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This work explores the dynamical stability of cosmological models where dark matter and dark energy
can nonminimally couple to spacetime (scalar) curvature. Two different scenarios are presented here. In the
initial case, only dark matter sector is coupled to curvature in the presence of a quintessence scalar field. In
the second case both dark matter and the quintessence field are coupled to curvature. It is shown that one
can get an accelerating expansion phase of the Universe in both the cases. The nature of the fixed points
shows that there can be stable or unstable phases where the curvature coupling vanishes and dark energy
and dark matter evolve independently. On the other hand there can be stable accelerating expansion phases
where both the components are coupled to curvature.
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I. INTRODUCTION

Consistent evidence for the current pace of cosmic
expansion has been accumulating from various observa-
tional results [1–4] since 1998. Dark energy (DE) is an
exotic fluid that has been suggested to be responsible for
this phenomenon, its negative pressure may adequately
account for the observed expansion rate of the Universe.
This fluid is estimated to make up around 70% of the entire
energy content of the Universe [5–7]. Currently, the most
widely accepted cosmological model is the Λ-CDM model
[8], which consists of a cosmological constant dark energy
(DE) source and a dark matter (DM) component necessary
to enable the development of the structure conceivable in
the Universe. There are some theoretical issues with this
model, which have led some to propose the idea of dark
energy produced by a scalar field ϕ, within the framework
of general relativity [9,10]. Despite their seeming simplic-
ity, models based on scalar fields may generate intricate and
detailed phenomenologies while still generating predictions
that can be tested against existing data [4]. Most simply, DE
is produced by a canonical scalar field, the quintessence
field, that has no interactions with anything else in the
Universe [11,12]. Later on it was seen that there is no
essential reason to make this assumption, and in the
simplest extension, the scalar field ϕ is permitted to interact
with the matter sector [13–19]. In these cases, the coupling
has been introduced at the level of the continuity equation
by hand as ∇μT

μν
DM ¼ −Qν, ∇μT

μν
ϕ ¼ Qν, where Qν is the

interaction term. In these cases, the total energy-momentum

tensor is conserved; however, the field and fluid exchange
energy viaQν. One of the fundamental reasons for studying
this kind of extended coupled scalar field model is to
address the shortcomings of the Λ-CDM model; precisely,
the Hubble tension and the amplitude S8 of matter density
[20–25] difference between high- and low-redshift data
[26–29]. Although this approach seems to fit with cosmo-
logical data and reduces the Hubble and S8 tensions [30]
but in Ref. [31], it was argued that the covariant approach of
introducing the interaction term leads to several theoretical
problems. These issues have direct consequences in the
study of cosmological perturbations. Such hints dictate the
study of the interaction of DM-DE from the Lagrangian
approach, which yields the covariant energy-momentum
tensors and gives a consistent framework to study cosmo-
logical perturbations.
Several studies have been carried out [32–38] in which

the authors have studied how the fluid component interacts
with a scalar field sector. In these models the fluid generally
represents the DM sector and the field part represents the
DE sector. The action of a relativistic fluid was first
introduced in [39] and further developed by Brown [40].
The action contains fluid energy density, particle flux
number, and Lagrangian multipliers. When nonminimal
field-fluid interaction is incorporated, the two dark sectors
directly interact while individually both the components
remain minimally coupled to gravity. Nevertheless, this
coupling can be extended, as argued by Bettoni et al. in
[41], where the DM sector interacts with the curvature pro-
ducing a nonminimally coupled (NMC) system. The idea
of nonminimal coupling of matter with curvature [42–49] is
very rich. In previous cases, coupling with gravity have
introduced modification in the gravitational or fluid sectors.
The other approach discussed in [41], generalizes in such a
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way that any modifications in the matter sector can induce a
significant change in the gravitational sector. The curvature
couplings introduced are of two types; in one case the fluid
variable is directly coupled to the scalar curvature, R, in the
other case the fluid variable is coupled to or RμνUμUν.
These couplings are called conformal and disformal cou-
plings. Here R is a Ricci scalar, Rμν is a Ricci tensor andUμ

is the four velocities of the fluid.
In this paper we study the cosmological dynamics of

models which involve conformal coupling of the fluid in
addition to the quintessence field using the dynamical
system approach. The main motivation for the present work
is related to the question: How does the DE sector affect
cosmological models where DM is conformally coupled to
gravity? Can we find stable accelerating expansion phases
of the late universe in presence of conformal coupling?
Does the stable accelerated expansion phase show nonzero
gravitational coupling? We will answer these questions in
this work. It is seen that depending upon the conformal
coupling one may have qualitatively different classes of
stable accelerated expansion. Some of these stable expan-
sion phases are conformally decoupled and essentially
represent a two component universe; the two components
being DE and DM. For a different conformal coupling we
can also have stable accelerated expansion where DM is
always coupled to gravity. The latter kind of models are
cosmologically interesting as in these cases the theory of
structure formation becomes more involved. In this work,
we have also formulated a more adventurous model where
all the matter components, which includes the DM and DE
sector, together couple nonminimally to gravity via a
conformal like coupling. Doing so we have generalized
the model previously used in Ref. [41]. Our work primarily
uses the dynamical system methods to find out the stable
accelerated expansion phases of the late Universe. The
dynamical system approach is one of the crucial techniques
used to determine the stability and global dynamical
evolution of the system. The autonomous system of
equations are constructed by choosing a set of dimension-
less variables. The critical points in various models are
obtained, and a Jacobian matrix related to the autonomous
systems are constructed by linearizing the autonomous
equations around the fixed points. The nonzero real part of
the eigenvalues of this matrix determines the stability of the
system. However, this technique fails if any eigenvalue is
zero. In that case, more rigorous analytical techniques such
as center manifold theorem or Lyapunov stability have to
be applied [50–54].
The structure of the paper is as follows. In Sec. II, we

present the basic analysis of curvature coupling. We present
models involving conformal coupling between DM sector
and curvature in presence of an additional minimally
coupled canonical scalar field in Sec. III. In Sec. IV we
generalize our previous result and formulate a theory where
both the DM and DE are simultaneously coupled to scalar

curvature. We conclude or work with some relevant
discussion on the results in Sec. V.

II. DYNAMICS OF NONMINIMALLY COUPLED
CURVATURE FLUID

The action of a nonminimally coupled fluid with the
curvature as introduced in Ref. [41] is

Scf ¼
Z
Ω
d4x

� ffiffiffiffiffiffi
−g

p R
2κ2

−
ffiffiffiffiffiffi
−g

p
ρðn; sÞ

þ Jμðφ;μ þ sθ;μ þ βAα
A
;μÞ þ

ffiffiffiffiffiffi
−g

p
αfðn; sÞ R

2κ2

�
: ð1Þ

Here the first term is Einstein-Hilbert action, where g is the
determinant of the metric gμν, κ2 ¼ 8πG, and R is a Ricci
scalar. The second term quantifies action corresponding to
the relativistic fluid in which ρ is energy density of the
fluid, n is particle number density, s entropy density per
particle, and ðφ; θ; βA; αAÞ are the Lagrangian multipliers.
The commas φ;μ ≡ ∂μφ, are the partial derivative with
respect to space-time coordinates. The last term signifies
the interaction which couples the fluid with the curvature
with a dimensionless coupling constant α. The particle flux
number is

Jμ ¼ ffiffiffiffiffiffi
−g

p
nUμ; jJj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμνJμJν
p

;

n ¼ jJjffiffiffiffiffiffi−gp ; Uμ ¼ ð1; 0⃗Þ: ð2Þ

Here the fluid 4-velocity Uμ satisfying UμUμ ¼ −1. The
variation corresponding to the fluid variables is shown in
Appendix A. Varying the action with respect to gμν gives
the modified Einstein field equation as

