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We derive an analytic expression for the two-point correlation function in redshift space which (i) is
nonlinear (ii) is valid on the full sky, i.e. the distant-observer limit is not assumed, (iii) can account for the
effect of magnification and evolution bias due to a nonuniform selection function, and (iv) respects the fact
that observations are made on the past light cone, so naturally yields unequal-time correlations. Our model
is based on an exact treatment of the streaming model in the wide-angle regime. Within this general regime,
we find that the redshift-space correlation function is essentially determined by a geometric average of its
real-space counterpart. We show that the linear expression for the galaxy overdensity, accurate to
subleading order, can be recovered from our nonlinear framework. This work is particularly relevant for the
modeling of odd multipoles of the correlation function at small separations and low redshifts, where wide-
angle effects, selection effects, and nonlinearities are expected to be equally important.
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I. INTRODUCTION

Redshift-space distortions (RSD) have been identified as
a key observable to test the laws of gravity and probe the
validity of the ΛCDM model [1]. Typically one treats RSD
in the flat-sky regime, or distant-observer limit. In this
regime, the redshift-space correlation function takes a
simple form with a multipole structure consisting of a
monopole, quadrupole, and hexadecapole [2,3]. However,
this approximation is only valid over a limited range of
separations and opening angles. At small separations,
nonlinearities become relevant and need to be included
in the modeling; whereas at large separations and opening
angles, the flat-sky approximation breaks down and wide-
angle effects need to be accounted for. These two types of
corrections are usually treated separately: either one models
the linear correlation function with wide-angle corrections,
or one models the flat-sky correlation function in the
nonlinear regime. In most cases, these separate approaches
are enough to provide a precise description of the signal.
Besides a desire for a general model, there are two

situations where both wide-angle corrections and nonlinear
effects might become relevant over the same range of
scales. The first concerns measurements of the correlation
function at very low redshift, such as those expected from
the Dark Energy Spectroscopic Instrument (DESI) [4]. In
particular, the Bright Galaxy Survey sample of DESI has a
very high number density of galaxies at low redshift (with
median z ≈ 0.2), over 14; 000 deg2 [5]. At these redshifts,

nonlinear evolution might be expected to be relevant up to
relatively large separations, while wide-angle effects are
expected to be important down to relatively small separa-
tions [6]. These effects are indeed governed by the ratio of
pair separation s to distance d, which quickly becomes non-
negligible for small d. A nonlinear model on the full sky
may therefore be needed for this type of survey.
The second situation concerns the measurement of rela-

tivistic effects [7–10], where wide-angle effects and non-
linearities are both important over the same range of scales.
Relativistic effects have been shown to contribute to the
correlation function by generating odd multipoles (a dipole
and an octupole) in the correlation of two populations of
galaxies [11–13]. Both in the linear regime [12] and in the
perturbative nonlinear regime,wide-angle effects are roughly
of the same order of magnitude as relativistic effects. This is
because relativistic effects scale asH=k × RSD, whilewide-
angle effects scale as s=d × RSD [12]. These two types of
effects are therefore roughly of the same order of magnitude
at all scales, since s=d ∼H=k.1 As a consequence, if one
wants, for example, to measure through the dipole the
relativistic effects in the nonlinear regime, it is necessary
to model at the same time wide-angle effects in this regime.
A number of works have studied various aspects of the

problem. Castorina and White [14] calculated the impact of
wide-angle corrections on the even multipoles, modeled
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1This is of course a crude comparison, since on the one hand
the ratio of H and d varies with redshift, and on the other hand
RSD and relativistic effects are also redshift dependent. However,
it shows that wide-angle effects and relativistic effects have a
similar scaling and cannot be treated separately, even for large k.
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using the resummed approach to Lagrangian perturbation
theory (LPT) [15,16]. Their work showed that linear theory
is adequate to describe wide-angle corrections for the even
multipoles, except around the baryon acoustic peak where
nonperturbative corrections are known to be important [17].
However, their model misses a contribution related to the
(uniform) selection function. This was pointed out by
Taruya et al. [18], who presented a model similar to that
of Castorina and White, but without this deficiency (see
also Refs. [19,20] for subsequent work including the
gravitational redshift). A comparison with simulations
showed that the contribution from the selection function
is important for an accurate prediction of the dipole
moment (though not for the even multipoles). Both of
these works did not consider contributions from a nonuni-
form radial selection function. It is however known that in
the linear regime a nonuniform selection function generates
contributions from the magnification bias, which are of
the same order of magnitude as wide-angle effects [21],
and may even dominate the signal for some choices of
populations [22].
Concerning the second situation, Beutler and di Dio

[23,24] proposed a method to compute the relativistic
power spectrum, including selection effects and wide-angle
effects in perturbation theory. They derived an expression
for the dipole, including contributions up to third order in
perturbation theory, which agrees well with numerical
simulations up to kmax ≃ 0.4h−1 Mpc. More recently,
Noorikuhani and Scoccimarro [25] calculated the impact
of relativistic effects and wide-angle corrections on the
galaxy power spectrum and bispectrum. Their approach
was to model these Fourier statistics in the usual way—i.e.
work in the distant-observer limit and use one-loop
perturbation theory—but supplement with the leading-
order relativistic and wide-angle contributions. This hybrid
approach was justified on the basis that the nonlinearities
were found not to mix significantly with the relativistic and
wide-angle effects.
This paper begins a study of these two situations from an

altogether different approach. Here we will largely focus on
the first situation, exhibiting a novel approach to the
streaming model [26,27], a nonlinear model of the RSD
correlation function; a forthcoming work will be dedicated
to a complete model for the second situation. We will thus
show how the streaming model can be exactly extended to
the wide-angle regime, taking advantage of the simple
geometry of the problem in configuration space. This
model is similar in some respects to that of Taruya et al.
[18] but differs importantly in others. In particular, here we
allow for the more realistic case of a nonuniform selection
function, which leads to further distortions through the
magnification and evolution bias. In addition, here we
derive in full generality the relation between the matter
density field in redshift space and in real space, indepen-
dent of the details of how such fields might evolve or might

be biased in relation to the galaxy field. (The dynamics and
galaxy bias can be specified, for example, using the
“convolution LPT” prescription [28–30], as has proven a
powerful method.)
Based on a more general treatment of the redshift

mapping and number conservation, we will further show
that the streaming model can also accommodate selection,
galaxy evolution, and relativistic effects—indeed, almost
all subleading effects at OðH=kÞ. These effects, as men-
tioned, are of the same order as the wide-angle effects so in
principle should also be taken into account. With the
streaming model, these effects are logically separated
and enter in resummed form, thereby offering a compact
way of capturing the large number of terms that contribute
to the overdensity at subleading order (i.e. when expressed
through a perturbative expansion). Additionally, its modu-
lar form lends itself well to the problem of modeling at the
same time the three different kinds of sources of non-
linearity that need to be considered in a realistic model—
namely, dynamics, galaxy bias, and the redshift mapping
(wide-angle effects in our model are exact to all orders
in s=d).
The outline of this paper is as follows. In Sec. II we

extend the nonlinear approach to RSD [26] to the wide-
angle regime, deriving a nonperturbative expression for the
wide-angle correlation function in redshift space. In Sec. III
we extend the derivation to construct a more realistic model
of the correlation function which takes into account
selection effects, as well as the fact that observations are
made on the light cone. We then perform a perturbative
expansion of our model in Sec. IV and show that well-
known results from linear theory are recovered, including
of many relativistic effects. In Sec. V we present the full-
sky generalization of the Gaussian streaming model, and
show that it is consistent with the expected form in the
distant-observer limit. In Sec. VI we calculate the linear
theory multipoles including wide-angle contributions, and
show that they are consistent with expressions found in the
literature. Our conclusions follow in Sec. VII. Several
appendixes describe the details of our calculations.

II. NONLINEAR MODELING IN THE
WIDE-ANGLE REGIME

This section is principally devoted to a study of the
relation between a galaxy at its true (comoving) position x
and its observed (comoving) position s,

sðxÞ ¼ xþ x̂ · uðxÞx̂; ð1Þ

as concerns the correlation function in redshift space. Here
u ¼ H−1v (which has units of length), v is the peculiar
velocity, and H is the conformal Hubble parameter. This
mapping of course leads to the well-known Kaiser effect,
typically modeled in the distant-observer limit in which one
assumes that distant objects have identical line of sight x̂.
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This approximation is valid for small opening angles
between any two lines of sight in a galaxy sample.
Here we present an exact treatment of the general case in

which lines of sight x̂ are allowed to vary across the full sky
without restriction to small angles. To highlight the key
trick in this paper and make clear the geometric interpre-
tation, we will first present the calculation of the full-sky
correlation function without any complicating factors
such as selection effects. We will also focus on equal-time
correlations and suppress the time dependence in the
number density, velocity, etc.; we will restore it in
Sec. III when we come to consider unequal-time correla-
tions on the light cone and related projection effects.
The basis of our approach is the number of conservation

of objects in real and redshift space:

nsðsÞd3s ¼ nðxÞd3x; ð2Þ

where nðxÞ and nsðsÞ are the comoving number densities in
real and redshift space, respectively. In integral form, we
have equivalently

nsðsÞ ¼
Z

d3xnðxÞδDðs − sðxÞÞ: ð3Þ

This expression in fact holds for general mappings sðxÞ—
not just for Eq. (1)—including those that also contain
transverse displacements. It also holds in the regime of
multiple streams, i.e. when more than one point in real
space formally maps to a single point in redshift space
[when sðxÞ has singular Jacobian].
Now, since we work on the full sky and since the

mapping only affects the radial positions, it is natural to
switch to a spherical coordinate system. Thus let χ ¼ jsj be
the (observed) radial distance in redshift space and χ0 ¼ jxj
the radial distance in real space. Writing Eq. (3) in spherical
coordinates, separating the Dirac delta function into a
radial piece and an angular piece, and inserting nsðsÞ ¼
n̄s½1þ δsðsÞ� and nðxÞ ¼ n̄½1þ δðxÞ� (here n̄s and n̄ denote
the mean number densities in redshift and real space,
respectively), we have

1þ δsðsÞ ¼
Z

∞

0

dχ0χ02
Z

d2x̂½1þ δðxÞ�

×
1

χ2
δDðχ − χ0 − x̂ · uðxÞÞδDðn̂ − x̂Þ; ð4Þ

where n̂ ¼ s=jsj is the line of sight, andwe have furthermore
used that, in the absence of selection or evolution effects, the
mean densities in real and redshift space are equal, n̄ ¼ n̄s;
see Appendix A for justification. Parametrizing the positions
as s ¼ χn̂ andx ¼ χ0x̂, and doing the trivial angular integral,
we get

