
Radiation emission during the erasure of magnetic monopoles

Maximilian Bachmaier ,* Gia Dvali, and Juan Sebastián Valbuena-Bermúdez †

Arnold Sommerfeld Center, Ludwig-Maximilians-Universität,
Theresienstraße 37, 80333 München, Germany

and Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany

(Received 29 June 2023; accepted 27 September 2023; published 1 November 2023)

We study the interactions between ’t Hooft-Polyakov magnetic monopoles and the domain walls formed
by the same order parameter within an SUð2Þ gauge theory. We observe that the collision leads to the
erasure of the magnetic monopoles, as suggested by Dvali et al. [Phys. Rev. Lett. 80, 2281 (1998)]. The
domain wall represents a layer of vacuum with un-Higgsed SUð2Þ gauge symmetry. When the monopole
enters the wall, it unwinds, and the magnetic charge spreads over the wall. We perform numerical
simulations of the collision process and, in particular, analyze the angular distribution of the emitted
electromagnetic radiation. As in the previous studies, we observe that erasure always occurs. Although not
forbidden by any conservation laws, the monopole never passes through the wall. This is explained by
entropy suppression. The erasure phenomenon has important implications for cosmology, as it sheds a very
different light on the monopole abundance in postinflationary phase transitions and provides potentially
observable imprints in the form of electromagnetic and gravitational radiation. The phenomenon also sheds
light on fundamental aspects of gauge theories with coexisting phases, such as confining and Higgs phases.
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I. INTRODUCTION

Topological defects play significant roles in different
branches of physics. These entities emerge in theories with
topologically nontrivial vacuum manifolds. In particular,
such manifolds are common in theories with spontaneously
broken symmetries. When symmetry breaking takes place
in a phase transition during the cosmological evolution, the
defects can be formed via the Kibble mechanism [1].
In [2], it has been pointed out that defects can be

subjected to a so-called “erasure” phenomenon. Namely,
in some cases, one and the same order parameter simulta-
neously gives rise to defects of different dimensionality,
e.g., magnetic monopoles and domain walls.
In such cases, upon the encounter, the less extended

defects can be erased by the more extended ones. In [2], this
effect was discussed for the domain walls and magnetic
monopole system. In particular, it was pointed out that the
grand unified phase transition, which ordinarily creates
’t Hooft-Polyakov magnetic monopoles [3,4], can also give
rise to domain walls. Upon the encounter, the magnetic

monopole is erased by the domain wall. The essence of the
erasure is that the domain wall creates a supporting surface
for unwinding the monopole field. The Higgs field vanishes
inside the wall. Because of this, the magnetic charge, instead
of staying localized at a point, spreads over the entire wall.
The original motivation of [2] was the solution to the

cosmological magnetic monopole problem [5,6]. The idea
is that the domain walls “sweep away” monopoles and
disappear. For short we shall refer to this dynamics as the
Dvali, Liu, and Vachaspati (DLV) mechanism. It was
already a subject of numerical studies in [7–9].
The monopole erasure scenario allows one to have the

monopole production after the inflationary phase without
conflicting with the constraints on the monopole abun-
dance. It therefore “liberates” the grand unified symmetry
from the necessity of being broken during inflation. This is
beneficial for some motivated inflationary scenarios pre-
dicting the grand unified phase transition after inflation.
The DLV erasure mechanism plays an important role in

generic quantum field theoretical systems with defects
supporting different gauge theories’ phases. An early
example is provided by a confining gauge theory [e.g.,
SUð2Þ] which contains domain walls with deconfinedUð1Þ
Coulomb phases of the same gauge interaction [10].
Because of confinement, in the SUð2Þ vacuum, the gauge
electric field is trapped in the form of QCD flux tubes.
However, the wall serves as a base for the spreading
out of the QCD electric flux. Correspondingly, for the
QCD string, the wall plays a role similar to a D-brane.
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Upon encountering such a wall, the QCD string gets
erased [11,12]. The dual version of this, in the form of
the erasure of vortices and strings by a domain wall, was
recently studied numerically in [13].
One important general question is the efficiency of

the erasure. As suggested in the work on the monopole-wall
system [2], the erasure mechanism was expected to
be very efficient. Although topologically, it is allowed for
a monopole to pass through thewall, this passage is expected
to be highly improbable. The argument ofDLVwas based on
loss of coherence in the monopole-wall collision. Namely,
upon collision with the wall, the monopole charge starts to
spread in the traveling waves. This makes the further
recombination of the monopole on the other side of the wall
very unlikely. As supporting evidence for this reasoning, in
[2] the results of numerical studies of interactions between
the skyrmions and walls [14,15] were used.
In more recent studies, the efficiency of the erasure

