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A Euclidean bounce describing vacuum decay can be considered as an infinite stack of concentric
thin shells to which a thin-wall action can be assigned. The integral over all shells produces then a
tunneling action that is precisely the action functional in field space of the so-called tunneling potential
formalism. This procedure, which works also when gravity is included, gives the simplest derivation of
such actions.
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I. INTRODUCTION

In the problem of false vacuum decay in quantum field
theory, there is one particular situation that can be treated
semianalytically and simply: when the energy difference
between the false and true vacua is small compared to other
scales. In this case, the scalar field ϕðrÞ of the Euclidean
bounce that describes the decay makes a sharp transition
between the vacua at a well-defined bounce radius (thus the
name “thin-wall case” [1]). However, in general, the
bounce has a thick wall, and no analytical treatment is
possible.
A generic bounce can be thought of as an infinite stack of

concentric thin-wall shells of infinitesimal width (from ϕ to
ϕþ dϕ) across which the (Euclidean) energy changes
infinitesimally. As shown in this paper, one can associate
an infinitesimal action to such slices, given by the simple
thin-wall expression, generalized in the appropriate way.
Integrating over all slices one recovers the tunneling
action for the general case, albeit written in a particular
form: the one recently proposed in the tunneling potential
formalism [2,3]. The next section shows how this is done
(also with gravity) and the appendix extends the derivation
to general spacetime dimension d > 2.
The tunneling potential formalism [2,3] for the calcu-

lation of tunneling actions does not rely on Euclidean
bounces and reformulates the calculation as a simple
variational problem in field space. Instead of a bounce
one finds a “tunneling potential” function, VtðϕÞ, that
connects the false vacuum and (the basin of) the true

vacuum and minimizes an action functional S½Vt�, an
integral in field space of a simple action density. The
resulting action reproduces the Euclidean result and the
formalism has a number of appealing properties that have
been discussed elsewhere.
The action functional S½Vt� was first derived starting

from the Euclidean approach, using the relation Vt ¼
V − ϕ̇2=2 to get rid of all Euclidean quantities in favor
of VtðϕÞ and its derivatives, and arriving at a particular
second-order differential equation that Vt should satisfy.
Then S½Vt� is obtained so that its minimization leads to that
differential equation for Vt [2,3] and its normalization is
right to reproduce the Euclidean action. An alternative
(simpler) derivation of the Vt action uses a canonical
transformation between Euclidean and Vt formalisms [4].
The derivation of S½Vt� presented now in this paper is the
simplest.

II. THICK WALL AS INFINITE STACK
OF THIN WALLS

A. No gravity

The thin-wall tunneling action (d ¼ 4 spacetime dimen-
sions, no gravity) is

Sthin ¼
27π2σ4

2ϵ3
; ð1Þ

where σ is the wall tension and ϵ > 0 the difference
in energy between the two vacua. In the Euclidean
formalism [1] one has [false vacuum at ϕþ, true vacuum
at ϕ−, with V� ≡ Vðϕ�Þ]

σ ≃
Z

ϕ−

ϕþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV − V−Þ

p
dϕ;

ϵ ≃ −ΔV ≡ −V− þ Vþ > 0: ð2Þ
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In the Vt formalism, σ and ϵ are defined more pre-
cisely, as

σ ¼
Z

ϕ0

ϕþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV − VtÞ

p
dϕ;

ϵ ¼ −ΔVt ≡ −Vtðϕ0Þ þ VtðϕþÞ > 0; ð3Þ

where ϕ0 is the “exit” point for tunneling [ϕ0 ¼ ϕð0Þ in the
Euclidean formalism] with ϕ0 ≃ ϕ− in the thin-wall case. In
(3), ϵ is written in terms of Vt rather than V, using the fact
that Vt ¼ V at ϕþ and ϕ0 (points at which ϕ̇ ¼ 0). In σ,
VtðϕÞ is the solution of the corresponding differential
equation. The left plot in Fig. 1 shows an example of
Vt. In the thin-wall case, however, Vt can be approximated
well by a nearly flat monotonic function that connects the
two vacua [2].
Now consider any (generally thick-wall) bounce as a

collection of concentric thin slices from ϕþ to ϕ0. Through
each of them the field and Vt are changing a little and we
assign to them a differential wall tension and differential
change in (Euclidean) energy as

dσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV − VtÞ

p
dϕ; dϵ ¼ −V 0

tdϕ: ð4Þ

The relation Vt ¼ V − ϕ̇2=2 tells us that Vt can also be
interpreted as (minus) the Euclidean energy, so that dϵ is
the infinitesimal change in Euclidean energy across the
wall. To get the thick wall action we integrate the thin-wall
action for all slices:

S ¼
Z

ϕ0

ϕþ
dSthin ¼

Z
ϕ0

ϕþ

27π2dσ4

2dϵ3

¼ 54π2
Z

ϕ0

ϕþ

ðV − VtÞ2
ð−V 0

tÞ3
dϕ; ð5Þ

which reproduces exactly the tunneling action in the Vt
formalism [2].

