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In this work, we propose a metamodeling technique to nuclear matter on the basis of a relativistic density
functional with density-dependent couplings. Identical density dependence for the couplings in both the
isoscalar and isovector sectors is employed. We vary the coupling parameters of the model to capture the
uncertainties of the empirical nuclear matter parameters at saturation. Then, we construct a large ensemble
of unified equations of state in a consistent manner for both clusterized and uniform matter in β equilibrium
at zero temperature. Finally, we calculate neutron star properties to check the consistency with
astrophysical observations within a Bayesian framework. Out of the different sets of astrophysical data
employed, the constraint on tidal deformability from the GW170817 event was found to be the most
stringent in the posteriors of different neutron star properties explored in the present study. We demonstrate
in detail the impact of the isovector incompressibility (Ksym) on high-density matter that leads to a
considerable variation in the composition of neutron star matter. A couple of selected models with extreme
values of Ksym, which satisfy various modern nuclear physics and neutron star astrophysics constraints, are
uploaded in the CompOSE database [S. Typel et al., Phys. Part. Nucl. 46, 633 (2015).] for use by the
community.
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I. INTRODUCTION

The theoretical description of strongly interacting sys-
tems of baryons and mesons leads to the construction of the
equation of state (EOS) of dense matter which becomes the
foundational basis for the calculation of the properties of
infinite nuclear matter and neutron stars. Despite the
tremendous advancements in theoretical and experimental
nuclear physics during the past decades, our knowledge
of the EOS is still incomplete. Quantum chromodyna-
mics, although being the fundamental theory of strong

interaction, does not provide any useful solution at the
densities relevant to the finite and infinite nuclear
systems [1]. Hence, there have been numerous attempts
to construct an effective theory of matter relevant for the
hadronic degrees of freedom. These approaches can be
broadly divided into two categories: (i) ab initio many-
body methods and (ii) phenomenological methods [2]. In
recent years, ab initio approaches have seen many develop-
ments and have, in particular, benefited from the con-
struction of new nuclear interaction potentials within chiral
effective field theory (χ-EFT) [3,4]. On the other hand,
phenomenological models have been quite useful due to
their simpler structures and reduced computational costs
which allow us to compute the EOS for the full range of
temperatures, baryon number densities, and compositions
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needed to describe the objects of interest in compact star
astrophysics, i.e., (proto)neutron stars, core-collapse super-
novae (CCSN), and binary neutron star (BNS) mergers.
Traditionally, the parameters of the phenomenological
interactions are optimized by fitting a variety of exper-
imental nuclear data. These approaches are usually
expressed by the energy density functionals, either as
nonrelativistic ones with zero-range (Skyrme type) or
finite-range interactions (Gogny type) [5] or as (special)
relativistic ones (relativistic mean field type) [6]. All of
them have been widely used in astrophysical applications
such as to describe the composition and the thermodynamic
properties of (proto)neutron star matter, CCSN, and BNS
mergers. Relativistic models are better suited to describe
high-density matter as they have built-in causality, and the
inclusion of different non-nucleonic degrees of freedom can
be handled more coherently. They originated as a field
theory expressed by a Lagrangian density where hadrons
interact via the exchange of scalar and vector mesons
representing the attractive and repulsive component,
respectively, of the nuclear force to describe the saturation
properties of symmetric nuclear matter [7,8]. Later, various
extensions were implemented, including an isovector
interaction (see, e.g., [9,10]) and nonlinear self-interaction
of mesons (see, e.g., [11–13]), to describe the in-medium
effects and characterize the high-density behavior within
the theory. A different class of relativistic density functional
models was also introduced in the form of density-depen-
dent couplings; see Refs. [14,15] for the first realizations.
Various properties for the ground and excited states of

