
straightforward way. We report the distance between
the LGP center and the farthest member of the halo as
the radius or maximum radius, Rmax, more precisely, the
farthest point in the convex hull computed enclosing
surface with respect to the LGP center. However, in highly
mass-resolved simulations, the mass of DM particles being
small, the arm length is negligible compared with Rmax,
and therefore searching the positions of the farthest
members will be enough in such cases. Contrary to this,
the presence of massive galaxies as the cluster member in
galaxy surveys makes the arm length non-negligible, and
thus in such cases, the farthest convex hull surface would
be considered for measuring Rmax. We further compute
the mass of MITRO-identified halos by taking the sum of
masses of each individual halo-member element and
denoting them as Mtot.

4. Compactness parameter

Introduction of the concept of arm length allowed us to
understand the stiffness of the configured halos by defining
a new parameter called “compactness,” the ratio of the
measured halo overdensity using the convex hull method,
℘halo, (see Sec. II B 2) to the reference overdensity
(℘ref ¼ Δref=2), i.e., Cp ¼ ℘halo=℘ref . The two factors in
the denominator of Δref=2 will be discussed in the further
text. This “Cp” parameter figures out how closely or
densely the member elements are packed in a halo
compared to the search field element density. While
defining the arm length, given in Eq. (4), the size of the
sphere around the particle position has been computed
assuming that the mass of the particle is uniformly
distributed in the sphere of radius RΔ, such that the
enclosed density is Δ times the critical density (ρcz). For
simplicity, let us assume a gravitationally bound system
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with N number of elements of equal masses. Equal mass
implies all spheres will have the same radii. If we consider
them as solid spheres, while forming a gravitationally
bound structure, they may simply touch each other if
placed closely, similar to the atoms in a closely packed
lattice structure. Much like the lattice, we may therefore
define a term packing fraction of the halo

Pf ¼
N × Volume of each sphere

Total volume enclosed by the structure
: ð9Þ

With a simplistic analogy of a cubic lattice filled with
equal-sized spherical atoms, one gets a packing efficiency
of π=6 ≈ 0.5. Even if we consider spherical elements of
arbitrary sizes or if we allow overlapping of spheres, the
packing efficiency would only increase. This sets the lower
limit to the enclosed overdensity of any MITRO-identified
halo to roughly Δ=2. Therefore, if the DM halos are
searched with Δ≡ Δref , the enclosed overdensity of the
identified halos must be ≧Δref=2. We may therefore take
Δref=2 as the density threshold in which the halos are
searched, and accordingly, we should set the Δref as the
specific problem may demand.

III. APPLYING MITRO ALGORITHM ON
DIFFERENT COSMOLOGICAL DATASETS

The proposed MITRO algorithm is so designed that in its
basic framework, it universally works on the datasets from
N-body/particle simulations as well as galaxy-redshift
surveys. In further sections, we tested our algorithm on
cosmological simulation data by analyzing the halo proper-
ties defined in Sec. II B. Subsequently, we implemented our
algorithm on observational survey data to identify large-
scale structures in the Universe, specifically the data from a
previously known supercluster region.

A. Analysis of simulation data
using the MITRO algorithm

The MITRO algorithm works on any cosmological
N-body simulation that has recorded at least a few basic
parameters. The minimum required parameters are the
particle’s (1) ID, (2) mass, (3) position (in Cartesian
coordinates, in its current framework), and (4) Cartesian
velocity components. The particle’s ID helps in identifying
individual particles. Primarily, the particle’s position and
mass play a significant role in the halo finding process, as
discussed in Sec. II A. Whereas, particle velocity is the key
information that is used to verify particle’s association with
the identified halo (see Sec. II A 2) by examining its
gravitational boundedness to the system.
The simulated cosmological datasets used in this

work are taken from Paul et al. [43]. Simulations were
performed using the ENZO 2.1 code [44]. ENZO is a
hybrid (N-body þ Hydrodynamical), Eulerian adaptive
mesh refinement (AMR) code dealing with the dark matter

as particle only and baryonic matter as the fluid that realizes
the evolution of hydrodynamical parameters, i.e, ρ, P, T, in
each grid or cell of the simulated volume.
For the cosmological model, to create the simulated

realizations, a flat Λ − CDM cosmology was assumed
with ðΩΛ;Ωm;ΩbÞ ¼ ð0.7257; 0.2743; 0.0458Þ and h ¼
H0=ð100 km s−1Mpc−1Þ ¼ 0.702; a spectral index for
the primordial spectrum of initial matter fluctuations,
ns ¼ 1.0; and the rms amplitude of linear fluctuations in
the spheres of radius 8 Mpch−1, σ8 ¼ 0.812 [45].
Regarding the simulation setup, in these simulations,

a part of the Universe has been mimicked within the
co-moving cosmological cubic volume, V, of sides,
Lbox ¼ 128 Mpch−1, filled with 643 number of dark-
matter particles and 643 cells in the parent grid.
Furthermore, two static/nested child grids (643 cells) of
volume V=23 and V=26 respectively, were inserted such
that the center of both the child grids coincided with the
center of the parent grid. With the insertion of two
child grids, the dark-matter particle mass resolution of
7.9 × 109M⊙h−1 has been achieved in the central most
region of the comoving volume ð32 Mpch−1Þ3. Another
four levels of AMR on the matter density parameter
have been initialized in the second child grid, of volume
V=26, to obtain a peak (comoving) grid resolution of
31.25 kpch−1. This allowed one to produce enough
resolution in mass and space to study both the DM and
baryonic properties of the large-scale structures of the
Universe, specifically the gravitationally bound galaxy
clusters, in this work. For the hydrodynamic setup, an
ideal gas equation of state, with γ ¼ 5=3, has been used
for the baryons. Radiative cooling and star formation
feedback physics were also taken into account during the
simulations (for more details, see [43]).
Considering the simulated data sample, with the above-

said model, two realizations of parts of our Universe were
produced, each of comoving volume ð128 Mpch−1Þ3. Each
simulation has been initialized at redshift, z ¼ 60 using the
transfer function of [46] and evolved till the present epoch,
i.e, z ¼ 0, with 48 snapshots taken at different redshift
intervals. In this work, we have used only 11 snapshots
taken at equal intervals of Δz ¼ 0.02, in between redshift
0.2 to 0. To proceed further with the proposed algorithm,
for each snapshot, the particles and the above-mentioned
associated properties of the particles are recorded in a
separate file. During the analysis, we worked only within
the highly resolved central ð32 Mpch−1Þ3 comoving vol-
ume of two realizations.

1. MITRO algorithm for simulated data

While finding DM halos from DM particles of a
cosmological simulation, such as ours, using the MITRO
code, it follows the below-mentioned basic algorithm:
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Step 1: Define the arm length, Li, to each particle
following Eq. (4) and appropriate parameters, i.e., Δ,
in general Δ ¼ 200.

Step 2: After defining the arm length, it searches for
friends of the particles in the volume of interest. Two
particles, i and j are flagged as friends if the Euclidean
separation between them (Dij) is smaller than the sum
of their arm lengths, i.e., Dij ≤ Li þ Lj. Likewise, the
search for the friends of friends is done to achieve the
final configuration of the halos.

Step 3: The unbinding process (described in Sec. II A 2)
is then applied to each MITRO-identified halo when
required. It is an optional step which can be switched
on or off depending on the science problem that we
address.

Step 4: Finally, it computes the halo properties defined in
Sec. II B.

We put an additional restriction on particle numbers to
flag an identified halo as the real halo (in both cases, i.e.,
before and after running the unbinding algorithm). We list
only those halos having a minimum number of particles,
Nmin ¼ 100, decided based upon the highest particle mass
resolution of ∼1010M⊙ in our simulation so that we obtain
the halos with mass, M ≥ 1012M⊙.

2. Overdensity ratio of MITRO halos and analysis
of the unbinding process

As we see in Sec. II B 4, our proposed algorithm is
capable of constraining the overdensities to a great extent,
especially for the halos after running the unbinding
algorithm. From the discussion in Sec. II A 1, it appears
that to achieve a theoretical lower bound to the overdensity
for the searched halos, ℘halo, one needs to keep in mind that
an arm length, Larm corresponds to an assumed overdensity
of Δarm, which would result in an approximate overdensity
lower bound of halos, ℘halo ≥ Δarm=2. To statistically check
the veracity of the above-stated feature of the MITRO
algorithm, we take a practical example with Δarm ¼ 200,
applied to the above-discussed simulated dataset. Here, we
should mention that for further analysis in this paper, we
created a DM halo list following the algorithm illustrated in
Sec. III A 1 and taking all the identified halos with mass
≥ 1012M⊙ (MITRO-200 hereafter).

Figure 2 shows the distribution of overdensity
of the MITRO halos with the arm length corresponding
to Δ ¼ 200 (℘halo − dist, hereafter). Figure 2(a) depicts
MITRO-identified halos with Mhalo ≥ 1012M⊙, whereas,
the lower panel [Fig. 2(b)] represents the halos with
Mhalo ≥ 1013M⊙. In both the panels, dark-cyan color has
been assigned to halos identified before running the
unbinding process, and orange depicts the halos after the
removal of unbound particles from the initially identified
halos. The ℘halo − dist in Figs. 2(a) and 2(b) shows that the
halos after going through the unbinding process strictly

follow the expected lower bound, i.e., ℘halo ≥ 100, with
99.6% of halos falling above the overdensity lower limit,
whereas, before the removal of unbound particles, slightly
more than 96% of the identified halos fall above this
determined lower bound of overdensity. We further notice
that the maximum probable overdensity ratio in ℘halo − dist
is roughly greater than the average of the lower bound and
the actual assumed overdensity threshold used for defining
the arm length, i.e., ≳150.
While, the ℘halo − dist for Mhalo ≥ 1012M⊙ [Fig. 2(a)],

shows a significant peak shift as well as a reduction in peak
value between the distribution before and after the removal
of unbound particles, the same is not so prominent in the

(a)

(b)

FIG. 2. Overdensity ratio of identified halos for a search
overdensity of Δarm ¼ 200. (a) Histogram plot of ℘halo for all
MITRO clusters having Mass ≥ 1012M⊙ (b) The same for all
MITRO clusters having Mass ≥ 1013M⊙.
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distribution with Mhalo ≥ 1013M⊙, as shown in Fig. 2(b).2

This actually suggests that many low-mass objects,
1012M⊙ ≤ Mhalo ≤ 1013M⊙, are largely affected by the
unbinding process,3 indicating that they are very unstable
and are possibly nonvirialized, as also suggested by [43].
This may also indicate an environment with shallower
gravitational potential, such as filaments, easily allowing
them to disturb their spherical geometry by any minor
dynamical events. Moreover, the large difference in
maxima values of ℘halo − dist seen in Fig. 2(a) for low-
and high-mass halos makes it apparent that a significant
fraction of the stable and gravitationally bound low-mass
systems are compact in nature as further discussed in
Sec. III A 4.