1

κ2

�
Rμν −

1

2
Rgμν þ αfRμν þ αðgμν∇σ∇σf −∇μ∇νfÞ

�

¼
�
ρ −

1

2κ2
αfR

�
UμUν þ

�
nρ;n − ρ −

αR
2κ2

ðnf;n − fÞ
�

× ðUμUν þ gμνÞ: ð3Þ

We have written the above equation in standard form as
1
κ2
Gμν ¼ Tf

μν þ T int
μν , where the stress tensor is defined as

Tμν ¼ − 2ffiffiffiffi−gp δS
δgμν. Comparing it with the stress tensor of the

perfect fluid, Tf
μν ¼ ρUμUν þ PðUμUν þ gμνÞ, we can

write the effective energy density and pressure as ρtot
and Ptot respectively. For homogeneous and isotropic
background line element can be written as

ds2 ¼ −dt2 þ aðtÞ2dx⃗2: ð4Þ

Here the Friedmann equations can be expressed as
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3H2 ¼ κ2ρ

1 − 3αnf;n þ αf
¼ κ2ρ

1 − 3αPi − 2αf
; ð5Þ

2Ḣ ¼ κ2PM

−1þ 2αf þ 3αPi
−
κ2ρð1 − αPi þ 3αc2i ðPi þ fÞÞ

ð−1þ 2αf þ 3αPiÞ2
:

ð6Þ

The interaction pressure Pint and the variable ci are
defined as

Pint ¼
αR
2κ2

Pi; Pi ¼ nf;n − f; c2i f;n ¼ nf;nn;

ð7Þ
where Pi is the dimensionless variable proportional to
the interaction pressure. Rewriting Eq. (3) as Gμν ¼
κ2ðT1

μν þ T2
μνÞ, where Gμν ¼ Rμν − 1=2Rgμν, we have

T1
μν ¼

�
ρ −

1

2κ2
αfR

�
UμUν

þ
�
nρ;n − ρ −

αR
2κ2

ðnf;n − fÞ
�
ðUμUν þ gμνÞ; ð8Þ

and

T2
μν ¼

−1
κ2

½αfRμν þ αðgμν∇σ∇σf −∇μ∇νfÞ�: ð9Þ

Taking into account the Bianchi identity, the covariant
derivative of the Einstein tensor vanishes, ∇μGμν ¼
κ2∇μ½T1

μν þ T2
μν� ¼ 0. In Friedmann-Lemaître-Robertson-

Walker (FLRW) metric, the covariant derivative of the
redefined stress tensor will produce,

∇μT
μν
1 ¼ −α

2κ2
f∇0R;

∇μT
μν
2 ¼ −α

κ2

�
9Hðnf;n − fÞ ä

a
− 3f

�⃛
a
a
−

ä
a2

ȧ

�

þ 3Hf

�
2H2 þ ä

a

�
− 9∂0ðH2f;nnÞ

�
:

To derive the following, we have used these constrained
ṅþ 3nH ¼ 0, ṡ ¼ 0, ∇μUμ ¼ 3H, UλUλ ¼ −1, and
UμUλ∇μUλ ¼ 0. We impose the conservation condition,

∇μðTμν
1 þ Tμν

2 Þ ¼ −6αH
2κ2

�
−3nf;n

ä
a
þ 9n2H2f;nn

þ 15nH2f;n

�
¼ 0: ð10Þ

This yields the interaction parameter, ci, as

c2i ¼
Ḣ − 4H2

3H2
: ð11Þ

The additional constrain ṅþ 3nH ¼ 0, ṡ ¼ 0, allow us to
write the conserved quantity for the fluid and interaction
along the flow line,

ρ̇þ 3Hðρþ PÞ ¼ 0; ḟ þ 3Hðf þ PiÞ ¼ 0: ð12Þ
Hence using Eq. (11), the second Friedmann equation can
be rewritten as

Ḣ ¼ κ2PM

ð−2þ αf þ 3αPiÞ

−
κ2ρ½1 − αPi − 4αðPi þ fÞ�

ð−1þ 2αf þ 3αPiÞð−2þ αf þ 3αPiÞ
: ð13Þ

We will use these basic equations in the phenomenological
models we study in this paper.

A. Dynamical analysis of curvature-fluid system

In this subsection we will explore the dynamics, dis-
cussed before, using the following form of the interactions:

fðn; sÞ ¼ ðIÞM−4βρβðn; sÞ; ðIIÞ expðM−4βρβðn; sÞÞ:
ð14Þ

The interaction consists of the fluid density ρ, a mass-
dimensional constant M, and a dimensionless parameter β.
These interaction models are chosen because they are
perhaps the simplest and workable models one can use
in the present case. To analyze the dynamics of the system,
we will select first dimensionless variables as

z ¼ f; σ2 ¼ κ2ρ

3H2
: ð15Þ

With the choice of the dynamical variable z and first
Friedmann equation Eq. (5), the dynamics of the system
can be analyzed only by the autonomous equation in z. The
effective equation of state can be written as

−
2Ḣ
3H2

¼ ωtot ¼ −1 − 2

�
ωσ2

ð−2þ 3αPi þ αzÞ

−
σ2ð1 − αPi − 4αðPi þ zÞÞ

ð−1þ 3αPi þ 2αzÞð−2þ 3αPi þ αzÞ
�
: ð16Þ

The autonomous equation for Model I is

z0 ≡ dz
Hdt

¼ −3βzð1þ ωÞ ð17Þ

and for Model II:

z0 ¼ −3βzð1þ ωÞ ln jzj; ð18Þ

where prime stands for differentiation with respect to
Hdt≡ dN. These critical points (z) for the two models
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are tabulated in Table I. In addition to the critical points, we
have also evaluated the fluid fraction density ðσ2Þ and
pressure parameter Pi corresponding to these models at the
critical points. Model I generates negligible interaction at
the critical point for any β and the fluid density dominates
near the fixed point. At the fixed point the equation of state
(EOS) is zero, denoting a matter-dominated phase. This
demonstrates that the interaction becomes negligible when
matter density dominates. On the other hand, Model II
produces two critical points ½z≡ ð0; 1Þ�, where the system
at point at z ¼ 0 has similar properties as it had in Model I.
At the fixed point z≡ 1 the fluid density depends on the
model parameter α, but the total EOS remains zero,
producing matter domination. This demonstrates that
although the model gives a matter-dominated solution,
the interaction remains nonzero. Model I can produce a
stable (unstable) solution for β > 0 (β < 0). It is seen that a
positive β cannot adequately characterize the observed (late
time) cosmology. Similarly, in Model II, the derivative of z0
with respect to z [of Eq. (18)] at the fixed point gives,

f0ðzÞ ¼ −3βðωþ 1Þ − 3βðωþ 1Þ log jzj: ð19Þ

Near to the critical point, z ¼ 0, the derivative diverges
and the point becomes unstable, whereas, f0ðz ¼ 1Þ ¼
−3βð1þ ωÞ, showing that the system stabilizes(destabi-
lize) for β > 0ð< 0Þ as N → þ∞. Our analysis demon-
strates that the interaction between curvature and fluid
alone cannot produce an accelerating solution similar to
dark energy, in the simplest workable models. We do not
have any hint that complicating the interaction will produce
an accelerated late-time cosmic expansion. Since the
variable z is not constrained, it is also possible to obtain
critical points at infinity. We have explicitly demonstrated
this in Appendix B 1 and found that the system does not
exhibit any stable accelerating fixed point at infinity. To
obtain a late-time accelerated expansion phase we require
the quintessence field. The total system will then have the
DM sector nonminimally coupled to gravity and the DE
sector minimally coupled to gravity.