phenomenon was repeatedly observed in monopole-anti-
monopole [16], wall-vortex, and string-wall [13] systems.
The analytic explanation of these numerical results was
given by substantiation of the DLV coherence loss argu-
ment [2] by the entropy count of [17]. This count indicates
that the probability of survival is exponentially suppressed
due to the fact that the final state after erasure has a much
higher entropy in comparison to a surviving defect.
In the present paper, we extend the study of the erasure

phenomenon in the monopole-wall system. We use a
simple prototype model with an adjoint Higgs field of
SUð2Þ which possesses Uð1Þ invariant vacua separated by
domain walls (vacuum layers) with SUð2Þ invariant phases.
The monopoles that exist in theUð1Þ phase get erased upon
the encounter with the domain walls that support the SUð2Þ
phase in their interior. Again, we observe that the erasure
occurs for the considered parameters regime.
The main novelty is the analysis of the emitted electro-

magnetic radiation during the erasure. The emission of
electromagnetic radiation accompanies the spread-out of
the magnetic charge of the monopole. This can have several
interesting implications both for the theoretical under-
standing of the erasure phenomenon as well as for its
observational consequences.

II. GENERALITIES OF RADIATION

Let us review a fundamental phenomenon of classical
electrodynamics that will become relevant to our discus-
sion. It is a well-known fact that the acceleration of electric
charge leads to an emission of radiation. If we allow the
existence of magnetic charges, the acceleration of magnetic
charges will lead to the same effect due to the duality of the
extended Maxwell equations. The behavior of the electric
and magnetic fields, albeit, is exchanged. Consider a point
charge q located at the origin with initial velocity u and
acceleration a, where the direction of the velocity is parallel
to the direction of acceleration. The energy density of the

radiation for this situation can be calculated analytically
and is given by [18]

ε ¼ q2

16π2
a2

r2
sin2 θ

ð1 − u cos θÞ6 ; ð1Þ

where r is the distance from the charge and θ is the angle
relative to the direction of movement. As we can deduce
from this equation, the energy density is not distributed
homogeneously on a sphere around the point charge. Most
of the radiation gets emitted in the direction

θmax ¼ arccos

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24u2

p

4u

�
: ð2Þ

Furthermore, we can notice that the form of the dis-
tribution depends only on the initial velocity of the charge
and does not depend on the acceleration. The shape of the
radiation emission is depicted in Fig. 1 using a normalized
radiation pattern. The greater the initial velocity, the more
the loops bend in the direction of the initial motion.
We observe that the direction of radiation emitted during

the erasure of a magnetic monopole is comparable to the
expected one for a constant accelerated magnetic point
charge. We will elaborate on this point below.

III. THE MODEL AND ITS SOLUTIONS

We consider a model with an SUð2Þ gauge symmetry
and a scalar field ϕ, transforming under the adjoint
representation. This model is a prototype of grand unified
theories, which is still able to capture the essence of the
occurring phenomena. The Lagrangian is given by [12]

L ¼ −
1

2
TrðGμνGμνÞ þ TrððDμϕÞ†ðDμϕÞÞ − VðϕÞ; ð3Þ

FIG. 1. The radiation pattern for an accelerated charge with
initial velocity u. The radius represents the normalized value of
the radiation energy density ε

εðθmaxÞ.
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with the potential

VðϕÞ ¼ λ

�
Trðϕ†ϕÞ − v2

2

�
2

Trðϕ†ϕÞ: ð4Þ

The scalar field can be written as ϕ ¼ ϕaTa, where the
SUð2Þ generators Ta are normalized as TrðTaTbÞ ¼ 1

2
δab.

The field strength tensor is defined by

Gμν ≡ ∂μWν − ∂νWμ − ig½Wμ;Wν�; ð5Þ
with the gauge fieldsWμ ≡Wa

μTa. The covariant derivative
has the usual form

Dμϕ≡ ∂μϕ − ig½Wμ;ϕ�: ð6Þ
We note that λ has the mass dimension −2. Furthermore,

the nonrenormalizability of this potential poses no issue
since this potential can be derived from a renormalizable
theory by introducing an extra gauge singlet field, as
elaborated in [11]. The feature of the sextic potential is
that it has two disconnected vacua, corresponding to the
SUð2Þ invariant phase, hTrðϕ†ϕÞi ¼ 0, and the phase with
SUð2Þ Higgsed down to Uð1Þ, hTrðϕ†ϕÞi ¼ v2

2
.