different nuclei, e.g., binding energy, charge radii, isobaric
analogous states, giant resonances, or data from heavy ion
collisions, are used to optimize these phenomeno-
logical interactions [16,17], and very satisfactory results
have been obtained. Recent major developments of these
models concern mainly the isovector sector of the nuclear
interaction [10,18] in relation with experimental pro-
gress [19,20]. Particularly, recent laboratory experiments
like PREX-II and CREX based on the parity-violating
electron scattering have measured the neutron skin thick-
ness of 208Pb and 48Ca, respectively, albeit with relatively
large uncertainties [21–23]. The impact of these results
are investigated in several theoretical studies in the context
of underlying correlations involving properties of finite
nuclei [24–26] and neutron stars, in particular, the radius
and tidal deformability [27]. A future more precise meas-
urement would clearly be very important to pin down
the symmetry energy part of the nuclear interaction even
further [28].
Multimessenger observations of neutron stars (NSs)

provide excellent probes of supranuclear matter to comple-
ment the knowledge gained from terrestrial experiments.
NSs are gravitationally bound objects, and the solutions of
the general relativistic structure equations of NSs allow one
to obtain a sequence of mass and radius which has a direct

correspondence to the EOS of NS matter [29–31].
Recent important constraints from NS observations came
with the observations of massive pulsars (≳2M⊙) with
precisely determined masses that ruled out many EOS
models [32,33]. The detection of gravitational waves from
the BNS merger event GW170817 by the LIGO-Virgo
Collaboration with a first value for the NS tidal deform-
ability together with the corresponding electromagnetic
counterparts ushered a new era of the exploration of matter
under extreme conditions [34,35]. Parallel improvements in
the x-ray observations with the Neutron star Interior
Composition Explorer (NICER) instrument on board the
International Space Station has provided two simultaneous
mass-radius measurements of neutrons stars [36–39]. In
order to analyze these astrophysical measurements in terms
of the NS EOS, agnostic versions of the high-density EOS
in the form of piecewise polytropes [40], spectral para-
metrization [41–43], or nonparametric Gaussian process-
based sampling [44–46] have been put forward. Although
these approaches are free from any assumptions on any
particular nuclear interaction model, they allow one only
to pin down the EOS of β-equilibrated matter without any
understanding of the underlying matter composition and
interactions.
To bridge the gap between the microscopic theory of

dense matter and the required agnosticity, a nuclear
metamodeling approach EOS has recently been developed
based on a Taylor expansion, truncated at fourth order, of
the energy per baryon in density and asymmetry around
saturation [47,48]. In this technique, the nontrivial depend-
ence on Fermi momentum at low density was achieved
by separating the kinetic and potential parts of the func-
tional. The expansion coefficients of the potential part are
expressed as functions of empirical nuclear matter param-
eters (NMPs) which are constrained by nuclear experiments
for the two lowest orders. These latter include the binding
energy per nucleon Esat, the saturation density nsat, incom-
pressibiltyKsat, the symmetry energy at saturation Esym, the
slope of symmetry energy Lsym, and isovector incompress-
ibility Ksym. A purely nucleonic composition is hypoth-
esized for the baryonic component. This approach called
“nucleonic metamodeling” incorporates diverse possible
predictions for the dense matter EOS and composition
through the experimental uncertainties assumed for the
NMPs. It provides a generic EOS model that encompasses
nuclear physics knowledge from laboratory experiments
and astrophysical observations within a Bayesian frame-
work. The model was successfully applied in recent years
to obtain controlled predictions of different astrophysical
quantities [27,49–51].
The main limitation of this approach to the nucleonic