1þ δsðχn̂Þ ¼
1

χ2

Z
∞

0

dχ0χ02½1þ δðχ0n̂Þ�

× δDðχ − χ0 − n̂ · uðχ0n̂ÞÞ ð5Þ

¼ 1

χ2

Z
∞

0

dχ0χ02½1þ δðχ0n̂Þ�

×
Z

∞

−∞

dk
2π

e−ikðχ−χ0Þeikukðχ
0n̂Þ; ð6Þ

where in the second line theDiracdelta function is given as its
Fourier representation, writing uk ¼ n̂ · u for the radial
component of the velocity. As we will show in Sec. IV, this
equation recovers at linear order the familiar Kaiser term,
including the subdominant inverse-distance term. With
Eq. (6) it is straightforward to obtain the correlation function
ξs ¼ hδsðs1Þδsðs2Þi:

1þ ξsðχ1; χ2; n̂1 · n̂2Þ ¼
1

χ21χ
2
2

Z
dχ01χ

02
1

Z
dχ02χ

02
2

×
Z

d2κ
ð2πÞ2 e

−iκ·ðχ−χ 0Þh½1þ δðχ01n̂1Þ�

× ½1þ δðχ02n̂2Þ�eiκ·wi ð7Þ

¼ 1

χ21χ
2
2

Z
dχ01χ

02
1

Z
dχ02χ

02
2 ½1þ ξðrÞ�

×
Z

d2κ
ð2πÞ2 e

−iκ·ðχ−χ 0Þheiκ·wiδ; ð8Þ

where r ¼ ðχ021 þ χ022 − 2χ01χ
0
2 cosϑÞ1=2 is the separation

between the two galaxies in real space, cosϑ ¼ n̂1 · n̂2 is
the cosine of the opening angle, and we have defined
the following two-component vectors: κ ¼ ðk1; k2Þ,
χ ¼ ðχ1; χ2Þ, χ 0 ¼ ðχ01; χ02Þ, and w≡ ðukðx1Þ; ukðx2ÞÞ ¼
ðn̂1 · uðχ01n̂1Þ; n̂2 · uðχ02n̂2ÞÞ. Furthermore, in the second
line we have identified the moment generator heiκ·wiδ, where
in this work a subscript δ denotes the density-weighted
ensemble average

hOiδ≡ h½1þδðx1Þ�½1þδðx2Þ�Oi=h½1þδðx1Þ�½1þδðx2Þ�i:
ð9Þ

There is a more intuitive way of expressing Eq. (8).
Recognizing that the κ integral in Eq. (8) (the inverse
Fourier transform of the generating function) defines the
joint probability distribution of radial displacements,

pðχ − χ 0; χ 0jn̂1 · n̂2Þ

≡
Z

d2κ
ð2πÞ2 e

−iκ·ðχ−χ 0ÞZðJ ¼ κ; rðχ 0Þ; n̂1 · n̂2Þ;

ZðJ; r; n̂1 · n̂2Þ≡ heiJ·wiδ; ð10Þ
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we can write

1þ ξsðχ1; χ2; n̂1 · n̂2Þ

¼ 1

χ21χ
2
2

Z
∞

0

dχ01χ
02
1

Z
∞

0

dχ02χ
02
2 ½1þ ξðrÞ�

× pðχ − χ 0; χ 0jn̂1 · n̂2Þ: ð11Þ

This formula is the full-sky generalization of the (distant-
observer) streaming model [26], which is given by a single
line-of-sight integral.
The probability distribution (10) is scale dependent: it

depends not only on χ − χ 0 but also on χ 0 itself through the
moments of w (by way of Z).2 The existence of coherent
flows is the origin of this scale dependence, without which
p is a proper probability distribution. This dependence on
χ 0 has the effect that as we integrate over χ01 and χ

0
2 we pass

through a two-parameter family of probability distribu-
tions, each with different mean, covariance, etc.—there is
not a single fixed distribution. There is also a dependence
of p on the opening angle n̂1 · n̂2 but, unlike the depend-
ence on χ 0, is known a priori (as indicated by the
conditional).
A useful if heuristic way to view Eq. (11) is as the

expectation of 1þ ξðrÞ when averaged over all real-space
triangles that can be formed from an opening angle n̂1 · n̂2,
e.g. by varying the adjacent side lengths χ01 and χ02.
Schematically,

ξs ¼ hξiΔ; ð12Þ

for h·iΔ some average over triangles. More precisely, we
have a probability space of real-space triangles, parame-
trized relative to the fixed redshift-space triangle by χ1 − χ01
and χ2 − χ02 (see Fig. 1). These radial displacements are
correlated since they are the result of Doppler shifts
produced by the radial velocities ukðχ01n̂Þ and ukðχ02n̂Þ,
which are themselves correlated. Since velocity correlations
depend on the separation r ¼ x1 − x2 ¼ χ01n̂1 − χ02n̂2, not
all triangles in Eq. (11) contributewith the same probability.
In particular, triangles in real space that are far from the
redshift-space configurationwill contribute negligibly, since
no large-scale correlated flow is likely to arise that can map
these configurations into each other; conversely, configu-
rations that are close to each other will contribute signifi-
cantly to the integral. How close will depend on the
characteristic separation along each line of sight as deter-
mined by the means hukðx1Þiδ and hukðx2Þiδ.
We emphasize that no dynamical assumptions have been

made in obtaining Eq. (11); it is an exact result based on the
formal relation (3) between the observed and underlying

density fields.3 Furthermore, we have made no attempt to
account for the galaxy bias, since including it in this
framework is straightforward [16,29,31]—e.g. by replacing
1þ δ with 1þ bδ (in linear theory), or, more generally,
some functional of δ. Irrespective of tracer (galaxies, halos,
dark matter particles, etc.), the relation between the
observed and underlying fields remains the same.
Finally, since the line-of-sight integrals in Eq. (11)

are over nonoscillatory real functions, evaluating them
numerically is in principle straightforward once the real-
space correlation function and probability distribution are
specified. (In Sec. V we explicitly show the form of these
integrals in the case of the Gaussian streaming model.)

III. A MODEL INCLUDING LIGHT CONE,
SELECTION, AND EVOLUTION EFFECTS

Going beyond the distant-observer limit, wide-angle
effects are among a number of effects that need to be
considered all at once. We first give a physical explanation
of these additional effects in Secs. III A and III B, and in
Sec. III C we derive the full model including all effects.

FIG. 1. Parametrization of a typical triangle configuration in the
wide-angle regime. The redshift-space configuration (indicated in
red) is the triangle formed by the observer O together with the
galaxies at observed positions s1 and s2. An example of a real-
space configuration (dashed black) that could map onto the
redshift-space triangle is indicated by the triangle formed by
x1, x2, and O. Note that candidates for the true positions, x1 and
x2, can lie anywhere on the respective lines of sight, and
the probability of a given candidate triangle mapping onto the
observed triangle is determined by the joint distribution of the
separations χ1 − χ01 and χ2 − χ02. Here n̂1 and n̂2 are fixed, and we
have aligned the z axis to bisect the separation s ¼ s1 − s2 at the
mid-point d ¼ ðs1 þ s2Þ=2. Without loss of generality, the galaxy
pair lives in the xz plane.

2More precisely, these velocity moments generally depend on
the separation r and the projections r̂ · n̂1 and r̂ · n̂2, which are
geometrically related to χ01, χ

0
2, and n̂1 · n̂2.

3As with other nonlinear treatments of RSD (e.g. Ref. [26]),
our model is “exact” only to the extent that the redshift mapping
(1) is exact. But this mapping cannot be said to be exact as it is
based on a linear approximation of the full relation between s and
x (even if the perturbations are themselves fully nonlinear); see
Sec. III A.
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A. Extending the redshift mapping to the light cone

Observations are made on the past light cone but this is
not reflected in the mapping (1) nor the correlation function
(11) derived from it. In particular, the mapping (1) does not
take into account the fact that perturbations to the redshift
also induce a displacement in the lookback time, thus
changing the apparent position on the light cone. We can
see this by reconsidering the problem of mapping galaxies
in a redshift survey.4

The basic task is to assign Cartesian (comoving) coor-
dinates s using redshifts and angular positions. For a galaxy
with measured redshift z observed in the direction x̂, we
assign to it the coordinates s ¼ χðzÞx̂, where the conver-
sion from redshift to comoving radial distance is given by
χðzÞ ¼ R

z
0 dz

0=Hðz0Þ. This is the observed position. (Here
we assume perfect knowledge of the underlying back-
ground cosmology, and no angular deflections so that
x̂ ¼ n̂.) The (unknown) true position is x ¼ χ0x̂, where
χ0 ≡ χðz̄Þ, z̄ ¼ z − δz is the background redshift and δz the
redshift perturbation. This is the position that would be
inferred had the redshift not suffered a Doppler shift. The
mapping (1) is obtained by linearizing s ¼ χðz̄þ δzÞx̂
about the true position x ¼ χðz̄Þx̂:

s ≃ χðz̄Þx̂þ δz
dχ
dz

����
z¼z̄

x̂ ¼ xþ x̂ · uðτ0;xÞx̂; ð13Þ

where in the second equality we have used that
δz ¼ ð1þ z̄Þv · x̂, obtained from the relation 1þ z ¼
ð1þ z̄Þð1þ v · x̂Þ for the Doppler shift.
But redshift is not only an indicator of distance; it is also

an indicator of time, with galaxies at larger redshifts
associated with larger lookback times; see Fig. 2. So in
addition to assigning spatial coordinates, we also assign a
time coordinate τ to each galaxy [12]. More precisely,
following a galaxy photon along the line of sight x̂ back to
the observed redshift z, we assign

τ ¼ τ0 − χðzÞ; ð14Þ

the time at which the photon was apparently emitted. Here
τ0 is the present conformal time. Likewise, we have for the
real time τ0 ¼ τ0 − χ0. The relation between τ0 and τ is then
given by linearizing τðzÞ ¼ τðz̄þ δzÞ about τðz̄Þ≡ τ0. At
linear order we have τ ≃ τ0 − ukðτ0;xÞ, which together with
Eq. (1) constitutes a map ðτ0;xÞ ↦ ðτ; sÞ on the light cone.
Note that τ0 is in fact degenerate with x since τ0 ¼ τ0 − χ0
and χ0 ¼ jxj, and that the displacement on the light cone is
null: −ðτ − τ0Þ2 þ ðχ − χ0Þ2 ¼ 0.
In the rest of this section we will work with this

spacetime mapping. As we will see in Sec. III C, any

evolution in the number density between the surface of
constant τ (constant observed redshift z) and the surface of
constant τ0 (constant background redshift z̄) gives rise to an
apparent density fluctuation. These distortions are among
some of the many contributions to the full expression for
the overdensity derived using relativistic perturbation
theory. While subdominant to the Kaiser effect, these
projection effects are of the same order as wide-angle
effects so in principle should also be included.