III. COSMOLOGY WITH A NMC FLUID
SYSTEM AND A MINIMALLY COUPLED

QUINTESSENCE SCALAR FIELD

In the previous section, we briefly went through the
NMC fluid system’s dynamics, which is inefficient in
producing an accelerating solution. As a result, we shall

add a quintessence scalar field minimally to the existing
system to understand the nonminimal effect in the dynam-
ics of the overall system. One can also take a perfect fluid;
however, the field approach presents more dynamical
features; thus, we choose to work with the field. The
extended action is

S ¼ Scf þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Lðϕ; ∂μϕÞ; ð20Þ

where the scalar-field Lagrangian is given as

Lϕ ¼
�
ϵ
1

2
∂μϕ∂

μϕ − VðϕÞ
�
: ð21Þ

Depending on the sign of ϵ, the field is a canonical scalar or
quintessence field or a phantom scalar field. For ϵ ¼ −1 we
have quintessence field and for ϵ ¼ 1 we have the phantom
field. The field equation and energy-momentum tensor of
the scalar field are given by

ϵ∇μð∇μϕÞ þ dV
dϕ

¼ 0;

Tϕ
μν ¼ −ϵ∂μϕ∂νϕþ gμν

�
ϵ

2
∂αϕ∂

αϕ − VðϕÞ
�
:

ð22Þ
In the background of a spatially flat FLRWmetric the scalar
field equation is

−ϵðϕ̈þ 3Hϕ̇Þ þ dV
dϕ

¼ 0: ð23Þ

The energy density and pressure of the field are

ρϕ ¼ −
ϵϕ̇2

2
þ VðϕÞ; Pϕ ¼ −

ϵϕ̇2

2
− VðϕÞ; ð24Þ

where ϕ̇ ¼ dϕ=dt. The modified Einstein equation
becomes,

Gμν ¼ κ2ðT1
μν þ T2

μν þ Tϕ
μνÞ; ð25Þ

where T1
μν, T2

μν are defined in Eqs. (8) and (9). The
Friedmann equations can be expressed as

3H2 ¼ κ2ðρþ ρϕÞ
1 − 3αPi − 2αf

; ð26Þ

TABLE I. The critical points and their nature for the coupled curvature-fluid system for two different interaction
models.

Models σ2 Pi z σ2 ωtot

I 1 − αzð2þ 3ðβð1þ ωÞ − 1ÞÞ zðβðωþ 1Þ − 1Þ 0 1 0
II 1 − 3αβzð1þ ωÞ ln jzj þ αz z½βðωþ 1Þ ln jzj − 1� (0,1) ð1; 1þ αÞ (0,0)
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Ḣ ¼ κ2ðPM þ PϕÞ
ð−2þ αf þ 3αPiÞ

−
κ2ðρþ ρϕÞð1 − αPi − 4αðPi þ fÞÞ

ð−1þ 2αf þ 3αPiÞð−2þ αf þ 3αPiÞ
: ð27Þ

In this case, the covariant derivative of the field stress tensor
conserved independently, ∇μTϕ

μν ¼ 0.

A. Dynamical system stability

Here we present the dynamical evolution of the system
we have discussed previously. Before we proceed we
specify some dimensionless variables which we will use
in our analysis. We shall concentrate on the canonical scalar
field ϵ ¼ −1. The standard variables chosen for this new
system are

x ¼ κϕ̇ffiffiffi
6

p
H
; y ¼ κ

ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞp
ffiffiffi
3

p
H

; z ¼ f; σ2 ¼ κ2ρ

3H2
;

λ ¼ −
V;ϕ

κV
; Ωϕ ¼ κ2ρϕ

3H2
: ð28Þ

1. Power-law-type interaction

We choose the interaction term as

fðn; sÞ ¼ M−4βρβðn; sÞ; ð29Þ

where M is the mass dimension constant. This is perhaps
the most simple term which can be chosen. We choose the
quintessence potential as

VðϕÞ ¼ V0eλκϕ: ð30Þ

This is the standard quintessence potential used by many
authors. Using these forms of interaction and scalar field
potential we can now express the fluid energy-density
parameter as

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αzð2þ 3ðβð1þ ωÞ − 1ÞÞ − x2 − y2

q
; ð31Þ

where ω is the EOS of background fluid. The 3D
autonomous equations in the present case can be written as

x0 ¼ −3x − 3x

�
x2 − y2 þ ωσ2

ð−2þ 3αPi þ αzÞ −
ðσ2 þ x2 þ y2Þð1 − αPi − 4αðPi þ zÞÞ
ð−1þ 3αPi þ 2αzÞð−2þ 3αPi þ αzÞ

�
þ 3λy2=

ffiffiffi
6

p
; ð32aÞ

y0 ¼ −3y
�

x2 − y2 þ ωσ2

ð−2þ 3αPi þ αzÞ −
ðσ2 þ x2 þ y2Þð1 − αPi − 4αðPi þ zÞÞ
ð−1þ 3αPi þ 2αzÞð−2þ 3αPi þ αzÞ

�
−

ffiffiffi
6

p
λxy=2; ð32bÞ

z0 ¼ −3βzð1þ ωÞ; ð32cÞ

where the x0 stands for 1
H

dx
dt and we similarly define y0 and z0. One can also represent the derivatives as d=dN where

dN ¼ Hdt. In the present case the interaction pressure term is Pi ¼ z½βð1þ ωÞ − 1� and the total (or effective) EOS is
given by

ωtot ¼ −1 − 2

�
x2 − y2 þ ωσ2

ð−2þ 3αPi þ αzÞ −
ðσ2 þ x2 þ y2Þð1 − αPi − 4αðPi þ zÞÞ
ð−1þ 3αPi þ 2αzÞð−2þ 3αPi þ αzÞ

�
: ð33Þ

The fixed points corresponding to the autonomous system
are given in Table II. We have found five critical points; for
each point, the interaction variable z remains zero. These
points are independent of the interaction parameter β, α and
only depend on potential parameter λ. The nature of these
points are also mentioned in Table II. Here we briefly
discuss the various critical points:

(i) Point P1: At this point, the fluid energy density
dominates over field energy density while the total
EOS is zero, depicting an effective matter-dominated
phase. This point always shows saddle-type behavior
irrespective of any choice of model parameters λ or β.

(ii) Points P2∓: At these points, the field density
dominates while the total EOS is one which
signifies an ultrastiff matter phase. This point is

a saddle for positive β and becomes unstable for
negative β. Cosmologically this point is not rel-
evant or interesting.

(iii) Point P3: At this point, both the field-fluid density
shows nonzero contribution, while the effective EOS
is always zero, which signifies that the universe near
this point is in an effective matter-dominated phase.
The point is a saddle point for 0 < jλj < ffiffiffi

3
p

.
(iv) Point P4: This point shows the dominance of field

energy density over the fluid energy density. The
point becomes stable when −

ffiffiffi
3

p
< λ <

ffiffiffi
3

p
and

β > 0. For the stable range, the point can exhibit
the accelerating expansion phase.

It is seen that for all the above critical points we have
zero nonminimal curvature coupling. This is an interesting
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observation, it shows cosmological dynamics in such
systems always prefer critical points where the nonminimal
interaction vanishes. We will shortly see that this fact has
more to do with the kind of interaction function, fðn; sÞ, we
choose. The critical points deviate trivially from the
minimally coupled field-fluid scenario, see Ref. [5], except
that a stable accelerating solution requires the interaction
parameter β to be positive in the present case. However, the
dynamical evolution of the cosmological parameters may
result in some deviation from the minimally coupled field-
fluid scenario. To trace the evolution of cosmological
parameters, we have presented an evolutionary plot of
cosmological variables against N ¼ log a in Fig. 1 for
β ¼ 1. The accelerating expansion point mainly depends
on model parameter λ. As λ → 0, total EOS parameter of
this coupled system goes to −1. To study the complete
dynamics of the system we have chosen the benchmark
value of the model parameter λ as 0.8. During the early
phase, the field and fluid energy densities are affected by
the nonzero contribution of interaction parameter z. In the
presence of this interaction parameter, the fluid density
abruptly increases, and total EOS becomes greater than 1.
This kind of behavior can be understood from the nature of
the critical points at infinity and further discussion, regard-
ing this matter, can be seen in Appendix B 2. In the early

phase the field energy density tends to zero with the value
of field EOS ωϕ near about 1. Therefore, the nonzero effect
of interaction parameter leads to some inconsistency and
nonphysical behavior in the early phase, however, at the
late-time phase the interaction becomes zero. In this case
we see that the only stable critical point has zero non-
minimal curvature coupling. If the cosmological system
evolves to such a state then the universe enters a quintes-
sence dominated phase. The other critical points are either
saddle points or unstable and the system never settles down
near those points.
As pointed out earlier we can have stable fixed points

with nonminimal curvature couplings if the interaction term
fðn; sÞ is altered from the simplest possible form. In the
next section, we will illustrate the case of exponential
interaction which may result in nonzero curvature inter-
action in the late-time phase.