metamodeling is that it uses a nonrelativistic formulation
and that causality has to be imposed by hand a posteriori
[47]. In addition, it is not straightforward to include other
non-nucleonic degrees of freedom such as hyperons or
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mesons consistently in the formulation. Only an extension
with a phase transition to quark matter on the basis of a
Maxwell or Gibbs construction between a nucleonic
model on one side and a quark model on the other side
is feasible [51–53]. In order to improve these aspects,
we introduce here a relativistic metamodeling. For the
present work, we will limit ourselves to a purely nucleonic
composition of high-density baryonic matter, but the
formulation allows for an extension to other degrees of
freedom. We have chosen a relativistic energy density
functional with density-dependent couplings for this pur-
pose. This type of model was first introduced by Fuchs and
Lenske [14,54] for the description of finite nuclei. The
functional form of such density dependence was discussed
in detail by Typel and Wolter [15]. Subsequently, the model
was applied to study hypernuclei and neutron star matter as
well [55–57]. For an in-depth review of the relativistic
energy density functionals with density-dependent cou-
plings, see Typel [58] and references therein. In recent
years, the choice of parameters for these models has been
optimized with Bayesian techniques, which allows one to
include consistently the different nuclear physics and
astrophysics constraints into nuclear modeling [59–65].
In contrast, in this work, we do not wish to find a best-fit
model with all the available data, but we would rather like
to analyze the parameter space of NMPs thoroughly and
find a Lagrangian formalism for the metamodeling that
provides enough freedom to incorporate the uncertainties
from the nuclear experiments and to predict the range of
allowed NS EOS.
We study the composition of the high-density matter

within the relativistic metamodel, too. The composition of
the NS core affects its properties significantly. The knowl-
edge of the proton fraction is essential to our understanding
of various astrophysical phenomena such as the cooling of
NSs and nucleosynthesis [66] and kilonova properties of a
BNS merger event; see [67] and references therein. We are
interested in exploring the full extent of the freedom in the
isospin sector and, thus, for the proton fraction in NS
matter. In particular, one of our objectives is to study the
effect of the symmetry energy compressibility parameter
Ksym that is presently largely unconstrained by nuclear
phenomenology. It has been shown very recently that the
behavior of Ksym may hold the key to explain the latest
PREX and CREX results together [68]. We, therefore, give
special attention to explore the range of Ksym and its
correlations with other parameters within the framework of
a relativistic metamodeling approach.
The paper is organized as follows. In Sec. II, we discuss

the construction of the relativistic metamodel and establish
the motivation for a large exploration of the parameter
space. In Sec. III, we outline the constraints used in this
work. Then, we present our results and compare with
previous works in the literature in Sec. IV. Finally, we
summarize our findings in Sec. V.

II. RELATIVISTIC FORMULATION OF THE
METAMODELING

In this section, we describe our implementation of the
relativistic metamodeling. We start with the definition of
the NMPs and make a connection with the parameters of
the energy density functional. Expanding the energy per
nucleon of asymmetric nuclear matter eðnB; δÞ at baryon
number density nB ¼ ðnn þ npÞ, with nnðpÞ being the
neutron (proton) density and asymmetry δ ¼ nn−np

nB
in a

Taylor series around the equilibrium density of symmetric
nuclear matter nsat, the energy of symmetric matter
e0ðnBÞ ¼ eðnB; δ ¼ 0Þ reads

e0ðnBÞ ¼Esatþ
1

2!
Ksat

�
nB −nsat
3nsat

�
2

þ 1

3!
Qsat

�
nB−nsat
3nsat

�
3

þ 1

4!
Zsat

�
nB−nsat
3nsat

�
4

þ� � � : ð1Þ

The coefficients of the above expansion up to order four
define the isoscalar parameters which are connected to the
derivatives of e0 with respect to baryon number density
at saturation. To characterize the behavior with respect to
the asymmetry of nuclear matter, the so-called symmetry
energy is defined as

esymðnBÞ ¼
1

2

∂
2eðnB; δÞ
∂δ2

����
δ¼0

: ð2Þ

Performing a Taylor expansion of esym around saturation
in a similar way as above allows one to introduce the
isovector NMPs as