B. Selection effects

In addition to projection effects related to the light cone,
we also need to take into account the selection effects. These
give rise to fluctuations of order H=k which, although
subdominant to the usual RSD, are of the same size as the
wide-angle corrections so cannot generally be ignored.

1. Flux limit

Since surveys only observe above a certain flux limit F�,
not all sources in the sky will be bright enough to be
detected. This is seen in the observed mean number density,
or selection function n̄sðχ; F > F�Þ, which tends to fall off
with distance χ. In general, we do not have n̄s ¼ n̄ (where n̄
is the selection function in real space), since some sources
that would otherwise not be detectable in real space can
be seen in redshift space due to magnification effects (and
vice versa). The difference between the two effectively

FIG. 2. Configurations on the past light cone and their spa-
tial projections. The observed configuration is shown in red, while
a potential true configuration is shown in black. Here Si ¼
ðτ0 − χi; siÞ is the assigned spacetime position, while Xi ¼
ðτ0 − χ0i;xiÞ is the real spacetime position, i.e. the position that
would be observed absent all distortions to the redshift. The two-
point correlation between S1 and S2 is determined by all two-point
correlations between possibleX1 andX2 falling on the lines of sight
(dotted lines).

4See Ref. [10] for a discussion of the general problem in terms
of photon geodesics.
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generates an additional density fluctuation. Note that the
selection function provides a complete description of the
selection effect in the nonlinear regime; however, in linear
theory the relevant quantity is the linear response of the
selection function to a change in the flux limit, i.e. the slope
of n̄s with respect to the threshold:

s� ≡ ∂ log n̄s
∂m�

¼ −
2

5

∂ ln n̄s
∂ lnF�

¼ −
2

5

∂ ln n̄s
∂ lnL�

; ð15Þ

wherem� ¼ −2.5 logF� þ const is the magnitude limit and
F� (L�) is the flux (luminosity) limit of the survey. This
parameter (not to be confused with the redshift coordinates)
is known as the “magnification bias” and is survey and
population dependent.

2. Galaxy evolution

Galaxies can merge with each other or be created
altogether. This was not reflected in the model (11) which
assumed a constant number of galaxies (n̄s ¼ n̄ ¼ const).
Since the time evolution of the mean comoving number
density n̄ðτÞ depends upon the uncertain details of galaxy
formation and evolution, it is conventionally parametrized
by the “evolution bias”

fevol ≡ ∂ ln n̄
∂ ln a

; n̄ðτÞ ¼ FevolðτÞn̄ðτ0Þ;

FevolðτÞ≡ exp

�
−
Z

1

aðτÞ

da0

a0
fevolða0Þ

�
: ð16Þ

With no evolution, fevol ¼ 0 and Fevol ¼ 1 for all time. In
general, fevol is tracer dependent and a function of the flux
cut. Note that the effect of galaxy evolution on the apparent
number density may be considered an example of a
projection effect, in that the lookback time (14) of a galaxy
viewed in real space is different to the lookback time of the
same galaxy but viewed in redshift space.

C. Derivation of the general model

We now construct a model of the redshift-space corre-
lation function valid on the full sky and in the nonlinear
regime, building into it the lookback time (14), as well as
the flux cut and galaxy evolution. The calculation is
essentially the same as before once we have set up the
problem and introduced some definitions. Readers who are
not interested in these details may skip ahead to Eq. (31)
and follow the discussion from there.
To include a flux cut in themodelwe nowneed to consider

the luminosity of each galaxy. We define the redshift-space
distribution function Φsðτ; s; FsÞ, i.e. the redshift-space
comoving number density of galaxies in the flux bin
ðFs; Fs þ dFsÞ. Similarly, let Φðτ;x; FÞ be the true distri-
bution function, i.e. the real-space comoving number

density of galaxies in the (nonredshifted) flux bin
ðF;F þ dFÞ.
Since the mapping ðτ0;xÞ ↦ ðτðxÞ; sðxÞÞ, where τðxÞ is

the lookback time (14) and sðxÞ is given by Eq. (1),
is nothing more than a reassignment of each galaxy’s
coordinates, the number of galaxies per flux bin is
conserved:

Φsðτ; s; FsÞd3sdFs ¼ Φðτ0;x; FÞd3xdF
¼ Φðτ0;x; LÞd3xdL; ð17Þ

where τ0 ¼ τ0 − χ0 and, in a slight abuse of notation,
Φðτ0;x; FÞ ¼ Φðτ0;x; LÞdL=dF. Here τ ¼ τ0 − χ and
τ0 ¼ τ0 − χ0, and we recall that these are related by
τ ¼ τ0 − uk. Equation (17) simply reflects the fact that
all galaxies that are observed in d3s with flux between Fs

and Fs þ dFs physically lie in d3xwith intrinsic luminosity
between L and Lþ dL. Among all the galaxies in the
volume element d3s or d3x, we select only those that meet
or exceed the flux threshold F�:

ΘðFs − F�ÞΦsðτ; s; FsÞd3sdFs

¼ ΘðL − L�ðxÞÞΦðτ0;x; LÞd3xdL: ð18Þ

Here Θ is the Heaviside step function which enforces
the threshold and L�ðxÞ ¼ 4πd2LðxÞF� is the luminosity
threshold for an object at luminosity distance dLðxÞ. Note
that on both sides of Eq. (18) we are imposing the same
selection criterion so that the same galaxies are being
selected in both real and redshift space. Since the lumi-
nosity distance dL is affected by inhomogeneities and
depends therefore on direction, a fixed flux threshold F�
in all directions corresponds to different luminosity thresh-
olds L�ðxÞ in different directions.
Integrating both sides of Eq. (18) yields the differential

relation between number densities [cf. Eq. (2)]

nsðτ; s;F > F�Þd3s ¼ nðτ0;x;L > L�ðxÞÞd3x; ð19Þ

where

nsðτ; s;F > F�Þ≡
Z

∞

F�
dFsΦsðτ; s; FsÞ;

nðτ0;x;L > L�ðxÞÞ≡
Z

∞

L�ðxÞ
dLΦðτ0;x; LÞ: ð20Þ

Separating the number densities into a mean contribution
and an overdensity, assuming a universal luminosity
function, we obtain

½1þδsðτ;sÞ�d3s¼
n̄ðτ0;L>L�ðxÞÞ
n̄sðτ;F >F�Þ

½1þδðτ0;xÞ�d3x: ð21Þ
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The denominator on the right-hand side can be rewritten as

n̄sðτ; F > F�Þ ¼ n̄ðτ; L > L̄�ðχÞÞ; ð22Þ

since the mean number of galaxies at τ with flux above F�
corresponds to the galaxies that have mean intrinsic
luminosity above L̄�ðχÞ. The fraction in Eq. (21) can then
be split as

n̄ðτ0; L > L�ðxÞÞ
n̄ðτ; L > L̄�ðχÞÞ

¼ n̄ðτ0; L > L�ðxÞÞ
n̄ðτ0; L > L̄�ðχ0ÞÞ

n̄ðτ0; L > L̄�ðχ0ÞÞ
n̄ðτ; L > L̄�ðχ0ÞÞ

×
n̄ðτ; L > L̄�ðχ0ÞÞ
n̄ðτ; L > L̄�ðχÞÞ

; ð23Þ

which gives rise to three contributions. First δ�, defined as

1þ δ�ðτ0;xÞ ¼
n̄ðτ0; L > L�ðxÞÞ
n̄ðτ0; L > L̄�ðχ0ÞÞ

; ð24Þ

represents the fractional number density of galaxies at x
with luminosity comprised between L̄�ðχ0Þ and L�ðxÞ ¼
L̄�ðχ0Þ þ δL�ðχ0; n̂Þ, where the perturbation to the lumi-
nosity threshold δL� is directly related to the perturbation to
the luminosity distance by

δL�ðχ0; n̂Þ ¼ 4πF�½d2Lðχ0; n̂Þ − d̄2Lðχ0Þ�; ð25Þ

and is affected by the Doppler effect (among other things).
Here L̄�ðχ0Þ ¼ 4πd̄2Lðχ0ÞF� is the threshold that would be
adopted in the absence of perturbations to the luminosity
distance.
Second δevol, defined as

1þ δevolðτ0;xÞ ¼
n̄ðτ0; L > L̄�ðχ0ÞÞ
n̄ðτ; L > L̄�ðχ0ÞÞ

; ð26Þ

encodes the evolution of the comoving number density
of galaxies, above a fixed luminosity threshold L̄�ðχ0Þ,
between the hypersurface of constant τ (corresponding to
constant observed redshift z) and the hypersurface of
constant τ0 (corresponding to constant background red-
shift z̄). Using Eq. (16), applied at τ and τ0 for the same
luminosity threshold L̄�ðχ0Þ, we obtain

1þ δevolðτ0;xÞ ¼
Fevolðτ0Þ
FevolðτÞ

: ð27Þ

Finally δL, defined as

1þ δLðτ0;xÞ ¼
n̄ðτ; L > L̄�ðχ0ÞÞ
n̄ðτ; L > L̄�ðχÞÞ

; ð28Þ

describes the fractional number of galaxies with luminosity
between L̄�ðχ0Þ and L̄�ðχÞ. (Here δL is not to be confused

with the linear matter field.) This term accounts for the fact
that, since we select galaxies above a fixed flux threshold
F�, we do not select the same population of galaxies at each
distance. Galaxies that are further away are selected with a
higher luminosity than galaxies that are closer. Because of
this, even if the luminosity function would be constant in
time for all values of L, there is an evolution in the mean
number density.
With this, Eq. (21) becomes

½1þ δsðτ; sÞ�d3s ¼ ½1þ δtotðτ0;xÞ�d3x; ð29Þ

where

1þ δtotðτ0;xÞ≡ ½1þ δevolðτ0;xÞ�½1þ δLðτ0;xÞ�½1þ δ�ðτ0;xÞ�
× ½1þ δðτ0;xÞ�: ð30Þ

Without selection and evolution effects, clearly δtot ¼ δ.
An explicit expression for δs can now be obtained by a

similar calculation to the one presented in Sec. II. Thus,
passing from differential to integral form (3), changing to
spherical coordinates, etc., we have