2. Exponential-type interaction

In the present case we choose

fðn; sÞ ¼ expðM−4βρβðn; sÞÞ: ð34Þ

The interaction pressure parameter and the fluid density
energy density parameter are given as

Pi ¼ zðβðωþ 1Þ ln jzj − 1Þ;
σ2 ¼ −x2 − y2 − 3αβðωþ 1Þz ln jzj þ αzþ 1: ð35Þ

Corresponding autonomous equation is

z0 ¼ −3βzð1þ ωÞ ln jzj: ð36Þ

Using Eqs. (32a), (32b), and (36), the critical points for
nonzero interaction are tabulated in Table III. At z ¼ 1, z0
vanishes, therefore, all the critical points have been
evaluated only for z ¼ 1. The other critical points are at
z ¼ 0. As because we are particularly interested in those
critical points where we have nonzero curvature coupling
with DM sector we only concentrate on the critical points at
z ¼ 1 in the present case. The critical points are

FIG. 1. Evolution of the cosmological variables corresponds to
λ ¼ 0.8, β ¼ 1, α ¼ 1, ω ¼ 0, ϵ ¼ −1.

TABLE II. Critical points and their nature corresponding to minimally coupled quintessence field ϵ ¼ −1 with
nonminimally coupled pressureless fluid with power law interaction for ω ¼ 0 and general β.

Points x y z Ωϕ σ2 ωtot Stability

P1 0 0 0 0 1 0 ð− 3
2
; 3
2
;−3βÞ

P2� �1 0 0 1 0 1
�
3;−3β;

ffiffi
3
2

q
λþ 3

�
P3

ffiffi
3
2

p
λ

ffiffi
3
2

p
jλj

0 3
λ2

1 − 3
λ2

0
�
−3β;− 3ðλ2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24λ2−7λ4

p
Þ

4λ2
; 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24λ2−7λ4

p
4λ2

− 3
4

�
P4

λffiffi
6

p
ffiffiffiffiffiffiffi
6−λ2

p ffiffi
6

p 0 1 0 1
3
ðλ2 − 3Þ ð−3β; 1

2
ðλ2 − 6Þ; λ2 − 3Þ
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(i) Point P1: Both the field parameters ðx; yÞ vanish;
consequently, the fluid density dominates with an
effective EOS zero, indicating a matter-dominated
phase. The point always yields a saddle solution
regardless of the choice of the model parameters.

(ii) Points P2∓: This point denotes stiff matter solution
at the early epoch owing to the dominance of the
kinetic component of the field over the potential
parameter, i.e., (x ≫ y). Figure 2 demonstrates that
the point always exhibits saddle/unstable behavior,
regardless of the value of β.

(iii) Point P3: The characteristics of this critical point are
contingent on the model parameters (α, λ). The field

energy density is Ωϕ ¼ 1þ α, constraining α to be
negative. In Fig. 3, the distinct regions have been
identified where the eigenvalues ðE1; E2Þ are neg-
ative or pick alternating sign in the parameter space
of ðα; λÞ for any β. The point stabilizes for positive β
and additional constraints on the model parameters
can be obtained from the effective EOS ðωtotÞ shown
in Fig. 5. The contour shows that as we decrease the
value of λ, the effective EOS for this point converges
towards −1 for negative values of α.

TABLE III. Critical points of minimally coupled quintessence field and nonminimally coupled pressureless
background fluid, with exponential interaction term, for ω ¼ 0, ϵ ¼ −1, and general β.

Critical points at z ¼ 1.

Points x y Ωϕ σ2 ωtot Stability

P1 0 0 0 1 0 ð− 3
2
; 3
2
;−3βÞ

P2� � ffiffiffiffiffiffiffiffiffiffiffi
αþ 1

p
0 1 0 1 ð−3β; E1; E2Þ Fig. 2

P3
ðαþ1Þλffiffi

6
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ððαþ1Þððαþ1Þλ2−6ÞÞ

p ffiffi
6

p 1þ α 0 1
3
ðαþ 1Þλ2 − 1 ð−3β; E1; E2Þ Fig. 3

P4 1
λ

ffiffi
3
2

q
1
λ

ffiffi
3
2

q
3
λ2

α − 3
λ2
þ 1 0 ð−3β; E1; E2Þ Fig. 4

FIG. 2. Stability criterion of critical point P2.

FIG. 3. Stability criterion of critical point P3.

FIG. 4. Stability criterion of critical point P4.
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0
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FIG. 5. Various possible effective EOS of state at P3.
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(iv) Point P4: This point depicts a nonaccelerating
solution with nonvanishing field parameters. Both
the field and fluid density are finite and dependent
on the gradient of the potential λ. The point in Fig. 4
represents only the saddle solution.

The phase space in Fig. 6 has been plotted in x, y at z ¼ 1
for α ¼ −0.2; β ¼ 2; λ ¼ 0.3. At fixed z, the phase space
gets reduced from 3-dimensions to 2-dimensions without
losing any generality. The green region depicts the accel-
eration −1 ≤ ωtot ≤ −1=3. The phase space is constrained
by the conditions 0 ≤ σ2 ≤ 1 and 0 ≤ Ωϕ ≤ 1. The trajec-
tories are originating from P2− and P2þ, where the field
kinetic energy dominates, they are initially attracted
towards P1 where total the EOS is zero signifying a
matter-dominated phase. After getting repelled from P1,
all the nearby trajectories get attracted towards P3 which
lies in the accelerating expansion region. At these bench-
mark points P4 violates the constrained equation and
becomes physically nonviable. Solving the autonomous
equations for x0; y0; z0 numerically for these benchmark
points, the cosmological observables have been plotted in

Fig. 7. Initially, the field EOSωϕ starts from 1 showing a stiff
matter-dominated initial phase where both field and fluid
energy densities are nonzero. As number of e-folds increases
the fluid density and the corresponding total EOS ωtot tends
to zero. As the fluid density starts decaying, the field density
increases and saturates at Ωϕ ≈ 0.8 and consequently the
field EOS and ωtot converges to ≈ − 1. During the entire
evolution, the interaction z is nonzero and at the late-time
phase it saturates to 1. This shows that the quintessence field
coupled minimally with NMC fluid can produce a stable
acceleration during the late-time epoch and shows significant
deviation from minimally coupled field-fluid scenario. We
also found a critical point at infinity in Appendix. B 2 which
can not produce a stable accelerating solution during the late-
time epoch. In summary, the nonzero interaction, produces
nontrivial behavior in the early phase, where both the field
and fluid density contribute to stiff matter and during late-
time phase, the field energy density parameter approaches a
value around 0.8.

IV. SIMULTANEOUS NONMINIMALCURVATURE
COUPLING OF FIELD AND FLUID

In the previous section, we showed the cosmological
dynamics of a system where the DM sector was non-
minimally coupled to curvature whereas the DE sector
wasminimally coupled. Some of the solutions could produce
stable late-time accelerated expansion solutions. It is natural
to extend the analysis and introduce curvature coupling for
the field-fluid system. Therefore, in this present section, we
extend our analysis and modify the interaction term
fðn; sÞ → fðn; s;ϕÞ. The extended action is

S¼
Z
Ω
d4x

� ffiffiffiffiffiffi
−g

p R
2κ2

−
ffiffiffiffiffiffi
−g

p
ρðn;sÞþJμðφ;μþsθ;μþβAα

A
;μÞ

þ ffiffiffiffiffiffi
−g

p
Lð∂μϕ;ϕÞþ

ffiffiffiffiffiffi
−g

p
αfðn;s;ϕÞ R

2κ2

�
: ð37Þ

Varying this action with respect to the field ϕ produces the
modified Klein-Gordon equation in the background of the
spatially flat FLRW metric,

−ϵðϕ̈þ 3Hϕ̇Þ þ dV
dϕ

−
∂f
∂ϕ

αR
2κ2

¼ 0: ð38Þ

Due to presence of extended functional form of the inter-
action term, modified Friedmann equations become,

3H2ð1þ αf − 3αnf;nÞ þ 3αHf;ϕϕ̇ ¼ κ2ðρM þ ρϕÞ; ð39Þ

− 2Ḣð1þ αf − 3αnf;nÞ
− 3H2ð1þ αf − αnf;n − 9n2αf;nnÞ
−Hð2αf;ϕϕ̇ − 6αnf;nϕϕ̇Þ − αf;ϕϕϕ̇

2

− αf;ϕϕ̈ ¼ κ2ðPM þ PϕÞ: ð40Þ

P1P2– P2

P3

–1.0 –0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

FIG. 6. Phase space of exponentially interacting system in the
z ¼ 1 plane for α ¼ −0.2; β ¼ 2; λ ¼ 0.3, where green region
shows the accelerating regime −1 ≤ ωtot ≤ −1=3.