B. Gravity on: AdS/Minkowski vacua

If gravity is included, the thin-wall action for the decay
of a Minkowski or AdS false vacuum can be written as [5,6]

Sthin ¼
12π2

κ2V

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3κV=C2

q
− 1

����ϕ0

ϕþ

¼ 12π2

κ2Vt

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3κVt=C2

q
− 1

����ϕ0

ϕþ
; ð6Þ

where κ ≡ 1=m2
P and C2 is

C2 ¼ 3κVtþ þ 1

σ2

�
ϵ −

3

4
κσ2

�
2

¼ 3κV− þ 1

σ2

�
ϵþ 3

4
κσ2

�
2

: ð7Þ

In the literature, this formula is written in terms of V rather
than Vt but we use the fact that VðϕþÞ ¼ VtðϕþÞ≡ Vtþ
and Vðϕ0Þ ¼ Vtðϕ0Þ to rewrite it in terms of Vt, which is
the natural choice to make the thick-from-thin connection.
Similarly, σ and ϵ are defined as in (3), although now Vt
solves an equation of motion that includes gravitational
effects [3].
We slice as before a thick wall in an infinite collection of

concentric thin walls with dσ and dϵ given by the same
formulas (4). For a given thin-wall slice with field between
ϕ and ϕþ dϕ, C2 takes now the value

C2ðϕÞ ¼ 3κVt þ
dϵ2

dσ2
¼ D2

2ðV − VtÞ
; ð8Þ

where

FIG. 1. Examples of tunneling potentials Vt for AdS decay (left) and dS decay (right). For Minkowski or no-gravity cases, Vt is
monotonic and qualitatively similar to the AdS case.
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D2 ≡ V 02
t þ 6κðV − VtÞVt: ð9Þ

From this it follows
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3κVt=C2ðϕÞ

p
¼ −V 0

t=D. For
such slice we obtain the infinitesimal action

dSthin¼
12π2

κ2Vt

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

3κVt

C2ðϕÞ

s
−1

	����
VtðϕþdϕÞ

VtðϕÞ

¼ 6π2

κ2V2
t

"
2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

3κVt

C2ðϕÞ

s
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 3κVt

C2ðϕÞ
q

#
V 0
tdϕ: ð10Þ

Integrating over all slices and using the previous relations,
the thick-wall action is

S ¼
Z

ϕ0

ϕþ
dSthin ¼

6π2

κ2

Z
ϕ0

ϕþ

ðDþ V 0
tÞ2

DV2
t

dϕ; ð11Þ

which reproduces the tunneling action of the Vt
formalism [3]. Note that dSthin > 0.

C. Gravity on: dS vacua

For the dS case, as is well known [3,6,7], the vacuum
decay can be considered as composed of two parts, a
Hawking-Moss type transition from the false vacuum field
value ϕþ to a field value ϕ0þ with higher energy and then a
Coleman-De Luccia (CdL) type of transition from ϕ0þ to
ϕ0. In the Vt formalism, the first part has Vt ¼ V as
depicted in Fig. 1, right plot.
For the Hawking-Moss part, we first have to derive the

“thin-wall” approximation for that case. The Hawking-
Moss rate is [8]

SHM ¼ 24π2

κ2

�
1

Vþ
−

1

V top

�
; ð12Þ

where V top is the value of the potential at the top of the
barrier that makes the vacuum classically stable.We can talk
of a thin-wall HM transition (thin in field space) from ϕ to
ϕþ dϕ simply setting Vþ ¼ VðϕÞ and V top ¼ Vðϕþ dϕÞ
to get

dSHM ¼ 24π2V 0

κ2V2
dϕ ¼ 24π2V 0

t

κ2V2
t

dϕ; ð13Þ

where, for the last equality, we have used that Vt ¼ V in the
HM region of the decay.
For the CdL part of the transition the thin-wall

result [6,7] can be written as

Sthin ¼
12π2

κ2



1

Vtþ

�
1 −

1

Cσ

�
ϵ −

3κσ2

4

�	

−
1

Vt0

�
1 −

1

Cσ

�
ϵþ 3κσ2

4

�	�
; ð14Þ

with C2 as in (7). For the slice between ϕ and ϕþ dϕ we
get C2ðϕÞ as in (8) for the AdS/Minkowski case. Setting
Vtþ ¼ VtðϕÞ, Vt0 ¼ Vtðϕþ dϕÞ, and using dσ and dϵ as
in (4)

dSthin ¼
6π2

κ2
ðDþ V 0

tÞ2
DV2

t
dϕ; ð15Þ

which is, again, the correct action density [3]. Adding up all
infinitesimal actions from HM and CdL parts we finally get