1þ δsðτ; χn̂Þ ¼
1

χ2

Z
∞

0

dχ0χ02½1þ δtotðτ0 − χ0; χ0n̂Þ�

×
Z

dk
2π

e−ikðχ−χ0Þ exp½ikukðτ0 − χ0; χ0n̂Þ�:

ð31Þ

The difference between this expression and our earlier one,
Eq. (6), is that δ there is replaced with δtot here, and
secondly the line-of-sight integral is now performed on the
past light cone.
Finally, since Eq. (31) is of the same form as Eq. (6), the

calculation proceeds as before and we can write down at
once the correlation function [cf. Eq. (11)]:

1þξsðχ1;χ2; n̂1 · n̂2Þ

¼ 1

χ21χ
2
2

Z
∞

0

dχ01χ
02
1

Z
∞

0

dχ02χ
02
2 ½1þξtotðχ01;χ02; n̂1 · n̂2Þ�

×ptotðχ − χ 0jn̂1 · n̂2Þ with

1þξtotðχ01;χ02; n̂1 · n̂2Þ
≡ h½1þδtotðτ0−χ01;χ

0
1n̂1Þ�½1þδtotðτ0−χ02;χ

0
2n̂2Þ�i; ð32Þ

where ptot is given by Eq. (10), in which the density
weighting (9) is now with respect to δtot (instead of δ).
In particular, notice that ξtot no longer depends on the
separation r, as was the case before, but on the full
triangular configuration given by three numbers, namely
the side lengths χ01, χ

0
2, and the opening angle n̂1 · n̂2. As we

will see in Sec. IV, this is because in a perturbative
expansion δtot contains terms depending on the line of
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sight n̂, whose presence induces an angular dependence in
the correlations, breaking statistical isotropy.
We can also see that the correlation function (32) is

a function of the (apparent) past light cone: it mani-
festly expresses the unequal-time correlation of any two
points S1 ¼ ðτ1; s1Þ ¼ ðτ0 − χ1; χ1n̂1Þ and S2 ¼ ðτ2; s2Þ ¼
ðτ0 − χ2; χ2n̂2Þ. As with our earlier Eq. (11), the formula
we have just derived is still “summing over triangles,” but
now the “triangles” are all those configurations that can be
formed on the past light cone from an opening angle
n̂1 · n̂2, as opposed to those formed on spatial hyper-
surfaces. Since these configurations are on the light cone,
they are in principle all observationally accessible, e.g. if
the peculiar velocity of each galaxy was perfectly known.
Hence the correlation function (32) is determined by
marginalizing over all potentially observable configura-
tions, unlike our earlier Eq. (11), which is determined by
marginalizing over unobservable configurations.
Finally, ξs is expressed in terms of radial distances

(assuming perfect knowledge of the underlying background
cosmology), but we note that it is also possible, and perhaps
more desirable, to express it in terms of observed and
background redshifts, z and z̄. Working in terms of redshifts
and angles, the natural observable is the three-dimensional
angular power spectrum Clðz; z0Þ [8,21], which we note
can be constructed from our ξs if we leave arbitrary the
conversion of redshift to distance.5

IV. RECOVERING LINEAR THEORY

We now verify that our nonlinear expression (31) of the
redshift-space overdensity recovers well-known results
from linear theory. To begin, we expand the last exponential
in Eq. (31), keeping only up to the linear contribution
in uk:

1þ δsðτ; χn̂Þ

≃
1

χ2

Z
dχ0χ02½1þ δtotðτ0; χ0n̂Þ�

×
Z

dk
2π

e−ikðχ−χ0Þð1þ ikukðτ0; χ0n̂ÞÞ

¼ 1

χ2

Z
dχ0χ02½1þ δtotðτ0; χ0n̂Þ�

×

�
δDðχ − χ0Þ − ukðτ0; χ0n̂Þ

d
dχ

δDðχ − χ0Þ
�
; ð33Þ

where we have written factors of k as radial derivatives
using ike−ikχ ¼ −de−ikχ=dχ. Note that in Eq. (33) we have
made explicit the dependence of the field in the position
x ¼ χ0n̂ but also in time τ0 ¼ τ0 − χ0, since the density and

velocity are evolving with time. Dropping the quadratic
term ukδ, taking the χ derivative outside of the integral and
calculating the now trivial integrals, we find (recalling that
uk ≡H−1vk)

1þ δsðτ; χn̂Þ ¼ 1þ δtotðτ; χn̂Þ −
1

χ2
d
dχ

�
χ2

vkðτ; χn̂Þ
HðτÞ

�

¼ 1þ δtotðτ; χn̂Þ −
1

χ2
∂

∂χ

�
χ2

vkðτ; χn̂Þ
HðτÞ

�

−
1

χ2
dτ
dχ

∂

∂τ

�
χ2

vkðτ; χn̂Þ
HðτÞ

�

¼ 1þ δtotðτ; χn̂Þ −
1

H

∂vk
∂χ

−
�

2

Hχ
þ Ḣ
H2

�
vk

þ 1

H
v̇k; ð34Þ

where τ ¼ τ0 − χ and an overdot denotes partial differ-
entiation with respect to conformal time. Note that the
second and third term in the second line is equal to δs ¼
δtot − ∇ · uk [with the radial velocity field uk ≡ n̂ · uðxÞn̂],
a formula that is conventionally obtained by linearizing the
Jacobian of the mapping (1). The last two terms in the last
line of Eq. (34) arise because of the lookback time, and are
thus not captured by the Jacobian.
The kinematic terms in Eq. (34) can be understood as

follows. The third term, the radial derivative of the velocity,
gives the well-known RSD effect. The fourth term, propor-
tional to 2=ðHχÞ, is the wide-angle contribution from a
uniform selection function, already present in the original
Kaiser formula. This term is usually ignored since at large
distances (compared to the separation) it is subdominant to
the standard RSD term, but it is important to include in a
wide-angle analysis [35]. Less well known are the last two
terms in Eq. (34); these are due to the fact that, because we
are integrating along the line of sight, we are traversing a
geodesic on the past light cone, with both H and vk
evolving along it [12].
In addition to these terms, which derive from the

mapping itself, there are also the selection and evolution
effects. These are contained in δtot, Eq. (30), which at linear
order reads δtot ≃ δþ δevol þ δL þ δ�. We calculate δevol,
δL, and δ� as follows.

(i) For δevol, expand Fevolðτ0Þ in Eq. (27) about
τ ¼ τ0 þ δτ:

Fevolðτ0Þ ≃ FevolðτÞ −
dFevol

dτ
δτ

¼ FevolðτÞð1 − fevolHδτÞ; ð35Þ

where in the second equality the derivative has
been evaluated using Eq. (16). Inserting this into

5See Refs. [32–34] for related work on connecting Clðz; z0Þ to
the idealized power spectrum PðkÞ, corrected for unequal-time
correlations and wide-angle effects.
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Eq. (27) and using that by Eqs. (14) and (1)
δτ ¼ −δχ ¼ −H−1vk, we find

δevol ¼ fevolvk: ð36Þ

(ii) For δL, expand n̄ðτ; L > L̄�ðχ0ÞÞ in Eq. (28) around
χ ¼ χ0 þ δχ. At linear order,

n̄ðτ;L> L̄�ðχ0ÞÞ≃ n̄ðτ;L> L̄�ðχÞÞ

×

�
1−

∂ ln n̄
∂ ln L̄�

dln L̄�
dlnχ

δχ

χ

�
; ð37Þ

where all quantities on the right-hand side are
evaluated at χ and the chain rule has been used
on the second term. Here δχ ¼ H−1vk and the χ
derivative is

d ln L̄�
d ln χ

¼ 2
d ln d̄L
d ln χ

¼ 2Hχ

�
1þ 1

Hχ

�
; ð38Þ

where the first equality follows because L̄� ∝ d̄2L and
the second equality follows from differentiating
d̄LðχÞ ¼ ð1þ zÞχ ¼ χ=a½τðχÞ�. Inserting the linear
expansion (37) into Eq. (28), we have

δL ¼ 5s�

�
1þ 1

Hχ

�
vk; ð39Þ

where we have inserted Eq. (15) for the magnifica-
tion bias, replacing n̄ with n̄s (since the difference
results in a second-order correction).

(iii) For δ�, expand n̄ðτ0; L > L�ðxÞÞ in Eq. (28) around
L̄�ðχ0Þ ¼ L�ðxÞ − δL�ðχ0; n̂Þ. At linear order,

n̄ðτ0;L>L�ðxÞÞ≃ n̄ðτ0;L> L̄�ðχ0ÞÞ

×

�
1þ ∂ ln n̄

∂ ln L̄�

δL�ðχ0; n̂Þ
L̄�ðχ0Þ

�
: ð40Þ

The perturbation to the threshold at a fixed position
in real space is

δL�ðχ0; n̂Þ
L̄�ðχ0Þ

¼ 2
δdLðχ0; n̂Þ
d̄Lðχ0Þ

¼ 4vk; ð41Þ

where the first equality follows from linearizing
Eq. (25), while in the second equality we have used
the luminosity distance fluctuations due to the
source velocity calculated in Ref. [36].6 Inserting
the linear expansion (40) into Eq. (24), we obtain

δ� ¼ −10s�vk; ð42Þ

where again we have substituted in Eq. (15) for the
magnification bias.

Finally, inserting Eqs. (36), (39), and (42) into Eq. (34)
for δtot, we obtain

δsðτ; χn̂Þ ¼ δ −
1

H

∂vk
∂χ

þ 1

H
v̇k

þ
�
fevol − 5s� −

Ḣ
H2

þ 5s� − 2

Hχ

�
vk: ð43Þ

Upon comparing this equation with the full expression
obtained from relativistic calculations—e.g. equation (2.13)
in Ref. [37]—we see that we have recovered all subleading
effects at OðH=kÞ, with the exception of two terms.
The first is a kinematic term given simply as vk. This
missing term can be traced back to the starting point of our
derivation, Eq. (2), which is based on the naive Euclidean
volume element d3x. This Newtonian derivation does not
account for the fact that the hypersurface of constant time
for the moving galaxies (in real space) does not coincide
with the hypersurface of constant conformal time τ. That is,
these two frames are “tilted” with respect to one another,
and it is by accounting for this that we recover precisely the
term that we are after. From an observational point of view,
this term arises because photons, followed back down the
past light cone, do not probe the rest-frame galaxy density.
Based on purely kinematic considerations, these photons
will intercept more galaxies moving toward them versus
away from them [38], so that if a galaxy is receding away
from the observer then the apparent local density is
enhanced relative to its intrinsic value. Technically speak-
ing, the missing term arises through projection of the four-
current jμ ¼ nuμ at the source position onto the covariant
three-dimensional volume element (the three-form dual to
the one-form dxμ). Clearly this requires a relativistic
treatment, beginning with a covariant notion of number
conservation; this is however beyond the scope of
this work.
The second term missing is H−1

∂Ψ=∂χ, the contribution
from the gravitational redshift. This can be put down to the
simple fact that the standard mapping (1) only accounts for
the dominant Doppler shift and therefore ignores the
subdominant contribution from the gravitational redshift.
To illustrate the basic structure in a minimal model, we
have neglected to include the gravitational redshift.
However, adding this effect into the model is straightfor-
ward: by Eq. (13) we take sðxÞ → sðxÞ −H−1ΨðxÞx̂; see
also Refs. [19,20]. A complete model including the
gravitational redshift and the relativistic tilt will be pre-
sented in a forthcoming work.