FIG. 7. Numerical evolution of cosmological variables for
α ¼ −0.2; β ¼ 2; λ ¼ 0.3.
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More cross terms appear in the derivative of f due to presence of an extended interaction term.We redefine the stress tensor as

T1
μν ¼

�
ρ −

1

2κ2
αfR

�
UμUν þ

�
nρ;n − ρ −

αR
2κ2

ðnf;n − fÞ
�
ðUμUν þ gμνÞ þ Tϕ

μν; ð41Þ

T2
μν ¼

−1
κ2

½αfRμν þ αðgμν∇σ∇σf −∇μ∇νfÞ�: ð42Þ

Using Eq. (38), we can write the covariant derivative of the stress tensor as

∇μT
μν
1 ¼ −α

2κ2
ðf∇0Rþ f;ϕϕ̇RÞ þ

∂f
∂ϕ

αR
2κ2

ϕ̇;

∇μT
μν
2 ¼ −α

κ2

�
9Hðnf;n − fÞ ä

a
− 3f

�⃛
a
a
−

ä
a2

ȧ

�
þ 3Hfð2H2 þ ä=aÞ − 9∂0ðH2f;nnÞ

�
:

The Bianchi identity implies ∇μðTμν
1 þ Tμν

2 Þ ¼ 0, and hence we can write,

3nḢf;n ¼ 9n2H2f;nn þ 12nH2f;n − f;ϕϕ̇H − 6nHf;nϕϕ̇þ f;ϕϕϕ̇
2 þ f;ϕϕ̈: ð43Þ

The above equation connectsf;nn with ϕ̈. Using Eq. (38), ϕ̈ can be eliminated and hence the above condition can be linkedwith
the evolution of the field sector. Using Eq. (40), we can further modify the second Friedmann equation. The total (or effective)
EOS can be expressed as

ωtot ¼ −
2Ḣ
3H2

− 1 ¼ −1þ PM þ Pϕ

ρM þ ρϕ

�
1þ αf − 3αnf;n þ 3αf;ϕϕ0

1þ αf − 3αnf;n − 9αnf;n=2

�

þ
�
1þ αf þ 13αnf;n − αf;ϕϕ0=3 − 7nαf;nϕϕ0 þ 4αf;ϕϕϕ02=3þ 4αf;ϕϕ̈=ð3H2Þ

1þ αf − 3αnf;n − 9αnf;n=2

�
: ð44Þ

Here ϕ0 ≡ ϕ̇=H. Therefore the coupled field-fluid-curva-
ture scenario gives rise to a complex dynamical system. We
will examine this complex scenario from the dynamical
system perspective, assuming the exponential form of
quintessence potential VðϕÞ ¼ V0eλκϕ.

A. Dynamical stability analysis

The dimensionless variables to close the system remain
the same as before, except the λ definition has been altered
a bit. The relevant dynamical variables are

x¼ κϕ̇ffiffiffi
6

p
H
; y¼ κ

ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞp
ffiffiffi
3

p
H

; σ2 ¼ κ2ρ

3H2
; f¼ z;λ¼ V;ϕ

κVðϕÞ :

ð45Þ

The Friedmann equation in Eq. (39) can be written as

1þ αf − 3αnf;n þ
αf;ϕ

ffiffiffi
6

p
x

κ
¼ σ2 − ϵx2 þ y2: ð46Þ

In the above equation, we see that there appears a
derivatives of f, hence in order to proceed further we must
need to choose some model. One can construct a simplest
model of the following type:

fðn; s;ϕÞ ¼ ρðn; sÞξðϕÞ: ð47Þ

Although one can choose a wide variety of interacting
models, all the choices of the model can’t be expressed
using the above-defined variables. This results in defin-
ing new variables as a result of which the dimension-
ality of the autonomous system increases. For example,
considering the interaction to be f ¼ ρβðκϕÞγ . In this
case, f;ϕ ¼ γf=ϕ. As a result of this the Friedmann
equation (46) will get κϕ dependence. This factor (κϕ)
cannot be expressed in terms of above-defined variables
for the chosen form of potential VðϕÞ ¼ V0eλκϕ. This
factor will increase the dimension of the autonomous
equations, and hence the phase space will become
4-dimensional. One can also study the generalized
interaction model by assuming the potential form as
VðϕÞ ¼ V0eλðκϕÞ

n
. In this case, the first derivative of the

potential becomes ϕ dependent, and hence ϕ can be
inverted in the first derivative of the potential involved
in λ. This technique has been demonstrated in Ref. [55]
where the authors worked with minimally coupled
quintessence. Keeping the restriction on the autonomous
equation and working with the standard form of the
potential as VðϕÞ ¼ V0eλκϕ, we will choose the inter-
action model as
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f ¼ M−4βρβeγκϕ: ð48Þ

This choice produces the simplest dynamical system
with a 3-dimensional phase space. The exponential-type

of interaction has been studied in Ref. [33]. Here M is a
constant with mass dimension and γ, β are the model para-
meters. With this interaction one can express the derivative
of the Hubble parameter and the constrained equation as

−
2Ḣ
3H2

¼ ωσ2 − ϵx2 − y2

σ2 − ϵx2 þ y2

�
1þ αzþ 3αβðωþ 1Þzþ 3

ffiffiffi
6

p
αγzx

1þ αz − 15αβðωþ 1Þz=2 − 6α2γyz2=ϵ

�

þ 1þ αzþ 13αβðωþ 1Þz − ffiffiffi
6

p
αγzx=3 − 7αβðωþ 1Þγz ffiffiffi

6
p

xþ 8αγ2x2z
1þ αz − 15αβðωþ 1Þz=2 − 6α2γyz2=ϵ

þ −8α2γyz2=ϵþ 4αγzy2λ=ϵ − 4
ffiffiffi
6

p
αxγz

1þ αz − 15αβðωþ 1Þz=2 − 6α2γyz2=ϵ
; ð49Þ

and

σ2 ¼ 1þ ðαz− 3αβðωþ 1Þzþ αγ
ffiffiffi
6

p
xzÞ þ ϵx2 − y2: ð50Þ

In general the phase space is not simple in our case as
because of the nonminimal coupling and the natural
constraints on the energy density parameters do not
materialize naturally. To make things manageable we apply
some constraints on the phase space and only concentrate
on the region of constrained space. In this work we will
concentrate on those regions of phase space where the
following conditions hold:

0 ≤ Ωϕ ≤ 1; 0 ≤ σ2 ≤ 1: ð51Þ

The autonomous equations in the present case are

x0 ¼ −2Ḣ
3H2

3

2

�
3αyzffiffiffi
6

p
ϵ
þ x

�
þ 3ffiffiffi

6
p

�
−2αyz

ϵ
þ y2λ

ϵ
−

ffiffiffi
6

p
x

�
;

ð52Þ

y0 ¼
ffiffiffi
6

p
xyλ
2

þ 3y
2

�
−2Ḣ
3H2

�
; ð53Þ

z0 ¼ −3βðωþ 1Þzþ
ffiffiffi
6

p
γzx: ð54Þ

In this autonomous equation, one can see that the inter-
action term z0 has now coupled with field variables. Out of
these three autonomous equations we see that y0 ¼ 0 at
y ¼ 0 and z0 ¼ 0 for z ¼ 0. This implies in a 3-dimensional
phase space, no phase trajectories originating with þy or
þz can cross y ¼ 0, z ¼ 0 line. We found six critical points
in this system, as shown in Table IVout of which few have
been obtained by setting z ¼ 0. Finding the critical points
in terms of model parameters for z ≠ 0 is a challenging task
due to the complexity of the system. Here one needs to
heavily rely on the numerical technique to obtain the
nontrivial critical points. Obtaining the critical points by
numerical technique requires the values of all the param-
eters α, β, γ, and λ. However, from the previous analysis, we
understand that the crucial parameters that can severely
affect the critical points are the model parameters of
interaction β, γ. To constrain these parameters corresponds
to z ≠ 0; we set z0 ¼ 0 in Eq. (54) and get

x ¼ 1

γ

ffiffiffi
3

2

r
β: ð55Þ

TABLE IV. Critical points corresponding to the interaction term f ¼ M−4βρβeγκϕ for the quintessence field for
which ϵ ¼ −1. For a full explanation of the entries in the table consult the text.