3. Position offsets in MITRO halos

For studying halo position offsets, the local peak matter
density of the configured halos, rSO, have been taken as the
reference position for the halos. It has been noticed that,
under the smooth radial-density profile fits, the halo finders
that work with the center at the highest local density are
more accurate than the one that computes the centers by
taking the position average (simple or mass weighted)
of all the halo-fellow particles, such as in FoF or any
position-space-based halo finders (see Knebe et al. [26],
Gao and White [47]). Here, we demonstrate the accuracy
of the MITRO-halo centers by defining the position
offsets as

δrcom ¼ jrcom − rSOj; δrmain ¼ jrmain − rSOj: ð10Þ

To search the local-density peak in the configured halos,
we first create a particle density field with a uniform-grid
structure in the halo-defined region, having the grid
positions the same as given by ENZO snapshot outputs.
The particle mass density field is produced using
Triangular Shaped Cloud interpolation method ([48]), in
which the mass of the particle will be distributed in 27 cells
based on the spatial location of the particle in the grid cells.
Finally, the maximum density location is searched within
the halo-defined region and is referred to as rSO. Although
we implemented AMR for our simulations, a uniform grid
cell structure is created at the highest resolution (i.e.,
31.25 kpc=h) of our simulation during the reconstruction
of the matter density field. However, it should be noted that
such a crude process may affect the density field if any

relatively high-mass particle(s) resides at the periphery
(≳r200) of the configured halo.
The distribution of center offsets computed following

Eq. (10) is plotted in Figs. 3(a) and 3(b). It is evident from
the plots that MITRO computed centers (both rcom and rlgp)
are precisely closed to the highest local density position,
as the peak of center-offset distributions is found to be
well within the size of the highest resolution cell (i.e.,
31.25 kpc=h) in our simulations. The halo positions (rcom)
calculated based on the mass-weighted position average
have a broader offset distribution than the one calculated

(a)

(b)

FIG. 3. Halo position offsets between the mass-weighted
average of positions of all halo particles, rcom, and the highest
local density in the configured halo, rSO, in (a), and between the
highest gravitational potential energy particle position, rmain and
rSO [panel (b)]. The dashed black line represents the peak grid
resolution of the simulations.

2A slight increment in the peak of distribution after the
unbinding process is due to the increment in the compactness
of low-mass objects (1013M⊙ ≤ Mhalo ≤ 5 × 1013M⊙). The un-
binding was found to bring the overdensity ratio close to the
searched overdensity threshold (Δarm ¼ 200).

3A few halos in the mass range 1012M⊙ ≤ Mhalo ≤
5 × 1012M⊙ are removed as they fail to qualify the minimum
particle condition for a halo, i.e., Nmin ¼ 100 after losing
particles due to the unbinding process.
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based on the lowest gravity point (rlgp). The peak of the
distribution of the former (δrcom) is also found considerably
away compared to the latter (δrlgp). Furthermore, while
73% of the position offset with respect to LGP centers (i.e.,
δrlgp) are found to be within the highest grid resolution of
the simulation, i.e., 31.25 kpc=h, only 37% of position
offsets for c.m. centers (i.e., δrcom) come within this
resolution limit. All these show rlgp centers are more
accurate and therefore used as the preferred definition
for halo position in this work.

4. Compactness of MITRO-halos

“Compactness” of a halo is defined in Sec. III B 4 as
Cp ¼ ℘halo=℘ref , and it is a measure of how closely the
halo-member elements are packed in a halo. By definition,
unit compactness indicates a simply packed system,
whereas the higher values point toward a tighter packing
or overlapping of the arms of the halo elements. Values
lower than unity are indicative of a loosely bound system.
Figures 4(a) and 4(b) exhibit a scatter plot of Cp values of
halos for both, without and with the enacted unbinding
process, respectively. We mark Cp ≥ 2 (red dashed line) as
the limit for the bound to tightly bound systems, while,
Cp ≤ 1 (green dashed line) is the limit for marginally
bound to loosely bound systems. It can be seen that with the
chosen arm length corresponding to Δ ¼ 200, the high-
mass systems (Mhalo ≥ 5 × 1013M⊙) have compactness
within the range Cp ∼ 1 to 2, whereas, the compactness
of low-mass systems are spread over a wide range of
values, Cp ≈ 1 to 6. It is also evident from the plots that
the unbinding process filters out the larger number of
loosely bound low-mass systems compared with that of
high-mass systems, as also discussed in Sec. III A 2. We
should mention here that a few low-mass halos exit the
MITRO-halo list while the unbinding process was enacted
as they could not meet the minimum particle condition
(Nmin ≥ 100; see Sec. III A 1) any more, as during the
unbinding it may have lost a few member particles. By
explicit inspection, it was also found that some of the low-
mass halos lost their peripheral or satellite particles that
resulted in a marginal decrement in their masses as well as
in their extents, leading to enhancement of the mean density
of the halos and consequently the increment of Cp values.
This can be easily observed in halos with mass Mhalo <
5 × 1013M⊙ in Fig. 4(b).
Furthermore, if we were to understand the situation in

which a halo becomehighly compact,we need to understand
how the halos are formed. The hierarchical clustering model
says, these structures continuously accrete material from
the surroundings. Therefore, if the matter is available in the
surroundings, the member particle distribution will fall
gradually toward the outskirts, and cuspiness in the halo
will be less, while lack of surrounding materials may lead to
a cuspy halo because of the presence of a dominant core,

leading to highCp values. In cosmicweb structures, a lack of
material can be foreseen as the void or a low-density region
such as the cosmic filaments. Therefore, Cp values can be a
good indicator of the environment of the halos in which they
are evolving. Here, we should clarify that it is not feasible to
draw a general conclusion on the specific surrounding
environment based on Cp values only, mainly because of
its intrinsic dependence on ℘ref which is controlled by the

(a)

(b)

FIG. 4. The scatter plot of compactness parameter, i.e., Cp, for
formed halos with Δarm ¼ 200 as a decisive factor to assign the
arm length to the particles in search of member particles, for all
MITRO halos having mass ≥ 1012M⊙: without initializing the
unbinding process (a) and after the unbinding process (b). The
green dashed line corresponds to the unit Cp below which halos
are considered to be the loosely bound structures whereas the red
dashed line corresponds to Cp ¼ 2 above which halos are tightly
bound systems with respective overdensity threshold in which the
halos were searched.
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chosen value of Δarm for assigning the arm length to each
particle. Nevertheless, in general, a higher value of compact-
ness parameter Cp would mean the lower surrounding
matter density for the halo with respect to the searched
overdensity threshold, as well as revealing the cuspiness of
the identified halos. This roughly allows us to derive the type
of environment in which the halo is evolving, and when the
search value of overdensity is known.

B. Finding supercluster scale structures in large redshift
surveys using the MITRO algorithm

Mapping the Universe at large scales is best done with
large galaxy surveys (i.e., 2dFGRS, SDSS, 2MASS, WISE
etc.). Various observatories have done or are currently
doing sky surveys with different science goals. However, in
general, they collect the basic information, i.e., the photon
counts of the sky patches in different optical color bands.
This is collectively processed in a database after filtering
the objects and their associated parameters: basically,
object type, color bands magnitude, its position on the
celestial sphere, etc. The most crucial parameter that helps
unfold the 3D structure of the Universe is the redshift
information. A few of the surveys provide either photo-
metric or spectroscopic redshift to infer the line of sight
distance—such surveys are called the galaxy redshift
surveys [49,50]. Though galaxy surveys are done at various
frequency bands (e.g., x ray, radio, optical etc.), among
them the largest and deepest (in redshift) coverage is
provided by the optical surveys, e.g., SDSS [6,7]. Using
the 2.5-meter Sloan Telescope [51] operated at the Apache
Point Observatory, the SDSS has provided by far the largest
map of the Universe (∼14; 555 deg2 sky coverage, and star-
forming galaxy’s redshift depth ∼0.8) by constantly sur-
veying the sky for over the last two decades [52]. This large
galaxy map of the Universe provides critical cosmological
information on the key physical processes that govern the
evolution of the Universe through its specific clustering
patterns. To produce the clustering pattern from the raw
galaxy survey data, one needs to identify the grouping of
galaxies as precisely as possible as we have elaborated
in Sec. I.
Here, we discuss the application of the MITRO algo-

rithm to real observational data. We chose the Sloan Digital
Sky Survey (SDSS-III DR12) galaxy data [6,53] in the
region of the most massive supercluster of galaxies, the
Saraswati supercluster [54] for our study, primarily to
compare our results with the ones given in the literature
and understand how robust our algorithm is in the
context of identifying most massive superclusters and its
properties.