In the SUð2Þ invariant vacuum, the vector fields are
massless while ϕ is massive. On the other hand, in the
secondvacuum, the symmetrygroupSUð2Þ isHiggsed down
to Uð1Þ and two of the vector fields gain the mass mv ¼ vg
through theHiggsmechanism,while one staysmassless. The
mass of the Higgs boson is given by mh ¼

ffiffiffi
λ

p
v2.

At the quantum level, the SUð2Þ invariant vacuum
becomes confining. However, for the considered parame-
ters, this can be ignored. We will elaborate more on this
later. As a first approximation, let us consider the classical
equations of motion. They are given by

∂μðDμϕÞa þ gεabcWb
μðDμϕÞc þ ∂V

∂ϕa ¼ 0; ð7Þ

∂μGaμν þ gεabcWb
μGcμν − gεabcðDνϕÞbϕc ¼ 0: ð8Þ

The spectrum of the model contains magnetic monopoles
that are realized as solitons in the Uð1Þ vacuum. Consider
the ’t Hooft-Polyakov ansatz [3,4]

Wa
i ¼ εaij

rj

r2
1

g
ð1 − KðrÞÞ;

Wa
t ¼ 0;

ϕa ¼ ra

r2
1

g
HðrÞ; ð9Þ

thus, the field equations (7) and (8) reduce to

K00 ¼ 1

r2
ðK3 − K þH2KÞ;

H00 ¼ 2

r2
HK2 þm2

h

�
3

4

1

r4m4
v
H5 −

1

r2m2
v
H3 þ 1

4
H

�
: ð10Þ

To ensure good behavior at the boundary, the following
standard boundary conditions are required:

KðrÞ⟶r→0
1; KðrÞ⟶r→∞

0;

K0ðrÞ⟶r→0
0;

HðrÞ
mvr

⟶
r→∞

1;

HðrÞ
mvr

⟶
r→0

0:

The profile functions HðrÞ and KðrÞ were found numeri-
cally by using an iterative method that starts at the solution
in the Bogomolny-Prasad-Sommerfield limit mh → 0
[19,20] and relaxes to the solution with mh ≠ 0. For the
later simulations, we evaluated in this way the profile
function for mh

mv
¼ 1 (see Fig. 2).

As mentioned before, the present work aims to study the
interaction between domain walls and magnetic monop-
oles. We anticipate that the monopole is erased during the
collision, and electromagnetic radiation is emitted in this
process. In order to analyze the radiation, we need to know
the electric and magnetic fields. Following the standard
definitions, the non-Abelian magnetic and electric fields
can be written analogously to classical electrodynamics as

Ba
k ¼ −

1

2
εkijGa

ij; ð11Þ

Ea
k ¼ Ga

0k: ð12Þ
Since we are interested in the Uð1Þ magnetic and electric
fields, it is necessary to project out the component that
points in the direction of the electromagnetic charge
operator Q ¼ ϕaffiffiffiffiffiffiffiffi

ϕbϕb
p Ta. Using the scalar product hA; Bi ¼

2TrðABÞ one can find

BUð1Þ
k ¼ ϕaffiffiffiffiffiffiffiffiffiffiffi

ϕbϕb
p Ba

k; ð13Þ

EUð1Þ
k ¼ ϕaffiffiffiffiffiffiffiffiffiffiffi

ϕbϕb
p Ea

k: ð14Þ

FIG. 2. The profile functions of the magnetic monopole for
mh
mv

¼ 1.
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The definitions (13) and (14) are valid in the Uð1Þ invariant
phase, ϕbϕb ¼ v2, and thus valid for long distances
compared to the size of the monopole core ∼m−1

h .
The potential (4) allows the two phases to coexist.

Therefore, we can treat the potential as an intermediate
step of a first-order phase transition. In the model (3),
domain walls interpolate between SUð2Þ and Uð1Þ invari-
ant phases. For a planar domain wall located at z ¼ 0 with
ansatz ϕ1 ¼ ϕ2 ¼ 0 and ϕ3 ¼ ϕðzÞ, the nontrivial solutions
of the Bogomolny equation [19]

ϕ0 ¼ �
ffiffiffiffiffiffi
2V

p
; ð15Þ

derived from the field equation (7) are

ϕð�v;0ÞðzÞ ¼
�vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ emhz
p ; ð16Þ

ϕð0;�vÞðzÞ ¼
�vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e−mhz
p : ð17Þ