Points x y z Ωϕ σ2 ωtot Eigenvalues

P1 0 0 0 0 1 0 ð−1.5; 1.5;−3βÞ
P2;3 ∓ 1 0 0 1 0 1

�
3;

ffiffiffi
6

p
γ − 3β;

ffiffi
3
2

q
λþ 3

�
P4 −

ffiffi
3
2

p
λ

ffiffi
3
2

p
jλj

0 3
λ2

1 − 3
λ2

0
�
− 3ðβλþγÞ

λ ;− 3ðλ3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24λ4−7λ6

p
Þ

4λ3
; 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24λ4−7λ6

p
4λ3

− 3
4

�
P5 − λffiffi

6
p

ffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

6

q
0 1 0 λ2

3
− 1 ð−3β − γλ; 1

2
ðλ2 − 6Þ; λ2 − 3Þ

P6
3βffiffi
6

p
γ

� � � � � � � � � � � � � � � � � �
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This condition guarantees that for z ≠ 0, this should be one
of the coordinates of the critical points (in 3-dimensions).
Just inserting this value of x on other equations do not
simplify the situation. It is known that for accelerated
expansion at the critical point, the field-energy density
parameter Ωϕ ¼ x2 þ y2 ≈ 1, and the scalar-field potential
term must dominate the kinetic term, that implies y ≫ x.
Following these arguments we plotted a range of −0.5 <
x < 0.5 in the parameter space of ðβ; γÞ in Fig. 8 which
produces a constraint on ðβ; γÞ values. We qualitatively
discuss about the nature of the critical points below:

(i) Point P1−5: These fixed points are independent of
interaction parameters. The stability of the fixed
points can be determined from the model parameter-
dependent eigenvalues. Fixed point P1 is always
saddle; however, the points P2;3 can act as a saddle
or unstable fixed points based on the range of the
model parameters. Condition for getting stable P4

point is
ffiffiffi
3

p
< jλj ≤ 2

ffiffi
6
7

q
, β > − γ

λ, γ ∈R, otherwise

this point becomes a saddle point. The point P5

becomes stable for −
ffiffiffi
3

p
< λ <

ffiffiffi
3

p
; β > − 1

3
ðγλÞ;

γ ∈R.

(ii) Point P6: As explained above, if z ≠ 0 and z0 ¼ 0
then Eq. (54) gives one of the coordinates of the
critical points. Getting other coordinates of the
critical points ðy; zÞ in terms of the model parameters
is a difficult task as there may be many of them.
Therefore, following the constraints on (β and γ) in
Fig. 8, we evaluated critical point P6 for several
combinations of model parameters in Table V. We
have selected those values of model parameters that
exhibit an accelerating expansion phase. Some of
these solutions are like phantom solutions although
we are working with a purely canonical quintessence
like scalar field. This phantom behavior originates
from the nonminimal coupling term. We have
concentrated on the region of phase space where
0 ≤ Ωϕ ≤ 1, 0 ≤ σ2 ≤ 1. We find that several com-
binations of β produce saddle points where the
system is exhibiting accelerated expansion solution,
while for values of as (β ¼ 0.2, 1.0, 0.4) we get
repeller phantom solutions. Although we have found
a stable accelerating solution for negative fractional
values and positive integer values of β yet we could
not find any stable phantom solution. Nevertheless,
we do not stress that stable phantom solution can not
be determined, since the parameter space is extremely
diverse and complexity of equations prevents us from
pinpointing the critical points corresponding to the
phantom solutions. We think that on analyzing the
model with the cosmological data may help to put
several constraints on the parameters which may
produce stable phantom solutions.

Based on the stability of the critical point P6 reported in
Table IV, we will analyze the interacting system only for
specific choices of the model parameters (β, γ, λ, α). We
categorize our analysis based on the values of β, which
corresponds to the fluid energy density. In case I, we
choose negative β such that the interaction form becomes
ðf ∝ 1=ρÞ. We choose so that as the fluid density σ2 dilutes,
the interaction increases during the late-time epoch. In the
other case we will examine (f ∝ ρ). In both cases, we shall
report the new and previously discovered critical points of

–1.5 –1.0 –0.5 0.0 0.5 1.0 1.5
–4

–2

0

2

4

–0.42

–0.14

0.14

0.42

FIG. 8. The possible values of x ¼ 1
γ

ffiffi
3
2

q
β in the range of

−0.5 < x < þ0.5, for various values of the parameters in the
parameter space ðβ; λÞ.

TABLE V. Numerical values of the cosmological variables corresponding to P6.

Points ðβ; γ; λ; αÞ ðx; y; zÞ Ωϕ ωtot σ2 Stability

P6

(0.2,1.0,0.1,2.0) ð0.25; 0.65;−0.25Þ 0.48 −1.02 0.03 Saddle
ð0.4;−1.5; 0.5; 2.0Þ ð−0.33; 0.71;−0.19Þ 0.61 −0.87 0.003 Saddle
ð−0.2;−2;−0.9; 2.0Þ (0.12,0.91,0.14) 0.85 −0.91 0.42 Saddle
ð−0.3;−1.9;−0.3; 2.0Þ (0.19,0.97,0.096) 0.98 −0.95 0.12 Stable
ð−0.4;−3.0;−0.3; 2.0Þ (0.16,0.94,0.034) 0.91 −0.96 0.15 Stable
ð0.4;−5;−0.5; 2.0Þ ð−0.09; 0.56;−0.17Þ 0.33 −1.04 0.32 Unstable
ð−1.0; 8.0; 0.5; 2.0Þ ð−0.15; 0.88; 0.01Þ 0.80 −0.94 0.21 Saddle
(1.0,8.0,0.4,2.0) (0.15,0.79,0.19) 0.64 −1.05 0.75 Saddle

ð1.0;−6.0; 0.8; 2.0Þ ð−0.20; 0.84; 0.03Þ 0.74 −0.87 0.32 Stable
ð2.0;−8.0; 1.01; 2.0Þ ð−0.31; 0.81; 0.004Þ 0.75 −0.75 0.26 Stable
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Table IV in Table VI, which satisfy the energy constraint
relations given in Eq. (51). In these two instances, we will
not elaborate explicitly on the physical characteristics of the
points already mentioned in Table IV. We will only discuss
those critical points which are new and relevant. Those
critical points in Table IV that are model dependent and do
not exist for the selected benchmark points have been
skipped.
Case I: ðβ ¼ −0.3; γ ¼ −1.9; λ ¼ −0.3; α ¼ 2.0Þ For

this choice of benchmark points, the model renders five
critical points in Table VI with P7 being the newest point.

(i) Point P6: With ωtot ∼ −1, the point exhibits stable
accelerating solution. The field energy density
dominates the fluid energy density during the late
time and the fluid density saturates at σ2 ∼ 0.12.
Thus, the point specifies dark energy domination.

(ii) Point P7: The point also generates an accelerating
solution, however, it appears that the acceleration is
fluid driven i.e., ðσ2 > ΩϕÞ and turns out to be
saddle. Therefore, this point does not depict the late-
time characteristics of the present Universe.