6See Eq. (53) [or equivalently Eq. (55)] in Ref. [36], noting
that n̂ there is equal to −n̂ here.
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V. GAUSSIAN STREAMING MODEL
ON THE FULL SKY

The discussion up to now has been fairly general in that
no assumptions have been placed on the statistics of the
velocities that determine pðχ − χ 0Þ and therefore the
correlation function. We now wish to specify these statistics
by presenting a particular model of Eq. (32), namely, the
full-sky version of the Gaussian streaming model [28],
often used in configuration-space analyses [39–42]. We
will however include the selection and evolution effects,
which we recall are entirely contained in δtot, Eq. (30). The
lookback time is also included, which amounts to tak-
ing τ0 → τ0 − χ0.
We follow the usual procedure [16,26] for constructing

such models, namely, we rewrite the generating function Z
in terms of the connected moments using the cumulant
generating function W ≡ lnZ, then Taylor expand W,
keeping only the first and second connected moments
(as determines a Gaussian). In detail, by expandingWðJÞ≡
lnZðJÞ about J ¼ 0 we have

WðJÞ ¼
X∞
n¼1

in

n!
Ji1 � � � Jinhwi1 � � �winiδtot;c;

hwi1 � � �winiδtot;c ¼ ð−iÞn ∂
n lnZ

∂Ji1 � � � ∂Jin

����
J¼0

; ð44Þ

where repeated indices are summed over, and i1 ¼ 1, 2,
i2 ¼ 1, 2, etc. Here subscript δtot denotes the density-
weighted average (9), subscript “c” denotes the connected
part of the moment, and wi ¼ ukðτi;xiÞ ¼ n̂i · uðτi;xiÞ.
(Without loss of generality one may take the lines of sight
n̂1 and n̂2 to lie within the xz plane, as in Fig. 1.) Then in
terms of the connected moments

ZðJÞ ¼ exp

�X∞
n¼1

in

n!
Ji1 � � � Jinhwi1 � � �winiδtot;c

�
: ð45Þ

These expressions are general. As mentioned, in the
Gaussian streaming model we keep only the first and
second connected moments, i.e. truncating the sum at
n ¼ 2. This leaves the mean and covariance,

μðχ01; χ02; n̂1 · n̂2Þ≡ hwiδtot;c ¼
� hukðχ01Þiδtot;c
hukðχ02Þiδtot;c

�
; ð46Þ

Cðχ01; χ02; n̂1 · n̂2Þ
≡ hwwTiδtot;c

¼
� hukðχ01Þukðχ01Þiδtot;c hukðχ01Þukðχ02Þiδtot;c
hukðχ01Þukðχ02Þiδtot;c hukðχ02Þukðχ02Þiδtot;c

�
: ð47Þ

Herewe have used the shorthand ukðχ0iÞ≡ ukðτ0 − χ0i; χ
0
in̂iÞ.

Note that the mean radial velocity μ, being density weighted,

does not in general vanish. Keeping terms in Eq. (45) up to
second order in J yields the generating function of a
Gaussian:

ZðJÞ ¼ exp

�
iJ · μ −

1

2
JTCJ

�
: ð48Þ

Inverse Fourier transform of ZðJÞ, i.e. evaluating Eq. (10),
thus yields a two-dimensional Gaussian with mean μ
and covariance C, which when inserted back into Eq. (32)
furnishes the wide-angle Gaussian streaming model,7

1þξsðχ1;χ2; n̂1 · n̂2Þ

¼ 1

χ21χ
2
2

Z
∞

0

dχ01χ
02
1

Z
∞

0

dχ02χ
02
2 ½1þξtotðχ01;χ02; n̂1 · n̂2Þ�

×
1

2πjCj1=2 exp
�
−
1

2
ðχ − χ 0−μÞTC−1ðχ − χ 0−μÞ

�
; ð49Þ

remembering that μ and C are functions of χ01, χ
0
2, and

n̂1 · n̂2. Note that this model does not assume that δ and uk
areGaussian fields, nor is it assuming that in the perturbative
expansion (48) the fields δ and uk are small fluctuations.
Rather, this model is based on the correlations being small
on large scales. The Gaussian distribution arises from our
having truncated the generating function at second order in
J ¼ κ. Of course, extensions to Eq. (49) to include higher-
order, non-Gaussian statistics are also possible [43].
The equivalent model without selection and evolution

effects is obtained by taking ξtot → ξ and δtot → δ in the
density weighting. The above model also takes into account
the lookback time, which can be ignored by treating time in
the usual way, i.e. as an independent variable (not degen-
erate with distance). Overall, the effect of these three effects
changes the quantitative predictions but does not change
the basic form of the model.
Equation (49) is the full-sky generalization of the well-

known Gaussian streaming model of the distant-observer
limit:

1þ ξsðs; μÞ ¼
Z

∞

−∞
drk½1þ ξðrÞ� · 1ffiffiffiffiffiffi

2π
p

σ12ðrÞ

× exp

�
−
1

2

ðsk − rk − u12ðrÞÞ2
σ212ðrÞ

�
; ð50Þ

where rk and sk are the real- and redshift-space separations
along the line of sight, and u12ðrÞ≡ hΔukiδtot;c and σ212ðrÞ≡
hðΔukÞ2iδtot;c, where Δuk ≡ n̂ · uðx1Þ − n̂ · uðx2Þ, are the

7Since we are using spherical coordinates, the probability
distribution is perhaps better described as a Maxwell-Boltzmann
distribution p ∝ x2e−x

2

(or some two-dimensional analog thereof).
Although for large variance we note that the Maxwellian is well
approximated by a Gaussian (in the one-dimensional case).
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mean and dispersion of the pairwise velocity, respectively,
and all quantities are evaluated at a fixed time. Although the
wide-angle and distant-observer models are similar in form,
it requires some work to show that Eq. (49) does indeed
reduce to Eq. (50) in the appropriate limit. We leave the
details of this calculation to Appendix B.

VI. MULTIPOLE EXPANSION IN THE
WIDE-ANGLE REGIME

In this section we show that Eq. (11) recovers the
standard linear predictions for the multipoles, including
those induced when going beyond the distant-observer
limit. Since the aim here is to compare our results with
those in the wide-angle literature, we will ignore contri-
butions from galaxy evolution and relativistic effects.
To facilitate the calculation, recall that the correlation

function on a fixed redshift slice can be expanded about the
distant-observer limit as [44]

ξsðs; μ; dÞ ¼
X∞
n¼0

�
s
d

�
n X∞
l¼0

ξðnÞl ðs; dÞLlðμÞ; ð51Þ

i.e. in terms of a small expansion parameter ϵ≡ s=d, where
for closely separated lines of sight a low-order expansion is
valid. Here Ll is a Legendre polynomial of the lth degree,
s ¼ js1 − s2j is the separation, μ ¼ cos θ (see Fig. 1), and d
is some distance to the galaxy pair (to be made precise
shortly). Note that in addition to the explicit dependence of

the multipoles in d via ϵ, ξðnÞl depends also on d through the
evolution of the density and velocity, which depend on
redshift, and therefore varies with distance d. The usual
Kaiser multipoles [3] are given by the n ¼ 0 multipoles:

ξð0Þ0 ðsÞ ¼
Z

k2dk
2π2

j0ðksÞ
�
bAbBPδδðkÞ−

1

3
ðbA þ bBÞPθδðkÞ

þ 1

5
PθθðkÞ

�
; ð52aÞ

ξð0Þ2 ðsÞ ¼
Z

k2dk
2π2

j2ðksÞ
�
2

3
ðbA þ bBÞPθδðkÞ −

4

7
PθθðkÞ

�
;

ð52bÞ

ξð0Þ4 ðsÞ ¼
Z

k2dk
2π2

j4ðksÞ
8

35
PθθðkÞ; ð52cÞ

where bA and bB are the linear galaxy bias of two tracers
labeled A and B, and θ ¼ −fδ, where f is the growth rate.
The wide-angle corrections are given by multipoles n ≥ 1,
and the lth multipole is given by the sum ξlðs; dÞ≡P

n ϵ
nξðnÞl ðs; dÞ. Unlike in the distant-observer limit, the

wide-angle contributions to the multipoles depend on how
the angular separation μ is defined, i.e. what we choose for
the line of sight [14,44].