The boundary values of these solutions are on one side �v
and on the other side 0, which correspond to the Uð1Þ
invariant phase and the SUð2Þ invariant phase, respectively.
In order to study the erasure mechanism, we consider the
passage of a monopole through an SUð2Þ invariant vacuum
layer. The vacuum layer can be approximated as a combi-
nation of two parallel domain walls, for instance [13],

ϕVLðzÞ ¼ ϕðv;0ÞðzÞ þ ϕð0;vÞðz − hÞ; ð18Þ
where h is the distance between the two domain walls. Note
that, for finite h, the vacuum layer is not a solution to the
static field equations, since the wall and antiwall attract
each other. However, the interaction is negligible for
h ≫ m−1

h ∼m−1
v . We used h ¼ 20m−1

v in the simulations.
In this regime, the vacuum layer is sufficiently long-lived
during the period of investigation [13].

IV. INITIAL CONFIGURATION

We numerically study the interaction of a magnetic
monopole and an SUð2Þ invariant vacuum layer. To achieve
this, we numerically solved Eqs. (7) and (8). As initial
configurations, we considered field configurations where
the vacuum layer is Lorentz boosted toward the monopole.
Upon the collision, we bear out the sweeping away mecha-
nism [2]. In particular, we observed that the monopole is
unable to pass the layer; instead, the magnetic charge
dissolves and spreads out. Additionally, electromagnetic
radiation gets emitted. As mentioned before, we expect
the form of the radiation pattern to depend on the initial
velocity of the magnetic charge. This anticipation prompted
us to elaborate on situations where themagnetic monopole is
also Lorentz boosted. Furthermore, boosting the magnetic
monopole simultaneouslywith the vacuum layer allows us to
check the mechanism for much higher collision velocities.

The maximal velocities we could study with an appro-
priate accuracy were 0.8 (in units of c ¼ 1) for the magnetic
monopole and 0.98 for the vacuum layer. For higher
velocities, the resolution of the lattice was not acceptable.
These two cases allow us to check the erasure mechanism
for Lorentz factors of γM ¼ 1.67 and γVL ¼ 5.03, respec-
tively. Boosting both objects with these velocities albeit
leads to the collision relative speed of about 0.9977, where
we used the addition rule for relativistic velocities
u ¼ u1þu2

1þu1u2
. Therefore, we were able to check the erasure

mechanism for the ultrarelativistic regime up to a gamma
factor of about γ ¼ 15 without changing the resolution of
the lattice and thus without increasing the computation time
and memory usage of our simulations. Earlier [8,13], this
erasure was only studied in the low relativistic regime.
We developed a general ansatz with arbitrary monopole

velocity u1 and vacuum layer velocity u2. Lorentz boosting
the vacuum layer solution yields

ϕVLðzÞ → ϕ̃VLðz; tÞ ¼ ϕVLðγ2ðz − u2tÞÞ:
For the scalar field of the magnetic monopole solution, we
have

ϕMðrÞ → ϕ̃Mðr; tÞ ¼ ϕMðx; y; γ1ðz − u1tÞÞ;
where γ1 ¼ 1ffiffiffiffiffiffiffiffi

1−u2
1

p and γ2 ¼ 1ffiffiffiffiffiffiffiffi
1−u2

2

p are the Lorentz factors

for the magnetic monopole and vacuum layer, respectively.
Since the gauge field is a Lorentz vector, it is necessary to
apply the Lorentz transformation matrix to the vector
additionally to the transformation of the z coordinate.
This results in

Wa
M;μðrÞ → W̃a

M;μðr; tÞ

¼

0
BBB@

−u1γ1Wa
M;zðx; y; γ1ðz − u1tÞÞ

Wa
M;xðx; y; γ1ðz − u1tÞÞ

Wa
M;yðx; y; γ1ðz − u1tÞÞ

γ1Wa
M;zðx; y; γ1ðz − u1tÞÞ

1
CCCA:

For the combined initial configuration, we use for the ϕ
field the product ansatz

ϕaðr; t¼ 0Þ ¼ 1

v
ϕ̃a
Mðr; t¼ 0Þϕ̃VLðz− d; t¼ 0Þ;