1. Data Sample

We obtained the galaxy data from the SDSS data archive
using the same constraint as Bagchi et al. [54] (hereafter
JB17) in the field of the Saraswati supercluster to maintain

consistency in data selection criteria. This would allow us to
compare the results reported in JB17 with ours, which uses
the proposed MITRO algorithm in a consistent manner. We
queried the spectroscopic data (using CAS-Job submission
portal) from three different programs: “LEGACY,” “BOSS,”
and “SOUTHERN”; of the SDSS-III DR12 database for
galaxies having redshift errors< 1%, and clean photometry
within thewedge of RightAscension (R.A.) andDeclination
(Dec.) range 336° ≤ RA ≤ 16°, −1.25° ≤ Dec: ≤ þ1.25°,
and spectroscopic redshift range 0.23 ≤ z ≤ 0.33. The data
fromall three programswere combined together to give out a
total of 3136 galaxies. Furthermore, we also obtained the
SDSS apparent magnitude for each of the galaxies as an
additional physical parameter required by the MITRO
algorithm (see Sec. III B 2 for more details). We adopt the
extinction corrected model apparent magnitude calculated
from the best of two fits (a de-Vaucouleurs and an expo-
nential luminosity profile) in the r band. Here, to mention,
we preferred the model apparent magnitude in order to
measure the unbiased colors of the galaxies, since their
flux is measured in the equivalent aperture for all the
SDSS bands, which makes the galaxy color an aperture-
independent parameter. The absolutemagnitudes of galaxies
are k corrected using K-CORRECT (version 4.2 Python)
software [hereafter [55] BR07] for the rest frame at z ¼ 0,
and evolution corrected EbðzÞ ¼ E0b

z using E0b
¼ f2.3;

1.6; 1.3; 1.1; 1.0g in b ¼ fu; g; r; i; zg [hereafter [56] B03].
For further calculations, required to run our group

finding algorithm, we produced the comoving Cartesian
co-ordinates of each galaxy in the above-discussed (flux-
limited) sample using the relations

xi ¼ Ri cosðδiÞ sinðθiÞ
yi ¼ Ri cosðδiÞ cosðθiÞ
zi ¼ Ri sinðδiÞ; ð11Þ

where Ri is the comoving distance of the ith galaxy, and
θi & δi are their respective right ascension and declination.
For computing various quantities, we adopted the cosmo-
logical parameters based on five-year WMAP results [45];
ΩM ¼ 0.279,ΩΛ ¼ 0.721,ΩR ¼ 8.493 × 10−5 and Hubble
parameter, H0 ¼ 70.1 km s−1Mpc−1 (same as followed by
JB17, however, we verified that the adopted value of ΩR
does not affect the final results). The galaxy distribution
within the selected wedge in the translated comoving
Cartesian coordinate space has been shown in Fig. 5.

2. Applying the MITRO algorithm on the survey data

Before we started finding the overdense regions in the
survey data, we first made the data compatible with the
structure of the proposed algorithm that is originally written
on the basis of the simulated data. The principal basis of the
proposed algorithm is to assign the physically motivated
arm length to each and every element (here the galaxies) in
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the search volume, as discussed in Sec. II A, which we
achieved by correlating the arm length with the mass of
each galaxy. The choice of mass as the parameter for
assigning the arm length is robust as gravitational force is
the dominant of all forces acting at large scales, essential
for building the bound structures in the Universe. However,
unlike the particles in simulated data, no direct mass
information is available for the galaxies in the SDSS data
sample, and therefore we need to estimate the masses of
galaxies in the selected SDSS wedge.
It is well known that the mass composition of the galaxies

is largely dominated by dark matter along with a non-
negligible visible baryonic mass. It is the total mass (i.e.,
baryonþ DM) of individual galaxies that determines the
gravitational field of influence, and is essential information
required by the MITRO algorithm for computing the arm-
length parameter. Although, as a first approximation, the
stellar-to-halo mass relation [57–61] would provide a better
proxy to compute the total mass of galaxies, this relation
does not always provide the mass of local halo of individual
galaxies; rather, it usually provides the mass of cluster DM
halo in which the galaxy and their companion galaxies are
evolving, making it unfit for our case. Therefore, as an
alternative, we first estimate the color-derived stellar mass,
M� of each galaxy in the selected wedge by adopting the
correlation, discussed in Bell et al. [56] (hereafter B03),
between the stellar mass-to-light ratio and color of the
galaxy. Bell et al. [56] report that at redshift, z ¼ 0,
logðM�=LrÞ ¼ 1.0970ðg − rÞ − 0.306 − offset, where the
M�=Lr ratio is in solar units. We took the effective offset
of 0.10 corresponding to the Kroupa [62] initial mass
function [63]. Stellar masses M� were then obtained by
multiplying M�=Lr to the rest-frame r-band luminosity Lr
(which is not evolution corrected). The final relation that we
obtained for the stellar masses of the galaxies is

log

�
M�
M⊙

�
¼1.0970ðg−rÞ−0.406þ0.4½M⊙;r− 0Mr�; ð12Þ

whereM⊙;r ¼ 4.64 is the r-band absolute magnitude of the
Sun in the AB system (BR07), and 0ðg − rÞ and 0Mr are the
(g − r) color and r-band k-corrected absolute magnitude to
redshift z ¼ 0, respectively. We computed the K þ E
corrected absolutemagnitude in band-passb for each galaxy
using

0Mb ¼ mb þ ΔbAB −DMðzÞ − Kb − EbðzÞ; ð13Þ

where ΔbAB ¼ f−0.036; 0.012; 0.010; 0.028; 0.040g for
b ¼ fu; g; r; i; zg [64] is the latest zero-point correction
for converting the apparent magnitudes (mb) of SDSS to the
AB system.DMðzÞ ¼ 5 log½DL=Mpc� þ 25 is the bolomet-
ric distance modulus corresponding to the luminosity dis-
tance DL in WMAP cosmology (given in Sec. III B 1). Kb
and EbðzÞ are the k correction and evolution correction to
z ¼ 0. Out of 3136 galaxies in the list, a 0ðg − rÞ color-
derived stellar mass of two galaxies was found to be
unrealistically high, i.e., > 1014M⊙, plausibly due to incor-
rect color magnitude in the specific band. For them, we
obtained the stellar mass from 0ðr − iÞ color using the
relation (refer to Table 7 of B03)

log

�
M�
M⊙

�
¼1.4310ðr− iÞ−0.122þ0.4½M⊙;r− 0Mr�: ð14Þ

Finally, we obtained stellar mass for all the galaxies that
came out to be in the range 109–1012M⊙, and plotted them as
a color map in Fig. 5. Once we computed the stellar masses,
the next task was to find the dark-matter mass associated
with each of the galaxies which is not a very straightforward
task to do. Furthermore, in the spectroscopic galaxy survey
(SDSS-DR12) thatwe took for this study (same as the JB17),
the number density of the galaxies is quite low in the
examined volume and therefore would introduce a signifi-
cant missing galaxy problem. Since the proposed algorithm
defines its arm length on the basis of the overdensity ratio
(see Sec. II A 1), the corresponding arm length associated
with the stellar mass would be unphysically shorter in the
sample wedge where the galaxy number density is lower
because of missing galaxies. In the following section, we
come up with an approximate solution from the basic
principles of cosmology that would significantly mitigate
this problem.

3. Accounting for the missing matter
(DM and the missing galaxies)

Since the MITRO algorithm defines its arm length on the
basis of the overdensity ratio parameter (see Sec. II A 1)
while searching the structures, having information on all
materials present in the volume of interest is of paramount
importance. However, unlike the simulations, where the
complete information about matter (DM and baryons) and
energy densities is readily available, optical galaxy surveys
can only provide the information of stars and galaxies,

FIG. 5. Selected wedge of 3136 galaxies plotted in comoving
coordinates, projected on the two-dimensional X-Y plane. The
declination along the Z axis has been suppressed.
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i.e., merely a fraction of baryonic matter density of the
Universe. Information on the intergalactic medium or the
DM halos is completely missing. Although the indirect
evidence of DM can be obtained from the gravitational
lensing effects, it needs dedicated observations and analysis
of the fields and is therefore out of the scope of this work.
Furthermore, galaxy surveys are intrinsically flux limited
depending on the depth of the observations. Owing to the
dimming effect [65], objects with the same luminosity but
placed at a higher redshift may remain undetected, while
at a lower redshift, they may get detected if they are above
the sensitivity limit of the instrument(s). So, many faint
galaxies present at higher redshifts will remain undetected
if they are below the sensitivity of the instrument of a
galaxy survey, causing missing matter problems in the
volume of interest.
To take account of this missing matter (due to undetected

galaxies and DM content as well as intergalactic medium),
we provide a very simple solution from the basic principles
of cosmology. We began by dividing the 3D redshift-space
of the sample in n parts (n ¼ 10 for our analysis) along the
line of sight keeping the comoving volume enclosed by
each part to be equal and greater than ð100 MpcÞ3. This
particular volume is chosen to retain the homogeneity
scale of the Universe, the scale at which the statistical
properties of the Universe have transnational invariance.
Bharadwaj et al. [66] and Ntelis et al. [67] have reported
this scale to be ∼63h−1 Mpc ≈ 90 Mpc, at which the
observables, i.e., the mean counts of neighboring points in
the D-dimensional space and the fractal correlation dimen-
sion, approaches its homogeneous value. The cosmological
mean-matter density would therefore account for all the
material present in each of these sections (say, ρimc

in ith

section), whereas, the matter density measured using the
color-derived stellar mass of the galaxies (see Sec. III B 2)
in each section (say, ρimSDSS

in ith section) will be much
lower as it considers only some fraction of mass (i.e.,
baryonic) information luminous only in optical energy
band. Therefore, the difference between these two densities
may tentatively account for the missing matter in the
sampled volume. To compensate for this mass, we simply
distributed the unaccounted mass to each galaxy in the
respective comoving volumetric section. For a rationalized
distribution, a weight factor (wi) is computed for each ith

section by taking the ratio of cosmological mean matter
density at the mean redshift of the comoving volumetric
section to the corresponding total stellar mass density,
wi ¼ ρimc

=ρimSDSS
, and multiplied it by their individual stellar

mass, i.e., wi ×M�ki, where M�ki is the stellar mass of the
kth galaxy in the ith volume sector. The missing matter from
the surroundings thus has been distributed to each of the
galaxies in the ith section in proportion to their stellar
masses. The best part of this approach is, even if the
number of galaxies in a field increases due to the higher
sensitivity of any future surveys or if we include the SDSS

photometric data along with our current spectroscopic
sample (where available), the results would not get affected
considerably (provided the increased number density of
galaxies is uniformly distributed over the examined vol-
ume). Since the change in galaxy number density due to the
availability of more galaxies in the field would modify the
stellar mass density (ρimSDSS

) of the field, the corresponding
weight factor will get adjusted accordingly. For the same
reason, the issue of increasingly high missing galaxies
in the deeper redshift fields due to the dimming effect and
flux limitations, which usually needs extra attention while
computing various clustering parameters such as the link-
ing length (in FoF), would automatically get adjusted in our
proposed MITRO algorithm (more details in Sec. III B 4).