A. Midpoint parametrization

The shape and size of the multipoles depend on how we
parametrize the triangle as formed by the galaxy pair with
the observer. In particular, we need to fix the definition of μ.
This means choosing a line of sight, and there is no unique
choice for this. In this work we use the line of sight defined
by the midpoint parametrization (see Fig. 1). This section
describes this parametrization and collects some useful
formulas. In Appendix D we give a formula relating
multipoles in the midpoint parametrization to those in
the end-point parametrization.
First, the midpoint of the separation s ¼ s1 − s2 is given

by d≡ ðs1 þ s2Þ=2. We thus have s1 ¼ dþ s=2 and
s2 ¼ d − s=2. The expansion parameter in Eq. (51) is
ϵ≡ s=d. In particular, we may align d with the þz axis,
i.e. d̂ ¼ ez. We can also without loss of generality place the
triangular configuration in the xz plane, with the first
galaxy placed in the left half-plane (with negative x
coordinate) and the second galaxy placed in the right
half-plane (with positive x coordinate); see Fig. 1. With
these choices ŝ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
ex þ μez, with μ≡ ez · ŝ and

ex, ez are unit vectors along the x and z axes, respectively.
Now s1 ¼ dðez þ ϵŝ=2Þ and s2 ¼ dðez − ϵŝ=2Þ, from
which the unit vectors are found to be

n̂1 ≡ ŝ1 ¼
�
ez þ

ϵ

2
ŝ

�X∞
n¼0

�
−
ϵ

2

�
n
LnðμÞ

¼ ez −
ϵ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q
ex þOðϵ2Þ; ð53aÞ

n̂2 ≡ ŝ2 ¼
�
ez −

ϵ

2
ŝ

�X∞
n¼0

�
þ ϵ

2

�
n
LnðμÞ

¼ ez þ
ϵ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q
ex þOðϵ2Þ: ð53bÞ

Observe that at OðϵÞ, the lines of sight n̂1 and n̂2 are
symmetric about the z axis (equal and opposite x
components).
Note the following relations when going between

variables fχ1; χ2; cosϑ≡ n̂1 · n̂2g and fs; d; μg: s ¼
ðχ21 þ χ22 − 2χ1χ2 cosϑÞ1=2, d¼ 1

2
ðχ21þχ22þ2χ1χ2cosϑÞ1=2,

and μ2 ¼ 1
4
ðχ21 − χ22Þ2=½ðχ21 þ χ22Þ2 − ð2χ1χ2 cosϑÞ2�. These

follow from the cosine rule.

B. Linear theory

We now show that Eq. (7) recovers at zeroth order
(n ¼ 0) the standard Kaiser multipoles [3], and at the first
order (n ¼ 1) the wide-angle corrections. As mentioned,
the wide-angle corrections vanish at first order in the auto-
correlation function but not for the cross-correlation func-
tion. We will thus consider the cross-correlation between
two tracer populations, described by linear bias bA and bB.
We will assume no magnification and evolution bias since
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we have already shown in Sec. IV that we recover the
correct linear expression for δs. The details of our compu-
tations can be found in Appendix C.
First we convert Eq. (7) to the cross-correlation. In linear

theory this is done simply by replacing δðx1Þ → bAδðx1Þ
and δðx2Þ → bBδðx2Þ:

1þξsðs;μ;dÞ¼
1

χ21χ
2
2

Z
dχ01χ

02
1

Z
dχ02χ

02
2

Z
d2κ
ð2πÞ2 e

−iκ·ðχ−χ 0Þ

× hð1þbAδ1Þð1þbBδ2Þeiκ·wi: ð54Þ

Here we have used the shorthand δ1 ¼ δðx1Þ and δ2 ¼
δðx2Þ, and as before w ¼ ðukðx1Þ; ukðx2ÞÞ. For conven-
ience we will also write

UiðrÞ¼huiðx1Þδðx2Þi and ΨijðrÞ¼huiðx1Þujðx2Þi ð55Þ

for the velocity-density and velocity-velocity correlation
functions. Here the separation r ¼ x1 − x2 is given in
terms of the radial distances as rðχ 0Þ ¼ χ01n̂1 − χ02n̂2, and in
redshift space sðχ Þ ¼ χ1n̂1 − χ2n̂2 ¼ rðχ Þ.
The idea of the calculation is to expand eiκ·w, keeping up

to quadratic terms and dropping zero-lag terms (which are
absent in the linear predictions). The integrations can then
be done analytically (see Appendix C for details). The
result is

ξsðχ1;χ2;n̂1 ·n̂2Þ¼bAbBξðsÞ−bB
∂

∂χ1
Uin̂i1þbA

∂

∂χ2
Uin̂i2

þ ∂

∂χ1

∂

∂χ2
Ψijn̂i1n̂

j
2−bB

2

χ1
Uin̂i1

þbA
2

χ2
Uin̂i2þ

�
2

χ1

∂

∂χ2
þ 2

χ2

∂

∂χ1

�
Ψijn̂i1n̂

j
2:

ð56Þ

This is the linear correlation function corresponding to the
right-hand side of Eq. (34). Here ξ, Ui, and Ψij depend on
χ1 and χ2 through s (and we remember that lines of sight are
always constant with respect to their radial derivatives,
∂n̂i=∂χ ¼ 0). The first line in Eq. (56) yields the usual
Kaiser multipoles (among wide-angle corrections), while
the second line consists of terms suppressed by a factor of
H=k with respect to the Kaiser multipoles, but are of the
same order as the wide-angle contributions.

1. Distant-observer limit

The multipoles of the distant-observer limit (i.e. the
Kaiser multipoles) can be recovered by setting n̂1 ¼ n̂2 ¼
ez ¼ ð0; 0; 1Þ and taking χ1; χ2 → ∞. Doing so eliminates
the second line of terms in Eq. (56), leaving

ξsðs; μÞ ¼ bAbBξðsÞ − ðbA þ bBÞ∂3U3ðs; μÞ − ∂
2
3Ψ33ðs; μÞ

ðdistant-observer limitÞ ð57Þ

where derivatives are with respect to s3, the z component of
s. This equation was first derived in Ref. [45]. A straight-
forward computation of the derivatives yields

∂3U3ðs; μÞ ¼
Z

k2dk
2π2

�
1

3
j0ðksÞ −

2

3
j2ðksÞL2ðμÞ

�
PθδðkÞ;

ð58aÞ

∂
2
3Ψ33ðs; μÞ ¼ −

Z
k2dk
2π2

�
1

5
j0ðksÞ −

4

7
j2ðksÞL2ðμÞ

þ 8

35
j4ðksÞL4ðμÞ

�
PθθðkÞ; ð58bÞ

where jl is the lth-order spherical Bessel function. From
here it is not difficult to assemble the Kaiser multipoles (52).

2. Wide-angle corrections

The wide-angle corrections enter the Ui terms at order ϵ
and theΨij terms at ϵ2. (Note that in the autocorrelation, i.e.
when bA ¼ bB, the corrections also enter Ui at ϵ2.) Since
we are interested only in the leading-order corrections
(order ϵ), we need only focus on terms involving Ui in
Eq. (56); the terms involving Ψij are as given in the distant-
observer limit so require no further calculation. For the
∂iUj terms in the first line of Eq. (56), we have

− bB
∂

∂χ1
Uin̂i1 þ bA

∂

∂χ2
Uin̂i2

¼ −ðbA þ bBÞ
Z

k2dk
2π2

�
1

3
j0ðksÞ −

2

3
j2ðksÞL2ðμÞ

�
PθδðkÞ

−
2

5
ϵðbA − bBÞ

Z
k2dk
2π2

ðL1ðμÞ − L3ðμÞÞj2ðksÞPθδðkÞ;

ð59Þ

where the first integral on the right-hand side is the distant-
observer contribution, and the second integral is the
leading-order wide-angle correction.8 The details of this
computation can be found in Appendix C. For the Ui terms
in Eq. (56) up to leading order in ϵ, we have

− bB
2

χ1
Uin̂i1 þ bA

2

χ2
Uin̂i2

¼ 2ϵðbA − bBÞ
Z

k2dk
2π2

j1ðksÞ
ks

L1ðμÞPθδðkÞ: ð60Þ

8This agrees with Eqs. (52) and (53) in Ref. [12]; see also
Eq. (3.19) in Ref. [46].
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The leading-order wide-angle multipoles are thus

ξð1Þ1 ðsÞ¼ ðbA−bBÞ
Z

k2dk
2π2

�
−
2

5
j2ðksÞþ2

j1ðksÞ
ks

�
PθδðkÞ;

ð61aÞ

ξð1Þ3 ðsÞ ¼ 2

5
ðbA − bBÞ

Z
k2dk
2π2

j2ðksÞPθδðkÞ: ð61bÞ

These are consistent with those given in, e.g. Refs. [18,46].
Note that when working within the end-point parametriza-

tion the odd multipoles, ξð1Þ1 and ξð1Þ3 , receive additional
contributions, which are of a geometric, noncosmological
nature (Appendix D). Thus we have recovered the linear
multipoles.

VII. CONCLUSIONS

We have described a framework to model in the non-
linear regime not only wide-angle effects but also selection
and relativistic effects. Our main result is Eq. (32), an
expression for the redshift-space correlation function which
is valid in both the nonlinear regime and on the full sky,
accounts for the survey flux limit and the population
evolution of tracers. Based on this expression, we have
also given the full-sky generalization of the Gaussian
streaming model, Eq. (49), which we have checked reduces
to the well-known flat-sky model (50) in the appropri-
ate limit.
The correlation function (32) takes a lensing-like form

(i.e. is given by integrals along each line of sight) which can
be understood probabilistically: a given two-point corre-
lation in redshift space is determined by averaging over all
the possible two-point correlations in real space that can be
formed on the two lines of sight. Geometrically, this can be
understood as a weighted sum over the space of triangular
configurations in which the observer is fixed at one vertex
with the galaxies at the other two (at the ends of the lines of
sight). Since the opening angle is fixed, the probability
space is two dimensional and given by the joint statistics of
the line-of-sight components of the galaxy velocities. We
note that this heuristic generalizes to higher-order correla-
tion functions (e.g. for the three-point function the sum is
over tetrahedrons).
We have also given a nonperturbative expression (31) for

the overdensity in redshift space. Performing a perturbative
expansion of this expression, we showed that we are able to
recover all but two terms of the well-known linear expres-
sion of the overdensity at subleading order; see Eq. (43).
The first term missing traces back to the fact that obser-
vations probe the number density of galaxies not in their
rest frame but in a frame tilted with respect to it. This results
in an additional kinematic term but requires a covariant
expression of number conservation. The second term is the
gravitational redshift, whose absence is due to the simple

fact that we have chosen to exhibit the formalism using the
familiar redshift mapping (1). A model of the overdensity,
complete down to OðH=kÞ effects, will be presented in a
follow-up work. Nevertheless, the expression we have
derived provides a compact description of a large number
of terms (RSD, magnification bias, evolution bias, projec-
tion effects related to the light cone, etc.). Furthermore, our
work provides a simple quasi-Newtonian derivation to the
full relativistic calculation.
In summary, we have shown that the streaming model is

not limited to the distant-observer limit but that it can be
straightforwardly extended into the wide-angle regime and
be built upon to include a number of other important
effects. In a future work we will present numerical results
for a realistic model including nonlinear evolution and
galaxy bias, with a view toward an eventual measurement
of the gravitational redshift.
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APPENDIX A: ON THE MEAN DENSITY
IN THE WIDE-ANGLE REGIME

In Sec. II we assumed that n̄s ≡ hnsðsÞi ¼ n̄. However,
this is not assured in the wide-angle regime. This can be
shown by direct calculation of the expectation of Eq. (3):

hnsðsÞi ¼
1

χ2
n̄
Z

∞

0

dχ0χ02
Z

dk
2π

e−ikðχ−χ0Þh½1þ δðχ0n̂Þ�eikuk i:

ðA1Þ

In general, the right-hand side does not evaluate to n̄.
We can see this as follows. By the cumulant expansion
formula heiXi ¼ expheiXic, we have that heikuk i ¼ e−k

2σ2u=2

and heikukδi ¼ 0, assuming as a first approximation that δ
and uk are Gaussian fields. Recognizing that e−k

2σ2u=2 is
the Fourier transform of a Gaussian with mean zero and
variance σ2u, we have

hnsðsÞi ¼
1

χ2
n̄
Z

∞

0

dχ0χ02
1ffiffiffiffiffiffi
2π

p
σu

e−ðχ−χ0Þ2=2σ2u : ðA2Þ

That the mean density hnsðsÞi is a position-dependent
quantity may seem strange at first, but this is just a
consequence of the loss of statistical homogeneity in the
wide-angle regime, with the observer representing a pre-
ferred location in space. Indeed, in the distant-observer
limit, where homogeneity is retained, this χ dependence
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drops out: if χ ≫ σu, then the Gaussian in the integrand is
sharply peaked around χ0 ¼ χ, so that the integral evaluates
to approximately χ2. Therefore hnsi → n̄ as χ=σu → ∞,
so that it is perfectly valid to take hnsi ¼ n̄ in this limit. But
short of this limit there are corrections, which decrease with
depth. Fortunately, convergence to this limit is rapid.
Quantitatively, with the ΛCDM value σu ¼ 5.8h−1 Mpc
(corresponding to a velocity dispersion of about
300 km s−1), we find for depths χ ≥ 100h−1 Mpc (or
z ≥ 0.023) that the deviations from hnsðsÞi=n̄ ¼ 1 are
≤0.3%, i.e. small in most situations of interest.
There are of course corrections to these estimates

from non-Gaussianity due to nonlinear gravitational evo-
lution. These corrections are largest on small scales
k ∼ 1=χ. On intermediate scales k ∼ 0.1h Mpc−1, where
nonlinearities begin to be important, we expect perturba-
tively small departures from Gaussianity. This translates to
non-Gaussianities becoming important at depths χ ≃
60h−1 Mpc (z ∼ 0.01) or shallower, i.e. small or negli-
gible by the time we reach the convergence scale
χ ≃ 100h−1 Mpc. This means that, unless one’s sample
contains very local galaxies, there seems little harm in
taking hnsðsÞi ¼ n̄ (though one can always include the
corrections should they be wanted).

APPENDIX B: RECOVERING THE STANDARD
GAUSSIAN STREAMING MODEL OF THE

DISTANT-OBSERVER LIMIT

In this appendix we verify that the usual distant-observer
streaming model (50) is recovered as a special case of the
full-sky streaming model (49). Clearly we must end up with
one less integral, leaving an integral over the separation rk.
However, this is not as straightforward as simply taking the
distant-observer limit, χ1; χ2 → ∞ and n̂1 → n̂2. It turns
out to be convenient to center the coordinates on the red-
shift-space positions, with the coordinate transformation
χ01¼χ1−q1 and χ02 ¼ χ2 − q2, or χ 0 ¼ χ − q. Equation (49)
then reads

1þ ξsðχ1;χ2; n̂1 · n̂2Þ

¼
Z

χ1

−∞
dq1

�
1−

q1
χ1

�
2
Z

χ2

−∞
dq2

�
1−

q2
χ2

�
2

½1þ ξðrÞ�

×
1

2πjCðrÞj1=2 exp
�
−
1

2
ðq− μðrÞÞTC−1ðrÞðq− μðrÞÞ

�
:

ðB1Þ

(Here we have ignored for simplicity the selection effects
and the lookback time so that μ and C depend on a triangle
configuration parametrized by r, i.e. we are working on a
constant-time hypersurface.) In the limit χ1; χ2 → ∞ the
first two factors in parentheses tend to unity (noting that at
large q1, q2 these factors become irrelevant as the Gaussian
rapidly takes the whole integrand to zero). Thus, setting

these factors to unity, and doing some straightforward
matrix algebra, the foregoing expression becomes

1þ ξs ¼
Z

∞

−∞
dq1

Z
∞

−∞
dq2

1þ ξðrÞ
2πσ2

ffiffiffiffiffiffiffiffiffiffiffiffi
1− ρ2

p

× exp

�
−
1

2

ðΔ1 −Δ2Þ2 þ 2ð1− ρÞΔ1Δ2

σ2ð1− ρ2Þ
�
; ðB2Þ

where as shorthand Δ1 ≡ q1 − μ1 and Δ2 ≡ q2 − μ2, while
C11 ¼ C22 ¼ σ2 and C12 ¼ ρσ2, where σ ¼ σðrÞ and
ρ ¼ ρðrÞ (or functions of q1 and q2). Defining the line-
of-sight separation in real and redshift space, rk ¼ χ01 − χ02
and sk ¼ χ1 − χ2, and the midpoints r̄k ¼ ðχ01 þ χ02Þ=2
and s̄k ¼ ðχ1 þ χ2Þ=2, we have q1 − q2 ¼ sk − rk and
ðq1 þ q2Þ=2 ¼ s̄k − r̄k, which implies q1 ¼ s̄k − r̄k þ
1
2
ðsk − rkÞ and q2 ¼ s̄k − r̄k − 1

2
ðsk − rkÞ. (Note that sk

and s̄k are fixed by the redshift-space configuration.)
Making another change of coordinates, ðq1; q2Þ to
ðrk; r̄kÞ, we have after some more algebra

1þ ξsðsk; s⊥Þ ¼
Z

∞

−∞
drk

1þ ξðrÞ
2πσ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2

p

× exp

�
−
1

2

ðsk − rk − u12Þ2
2σ2ð1 − ρÞ

�

×
Z

∞

−∞
dr̄k exp

�
−
ðs̄k − r̄kÞ2
σ2ð1þ ρÞ

�
; ðB3Þ

where we recognized that μ1 − μ2 ¼ hukðx1Þiδ;c −
hukðx2Þiδ;c ≡ u12, and noted that u12, σ, and ρ depend
on rk, but not r̄k, hence the last integral. Here we have
r2 ¼ r2k þ r2⊥ and r⊥ ¼ s⊥. Upon doing the last (Gaussian)
integral over r̄k and noting that 2σ2ð1 − ρÞ ¼ 2C11 −
2C12 ¼ hðΔukÞ2iδ;c ≡ σ212, we hence recover Eq. (50),
the usual Gaussian streaming model, i.e. in the distant-
observer limit.

APPENDIX C: LINEAR THEORY MULTIPOLES

In this appendix we calculate the contributions to the
multipoles from wide-angle effects and inverse-distance
terms (from the selection function), filling in some of the
details of Sec. VI B. We will compute from Eq. (11) the
leading-order wide-angle corrections, i.e. at OðϵÞ, and will
consider the cross-correlation of two different tracers,
described by linear bias bA and bB. For this calculation
it is convenient to start with Eq. (7), which for the cross-
correlation function is given by simply replacing δðx1Þ →
bAδðx1Þ and δðx2Þ → bBδðx2Þ:

LAWRENCE DAM and CAMILLE BONVIN PHYS. REV. D 108, 103505 (2023)

103505-14



1þ ξsðs;μ; dÞ ¼
1

χ21χ
2
2

Z
χ021 dχ

0
1

Z
χ022 dχ

0
2

Z
d2κ
ð2πÞ2 e

−iκ·ðχ−χ 0Þ

× hð1þ bAδ1Þð1þ bBδ2Þeiκ·wi: ðC1Þ

Here we have used the shorthand δ1 ¼ δðx1Þ and
δ2 ¼ δðx2Þ, and as before w ¼ ðn̂1 · uðx1Þ; n̂2 · uðx2ÞÞ.
For convenience we write UiðrÞ≡ huiðx1Þδðx2Þi and
ΨijðrÞ ¼ huiðx1Þujðx2Þi for the velocity–density and
velocity–velocity correlation functions. In terms of the
(linear) power spectra,

UiðsÞ ¼
Z

d3k
ð2πÞ3 e

−ik·s iki
k2

PθδðkÞ

¼ −∂i
Z

k2dk
2π2

1

k2
j0ðksÞPθδðkÞ; ðC2Þ

ΨijðsÞ ¼
Z

d3k
ð2πÞ3 e

−ik·s iki
k2

−ikj
k2

PθθðkÞ

¼ −∂i∂j
Z

k2dk
2π2

1

k4
j0ðksÞPθθðkÞ; ðC3Þ

where θ is the velocity divergence, ∂i ¼ ∂=∂si, and we have
used that ui ¼ iki=k2θ (for a potential flow). Recall that the
separation r ¼ x1 − x2 is given in terms of the radial
distances as rðχ 0Þ ¼ χ01n̂1 − χ02n̂2, and in redshift space
sðχ Þ ¼ χ1n̂1 − χ2n̂2 ¼ rðχ Þ.
To evaluate Eq. (C1), we expand the generator and keep

only up to quadratic terms:

hð1þ bAδ1Þð1þ bBδ2Þeiκ·wi

≃ 1þ ξðrÞ þ iκahwaðbAδ1 þ bBδ2Þi −
1

2
κaκbhwawbi

¼ 1þ ξðrÞ þ iðbBκ1n̂i1 − bAκ2n̂i2ÞUiðrÞ
− κ1κ2n̂i1n̂

j
2ΨijðrÞ; ðC4Þ

where we have dropped zero-lag terms since they are
absent in the linear predictions. Here we have used that
hu2δ1i ¼ −hu1δ2i, and hu1δ1i ¼ hu2δ2i ¼ 0, which fol-
low from isotropy of the underlying fields.
We will now evaluate Eq. (C1) using the expansion (C4).