∂tϕ
aðr; t¼ 0Þ ¼ 1

v
∂tϕ̃

a
Mðr; t¼ 0Þϕ̃VLðz− d; t¼ 0Þ

þ 1

v
ϕ̃a
Mðr; t¼ 0Þ∂tϕ̃VLðz− d; t¼ 0Þ; ð19Þ

where d is the distance between the monopole and the
vacuum layer. For large enough distances, d ≫ m−1

h , the
field ϕa goes to ϕa

M for z < d=2. For z > d=2, the field ϕa

approaches the value ϕVLr̂a. With our ansatz, there is no
long-distance force between the monopole and the layer.
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We need to check the validity of this approximation. In
reality, for finite d and h, we expect several sources of
interaction. Most significant is expected to be the quantum
effect coming from the SUð2Þ gauge bosons that acquire
nontrivial mass profiles in the layer.
First, let us assume that the SUð2Þ theory stays in the

perturbative weak coupling regime inside the layer. The
parameter regime justifying this assumption will be speci-
fied below. In such a case, the perturbative quantum effects
will generate some d-dependent corrections to the magnetic
field energy.
This correction can be estimated as follows. In the Uð1Þ

invariant vacuum, the running gauge coupling g2 freezes at
the scale of the mass gap of the theory. This gap is given by
the masses of gauge and Higgs bosons in this vacuum,
mv ∼mh. The effective low energy theory below this scale
is a theory of a free massless Uð1Þ Maxwell field.
In the absence of the layer, the asymptotic value of the

magnetic field energy density would be given by
jBUð1Þj2 → 1

g2
1
r4. The presence of the SUð2Þ invariant layer

changes this energy in the following way.
Inside the SUð2Þ invariant layer, the Higgs mass is

essentially the same as in theUð1Þ vacuum and is ∼mh. The
Higgs boson thereby decouples below this scale also in the
effective theory inside the layer, however, not the gauge
bosons. Since the Higgs vacuum expectation value vanishes
in the layer and we work in the regime h ≫ m−1

v , the gauge
coupling in the layer continues to evolve all the way until
the scale h−1. This running is similar to the one in a pure
SUð2Þ gauge theory. Since such a theory is asymptotically
free, the evolved gauge coupling in the layer (≡g2L) is
stronger than the gauge coupling in the exterior (≡g2E),
g2L ¼ g2E þ δg2. The difference is positive and is

δg2 ¼ 11

12π2
g4E lnðmvhÞ þOðg6EÞ: ð20Þ

Thus, the presence of the layer decreases the magnetic
energy of the monopole (see Fig. 3), resulting in an
attractive potential between the two. Up to one-loop order,
one can approximate it as

VðdÞ ≈ −
11

24π

h
dðdþ hÞ lnðmvhÞ: ð21Þ

The acceleration of the monopole caused by the corre-

sponding force is a ∼ g2Eh
mvd3

lnðmvhÞ for h ≪ d. This force

can be safely ignored at large distances. Once the monopole
enters the layer, the interaction is dominated by the classical
profile of the Higgs field. This is explicitly taken into
account by our numerical analysis.
Let us now turn to the validity condition of the above-

assumed perturbative weak coupling regime inside the
layer. This condition is rather simple. Namely, the gauge
coupling inside the layer must stop running before it hits

the strong coupling scale of the gauge SUð2Þ theoryΛ. This
gives us a condition,

h−1 ≫ Λ: ð22Þ
In the opposite case, h−1 < Λ, the theory inside the layer

will enter the strong coupling regime. The SUð2Þ vacuum
will become confining and generates a mass gap at the scale
Λ. This leads to the effect of repelling theUð1Þ electric flux
from the SUð2Þ invariant vacuum toward theUð1Þ invariant
one, as originally studied in [10–12]. Correspondingly, if
the SUð2Þ layer is thicker than the scale Λ−1, the magnetic
flux becomes screened in its interior. This effect is
illustrated in Fig. 4. We thereby work in a regime in which
the thickness of the layer is much smaller than the scale of
SUð2Þ confinement. Then, the quantum effects on the Uð1Þ
field are reduced to the perturbatively generated attractive
potential (21) between the monopole and the layer [10].
Note that the layer will become a dual superconductor in

the regime h−1 < Λ. The magnetic field of the monopole
will induce the surface charges that will screen the field
inside the layer. However, the magnetic Gauss law will still
hold. The magnetic flux terminating on the surface charges
from one side of the layer will be exactly equal to the flux
originating from the opposite side. This regime goes
beyond our numerical analysis and will not be considered.
Hence, we can use the following initial ansatz for the

gauge fields:

Wa
μðr; t ¼ 0Þ ¼ W̃a

M;μðr; t ¼ 0Þ; ð23Þ
∂tWa

μðr; t ¼ 0Þ ¼ ∂tW̃a
M;μðr; t ¼ 0Þ: ð24Þ

For the ansatz and the simulations, we take the Lorenz
gauge ∂μW

μ
a ¼ 0.