4. Arm length in RA-DEC plane
and along the line of sight

A great deal of discussion has been done in Sec. II A 1
regarding the concept of arm length in our proposed
algorithm. To assign arm length for individual galaxies
in a field, the most crucial information is the total mass (M)
of each galaxy, which, in the case of observational
surveys, we attempted to obtain by the method described
in Sec. III B 3. The arm length of each galaxy has been
determined by Eq. (4), whereM is the effective mass of the
galaxy, given as,Mk ¼ M�kiwi, and ρc is the critical density
of the Universe at the redshift of the galaxy. The other
important parameter is the choice of Δ which decides the
arm length for the individual galaxies. As we mentioned
earlier, while finding the local overdense regions, Δ is the
measure of the matter overdensity with respect to which the
structures are identified. Since we are interested in iden-
tifying the very large structures, specifically the galaxy
superclusters, appropriately the overdensity parameter has
been chosen. Based on the adopted cosmology, to ensure
sustainable gravitationally bound structures at the super-
cluster scale, the required bare minimum density contrast is
suggested to be ρ=ρc > 2.36 [68]. Accordingly, we chose
Δ ¼ 2.36 as a reasonable approximation for our further
analysis. In the entire volume of interest (Sec. III B 1), with
Δ ¼ 2.36 and the other above-discussed parameters, we
obtained the individual arm length for the galaxies in the
range of 680 kpc to 10.8 Mpc according to their weighted
masses.
While this fixes the arm length in R.A.-Dec. plane,

finding an arm length along the line of sight needs careful
consideration. The redshift (cosmological redshift) of the
extra-galactic sources (here, galaxies) has been used to
estimate their distances along the line of sight (LoS) which
provides the de-projected position information from the
inner surface of the celestial sphere. However, this de
projection of galaxy positions on the LoS is largely affected
by redshift distortions (RSD). It is generally assumed that
the observed redshift is the result of cosmological expan-
sion only; however, in practice, the recession velocity of the
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objects also manifests the peculiar velocity induced by the
gravity of neighboring objects. This perturbs the cosmo-
logical redshifts of the objects and hence distorts the
clustering pattern of galaxies in redshift space. On
the small scales, this elongates the galaxy cluster along
the LoS, known as the Finger of God effect [69], whereas,
it squashes the clusters at large scales, called as Kaiser
effect [70]. Although there are additional effects induced by
general relativity, the gravitational redshift distortion [71]
and Sachs-Wolfe effect [72], the effects are quantitatively
insignificant. Apart from these dynamical distortions to the
redshift space, the difference between the adopted cosmol-
ogy (while computing the line of sight distances to the
galaxies, using their redshift information) and the true
underlying cosmology of the Universe, artificially induces
the geometrical distortions in the clustering of galaxies,
known as Alcock-Paczynski effect [73]. There is no direct
method to correct all these possible distortions in redshift
space, at least to the observational data [74–77].
Here, we attempted to address this issue by borrowing an

idea from the basic approach used for defining the linking
length in traditional FoF. The traditional FoF-group finders
while searching clusters in galaxy surveys, adopted two
linking lengths approach. One is along the LoS (in the
radial direction) and the other one is transverse of it (on the
2D projected sky plane). Therefore, instead of searching for
friends within the spherical region around the individual
galaxy, one needs to do the same within an ellipsoidal
region. However, in practice, it is done in a cylindrical
region, as a cylindrical kernel is found to recover groups
better than the ellipsoidal one [29]. In the cylindrical kernel,
the transverse linking length (l⊥) is the radius of the
cylinder, and the length of the cylinder is taken as the
linking length (lk) in the radial direction. Observationally,
due to RSD effects, the comoving LoS separations between
two galaxies within the group appear larger than the
projected separations. However, these linking lengths
cannot be estimated directly from the galaxy survey data.
Instead, they are determined from the analysis of mock
galaxy catalogs from N-body simulations, where the true
clusters are known. In literature, the typical ratio for the
radial to transverse linking length (i.e., γgr ≡ lk=l⊥), is
found to be in the range between 5 and 20 [31,40], and is
chosen as a fixed number for all galaxies in a particular
study, depending on their science goals. Such an approach
of fitting all galaxies with a single LoS arm length (in
MITRO) would go against our basic idea of finding linking
parameters from the physical quantities reflected from the
contribution of individual elements, as done for the trans-
verse linking length. Also, an exercise to find the most
suitable combination of flk; l⊥g from any simulated
mock galaxy catalog to test the recovery of true simulated
galaxy clusters is out of the scope of this study. For a
straightforward application of the MITRO algorithm on
galaxy redshift survey data, keeping the main essence of

our proposed algorithm intact, we adopted a different
but theoretically motivated way to compute the radial-to-
transverse linking length ratio, γgr.
As we already discussed, the usual elongation of the

linking parameter, along the LoS, depends on the motions
of the galaxies inside the halo. Thus the general notion of
the peculiar velocity of the galaxies inside the halos may
provide a clue to overcoming the RSD effect. In a simplistic
approach, we assumed each galaxy of the sample as a part
of a halo, with halo mass Mh and radius rh, where, the
virialization process would ensure the one-dimensional
velocity dispersion [78] to be

σv;z ¼
�
Δ
16

�1
6ðGMhHzÞ13; ð15Þ

where Δ is the mean density contrast relative to the critical
density at the halo redshift, andHz is the redshift-dependent

Hubble parameter. Using ρc ¼ 3H2
z

8πG, Mh ¼ 4π
3
Δρcr3h, and

with some elementary mathematics, Eq. (15) reduces to

σv;z
rh

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
πGΔρc

r
: ð16Þ

Equation (16) expresses a velocity equivalent to the peculiar
velocity of the constituent galaxies inside the virial radius of
the halo. At the present redshift, for the adopted cosmology,
ΩM ¼ 0.279;ΩΛ ¼ 0.721, the spherical collapse model
provides the value of Δ ≈ 100 for barely virialized clusters.
This gives rise to

σv
r
≈ 350 km s−1Mpc−1: ð17Þ

Consequently, in a virialized structure of radius r, the
peculiar motions of the constituent galaxies can stretch the
structure to 1σ ∼ 3.5

h r along the line of sight. This makes
the ratio of LoS to the transverse size of the object
independent of r and is 3.5

h ∼ 5 (h ¼ 0.701). Intriguingly,
such a theoretically motivated number turns out to be quite
consistent with the elongation factors ∼5–15 (i.e., well
overlapping within 1σ–3σ range) adopted by various
authors [e.g., [31,40]] while finding groups using the
traditional FoF method. Furthermore, we speculate that
each galaxy in SSDSS as a part of some pseudogalaxy
cluster; therefore the maximum distortion it can introduce
in the cosmological redshift is ∼ð1σ–3σÞwith respect to the
searched overdensity threshold. However, while clustering,
instead of correcting the galaxy redshift space due to RSD,
we compensated for it by introducing an elongation in the
“arm length” along the line of sight. We assumed the 1σ
elongation factor while assigning the arm length along
the line of sight (lk) in our algorithm. Therefore, it boils
down to the elongation ratio of γgr ¼ σv

rH0
, where H0 is the

Hubble parameter. Since the critical density ρc is redshift
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dependent, the overdensity parameter, Δ (here, ΔSDSS) and
concomitantly the elongation in arm length for individual
galaxies would be different depending on their redshift. In
the selected ΔSDSS (Sec. III B 4) and adopted cosmology
with H0 ¼ 70.1 km s−1 Mpc−1, the values of γgr ranges
between 0.86 and 0.9. For a better illustration of the
variation of the elongation factor with respect to the
overdensity parameter and redshift of the examined vol-
ume, we produced a plot shown in Fig. 6. The plot
highlights that for the usual virialized structures (with
Δ ¼ 200) formed within redshift z ¼ 0.01–0.60, the elon-
gation factor ranges between 5 and 10. However, the
structures at supercluster scales, whose overdensity factor
is usually much lower at about Δ ¼ 2–3, result in an
elongation factor of 0.77–1.05 indicating wall-like struc-
tures. This situation is quite similar to the Kaiser squashing
effect, however, may not represent this as a general case.

5. MITRO algorithm applied to galaxy survey data

The basic MITRO algorithm for finding large-scale
bound structures is as described below:

Step 1: Compute the color-derived stellar mass, M�i , of
each galaxy in the sample [Eq. (12)].M�i ∀ i∈SSDSS.

Step 2: Estimate the weight factor, wi, for each galaxy, to
account for missing galaxies, Intergalactic medium
(IGM), and DM in the survey sample (Sec. III B 3).

Step 3: Define the arm length, Li, to each galaxy using
Eq. (4) and relevant parameters as discussed in
Sec. III B 4.

Step 4: Estimate the radial-to-transverse link-length
ratio, i.e., the elongation ratio γgr (Sec. III B 4).

Step 5: With the arm length as the radius (transverse
length) in the R.A.-Dec. plane, and line of sight (radial
length, determine from γgr) as the depth, create
cylindrical regions for each galaxy such that the

galaxy is placed at the middle of the axis of the
cylinder.

Step 6: Now search for friends in the selected wedge—
whenever two cylinders correspond to the pair of
galaxies intersect each other, those pairs of galaxies
are considered as friends. And finally, search for the
friends of friends to get the final configuration of the
bound structures in examined sky volume, with a
minimum of ten galaxy constraints.

To define friend, two galaxies, i and j, are friends if they
satisfy the following conditions:
(1) the angular separation (θij) between two galaxies at

comoving distances Ri and Rj, and arm length Li

and Lj respectively,

θij ≤
Li

Ri
þ Lj

Rj
; ð18Þ

(2) and the LoS difference

jRi − Rjj ≤ γigrLi þ γjgrLj: ð19Þ

As a preliminary test, we implemented this modified
MITRO algorithm on a simulated mock galaxy sample that
roughly mimics the real observational data. Furthermore,
before applying the proposed algorithm to a real observa-
tional dataset, we produced the halo-mass function of
MITRO-identified structures and compared them with the
standard theoretical halo-mass functions (see Appendix A
for more details).

6. MITRO-identified supercluster scale structures
in SDSS-DR12 sample

Finally, we implemented our algorithm on galaxy survey
data to identify supercluster scale structures. In order to search
the overdense regions in observational data, we introduced
various additions and modifications to the data as well as to
the algorithm, as discussed in the above sections. We choose
the spectroscopic galaxy survey sky wedge from SDSS-
DR12 in the field of the Saraswati supercluster by running
relevant SQL queries (Sec. III B 1) as the dataset. The choice
of the overdensity value is the most crucial parameter for
defining an identified structure as A supercluster [see [79]],
specifically to ensure that the structure remains gravitationally
bound at present or will eventually collapse in the future.
Since our principal aim is to identify supercluster scale
structures, as discussed in Sec. III B 4, as a reasonable
approximation derived from the spherical collapse model,
we choose the overdensity parameter to be Δ≡ ΔSDSS ¼
2.36 [68,79] for running our algorithm.
The selected SDSS data wedge consists of 3036 galaxies.