S ¼ 24π2

κ2

Z
ϕ0þ

ϕþ

V 0
t

V2
t
dϕþ 6π2

κ2

Z
ϕ0

ϕ0þ

ðDþ V 0
tÞ2

DV2
t

¼ 6π2

κ2

Z
ϕ0

ϕþ

ðDþ V 0
tÞ2

DV2
t

; ð16Þ

in agreement with the action for dS decay in the Vt
formalism [3].

III. CONCLUSIONS

Although the thin-wall action is a particular limit of the
general tunneling action, this paper shows how the general
(thick) action can be recovered from the particular (thin)
case: consider any tunneling bounce as an infinite collec-
tion of concentric thin shells, apply to them the thin-wall
action (defined in a concrete way), and integrate over the
full collection.
Obviously, the thin-to-thick connection discussed in this

paper does not lead to an algorithm useful to calculate the
action or Vt (e.g., numerically) as the thin-wall infinitesi-
mal actions involve the global Vt.
The result is nevertheless interesting because the general

action obtained is naturally a functional in field space and
corresponds precisely to the action used in the tunneling
potential formalism. The derivation in this paper can thus
be considered as the simplest derivation of such actions.
Moreover, besides rederiving such known results, the
method can be used to derive such actions in field space
in novel situations [9].
Alternatively, the result can be interpreted as validating

the picture of the slices as thin-wall shells between nearby
Euclidean energies carrying an infinitesimal wall tension in
a sense made precise by Eq. (4). This also lends support to
the definition

σ ¼
Z

ϕ0

ϕþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV − VtÞ

p
dϕ ð17Þ
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for general walls. In terms of the field slope, this corre-
sponds to σ ¼ R jϕ̇jdϕ, which has been advocated else-
where (e.g., in [10]).
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APPENDIX: GENERAL d

1. No gravity

The derivation goes through for d > 2 spacetime dimen-
sions. Without gravity, the starting point is the thin-wall
action (see e.g., [11,12])

Sthin ¼
ðd − 1Þd−1πd=2σd
Γð1þ d=2Þϵd−1 ; ðA1Þ

where σ is the wall tension and ϵ > 0 the difference in
energy between the two vacua, as in (3). The total thick-
wall action is then, using (4),

S ¼
Z

ϕ0

ϕþ
dSthin ¼

Z
ϕ0

ϕþ

ðd − 1Þd−1πd=2ðdσÞd
Γð1þ d=2ÞðdϵÞd−1

¼ ðd − 1Þd−1
Γð1þ d=2Þ

Z
ϕ0

ϕþ

½2πðV − VtÞ�d=2
ð−V 0

tÞd−1
dϕ; ðA2Þ

which reproduces exactly the tunneling action in the Vt
formalism.

2. Gravity on: Minkowski/AdS vacua

Including gravity, the thin-wall action for AdS or
Minkowski decay reads

Sthin ¼ −
πd=2ðd− 1Þd−2

κΓð1þ d=2ÞCd−2

× ½d ffiffiffiffiffiffiffiffiffiffi
1− z

p þ zðd− 1Þ2F1ð1=2; d=2;1þ d=2; zÞ�jϕ0

ϕþ ;

ðA3Þ

where z ¼ 2κdVt=C2, κd ¼ κðd − 1Þ=ðd − 2Þ, and

C2 ¼ 2κdVtþ þ 1

σ2

�
ϵ −

1

2
κdσ

2

�
2

¼ 2κdVt− þ 1

σ2

�
ϵþ 1

2
κdσ

2

�
2

: ðA4Þ

For the infinitesimal slices we have

C2ðϕÞ ¼ 2κdVt þ
ϵ2

σ2
¼ D2

d

2ðV − VtÞ
; ðA5Þ

with D2
d ¼ V 02

t þ 4κdðV − VtÞVt, and the infinitesimal
action is

dSthin¼
ðd−1Þd−1πd=2
CdΓð1þd=2Þ

×

�
−

dffiffiffiffiffiffiffiffiffi
1−z

p þðd−1Þ2F1ð1=2;d=2;1þd=2;zÞ
	
V 0
tdϕ:

ðA6Þ
Using the identity

2F1ð1=2;d=2;1þd=2;zÞ

¼ 1

d−1

�
dffiffiffiffiffiffiffiffiffi
1−z

p −ð1−zÞ−d=22F1

�
d−1

2
;
d
2
;
d
2
þ1;

z
z−1

�	
;

ðA7Þ

we arrive at the action

S ¼ ðd − 1Þd−1
Γð1þ d=2Þ

Z
ϕ0

ϕþ

½2πðV − VtÞ�d=2
jV 0

tjd−1

× 2F1

�
d − 1

2
;
d
2
;
dþ 2

2
; 1 −

D2
d

V 02
t

�
dϕ; ðA8Þ

which reproduces the result obtained in the Vt formal-
ism [12].

3. Gravity on: dS vacua

For the dS case, the thin-wall approximation gives the
action (for the CdL part) [12]

Sthin ¼
πd=2ðd − 1Þd−2

κCd−2Γð1þ d=2Þ ½2FðzTÞ − FðzþÞ − Fðz0Þ

þ GðzþÞ −GðzTÞ�; ðA9Þ
where

FðzÞ ¼ d
ffiffiffiffiffiffiffiffiffiffi
1 − z

p þ zðd − 1Þ2F1ð1=2; d=2; d=2þ 1; zÞ;
GðzÞ ¼ 2ðd − 1Þz1−d=22F1ð1=2; d=2; d=2þ 1; 1Þ; ðA10Þ

with z ¼ 2κdVt=C2 and C2 is as given in (A4). The
qualitative shape of Vt can be of three different types [12],
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controlled by the value of zT . When the maximum of Vt
happens at ϕþ (ϕ0), then zT ¼ zþ (zT ¼ z0). If the
maximum occurs at some point in between, then zT ¼ 1.
For the infinitesimal slices we just need to consider the

two former cases, zT ¼ zþ and zT ¼ z− (corresponding to
V 0
t < 0 and V 0

t > 0 respectively). The case zT ¼ 1 would
occur only for the infinitesimal slice right at the maximum
of Vt and is therefore irrelevant for the final result. Using
CðϕÞ as given in (A5) and replacing zþ¼2κdVtðϕÞ=CðϕÞ2,
z0 ¼ 2κdVtðϕþ dϕÞ=CðϕÞ2 we get, for the case zT ¼ zþ

dSthin ¼
πd=2ðd − 1Þd−2

κCd−2Γð1þ d=2Þ ½−F
0ðzÞ� 2κdV

0
t

C2
dϕ; ðA11Þ

and for the case zT ¼ z0

dSthin¼
πd=2ðd−1Þd−2

κCd−2Γð1þd=2Þ½F
0ðzÞ−G0ðzÞ�2κdV

0
t

C2
dϕ; ðA12Þ

where z ¼ 2κdVtðϕÞ=CðϕÞ2. In both cases, using the
identity (A7) and paying attention to the sign of V 0

t, one
arrives at

dSthin ¼
πðdþ1Þ=2Rd

t

Γ½ðdþ 1Þ=2� ðV
0
t þ jV 0

tjÞdϕ

þ 2F1

�
d − 1

2
;
d
2
;
d
2
þ 1; 1 −

D2

V 02
t

�
s0dϕ; ðA13Þ

where

R2
t ¼

ðd − 1Þðd − 2Þ
κjVtj

;

s0 ¼
ðd − 1Þd−1½2πðV − VtÞ�d=2

Γð1þ d=2ÞjV 0
tjd−1

: ðA14Þ

This result agrees with the action density obtained in [12].
For the Hawking-Moss part of the dS action one has [12]

SHM ¼ −4
ffiffiffi
π

p
V

ðd − 2ÞΓðdþ1
2
Þ
�
πðd − 1Þðd − 2Þ

2κV

	
d=2

����V top

Vþ

: ðA15Þ

The infinitesimal action for a HM transition from ϕ to
ϕþ dϕ, obtained taking the ϕ derivative of the action
above, should then be integrated in the HM region of the
transition, between ϕþ and some ϕ0þ. One therefore gets

δHMS ¼ −4
ffiffiffi
π

p
Vt

ðd − 2ÞΓðdþ1
2
Þ
�
πðd − 1Þðd − 2Þ

2κVt

	
d=2

����Vt;0þ

Vtþ

: ðA16Þ

This reproduces the corresponding result in the Vt
formalism [12].
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