FIG. 3. The magnetic energy density of a magnetic monopole in
the presence of an SUð2Þ invariant vacuum layer taking into
account the quantum correction (20) for the coupling constant.

RADIATION EMISSION DURING THE ERASURE OF MAGNETIC … PHYS. REV. D 108, 103501 (2023)

103501-5



Let us note that Ambjorn and Olesen pointed out in [21]

that, for a uniform magnetic field B > m2
v
g , the massive

vector bosons can condense. This is happening because the
magnetic field provides a bilinear term in the gauge fields
that generates some imaginary frequency modes. This
effect does not take place in the present case.
Even though the Higgs profile vanishes inside the layer,

the positive masses of the off-diagonal gauge bosons are
still much higher than the negative contribution from the
magnetic field. The latter, therefore, is insufficient for
destabilizing the vacuum inside the layer.

V. NUMERICAL IMPLEMENTATION

For the simulations, we used the programming language
Python with the package Numba [22], which translates our
Python code into fast machine code. Thereby, this decreases
the computation time substantially.
For a further increase of the computation speed and also

an enhancement of the utilization of the working memory,
we benefit from the axial symmetry of the system,

ϕ1 ¼ xf1 ϕ2 ¼ yf1 ϕ3 ¼ zf2

W1
x ¼ xyf3 W2

x ¼ −x2f3 þ f4 W3
x ¼ −yf6

W1
y ¼ y2f3 − f4 W2

y ¼ −xyf3 W3
y ¼ xf6

W1
z ¼ yf5 W2

z ¼ −xf5 W3
z ¼ 0

W1
t ¼ yf7 W2

t ¼ −xf7 W3
t ¼ 0;

ð25Þ

where the functions fi depend only on the radius r around
the z axis, z, and the time t. With this method, it was
sufficient to use only three lattice points in the y direction.
The equations were solved on the y ¼ 0 plane, and for the
neighboring planes,weused axial symmetry to determine the
corresponding values of the fields. This idea was adapted
from an earlier paper by Pogosian and Vachaspati [8]. The

implementation of this symmetry was realized according to
[23]. The second iterative Crank-Nicolsonmethod described
in [24] was applied for the time evolution.
With the Python program, we analyze the following four

cases:

ðIÞ u1 ¼ 0 u2 ¼ −0.8
ðIIÞ u1 ¼ 0.4 u2 ¼ 0

ðIIIÞ u1 ¼ 0.8 u2 ¼ 0

ðIVÞ u1 ¼ 0.8 u2 ¼ −0.98
The first three cases will be used to study the electromag-
netic radiation that gets emitted during the collision
between the monopole and the domain wall. The fourth
case serves as a simulation of the erasure mechanism
for the ultrarelativistic regime with a Lorentz factor of
around 15.
The lattice spacing in x and y directions was chosen to be

0.25m−1
v . For the cases with monopole velocity u1 < 0.8,

the lattice spacing in z direction was also 0.25m−1
v and the

time step was set to 0.1m−1
v . For the cases with monopole

velocity u1 ¼ 0.8, we chose 0.125m−1
v for the lattice

spacing in z direction and 0.05m−1
v for the time step.

To crosscheck the validity of our simulation, we com-
puted the total energy with respect to time. As expected, the
total energy was conserved up to numerical precision. We
found that the relative error is below 1%, which is sufficient
for our qualitative analysis.
For all four cases, we took the lattice size

½−60m−1
v ; 60m−1

v � in the x direction. For (I) the size in z
direction was chosen to be ½−60m−1

v ; 60m−1
v � and for

(II)–(IV) we chose ½−30m−1
v ; 90m−1

v �. The time interval
under investigation was ½0m−1

v ; 150m−1
v �.

The distance between the two domain walls of the
vacuum layer was set to h ¼ 20m−1

v , and the distance
between the monopole and the vacuum layer was chosen to
be d ¼ 30m−1

v . The constants mv, mh, and g were set to 1.