It is intrinsically a flux-limited sample, and also not
uniformly sampled in the redshift space. Furthermore, as
only a fraction of baryonic matter is observed in the form of
the galaxy in these surveys, most of the matter density is

FIG. 6. Variation of the elongation ratio with the chosen density
threshold Δ while defining the arm length to each galaxy. At
higher redshift, the elongation factor increases for the definite
choice of density threshold Δ.
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missing throughout. To compensate for this surrounding
missing matter, we assigned a weight (wi) factor to each
galaxy in the sample following the method described in
Sec. III B 3. Eventually, the arm length to each galaxy is
defined using the weighted mass of each galaxy, i.e., wiM�

i ,
at a specified overdensity and identified the overdense
structures in SSDSS by running the MITRO clustering
algorithm (Sec. III B 5).
Our algorithm spotted a total of 53 structures within

the specified analysis region of the sky. The MITRO-
identified structures are shown in Fig. 7, each with a
different color and a unique cluster ID (CID). A unique ID
has been assigned in ascending order of the total weighted
mass of the structures. As expected, the largest and most
massive, consequently the first structure (CID-1) in the list
is the Saraswati supercluster. Our algorithm identified this
supercluster with an extension of ∼210 Mpc (comoving)
located at R.A. 354.41°, and Dec. 0.267° (LGP center) and
at the mean redshift of z ¼ 0.277. We found 384 member
galaxies in the MITRO-identified Saraswati supercluster
(Fig. 8) with an estimated average comoving linking
length of ≈9.4 Mpc. The entire structure encloses ≈6.47×
105 Mpc3 comoving volume or ≈2.23 × 105 Mpc3h−3

comoving volume in scale of the Hubble parameter
having an effective mass of 1.86 × 1017M⊙ and houses
42 known WHL4-galaxy clusters (see Table IV). The
enclosed comoving volume is computed with the SciPy

FIG. 7. Structures in SSDSS using the MITRO algorithm having a minimum of ten galaxies. Different colors indicate different
structures with their unique structure IDs as plotted in comoving coordinates, projected on the two-dimensional X-Y plane. Declination
along the Z axis has been suppressed.

FIG. 8. Upper panel: Saraswati supercluster plotted in comov-
ing coordinates, projected on the two-dimensional X-Y plane,
spanning ∼200 Mpc with 384 galaxies in it. Colors represent the
stellar mass of fellow galaxies, and the color scale is shown with
the color bar. The orange star marker symbolizes the known 42
WHL clusters of galaxies in the identified Saraswati structure.
Lower panel: 3D distribution of galaxies and 42 WHL galaxy
clusters comprised in the MITRO-identified Saraswati structure.
Spheres represent the known WHL-galaxy cluster, and the
corresponding color represents the mass of the cluster in log
scale as shown with the color bar. The radius of each sphere is
proportional to its radius r200 corresponding to the mass M200

defined using Eq. (2) in [81].

4WHL is the shorthand of the initials of the three authors,
named Wen Z. L., Han J. L., and Liu F. S. who identified 132,684
galaxy clusters using the photometric redshifts of galaxies from
the SDSS in the redshift range of 0.05 < z < 0.8 using the FoF
algorithm and constraint on cluster richness (ratio between the
total r-band luminosity within the radius R200 to the evolved
characteristic luminosity of galaxies in the r band). The detailed
cluster detection algorithm can be found in Wen et al. [80,81].
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quick-hull algorithm [42] for the convex hulls as dis-
cussed in Sec. II B 2.
Previously, Bagchi et al. [54] (JB17) in their discovery

paper reported the Saraswati supercluster to be a structure
spanning∼200 Mpc roughly centering at Abell 2631 and at
a mean redshift of z ¼ 0.28. They implemented the FoF
algorithm to identify the structure, and the linking length
of l0 ¼ 12 Mpc was chosen by them so that they could
identify the maximum number of FoF clusters in the
searched volume with at least ten galaxies in each.
Within the filamentary structure of Saraswati, they found
43 WHL clusters, and the computed volume of the convex
hull of these 43 cluster points is reported to be
V ≈ 2.05 × 105 Mpc3. The authors estimated the mass of
Saraswati using a very crude method of summing the so-
called bound halo mass, M5.6 of 43 WHL clusters asso-
ciated with the structure which they reported as
Mss ∼ 2 × 1016M⊙. The authors further mentioned that
their estimation is strictly a lower limit as a lot of mass
may still remain uncounted.
It is noteworthy to mention that our findings are fairly

consistent with the JB17, especially the extent, the enclosed
comoving volume in the Hubble scale, the average linking
length, and the number of identified WHL clusters within
the structure. Interestingly, the LGP center and the average
redshift for this supercluster, as identified by MITRO
code, are found to be very close to the most massive
galaxy cluster inside the structure, i.e., Abell 2631
(M500 ≈ 1015M⊙). However, the estimated total mass and
the computed overdensity for the structure do not compare
well. The difference may be attributed to the method of
estimation of mass as well as enclosed volume. We
considered the comoving volume and estimated the
weighted mass of the member galaxies that well accounts

for the uncounted mass, whereas JB17 computed the
overdensity contrast by considering the sum of the turn-
around mass of each WHL-clusters and the Hubble
parameter scaled comoving volume of the enclosed struc-
ture. The overdensity factor (over critical density) reported
by JB17 is ρ=ρc ¼ 1.17, while our estimation is slightly
higher ρ=ρc ¼ 1.62. However, both the numbers are far
lesser than the required critical value of ρ=ρc ¼ 2.36 that is
necessary for the supercluster to remain gravitationally
bound. Further trials revealed that, at the place of Saraswati
structure, theoretically bound halos can only be found
when searched with ΔSDSS ¼ 3.78. However, the structure
does not remain intact; rather, it splits into three parts with
this choice of ΔSDSS (more on this in Appendix B 1). It is
very important to mention here that the density contrast of
ρ=ρc ¼ 2.36 actually comes from the spherical collapse
model which may not be fully applicable to our case of a
real unstructured supercluster. Moreover, the finding could
also be very much dependent on the limitations of the
current observations and therefore opens up the possibility
of a further detailed study on this matter.
In addition to the Saraswati supercluster, we identify

another 52 structures by applying the same overdensity
threshold inside the specified analysis region. The associated
physical properties, such as the total effective mass, location,
richness, overdensity ratio, maximum radius, and largest
linear size (LLS) of all the identified structures are listed in
Table I (see Table III). The location mentioned in the table is
theLGP center of each of the structures. It has been found that
the final overdensity values of 51 out of 52 of these structures
are above the threshold value of a bound supercluster.
However, many of them are not massive or large enough
in extent to call them superclusters. We put a reasonable
constraint on the physical parameters to identify the most

TABLE I. List of 53 MITRO-identified structures in JB17-Saraswati wedge region (“LEGACY,” “BOSS,” and “SOUTHERN”
program of SDSS-III DR12). “*” indicating the Saraswati supercluster.

CID Mass ð1015M⊙Þ z R.A. (deg.) Dec. (deg.) Richness ρ̄
ρc

Rmax (Mpc) LLS (Mpc) l̄ (Mpc)

1* 185.602 0.277 354.409 0.267 384 1.619 124.976 226.306 9.397
2 75.259 0.3 352.942 0.069 92 3.074 71.179 112.115 11.204
3 59.827 0.302 1.018 −0.009 53 4.111 83.19 138.652 12.276
4 54.982 0.33 336.031 −1.002 40 7.168 96.034 96.034 13.122
5 50.929 0.318 4.709 −0.094 41 3.546 74.782 111.204 12.518
6 49.397 0.307 6.554 0.084 48 2.756 78.104 116.96 11.992
7 43.796 0.253 359.801 0.251 99 1.951 77.811 116.988 9.256
8 34.449 0.235 340.97 −0.123 42 5.085 45.148 75.611 11.802
9 30.623 0.321 351.079 −0.029 20 8.501 44.268 66.634 13.792
10 30.237 0.232 6.156 −0.026 45 3.134 53.775 95.147 10.786

Note. Column 1: Structure unique ID. Column 2: Total effective mass of the structure (Stellar massþ surrounding missing matter
(baryonic as well as dark matter)). Column 3: Structure redshift. Column 4: R.A. (J2000) of structure (degree). Column 5: Declination
(J2000) of structure (degree). Column 6: Richness number of galaxies (according to the SDSS-III DR12). Column 7: Structure
overdensity with respect to the critical density at the structure’s redshift. Column 8: Maximum radius of the structure (comoving).
Column 9: comoving largest linear size of the structure. Column 10: Average linking lengths in structure.
(This table is available in its entirety in a machine-readable form.)
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probable candidate superclusters in the list. We classified the
structures as candidate superclusters if the object has a mass
greater than 1016M⊙, i.e., roughly ∼10 times 1015M⊙, the
observed massive galaxy clusters and LLS of ≳90 Mpc, the
homogeneity scale at which the statistical properties of
the Universe have translational invariance [66,67]. By apply-
ing these constraints, in total, seven MITRO-identified
structures were found to qualify as the “candidate super-
clusters,” andaregiven inTable II.Basedon theirmorphology
on the declination-suppressed 2D plane, we also defined the
shape of these structures which are given in column 12 of
Table II. Interestingly, all the candidate superclusters have an
overdensity factor of bound structures and encompass at least
three known WHL-galaxy clusters (respectively, columns 7
and 11 of Table II).