The phase space is 3-dimensional and the full dynamics
in this space is shown in Fig. 9. The variables ðx; yÞ are

constrained via the relation 0 ≤ x2 þ y2 ≤ 1, although the
variable z can take any value from 0 to ∞. Therefore to
compactify the phase space, variable z is transformed as

Z ¼ tan−1 z; ð56Þ

where Z ranges from 0 ≤ Z < π=2. Note that in the phase
plot, we have only plotted some specific range of Z such
that the Z > 0 plane must be visible in order to differen-
tiate between the various trajectories. In the given phase
space some trajectories originate near P2 and initially get
attracted towards P1. Near P1 we have an effective matter-
dominated phase and the trajectories get repelled from it.
After the repulsion the trajectories are attracted towards P6

via P7. The numerical evolution of cosmological variables
is traced in Fig. 10. In the early phase both field energy
density, total EOS, ωtot, and field EOS, ωϕ, are near to one.
As the interaction parameter z becomes non-negligible at
N ¼ 0, while matter density starts decreasing, the field
EOS becomes −1. In the late phase the field density
dominates, ωtot ≈ −1, and fluid density becomes negligible.
In the very early phase the interaction term z was negligible
and σ2 ≈ 0. The interaction term becomes non-negligible
during the late-time phase. This shows that in the NMC

TABLE VI. Critical points for different model parameters.

Points ðx; y; zÞ Ωϕ ωtot σ2 Stability

Case I: β ¼ −0.3; γ ¼ −1.9; λ ¼ −0.3; α ¼ 2.0
P1 (0,0,0) 0 0 1 Saddle
P2;3 ð∓ 1; 0; 0Þ 1 1 0 Saddle
P6 (0.19,0.97,0.05) 0.98 −0.95 0.12 Stable
P7 (0.19,0.70,0.12) 0.53 −0.95 0.70 Saddle

Case II: β ¼ 1; γ ¼ −6; λ ¼ 0.8; α ¼ 2.0
P1 (0,0,0) 0 0 1 Saddle
P2 ð−1; 0; 0Þ 1 1 0 Saddle
P6 ð−0.20; 0.84; 0.03Þ 0.74 −0.87 0.32 Stable

FIG. 9. The phase space trajectory for β ¼ −0.3; γ ¼ −1.9;
α ¼ 2.0; λ ¼ −0.3; ϵ ¼ −1.

FIG. 10. The evolution of the cosmological variables corre-
sponding to β ¼ −0.3; γ ¼ −1.9; α ¼ 2.0; λ ¼ −0.3; ϵ ¼ −1.
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field-fluid system, during the late-time phase, the system
never decouples and transfer of energy continuously takes
place between these two dark sectors.
Case II: ðβ ¼ 1; γ ¼ −6.0; λ ¼ 0.8; α ¼ 2.0Þ In contrast

to the previous case, the model yields only three physically
viable critical points; we discover no additional critical
points. P6 demonstrates the stable accelerating solution for
this model, where the field energy density dominates the
fluid energy density. At this pointΩϕ ∼ 0.75, σ2 ∼ 0.32 and
ωtot ∼ −0.90. Thus, the interacting model f ∝ ρ can gen-
erate an accelerating solution with nonzero fluid density
≃0.30 during the late-time phase. Note that in these two
cases, one can transform the variable ðz → 1=uÞ to obtain
the critical points at infinity; however, from the Friedmann
equation [Eq. (50)], it becomes clear that any such trans-
form that maps the ðz → ∞; u → 0Þ, yields the matter-
dominated solution irrespective of the accelerating or
nonaccelerating ðωtotÞ characteristics. These critical points
can not therefore be considered physically viable fixed
points at the epoch of late-time cosmology. The phase
space and numerical evolution have been plotted in Figs. 11

and 12. In the phase space some trajectories originate from
P2 and some originate from some point just outside our
region of interest. Initially these trajectories are attracted
towards the matter-dominated phase specified by the point
P1 and then they get attracted towards P6. Thus P6

becomes a global attractor in the phase space. Although
both the models exhibit stable accelerating solution in the
late-time phase yet the numerical evolution shows signifi-
cant deviation in the latter case, see Fig. 12. The evolution
of ωtot shows some oscillatory behavior during the matter-
dominated phase, which shows that although the dark
matter EOS is zero, yet, the coupled system can produce
nonzero pressure. As the system enters the late time phase,
the field density starts increasing and saturates to ≈70%,
while the fluid density becomes ≈30%. In the late time the
ωtot approaches ≈ − 1.
In summary, the NMC field-fluid system can produce a

stable accelerating expansion phase with total EOS −1. All
the results shown here point to a stiff matter-dominated
phase in the early phase, but one has the liberty to choose
the initial phase. All the results show that the total EOS
comes down as time evolves and one may choose the early
phase (of the late Universe) appropriately depending on the
total EOS of the system. Additionally, we discover that for
some interaction parameters, ωtot can cross −1, however we
have not found any stable critical point showing a phantom-
induced expansion. We can not rule out the possibility of
determining the stable critical points for phantom case as
for some other choices of parameters the complex system
may give rise to such interesting critical points.

V. CONCLUSION

Nonminimal coupling of scalar fields and fluids has been
studied thoroughly in the context of late-time cosmology.
These models provide an interacting dark sector. As
presently our understanding of the basic constituents of
the dark sector is not adequate, we do not know about any
principles or rules which can forbid these nonminimal
interactions. The most general action consisting of DM and
DE admit nonminimal coupling term between them and
consequently the NMC models are important models for
the dark sector as long as they are not convincingly refuted
by any observational evidence. Previously authors have
also studied the nonminimal coupling of the DM sector
with curvature in the cosmological context. Those models
do not include DE and consequently cannot be taken as
proper models which can address the cosmological dynam-
ics of the late-time Universe. In this paper, we have tried to
address this issue.
Initially we have presented some models where the DM

sector is nonminimally coupled to scalar curvature and the
minimally coupled DE sector is produced by the quintes-
sencelike scalar field. In these models the DM and DE
sectors do not directly couple to each other. Our primary
aim in this study was to see whether we get stable critical

FIG. 11. Phase space for ðβ ¼ 1; γ ¼ −6.0; λ ¼ 0.8; α ¼ 2.0Þ.

FIG. 12. Numerical evolution for ðβ ¼ 1; γ ¼ −6.0; λ ¼ 0.8;
α ¼ 2.0Þ.
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points with accelerated expansion around them. Moreover,
we preferred to have critical points where the nonminimal
curvature coupling does not vanish. This is because a stable
critical point around which the curvature coupling vanishes
produces an accelerated expansion phase where the dark
sector is uncoupled. Studies on uncoupled dark sectors
have separately been done and consequently those results
do not yield something very interesting. It is seen that the
simplest model of DM and curvature coupling always
produces critical points around which the nonminimal
coupling vanishes. Although the dynamics of the
Universe in early phase is modified, in such a model,
due to the presence of the nonminimal coupling the late-
time Universe stable phase becomes uncoupled. This
observation does not depend upon the nature of the scalar
field, the decoupled nature of the critical points is observed
for both quintessencelike or phantomlike scalar fields. It
was observed that this particular nature of the critical points
depended heavily on the form of the nonminimal coupling.
In a different model, where the nonminimal coupling term
was modified we obtained various critical points around
which the curvature coupling of the DM sector never
vanishes. In these cases, the energy density of the scalar
field is modified due to the curvature coupling near the
stable critical point. In the absence of the quintessence like
scalar field, curvature coupling of the DM sector never
produces any accelerated expansion solution. Only in the
presence of the quintessence like scalar field one can get
nonminimally interacting DM sector in the presence of
accelerated expansion. Working with a quintessence like
scalar field it was seen that the effective EOS never crossed
the phantom line.
The previous model study produced an interesting

question. If instead a curvature coupling of DM what will
happen if we have the whole dark sector to be simulta-
neously coupled to curvature? In such a case the dark sector
starts to interact with each other and this interaction is
mediated by scalar curvature. We introduced such a type of
interaction and found out the basic equations governing
cosmological dynamics by choosing a particular form of
the curvature coupling. The choice of the coupling term
was made in such a manner so that the dynamical system
remains relatively manageable. In reality, the simplest
models of curvature coupling of the dark sector are intricate
and we do not claim that we have exhaustively studied the
system. We have simplified our model analysis by con-
straining the 3-dimensional phase space and we have also
studied some particular kinds of critical points around
which the coupling term does not vanish. Even in the
simplest model the results are interesting. We show that we
can obtain relevant stable fixed points around which we get
accelerated expansion. Moreover, we show that even when
one works with quintessence fields one can cross the
phantom divide. This property is obtained because of the
nonminimal interaction term.