VI. RESULTS

In all four cases, (I)–(IV), we observe the erasure of the
magnetic monopole during the collision with the vacuum
layer. Our results agree with the previous numerical studies
[8,9]. Although our model is different, our observations are
consistent with the regimes considered before.
For the case (I), some frames of the evolution of the

potential energy density and magnetic energy density can
be found in Figs. 5 and 6, respectively. For the ultra-
relativistic case (IV), the evolution of the magnetic energy
density is plotted in Fig. 7. With this, we checked the DLV
mechanism [2] for the SUð2Þ gauge theory with ϕ6

potential for low relativistic and ultrarelativistic collision
velocities. In addition to the figures, the results of the

FIG. 4. In a superconductor layer, the electric field is screened.
Because of this, the electric flux lines terminate on the surface
charges (left). At the same time, the magnetic flux lines are
repelled (right). The SUð2Þ invariant vacuum represents a dual
superconductor, and the behavior of magnetic and electric flux
lines is reversed [10,12]. Correspondingly, such a vacuum layer
repels the electric flux while the magnetic flux terminates on
surface magnetic image charges.
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FIG. 5. Evolution of the potential energy density for the case (I) in the y ¼ 0 plane. The length and time values are in units ofm−1
v , and

the energy density is in units of m4
v

g2 . The vacuum layer moves over the monopole and unwinds it. Furthermore, we can observe radial

disturbances that move along the first domain wall with the speed of light. The second domain wall also shows some deformations
through the backreaction of the emitted radiation.

FIG. 6. Evolution of the magnetic energy density for case (I) in the y ¼ 0 plane. The length and time values are in units ofm−1
v , and the

energy density is in units of m
4
v

g2
. The black lines illustrate the SUð2Þ invariant vacuum layer. We used the value

ffiffiffiffiffiffiffiffiffiffiffi
ϕaϕa

p ¼ 0.5mvϕ to draw

its contour. As we can see, after the collision between the vacuum layer and the magnetic monopole, part of the magnetic energy moves
away radially. In contrast, most of the magnetic energy is captured within the layer where the magnetic charge spreads.

FIG. 7. Evolution of the magnetic energy density for case (IV) in the y ¼ 0 plane. The length and time values are in units of m−1
v , and

the energy density is in units of m4
v

g2 . Again, the black lines illustrate the SUð2Þ invariant vacuum layer. We observe the same behavior as

for case (I). The magnetic energy of the monopole unwinds, the remaining energy moves away radially, and most of the energy is
captured within the two domain walls. One further particular detail can be extracted from this figure. The magnetic energy is not erased
immediately everywhere. It takes a finite time for the magnetic field to respond to the spread of the magnetic source. An electromagnetic
pulse transports the information about the erasure.
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numerical simulations can be found in the Supplemental
Material [25].
Note that in Figs. 6 and 7 there is spherical energy

radiation with a factor of around 10−3 smaller than the
energy density in the magnetic monopole’s core. This
observation is valid for all the considered monopole and
vacuum layer velocities. This radiation spreads at the speed
of light and corresponds to electromagnetic radiation. We
confirmed it by analyzing the dispersion relation of the
pulse. The detailed investigation of the Fourier spectrum is
part of a forthcoming work [26].
Before we continue with the investigation of the form of

electromagnetic radiation, we give some more comments
on the phenomena of erasure itself. As we mentioned, the
magnetic monopole is always erased, and there is no
evidence to suggest that it could pass through the vacuum
layer, even in the ultrarelativistic regime. This phenomenon
can be attributed to the loss of coherence [2]. After the
collision, most of the coherence is carried away by the
radiation. This line of reasoning has already been presented
in previous studies about monopole-antimonopole annihi-
lation [16] and vortex erasure [13].
Furthermore, this behavior is also explained by entropy

arguments. A state with radiation has more entropy than a
state with a monopole. The entropy of a monopole is
significantly lower than the entropy needed to saturate the
unitarity bound [17], and thus the recreation of a monopole
is strongly suppressed.
To characterize the identified electromagnetic radiation,

we can study the direction of its magnetic and electric
fields. In Fig. 8, some frames of the evolution of the
magnetic and electric field are depicted. Before the colli-
sion, the magnetic field pointed radially away from the
center where the monopole was located. After the layer
passes over the monopole, the magnetic field shifts in the

direction toward the positive side of the z axis. This shift
proceeds at the speed of light and is a consequence of the
appearance of an induced current during the interaction
process. The current flows in circles around the z axis,
leading to a magnetic field perpendicular to the wall, i.e.,
parallel to the z axis. During the erasure of the monopole,
an electric field emerges and spreads away radially. In the
y ¼ 0 plane, the electric field points only in the y direction.
From the axial symmetry of our system, we can conclude
that the electric field lines are circles around the z axis. The
outer electric field of the pulse points anticlockwise around
the z axis, whereas the inner electric field points clockwise
around the z axis.
The magnetic field arrows (see Fig. 9) wriggle in a

banana-shaped form around the pulse’s center. Although

FIG. 8. Evolution of the magnetic and electric field for case (I) in the y ¼ 0 plane. The length and time values are in units of m−1
v . The

arrows illustrate the direction of the magnetic field, whereas the red and blue colors illustrate the electric field. Red colors represent
positive values of Ey, and blue colors represent negative values of Ey. Initially, the magnetic field arrows point radially away from the
origin, where the magnetic monopole is located. After the collision, the arrows adjust to the positive z direction when the
electromagnetic pulse moves over them. From the axial symmetry of the system, we can conclude that the electric field lines are circles
around the z axis that extend with time.