IV. SUMMARY AND CONCLUSIONS

Large-scale structures in the Universe are known to be
comprised of groups and clusters of galaxies embedded in a
filamentary structure of dark matter forming the cosmic
web. Baryonic matter flows and drains through these DM
channels and gets trapped at the large gravitationally bound
structures, such as clusters and groups of galaxies that form
at the nodes or the crossroads of these filaments. Studies
that revealed these structures are majorly based on cos-
mological large-volume simulations and large-scale galaxy
redshift surveys. The most important step in these studies is
the appropriate identification of structures in the Universe.
Whether the cosmological simulations or the galaxy sur-
veys, the unit element in the dataset is a point source, either
a DM particle or a galaxy. The known information about
them is basically the position and the velocity. While, mass

information is readily available in the case of simulations,
in galaxy surveys, mass can just be a derived quantity.
The bound structures in these studies are so far identified

using various group finding codes, mostly based on the FoF
or SO algorithms. Although, the main goal of these codes is
to identify gravitationally bound structures, unfortunately,
the mass information (i.e., the origin of the strongest
binding force at the large scales), has hardly been effec-
tively used by these codes. Moreover, while both from
theory and observations, it is well known that the bound
structures can best be formed at some particular mass
overdense condition and real structures are ideally never
spherical, the methods used so far constrain either the
overdensity or the real unstructured geometry. Although,
these are very essential parameters to extract accurate
structures-mass information and precisely constrain the
cosmological models of the Universe, almost no attempt
has been made so far to retain these important parameters
together while formulating the grouping algorithms.
In this paper, we present our algorithm called MITRO

that takes care of all the above-mentioned relevant features
as well as ensures the bound structures using the physical
quantities, mainly mass and the total energy information.
The proposed MITRO algorithm adopts a noble approach
of clustering to mitigate a few shortcomings of the basic
FoF and SO algorithms strengthening the foundation of
clustering or halo-finding methods. Here we briefly sum-
marize the salient features of this proposed algo-
rithm below.

(i) Ourmajor goal was to retain the real geometry, as well
as, to identify physically bound cosmological struc-
tures in galaxy surveys or simulated cosmological
volume. To achieve this, for the first time, we used the

TABLE II. List of “candidate-superclusters” of galaxies in JB17-Saraswati wedge region (“LEGACY,” “BOSS,” and “SOUTHERN”
program of SDSS-III DR12).

CID Mass ð1015M⊙Þ z R.A. (deg.) Dec. (deg.) Richness ρ̄
ρc

Rmax (Mpc) LLS (Mpc) l̄ (Mpc)
Number of

WHL clusters Shape

2 75.259 0.3 352.942 0.069 92 3.074 71.179 112.115 11.204 6 Circular
3 59.827 0.302 1.018 −0.009 53 4.111 83.19 138.652 12.276 5 Elongated
4 54.982 0.33 336.031 −1.002 40 7.168 96.034 96.034 13.122 4 Elongated
5 50.929 0.318 4.709 −0.094 41 3.546 74.782 111.204 12.518 4 Circular
6 49.397 0.307 6.554 0.084 48 2.756 78.104 116.96 11.992 8 Wall-like
10 30.237 0.232 6.156 −0.026 45 3.134 53.775 95.147 10.786 4 Wall-like
13 23.894 0.274 343.581 0.688 36 4.242 62.194 106.461 10.583 3 Elongated

Note. Column 1: Structure unique ID. Column 2: Total effective mass of the structure (stellar massþ surrounding missing matter
(baryonic as well as dark matter)). Column 3: Structure redshift. Column 4: R.A. (J2000) of structure (degree). Column 5: Declination
(J2000) of structure (degree). Column 6: Richness number of galaxies (according to the SDSS-III DR12). Column 7: Structure
overdensity with respect to the critical density at the structure’s redshift. Column 8: Maximum radius of the structure (comoving).
Column 9: comoving largest linear size of the structure. Column 10: Average linking lengths in structure. Column 11: Number of
knownWHL-galaxy clusters in the structure (Table IV). Column 12: Morphology/shape of structure in declination projected/suppressed
2-dim plane.
Elongated: stretched (or LLS) along the LoS; wall-like: stretched (or LLS) along the angular plane and squeezed along the LoS (along
the redshift axis); and circular: stretched almost equally in both directions.
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dominant gravitational force to determine the linking
length between any two elements of a group. In the
proposed algorithm, the arm length has been
computed at a user-defined mass overdensity (see
Sec. II A 1) for each element depending on their
individual mass. This leads to having a distinct linking
length (addition of two arm lengths) for each unique
pair of elements. This is notably different from the
usual FoF method, where a single linking length is
used for each and every element, usually determined
statistically as the scaled mean particle distance in the
examined volume and has no dependence on themass
(i.e., gravitational force) of the elements.

(ii) We demonstrate that the proposed algorithm has been
able to successfully identify the unstructured DM
halos roughlywithin the predefined density threshold
which cannot be achieved simultaneously by usual
FoF or SO-basedmethods. This method is therefore a
significant improvement as it identifies appropriate
overdense regions without imposing the spherical
geometry; moreover, it uses physically relevant link-
ing parameters, as demonstrated through various tests
(see Secs. III A 2 and III A 4) presented in this paper.
At the same time, the algorithmadopted the important
features from both SO and FoF methods such as
overdensity and percolation.

(iv) We could demonstrate that the overdensity contrast
of the MITRO-identified halos have a lower bound,
at least the half of the chosen reference overdensity
(Δref) used to define the arm-length. This enabled
us to define a new parameter called compactness.
This parameter is the indicator of how closely the
elements of MITRO halos are packed or how stiff the
distribution is. Eventually, it reveals the cuspiness of
the density profile divulging information about the
surrounding environment in which the particular
halo is evolving. No similar quantity can be defined
in usual SO halos, as all halos have the same
predefined overdensity and consequently, compact-
ness is Cp ¼ 1 for all. On the other hand, since FoF
halos are not bound by any overdensity contrast
linked to the predefined linking length, computing
compactness is not possible. Our analysis shows
compactness of MITRO-identified halos varies as
Cp ≥ 1. Here, the higher Cp values hint at the lack
of matter in the vicinity of evolving halos for the
searched Δarm.

(v) The critical test that these clustering codes face is
while analyzing galaxy redshift survey data, mainly
because, such surveys do not directly provide any
mass information, as well as, because of missing
matter issues due to detection limitations. The usual
SO method, which should primarily find the peak of

matter density in the search volume, would fail due to
the lack of mass information. On the other hand, the
application of FoF may result in incorrect grouping
because of the use of an unphysical single linking
length for all elements in the search volume. In the
line of sight, dealingwith the redshift distortion effect
in the usual way is rather complicated as it requires
dedicated cosmological simulations to estimate the
equivalent elongation factor. Instead, we overcome
the issue considerably using a generalized theoretical
approach. Moreover, such an approach helped us to
compute the required elongation for all kinds of
density contrast, making life easier.

For better mass estimation of each galaxy, the
color-derived stellar mass has been used in our code.
Additionally, the remaining unaccounted matter due
to undetected galaxies, IGM and DM content, has
been estimated by considering the cosmological
mean-matter density at each redshift binwithinwhich
it obeys the predicted theoretical mean-matter
density. Such an assumption automatically adjusts
the computed arm length of each element and
eventually compensates for the missing mass infor-
mation. Our theoretical approach helped us to esti-
mate an appropriate elongation factor along the line
of sight to overcome the RSD effect. The elongation
factor has been determined by assuming the virial-
ization of the halos while computing the peculiar
velocities of the galaxies in our setup. Interestingly,
the estimated LoS elongation factor of ∼5–15 (for
overdensity densityΔ ∼ 180) in our study is found to
be fairly consistent with many earlier studies.

(vi) Finally, we examined the sky region centered at the
recently discovered Saraswati supercluster, by run-
ning theMITRO algorithm on SDSS-DR12 data. Our
code has successfully identified the supercluster
extending ∼210 Mpc (comoving) at a mean redshift
of z ¼ 0.277 having 384 member galaxies and
housing 42 WHL galaxy clusters. The findings are
largely consistent with the previous study by JB17.
However, with a more robust and different mass
estimation formalism that better accounts for the
missing matter, we found the structure to be of
MSCL ¼ 1.86 × 1017M⊙. This is an order higher than
the previously reported mass and makes it so far the
most massive identified supercluster. Furthermore,
by setting reasonable criteria, we report seven more
MITRO-identified “candidate superclusters: in the
field of Saraswati, indicating that gravitationally
bound structures larger than the usual galaxy clusters
are not extremely rare. Thus, in the era of increasingly
large galaxy redshift surveys (SDSS, Euclid, LSST,
etc.), our proposed algorithmMITRO may become a
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very useful tool in unraveling the structure formation,
constraining the cosmological models, and sub-
sequently understanding the nature of dark energy
in the evolutionary history of the Universe.
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APPENDIX A: MITRO IMPLEMENTATION ON
SIMULATED MOCK GALAXY SAMPLE

1. Mock galaxy sample

To investigate and compare the halo mass function (HMF)
of MITRO and standard FoF-identified galaxy clusters with
respect to a theoreticalHMF,weutilized a large-volumemock
galaxy sample produced by Cora et al. [85]. This Semi-
Analytical Galaxy (SAG) catalog uses the DM halos’ infor-
mation as extracted from a cosmological DM simulation
(MultiDark simulation MDPL2), which is a part
of the CosmoSim database (see [85] for more details).
MDPL2 simulation follows the evolution of 38403 particles
within a box of 1 Gpc=h each side, with a flat ΛCDM
cosmology characterized by Planck cosmological para-
meters: ðΩΛ;Ωm;Ωb; nsÞ ¼ ð0.693; 0.307; 0.048; 0.96Þ,
h ¼ H0=ð100 km s−1 Mpc−1Þ ¼ 0.678, and DM particle
mass resolution ∼1.5 × 109M⊙=h. A few realizations of
MDPL2 simulation is publicly available5 on the CosmoSim
database.6

We prepared a subcatalog of semianalytical galaxies from
the SAG catalog7 by extracting data from the CosmoSim
database within the central volume of ð400 Mpc=hÞ3 at
redshift z ¼ 0.0. The following information was recorded
in a data file: halo mass, x position, y position, z position, the
absolute magnitude of galaxies with respect to SDSSCamera
r-band response function (assuming airmass ¼ 1.3, in rest
frame), mass of stars in the spheroid/bulge, mass of stars in
the disk, mass of gas in the spheroid/bulge, mass of gas in the
disk, hot gas mass, and mass of central black hole. Here, the
total mass of each galaxy is the sum of all extracted masses.
Finally, we put a constraint on the absolute magnitude of
galaxies in order to mimic the observations, i.e., r-band
absolutemagnitude< −17 (as obtained in ourSDSSsample).
The constraint on absolute magnitude, removes many faint
galaxies from the examined volume. This exercise introduc-
ing the missing matter situation in the final mock galaxy
sample. In the final list, a total of 4243667 galaxies were
retained in the selected volume.