In conclusion we state that we have studied models of
nonminimal interaction of the dark sector mediated by
scalar curvature. All the basic results are obtained from an
action principle and consequently the results are as general
as they can be. Later on to produce cosmologically relevant
results we have chosen various particular forms of non-
minimal interaction. Throughout we have worked with the
standard form of quintessence field potential. The results
produce interesting late time cosmologies, while in the
early phase most of the results predict a stiff matter-
dominated phase which slowly comes down. One can
always modify the initial point and choose the particular
effective EOS to work with. These models can have
interesting observational signatures as the nonminimal
coupling term will always modify the theory of structure
formation.
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APPENDIX A: VARIATION OF THE
FLUID VARIABLES

The variation of the action in Eq. (1) with respect to the
fluid variables yields,

Jμ∶
�
∂ρ

∂n
−α

∂f
∂n

R
2κ2

�
Uμþðφ;μþ sθ;μþ βAα

A
;μÞ ¼ 0; ðA1Þ

s∶ −
∂ρ

∂s
þ α

∂f
∂s

R
2κ2

þ nUμ∇μθ ¼ 0; ðA2Þ

φ∶ ∇μJμ ¼ 0; ðA3Þ

θ∶ ∇μðsJμÞ ¼ 0; ðA4Þ

αA∶∇μðJμβAÞ ¼ 0; ðA5Þ

βA∶Jμ∇μα
A ¼ 0: ðA6Þ

Here the interaction term fðn; sÞ in general only depends
on the fluid parameters. However, if the interaction term
also has dependence on other variables apart from the
fluid parameters, as given in action in Eq. (37) where
fðn; sÞ ↦ fðn; s;ϕÞ, the above equations of the motion
remains the same. Because of the structure of the relativistic
fluid, the variation in φ and θ puts additional constraints.
The number density in the FLRW metric is conserved
from ∇μJμ ¼ 0 ⇒ ṅþ 3nH ¼ 0. However, this constraint
can be lifted by introducing a source term as discussed
in [56,57],
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ṅþ 3nH ¼ nΓ; ðA7Þ

where Γ > 0 is a particle creation rate in a comoving
volume a3. With such a modification, the system becomes
thermodynamically open and induces a negative creation
pressure. Moreover, the system is thermodynamically
adiabatic∇μðsJμÞ ¼ 0 ⇒ ṡ ¼ 0, which means the constant
entropy per particle. Therefore, one can investigate the
nonminimal coupling of the fluid as an open thermody-
namics system. The modified fluid equations can be
identified as thermodynamic quantities such as temperature
and chemical free energy [33,41].

APPENDIX B: CRITICAL POINTS AT INFINITY

1. Nonminimally coupled fluid curvature system

To obtain the critical points at infinity, a simple trans-
formation of the unconstrained variable z can be used to
map the critical points at infinity to a finite value. The
simplest transformation is

z → 1=u: ðB1Þ

This mapping allows us to shift the critical points
from z ¼ ∞ to u ¼ 0. With this transformation, the
autonomous equations Eqs. (17) and (18) for pressureless
fluid becomes,

Model I → u0 ¼ 3βu; Model II → u0 ¼ 3βu ln j1=uj:
ðB2Þ

Both of these autonomous equations have u ¼ 0 as a
critical point. The fluid density and effective EOS for
Model I are

σ2 ¼ 1 − α
1

u
ð2þ 3ðβ − 1ÞÞ; ωtot ¼

−7αβ
−3αβ þ 2αþ 2u

;

ðB3Þ

and for Model II:

σ2 ¼ 1 −
3αβ

u
ln j1=uj þ α=u;

ωtot ¼
−7αβ logð1uÞ

2ðαþ uÞ − 3αβ logð1uÞ
: ðB4Þ

At u ¼ 0, the autonomous equations for both the models
are regular, whereas the fluid density becomes singular.
This shows that fluid density dominates at this fixed point
and can produce finite total equation of state. Model I can
render the accelerated expansion solution −1 < ωtot <
−1=3 for ð 1

12
< β < 1

5
Þ and phantom like solution −1.5 <

ωtot < −1 for ð1
5
< β < 6

23
Þ. The point also features non-

accelerating solution 0 ≤ ωtot ≤ 1=3 for − 1
9
≤ β ≤ 0.

Therefore, a positive β can produce an accelerating and
phantom solution, but as ðN → þ∞Þ the point becomes
unstable. In contrast negative β exhibits the nonaccelerating
attractor solution for ðN → þ∞Þ. Model II, yields
limu→0 ωtot ¼ 7=3, which produces nonaccelerating stiff-
matter solution and the point turns out to be unstable. The
other critical point u� ¼ 1 in Model II, is equivalent to the
z ¼ 1 point. This demonstrates that the model possesses no
stable accelerating solutions at infinity.

2. Minimally coupled quintessence field

In all the models which include the quintessence scalar
and matter, we see from the respective Friedmann con-
straints that for ϵ ¼ −1, x and y are bounded variables as if
they tend to infinity σ2 become negative. On the other hand
for suitable choices of parameters one can take z → ∞,
keeping σ2 > 0. This means only z is unconstrained and
reaches infinity. We will see that in almost all the cases as
z → ∞ we have σ2 → ∞ which violates the bound
0 ≤ σ2 ≤ 1. Although the above bound is violated we still
present the nature of the fixed points at infinity for the sake
of mathematical completeness.
Using Eq. (B1) we can similarly extract the critical points

corresponding to the interaction chosen in Eq. (29). As a
result of this redefinition, the system of autonomous equa-
tions Eq. (32a)–(32c) for matter background are modified as

x0 ¼ 2uð3x3 − 3xðy2 þ 1Þ þ ffiffiffi
6

p
λy2Þ − αð6ð2β þ 1Þxþ ffiffiffi

6
p ð3β − 2Þλy2Þ

αð4 − 6βÞ þ 4u
; ðB5aÞ

y0 ¼ yðuð6x2 − 2
ffiffiffi
6

p
λx − 6y2 þ 6Þ þ αð3βð ffiffiffi

6
p

λx − 10Þ − 2
ffiffiffi
6

p
λxþ 6ÞÞ

αð4 − 6βÞ þ 4u
; ðB5bÞ

u0 ¼ 3βu; ðB5cÞ

and the corresponding effective EOS and fluid density becomes

ωtot ¼
−7αβ þ 2ux2 − 2uy2

−3αβ þ 2αþ 2u
; σ2 ¼ −

αð3ðβ − 1Þ þ 2Þ
u

− x2 − y2 þ 1: ðB6Þ
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It turns out that u ¼ 0 is a valid critical point for the 3D
autonomous system. However, the fluid density ðσ2Þ from
Eq. (B6), at u ¼ 0 becomes singular but the effective
equation of state ðωtotÞ at u ¼ 0 becomes independent of
ðx; yÞ. The fixed points at infinity are tabulated in Table VII.
The system yields two critical points and both of them
have same total EOS which shows accelerated expansion
phase −1 < ωtot < −1=3 for ð 1

12
< β < 1

5
Þ, phantom phase

−1.5 < ωtot < −1 for ð1
5
< β < 6

23
Þ and nonaccelerating

expansion phase 0 ≤ ωtot ≤ 1=3 for − 1
9
≤ β ≤ 0. On find-

ing the stability, one of the eigenvalues becomes positive
(negative) for �β and thus both the points become saddle.
This explains the behavior of σ2 and z at the past epoch i.e.,

negative N in Fig. 1. Note that similar analysis can also be
carried out for the exponential interaction case, as specified
by Eq. (34), and the corresponding autonomous equation
Eq. (36) becomes

u0 ¼ 3βuð1þ ωÞ ln j1=uj: ðB7Þ
The rest of the autonomous equations in ðx; yÞ remain
same, as before, and given by Eqs. (B5a) and (B5b). For the
transformed system, we get only one valid critical point for
ðx ¼ y ¼ u ¼ 0Þ. Hence, this becomes similar to the above
case discussed in Eq. (B2). Therefore, these analysis shows
that the models does not produce any stable accelerating
expansion phase.
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