FIG. 9. Magnetic and electric field for case (I) at time
t ¼ 75m−1

v . The length and time values are given in m−1
v units.
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the interaction analyzed here is a combined process of the
erasure and acceleration of a magnetic monopole, and the
magnetic charge is not located at one point, the behavior of
electromagnetic radiation is qualitatively the same as for an
accelerated magnetic point charge.
The previous observations prompted us to reconstruct a

radiation pattern for different initial monopole velocities
to compare it with Eq. (1). We approximated the center of
radiation emission using the radiation energy density data.
Furthermore, we integrated the radiation energy density
over the pulse and created a radiation pattern to see in
which direction most radiation gets emitted.
For cases (I)–(III), we chose the times 85m−1

v , 110m−1
v ,

and 85m−1
v , respectively, and created out of the data for the

electromagnetic energy density ε ¼ 1
2

���EUð1Þ
���2 þ 1

2

���BUð1Þ
���2

the radiation patterns at these moments of time. The results
are given in Fig. 10.
The loops are not bent in the same way as in the case of

an accelerated point charge, given in Fig. 1. Nevertheless,
qualitatively the behavior of the angle θmax corresponding
to the maximum of radiation emission is conformable to
Eq. (2), describing the radiation emitted by an accelerated
point charge. This behavior is independent of the velocity
of the vacuum layer.

VII. CONCLUSION AND OUTLOOK

In this work, we bear out the DLV mechanism of erasure
of magnetic monopoles by domain walls [2]. We performed
our numerical study on a prototype model with SUð2Þ
gauge symmetry, which possesses the degenerate vacua
with Uð1Þ and SUð2Þ invariant phases [11,12].

Correspondingly, it has a solution in the form of the
layer of an SUð2Þ invariant vacuum, “sandwiched” in
between the Uð1Þ invariant vacua. The layer is taken to
be sufficiently thin so that the effects of the SUð2Þ
confinement on the gauge fields, discussed in [10,12],
can be ignored.
The Uð1Þ vacua support the ’t Hooft-Polyakov magnetic

monopoles. When a monopole meets the wall, it gets
erased, and the magnetic charge spreads in the layer. We
study the process of the erasure numerically. Special
attention is paid to the emission of electromagnetic radi-
ation. Remarkably, our simulations allow us to analyze the
radiation dynamics convincingly, despite its relatively low
energy. The radiation emission resembles the radiation
emitted due to the acceleration of a magnetic point charge.
We noted these similarities in the shape of the electric and
magnetic fields and the form of the radiation pattern.
This paper serves as proof of principle and motivation for

future work, as it is a way to characterize and extract
possible observables of the DLV mechanism.
Given that this mechanism is an occurrence in the early

Universe, it could have relevant effects on the cosmic
microwave background. Studies in this direction already
exist for cosmic strings [27] and domain wall networks
[28]. Additionally, the erasure of defects may contribute to
the emission of high-energy particles in the early Universe,
similar to the study of radiation in monopoles and anti-
monopoles connected by strings [29].
Furthermore, our analysis of the erasure mechanics

can be straightforwardly generalized to larger symmetry
groups.
The next step is to consider the study of gravitational

radiation from the erasure of topological defects. It is a new
mechanism that gives relevant imprints to the known
scenarios of gravitational wave emission from phase
transitions in the early Universe (for a review, see, for
instance, [30]). In this direction, the gravitational radiation
from topological defects was previously studied in the
context of monopoles connected by strings. Originally, this
was performed by Martin and Vilenkin in pointlike
approximation [31]. A more recent study [16], which goes
beyond this approximation, reveals that, in the regime of
comparable widths of strings and monopoles, the monopole
and antimonopole never go through one another and
oscillate. Instead, they get directly erased (annihilated) in
a single collision, converting the entire energy into the
waves of Higgs, gauge, and gravitational fields. In the
present analysis of wall-monopole collision, a similar
maximal rate of erasure is observed. Because of this, we
expect a high efficiency of gravitational wave production
during the erasure. This will be studied elsewhere [26].
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