2. MITRO galaxy clusters identified
from the SAG catalog

We implemented our proposedMITRO algorithm follow-
ing the steps mentioned in Sec. III B 3 for accounting for the
missing matter within the selected volume, and accordingly,
the weight factor (w) was computed. Finally, the overdense
regions, in this case, the galaxy clusters, are identified with
the MITRO algorithm, assuming arm length corresponding
to Δarm ¼ 200 and weighted mass of each galaxy as
w ×Mgal

i . In the given sample with the above-stated param-
eters and Eq. (4), the fmax;min;mean;mediang arm length

5https://www.cosmosim.org/metadata/mdpl2/.
6https://www.cosmosim.org/.
7https://www.cosmosim.org/metadata/mdpl2/sag/.
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would be f2645.27; 25.14; 122.14; 101.41g kpc. Since the
given sample is produced from cosmological simulations
and is not affected by the redshift distortion, the elongation
factor need not be considered. The search for the overdense
regions is therefore done in spherical kernels around the
galaxies instead of using a cylindrical kernel. Furthermore,
with the constraints on minimum DM particles, Nmin ¼ 10,
and on the total mass of galaxy clusterMhalo ≥ 1012M⊙, the
MITRO algorithm identified 18821 galaxy clusters with the
massive most having mass 2.4 × 1015M⊙. The correspond-
ing HMF has been shown in Fig. 9, which is in good
agreement with the standard Sheth-Tormen 2001 and Tinker
2010 HMFs ≥ 1013M⊙.

3. FoF galaxy clusters identified from SAG catalog

Since there is no direct (co)relation between the linking
length and searched overdensity threshold, the linking
length (lf) in the FoF algorithm is still a quest. Thus,
for a meaningful comparison between FoF and MITRO, we
chose two statistically important pointers, i.e., mean and
median of the arm lengths of all objects in the MITRO
algorithm when searched at Δ arm ¼ 200. Since with this
approximation, the final linking length should be equiv-
alent to twice the chosen arm length; the equivalent linking
lengths would be lfmean

∼ 250 kpc and lfmedian
∼ 200 kpc,

respectively. The produced FoF halo-mass function
(Fig. 10) shows they do not match well with the expected
halo-mass function of Sheth-Tormen 2001 or Tinker et al.
2010. The number of clusters identified by FoF was also
found to be considerably less (2347 and 6119, respectively)

in comparison to MITRO (i.e., 18821). This led us to do a
further iterative test that resulted in a linking length of
lf ¼ 450 kpc, where FoF could roughly be able to produce
a match with the halo-mass function of Tinker 2010 and
Sheth-Tormen 2001. This certainly indicates the real
strength of the MITRO algorithm as MITRO produces
desired results without the need for an iterative trial.
In addition, our algorithm also provides a tentative
overdensity threshold for the identified structure,
i.e., ≳Δarm=2 ∼ 100.

APPENDIX B: STRUCTURES IN SDSS SELECTED
WEDGE NEAR SARASWATI REGION

1. Choice of overdensity search in SDSS sample

We carried out an iterative test (each step of 10%
increment) to understand the sensitivity of the ΔSDSS
parameter. We found, even if we increase the value just
by 10% (i.e., ΔSDSS ¼ 2.60) of the chosen value (i.e.,
ΔSDSS ¼ 2.36), the Saraswati supercluster splits into two
parts. The winglike structure on the right side of the
supercluster gets detached [see Fig. 11(a)]. Likewise, when
we increase the value by 60% of 2.36 (ΔSDSS 3.78), the
structure splits into three parts [left wing, center part þ
lower tail, right wing; see Fig. 11(b)]. However, similar to
ΔSDSS ¼ 2.36, the density threshold of identified two split
parts at ΔSDSS ¼ 2.60 is also not above the theoretical limit
of gravitationally bound structures. It is only at ΔSDSS ¼
3.78 that all three split structures become gravitation-
ally bound.

FIG. 10. Halo mass function of FoF galaxy clusters identified
from the SAG catalog. Different colored dashed lines correspond
to different linking lengths as mentioned in the legend.

FIG. 9. Halo mass function of MITRO-galaxy clusters identi-
fied from SAG catalog.
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(a) (b)

FIG. 11. (a) MITRO-identified structure at the position of Saraswati supercluster splits into two parts with the choice ofΔSDSS ¼ 2.60.
Part 2 (red) parts away from the main structure. (b) The same structure when searched at ΔSDSS ¼ 3.78, splits into three distinct parts.

TABLE III. List of 53 MITRO identified structures from the JB17-Saraswati region (“LEGACY,“ “BOSS,” and “SOUTHERN”
program of SDSS-III DR12).

CID Mass ð1015M⊙Þ z R.A. (deg.) Dec. (deg.) Richness ρ̄
ρc

Rmax (Mpc) LLS (Mpc) l̄ (Mpc)

1* 185.602 0.277 354.409 0.267 384 1.619 124.976 226.306 9.397
2 75.259 0.3 352.942 0.069 92 3.074 71.179 112.115 11.204
3 59.827 0.302 1.018 −0.009 53 4.111 83.19 138.652 12.276
4 54.982 0.33 336.031 −1.002 40 7.168 96.034 96.034 13.122
5 50.929 0.318 4.709 −0.094 41 3.546 74.782 111.204 12.518
6 49.397 0.307 6.554 0.084 48 2.756 78.104 116.96 11.992
7 43.796 0.253 359.801 0.251 99 1.951 77.811 116.988 9.256
8 34.449 0.235 340.97 −0.123 42 5.085 45.148 75.611 11.802
9 30.623 0.321 351.079 −0.029 20 8.501 44.268 66.634 13.792
10 30.237 0.232 6.156 −0.026 45 3.134 53.775 95.147 10.786
11 28.789 0.293 5.959 0.568 43 4.131 51.605 75.443 10.554
12 24.32 0.317 339.708 1.078 19 10.283 52.201 56.732 12.956
13 23.894 0.274 343.581 0.688 36 4.242 62.194 106.461 10.583
14 23.052 0.312 347.422 1.104 18 10.979 50.394 57.309 13.238
15 22.924 0.292 347.077 −0.187 32 3.93 47.131 78.523 10.811
16 22.121 0.259 5.826 0.192 46 3.777 36.005 65.306 9.781
17 20.143 0.31 345.581 0.603 17 13.993 54.98 71.364 12.427
18 19.328 0.315 337.573 0.68 18 10.365 35.539 48.453 12.229
19 18.484 0.268 345.786 −0.92 26 7.053 39.845 50.391 10.955
20 17.365 0.294 336.605 0.893 21 11.901 24.156 42.673 11.278
21 16.918 0.259 9.098 0.533 30 4.835 48.112 69.719 10.01
22 16.135 0.29 344.517 0.357 20 8.2 51.161 66.819 11.507
23 15.632 0.323 342.799 0.704 13 7.809 45.396 53.84 12.134
24 15.374 0.3 338.308 0.131 18 12.646 38.697 57.745 11.413
25 15.336 0.287 350.167 −1.014 20 7.672 42.938 56.825 11.433
26 14.433 0.302 11.856 0.679 17 7.564 32.612 49.729 11.026
27 12.616 0.298 338.9 −1.077 11 14.114 47.898 47.898 12.767
28 12.294 0.313 10.766 0.049 10 8.875 33.85 49.348 12.517
29 12.009 0.326 358.504 −0.58 12 11.029 26.54 46.212 11.748
30 11.338 0.259 15.307 −0.719 18 11.907 35.758 47.51 11.163
31 10.43 0.243 15.626 −0.848 15 21.887 30.041 54.335 10.623
32 10.419 0.285 14.34 0.849 18 16.294 27.533 40.096 10.094
33 10.063 0.256 354.491 0.776 22 9.457 41.29 51.335 9.616
34 9.454 0.301 348.575 0.191 13 4.96 39.153 54.615 11.118
35 8.573 0.235 7.463 0.754 14 10.082 42.411 55.644 10.124
36 7.844 0.242 337.205 −0.95 13 19.201 38.987 51.832 10.01

(Table continued)
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TABLE III. (Continued)

CID Mass ð1015M⊙Þ z R.A. (deg.) Dec. (deg.) Richness ρ̄
ρc

Rmax (Mpc) LLS (Mpc) l̄ (Mpc)

37 7.786 0.275 339.645 0.743 11 15.349 21.771 35.626 10.918
38 7.099 0.247 343.733 −1.042 10 22.859 21.615 27.324 11.731
39 6.968 0.254 337.905 0.259 11 17.649 23.835 40.85 10.882
40 6.926 0.283 341.549 0.494 11 10.472 25.987 39.252 9.881
41 6.734 0.264 353.209 −1.041 10 15.8 24.33 34.619 10.722
42 6.578 0.272 347.447 0.055 10 16.784 39.977 51.357 10.245
43 6.554 0.26 344.632 −0.111 13 6.266 29.5 47.385 9.828
44 6.223 0.268 10.69 0.473 14 6.655 27.749 47.466 9.581
45 6.075 0.251 351.795 −1.139 11 14.511 30.705 32.196 10.283
46 5.217 0.262 13.614 0.461 10 22.064 21.594 24.636 9.712
47 4.789 0.276 9.9 −0.494 12 10.204 24.451 34.629 8.939
48 4.751 0.252 339.093 −0.514 10 24.829 21.683 33.723 9.555
49 4.278 0.254 339.177 −0.275 12 7.481 24.232 37.156 8.338
50 4.274 0.268 12.31 −0.158 10 7.884 22.534 37.062 8.97
51 4.271 0.252 353.213 1.174 10 7.958 35.918 39.626 9.821
52 3.823 0.248 3.508 0.794 12 15.294 34.126 41.634 8.599
53 3.239 0.232 358.556 −0.321 11 7.416 25.007 36.919 8.273

TABLE IV. WHL clusters in MITRO-identified galaxy clusters and superclusters.

CID WHL clusters z
R.A.
(deg.)

Dec.
(deg.) CID WHL clusters z

R.A.
(deg.)

Dec.
(deg.)