This is a two-step calculation: first evaluate the κ integral to
yield a Dirac delta function, then evaluate the radial
integrals. First, focus on the Ui term in Eq. (C4); applying
the κi integral on this we have

Z
d2κ
ð2πÞ2 e

−iκ·ðχ−χ 0ÞiðbBκ1n̂1 − bAκ2n̂2Þ · UðrÞ

¼ UðrÞ ·
�
bAn̂2

∂

∂χ2
− bBn̂1

∂

∂χ1

�
δDðχ − χ 0Þ:

Inserting this back into the line-of-sight integrals and doing
the integration with the help of the delta functions, we obtain

1

χ21χ
2
2

�
bA

∂

∂χ2
n̂2 − bB

∂

∂χ1
n̂1

�
· χ21χ

2
2UðsÞ

¼ bA
1

χ22

∂

∂χ2
ðχ22UÞ · n̂2 − bB

1

χ21

∂

∂χ1
ðχ21UÞ · n̂1:

Note that ∂s=χ1¼ n̂1 ·∇s¼ n̂1 · ŝ and ∂s=χ2 ¼ −n̂2 · ∇s ¼
−n̂2 · ŝ. Next, the Ψij term in Eq. (C4); plugging this into
the κi integral gives

−
1

2

Z
d2κ
ð2πÞ2 e

−iκ·ðχ−χ 0Þκ1κ2n̂i1n̂
j
2ΨijðrÞ

¼ ΨijðrÞn̂i1n̂j2
∂

∂χ1

∂

∂χ2
δDðχ − χ 0Þ:

Inserting this back into Eq. (C1) and doing the radial
integrals we have

1

χ21

∂

∂χ1
χ21

1

χ22

∂

∂χ2
χ22ΨijðsÞn̂i1n̂j2

¼
�

∂

∂χ1

∂

∂χ2
þ 2

χ1

∂

∂χ2
þ 2

χ2

∂

∂χ1
þ 2

χ1

2

χ2

�
ΨijðsÞn̂i1n̂j2;

where the second and third terms on the right-hand side are
order H=k, while the last is order ðH=kÞ2.
Altogether we have

ξsðχ1; χ2; n̂1 · n̂2Þ ¼ bAbBξðsÞ − bB
1

χ21

∂

∂χ1
χ21Uin̂i1

þ bA
1

χ22

∂

∂χ2
χ22Uin̂i2

þ 1

χ21

∂

∂χ1
χ21

1

χ22

∂

∂χ2
χ22Ψijn̂i1n̂

j
2; ðC5Þ

where ξ,Ui, andΨij depend on χ1 and χ2 through s, and we
remember that ∂n̂i=∂χ ¼ 0, i.e. lines of sight are always
constant with respect to their radial derivatives. This
equation is the wide-angle formula for the linear correlation
function and as we just saw the last derivative produces
an order ðH=kÞ2 term that we will henceforth ignore.
Evaluating the derivatives in Eq. (C5) yields Eq. (56) in the
main text.
We now move onto computing the wide-angle correc-

tions. For this it is convenient to switch to Cartesian
coordinates, noting that for any function fðsÞ, with s ¼
s1 − s2, we have by the chain rule ∂f=∂χ1 ¼ n̂j1∂jf and

∂f=∂χ2¼−n̂j2∂jf, since ∂sj1=∂χ1¼ n̂j1 and ∂sj2=∂χ2¼ n̂j2.
With these, Eq. (56) becomes
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ξsðχ1; χ2; n̂1 · n̂2Þ ¼ bAbBξðsÞ − ðbBn̂i1n̂j1 þ bAn̂i2n̂
j
2Þ∂iUj

− n̂i1n̂
j
2n̂

k
1n̂

l
2∂k∂lΨij

− bB
2

χ1
Uin̂i1 þ bA

2

χ2
Uin̂i2

þ
�
2

χ1
n̂k1 −

2

χ2
n̂k2

�
∂kΨijn̂i1n̂

j
2; ðC6Þ

where as a shorthand ∂i ¼ ∂=∂si. Note that when bA ¼ bB
the wide-angle corrections enter terms in the first line at
second order in ϵ, and when bA ≠ bB they enter at first
order in ϵ.
It now remains to compute the multipoles. We will first

compute the zeroth-order multipoles, i.e. the usual Kaiser
multipoles, then the first-order multipoles that are associ-
ated with the wide-angle contributions. The following
derivatives will be needed:

1

k2
∂m∂nj0ðksÞ ¼ −

j1ðksÞ
ks

δmn þ j2ðksÞŝmŝn; ðC7aÞ

1

k3
∂j∂m∂nj0ðksÞ ¼

j2ðksÞ
ks

ðŝjδmn þ 2 perm:Þ
− j3ðksÞŝjŝmŝn; ðC7bÞ

1

k4
∂i∂j∂m∂nj0ðksÞ ¼

j2ðksÞ
ðksÞ2 ðδijδmn þ 2 perm:Þ

−
j3ðksÞ
ks

ðŝiŝjδmn þ 5 perm:Þ
þ j4ðksÞŝiŝjŝmŝn; ðC7cÞ

where ∂i ≡ ∂=∂si. Note that ð2lþ 1ÞjlðxÞ=x ¼ jl−1ðxÞ þ
jlþ1ðxÞ.

1. Distant-observer limit

To recover the Kaiser multipoles, set n̂1 ¼ n̂2 ¼ ez ¼
ð0; 0; 1Þ. Then Eq. (C6) simplifies to

ξsðχ1; χ2; n̂1 · n̂2Þ ¼ bAbBξðsÞ − ðbA þ bBÞ∂3U3 − ∂
2
3Ψ33

−
�
bB

2

χ1
− bA

2

χ2

�
U3

þ
�
2

χ1
−

2

χ2

�
∂3Ψ33: ðC8Þ

In the distant-observer limit, we can immediately discard
all terms order ϵ and higher, namely, the last two terms in
Eq. (C8), since with χ ∼ d and U ∼ ∂Ψ ∼ s they are OðϵÞ.
The remaining terms evaluate to Eqs. (58a) and (58b) in the
main text, and from these equations it is straightforward to
assemble the Kaiser multipoles (52). Note that for the

autocorrelation function (bA ¼ bB), wide-angle effects
enter the multipoles at ϵ2, not order ϵ. This is only true
in the midpoint (and bisector) parametrizations, however.

2. Wide-angle contributions at leading order

Referring back to Eq. (C6), wide-angle corrections enter
the terms U and ∂U at order ϵ. By contrast, wide-angle
corrections enter the ∂Ψ and ∂

2Ψ terms at order ϵ2, so do
not need to be considered further in this leading-order
calculation.
The fact that the corrections are not all second order is a

consequence of the bias parameters spoiling invariance of
the correlations under pair interchange. We thus need
only focus on the Ui terms. To develop Eq. (C6) further
we use the leading-order expressions n̂1 ¼ ez þ ϵ

2
nð1Þ and

n̂2 ¼ ez − ϵ
2
nð1Þ, where nð1Þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
ex. For the ∂iUj

term in Eq. (C6) we have, with the help of Eq. (C7a),

ðbBn̂i1n̂j1þbAn̂i2n̂
j
2Þ∂iUj

¼ðbAþbBÞ
Z

k2dk
2π2

�
1

3
j0ðksÞ−

2

3
j2ðksÞL2ðμÞ

�
PθδðkÞ

þ2

5
ϵðbB−bAÞ

Z
k2dk
2π2

ð−L1ðμÞþL3ðμÞÞj2ðksÞPθδðkÞ;

ðC9Þ

where the second term in this expression is the wide-angle
correction (which agrees with Eqs. (52) and (53) in
Ref. [12]; see also Eq. (3.19) in Ref. [46]). For the Ui
terms in Eq. (56) we use Eq. (C2) and contract with the
appropriate line of sight. The result is Eq. (60). Gathering
these results together, it is a straightforward exercise to
construct the multipoles (61).

APPENDIX D: END-POINT PARAMETRIZATION

The end-point parametrization is less symmetric than the
midpoint parametrization (it induces odd multipoles) but is
often preferred for practical reasons, e.g. for power-
spectrum estimation [47,48]. For completeness, in this
appendix we derive the relation between the multipoles
in the midpoint parametrization (used in this work) and
that in the endpoint parametrization, denoted ξl and ξepl ,
respectively.
In general, the (cosine of the) angular separation can

be defined as μ ¼ d̂ · ŝ. In the midpoint parametrization
d̂ ¼ ez, while in the end-point parametrization d̂ ¼ n̂1

(or alternatively d̂ ¼ n̂2); see Fig. 3. Based on a trigono-
metric analysis of Fig. 1, we find that the separations are
related by
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μ ¼ μep þ
ϵ

2
ðμ02 − 1Þ þOðϵ2Þ;

μep ¼ μ −
ϵ

2
ðμ2 − 1Þ þOðϵ2Þ: ðD1Þ

The expansion parameter in the end-point parametrization
is ϵep ≡ s=s1 and ϵep ¼ ϵþOðϵ2Þ; since we will be work-
ing to leading order we may use ϵep or ϵ interchangeably.
The relation between Legendre polynomials in the

midpoint and end-point parametrizations is at leading order
(for l ≥ 1)

LlðμÞ ¼ Ll

�
μep þ

1

2
ϵðμ2ep − 1Þ

�

≃ LlðμepÞ þ
ϵ

2
ðμ2ep − 1Þ dLl

dμep

¼ LlðμepÞ þ
ϵ

2
lðμepLlðμepÞ − Ll−1ðμepÞÞ;

where in the last equality we have used the recursion
relation ðx2 − 1ÞdLl=dx ¼ lðxLlðxÞ − Ll−1ðxÞÞ. Thus, at
leading order in ϵ we have

ξsðs; μÞ≡
X
l

ξð0Þl ðsÞLlðμÞ

¼
X
l

ξð0Þl ðsÞ
�
LlðμepÞ

þ ϵ

2
lðμepLlðμepÞ − Ll−1ðμepÞÞ

�
:

Therefore, the multipoles in the midpoint parametrization
are related to those in the end-point parametrization by

ξepl ðsÞ≡ 2lþ 1

2

Z
1

−1
dμepLlðμepÞξsðs; μÞ

¼ ξð0Þl ðsÞ þ ϵ
X
l0

Mll0ξð0Þl0 ðsÞ þOðϵ2Þ; ðD2Þ

where the coupling coefficients are given by

Mll0 ≡ 1

2

2lþ 1

2

Z
1

−1
dμepLlðμepÞ

× l0ðμepLl0 ðμepÞ − Ll0−1ðμepÞÞ: ðD3Þ

The nonzero coefficients areM12 ¼ −3=5,M32 ¼ 3=5, and
M34 ¼ −10=9, i.e. the only induced multipoles (at order ϵ)
are for l ¼ 1, 3, the dipole and octupole:

ξepð1Þ1 ¼ −
3

5
ξð0Þ2 ; ξepð1Þ3 ¼ 3

5
ξð0Þ2 −

10

9
ξð0Þ4 ;

i.e. there is a leakage of the even multipoles into the odd
multipoles. This expression agrees with Eq. (4.14) in
Ref. [44] upon inserting the Kaiser multipoles (52).
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