1* WHL J232229.7 − 002223 0.2728 350.62363 −0.37294 WHL J002648.8 − 001610 0.2311 6.70325 −0.26937
WHL J232406.1þ 002147 0.278 351.02548 þ0.36311 WHL J003130.2 − 010303 0.232 7.87587 −1.05083
WHL J232517.4þ 001639 0.2767 351.32236 þ0.27741
WHL J232643.3þ 010803 0.2774 351.68036 þ1.13423 11 WHL J002400.3þ 003007 0.2923 6.00129 þ0.50202
WHL J232731.9þ 005634 0.2788 351.88278 þ0.94281 WHL J002813.8 − 002154 0.2912 7.05762 −0.36497
WHL J232809.2þ 001109 0.2768 352.03851 þ0.18593
WHL J232842.6þ 004939 0.2784 352.17755 þ0.82753 12 WHL J223818.0þ 005559 0.3173 339.57483 þ0.9331
WHL J233040.2þ 003634 0.2757 352.66733 þ0.6094
WHL J233116.7þ 004336 0.2812 352.81964 þ0.72678 13 WHL J224807.9þ 002040 0.2657 342.03287 þ0.34439
WHL J233126.4þ 003655 0.2739 352.8602 þ0.61525 WHL J225424.4þ 004101 0.2738 343.60159 þ0.68368
WHL J233430.3 − 005906 0.2772 353.62631 −0.98501 WHL J225729.0þ 003102 0.273 344.37103 þ0.51717
WHL J233530.9 − 003152 0.2764 353.87866 −0.53116
WHL J233558.5 − 002904 0.27 353.99393 −0.48434 16 WHL J002314.8þ 001158 0.2597 5.81154 þ0.19944
WHL J233739.7þ 001617 0.2772 354.41553 þ0.27137 WHL J002358.9 − 003039 0.2575 5.99551 −0.51081
WHL J233816.0þ 000700 0.2711 354.56683 þ0.1168 WHL J002427.4þ 002450 0.2598 6.11418 þ0.41389
WHL J233955.0 − 002558 0.2769 354.97913 −0.43282
WHL J234024.5 − 000535 0.2761 355.10202 −0.09299 17 WHL J230408.4 − 010642 0.3147 346.03494 −1.11163
WHL J234106.9þ 001833 0.2768 355.27872 þ0.30925
WHL J234144.1 − 004031 0.268 355.43375 −0.67539 19 WHL J230227.7 − 002516 0.2647 345.61533 −0.42125
WHL J234233.1 − 001719 0.277 355.63776 −0.28874 WHL J230316.7 − 005114 0.2685 345.81976 −0.85396
WHL J234335.7þ 001951 0.2694 355.89862 þ0.33093 WHL J230348.8 − 004024 0.2662 345.95328 −0.67331
WHL J234403.1þ 001335 0.2714 356.01273 þ0.22644
WHL J234446.7 − 000520 0.2674 356.19455 −0.0888 20 WHL J222426.4þ 002737 0.2938 336.1102 þ0.46019
WHL J234519.2 − 000312 0.2665 356.3298 −0.05331 WHL J222542.8þ 010339 0.2952 336.42816 þ1.06081
WHL J234548.2 − 010740 0.2797 356.45068 −1.12771 WHL J222627.3þ 005329 0.294 336.61365 þ0.89143
WHL J234604.7 − 001109 0.2665 356.5195 −0.18573
WHL J234623.9þ 004458 0.2746 356.59955 þ0.74942 21 WHL J003200.8þ 001353 0.2532 8.00329 þ0.23131
WHL J234643.2þ 005003 0.2637 356.67987 þ0.83429 WHL J003511.8þ 004348 0.262 8.79937 þ0.73002
WHL J234703.0 − 000508 0.2655 356.76236 −0.08544 WHL J003554.5þ 000924 0.2597 8.97729 þ0.15671
WHL J234727.0þ 003140 0.2729 356.86264 þ0.52773 WHL J003555.1þ 002123 0.2592 8.97972 þ0.35646

(Table continued)
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TABLE IV. (Continued)

CID WHL clusters z
R.A.
(deg.)

Dec.
(deg.) CID WHL clusters z

R.A.
(deg.)

Dec.
(deg.)

WHL J234727.6 − 000914 0.2639 356.86499 −0.15381 WHL J003614.8þ 000940 0.2569 9.06173 þ0.16113
WHL J234856.4 − 005328 0.2793 357.2352 −0.8912 WHL J003619.8þ 002418 0.2576 9.08261 þ0.40494
WHL J234946.6þ 003846 0.2705 357.44406 þ0.64598 WHL J003629.8þ 003520 0.2607 9.1241 þ0.58899
WHL J235016.5þ 005301 0.2767 357.56891 þ0.88373 WHL J003711.8þ 000546 0.2588 9.29924 þ0.09603
WHL J235121.3þ 003701 0.2775 357.83884 þ0.61691
WHL J235143.9þ 003339 0.2703 357.93292 þ0.56078 22 WHL J225211.0þ 003531 0.2877 343.04565 þ0.59185
WHL J235229.5þ 003622 0.2698 358.12292 þ0.60623
WHL J235301.3 − 001351 0.2779 358.25555 −0.23089 24 WHL J223304.8þ 000818 0.2989 338.2699 þ0.13823
WHL J235347.5þ 004859 0.2787 358.448 þ0.81641
WHL J235424.8þ 004838 0.2805 358.60349 þ0.81066 25 WHL J231948.3 − 010932 0.2909 349.95108 −1.15889
WHL J235508.9þ 004512 0.2789 358.7869 þ0.75341
WHL J235543.8 − 000014 0.2752 358.93271 −0.00393 28 WHL J004051.3þ 000858 0.3132 10.2137 þ0.14932

2 WHL J232420.2 − 003229 0.293 351.08423 −0.54147 29 WHL J235424.3 − 001451 0.3277 358.60135 −0.24737
WHL J232902.7 − 003847 0.2988 352.26129 −0.6463
WHL J232923.7 − 004856 0.3007 352.34872 −0.81546 30 WHL J010154.7 − 005216 0.2616 15.47781 −0.87118
WHL J233317.2þ 000741 0.3025 353.32187 þ0.12797 WHL J010214.5 − 010851 0.2611 15.56023 −1.14737
WHL J233531.2 − 005320 0.2974 353.87994 −0.88882 WHL J010331.1 − 005932 0.2565 15.87962 −0.99216

WHL J010339.2 − 004508 0.2646 15.91314 −0.75235

3 WHL J000201.8þ 002049 0.3007 0.50762 þ0.34701
WHL J000224.7 − 003253 0.2895 0.60304 −0.54798 31 WHL J010229.8 − 004848 0.2375 15.62412 −0.81343
WHL J000242.3 − 001320 0.2989 0.67632 −0.22217
WHL J000455.1þ 003415 0.3197 1.22949 þ0.57073 32 WHL J005338.1þ 005515 0.2851 13.40886 þ0.92088
WHL J000825.6þ 004152 0.3124 2.10683 þ0.69786 WHL J005434.9þ 004819 0.2847 13.6454 þ0.80528

WHL J005526.0þ 004731 0.2846 13.85833 þ0.79205
4 WHL J222456.1 − 002115 0.3154 336.23373 −0.35415

WHL J222523.4 − 005410 0.3204 336.3476 −0.90289 33 WHL J234145.8þ 010728 0.2507 355.44077 þ1.12444
WHL J222731.7 − 003945 0.3226 336.88223 −0.66258
WHL J222810.8 − 004848 0.327 337.04517 −0.8134 34 WHL J231308.1 − 010632 0.3007 348.28375 −1.10895

5 WHL J001848.6 − 000430 0.3184 4.70257 −0.07488 35 WHL J003407.0 − 001147 0.2365 8.52936 −0.19632
WHL J002020.7 − 001925 0.3251 5.08638 −0.32355
WHL J002025.3 − 001216 0.3267 5.10561 −0.20444 36 WHL J222652.2 − 005607 0.2483 336.71762 −0.93536
WHL J002105.0þ 001406 0.3291 5.27082 þ0.23505 WHL J222720.8 − 005610 0.2468 336.83655 −0.93623

6 WHL J002200.7 − 001839 0.304 5.50288 −0.31075 39 WHL J223126.2þ 001743 0.2547 337.85898 þ0.29532
WHL J002334.8þ 001907 0.3084 5.89512 þ0.31861
WHL J002557.8þ 000734 0.3076 6.49081 þ0.12619 40 WHL J224641.8þ 002837 0.2846 341.67407 þ0.47684
WHL J002920.4 − 004032 0.3085 7.3349 −0.67557
WHL J003401.5 − 003314 0.3076 8.50633 −0.55392 41 WHL J233608.8 − 011100 0.265 354.03653 −1.18347
WHL J003508.9 − 010803 0.3055 8.78714 −1.13429
WHL J003542.0þ 000158 0.3102 8.92503 þ0.03278 43 WHL J225830.5 − 000608 0.2587 344.62704 −0.1021
WHL J003744.4 − 011424 0.3106 9.43509 −1.23996

44 WHL J004249.9þ 001255 0.2691 10.70773 þ0.21535
7 WHL J235751.3þ 002133 0.2596 359.46381 þ0.3593 WHL J004252.7þ 004306 0.2699 10.71962 þ0.71844

WHL J235914.3þ 001405 0.2533 359.8096 þ0.23484
WHL J235952.8þ 004155 0.2674 359.96988 þ0.69856 45 WHL J232708.4 − 011250 0.2517 351.7851 −1.21393
WHL J000024.3þ 003804 0.2522 0.1013 þ0.63434
WHL J000050.5þ 004705 0.2634 0.21052 þ0.78478 48 WHL J223556.1 − 001411 0.2488 338.98395 −0.2364
WHL J000117.8 − 005612 0.2473 0.32417 −0.93668 WHL J223622.8 − 003049 0.2488 339.09488 −0.51352
WHL J000126.3 − 000143 0.2479 0.35969 −0.02867

49 WHL J223629.1þ 000118 0.2539 339.12143 þ0.02159
8 WHL J224249.1 − 001648 0.2363 340.70477 −0.2801

10 WHL J001637.4 − 002739 0.2325 4.15592 −0.46084 52 WHL J001229.8þ 003911 0.2505 3.12436 þ0.65318
WHL J002435.2 − 001307 0.2308 6.14679 −0.21867 WHL J001357.8þ 004706 0.2465 3.49083 þ0.78508
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