esymðnBÞ¼EsymþLsym

�
nB−nsat
3nsat

�
þ 1

2!
Ksym

�
nB−nsat
3nsat

�
2

þ 1

3!
Qsym

�
nB−nsat
3nsat

�
3

þ 1

4!
Zsym

�
nB−nsat
3nsat

�
4

þ�� � : ð3Þ

In symmetric nuclear matter (SNM) [see Eq. (1)], Esat
and Ksat represent the binding energy per nucleon and
incompressibility at saturation, respectively. In Eq. (3),
Esym, Lsym, and Ksym denote symmetry energy, slope, and
symmetry incompressibility at saturation, respectively. In
these expansions, the third- and fourth-order terms are
the (symmetry) skewness (Qsat; Qsym) and kurtosis
(Zsat; Zsym), respectively. Equations (1) and (3) give the
definition of the NMPs, as they can be calculated from any
arbitrary model with nucleonic degrees of freedom. For
their sampling, a self-consistent determination is performed
in this paper based on a meson exchange Lagrangian
density with density-dependent couplings:
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LDD ¼ ψ̄ðiγμ∂μ −MÞψ þ ΓσðnBÞσψ̄ψ − ΓωðnBÞψ̄γμωμψ −
ΓρðnBÞ

2
ψ̄γμρμ · τψ

þ 1

2
ð∂μσ∂μσ −m2

σσ
2Þ − 1

4
FμνFμν þ

1

2
m2

ωωμω
μ −

1

4
B⃗μνB⃗μν þ

1

2
m2

ρρμ · ρμ: ð4Þ

Here, σ, ωμ, and ρμ are effective meson fields mediating
the strong interaction among the nucleons, represented by
the field ψ . We do not include the δ meson, i.e., a scalar
isovector channel, as it does not have significant impact
on the description of bulk properties of nuclear matter [69],
although in recent times the impact to δ meson to mitigate
apparent tension between the inferences from GW170817
and PREX-II results were pointed out in Ref. [70]. To
ensure a maximum flexibility to the density dependence
of the equation of state, only linear terms in the meson
fields are considered in the Lagrangian while all the
meson couplings Γσ , Γω, and Γρ are density dependent.
The functional form of the density dependence is chosen
as [71]

ΓiðnBÞ ¼ ai þ ðbi þ dix3Þe−cix; ð5Þ

with i ¼ σ, ω, ρ and x ¼ nB=n0. n0 is a normalization
density, in general chosen close to, but not necessarily
coincident with, the saturation density. We will denote
our Lagrangian-based metamodel as the GDFM model
hereafter, after the initials of the authors that have first
proposed this functional for the density dependence of the
couplings. Note that, in contrast to the original paper by
Gogelein et al. [71], we do not include a correction term
for the isoscalar vector ω channel close to saturation, and
we assume a priori all four parameters ai, bi, ci, and di
nonzero in all channels. Our choice of the particular form
of Eq. (5) is motivated by a few reasons. First of all, it puts
all the couplings on the same footing for the density
dependence; second, the isovector coupling has enough
freedom to explore the uncertainties of the NMPs of
interest. Of course, one can choose other forms depending
on the requirement of the analysis. In a future work, we
will check to what extent our results depend on the
particular choice for the functional form of the density
dependence. All in all, the present model has 12 indepen-
dent parameters determining the strength of the couplings
and their density dependence. In our calculations, we have
chosen to vary the dimensionless parameters ai, bi, ci,
and di fixing the meson masses and the scaling density n0.
For the latter, following Gogelein et al. [71], the fol-
lowing values have been assumed: mω ¼ 782.6 MeV,
mρ ¼ 769 MeV, and mσ ¼ 550 MeV. The nucleon mass
is fixed toM ¼ 938.9 MeV. For the parameter n0, we have
taken the value n0 ¼ 0.16 fm−3. We remind the reader here
that n0 is not the saturation density. The latter is determined
for a given set of model parameters by the condition of
vanishing pressure in symmetric matter.

To build an EOS for cold β-equilibrated matter which
allows one to calculate the structure of a NS, we need as
well a description of the low-density crust region where
nuclear clusters are formed. A consistent modeling of
matter for the crust and the core has been found to be
important for the correct determination of NS radii and
tidal deformabilities [72–74]. Here, we will use a unified
approach, calculating a consistent crust from the compress-
ible liquid drop model (CLDM) approach of Carreau,
Gulminelli, and Margueron [75]. This approach calculates
the crust given a set of NMPs using the Taylor expansions
of Eqs. (1) and(3). In our case, these NMPs are calculated
for each realization of the GDFM model. To avoid any
fictitious correlations imparted by high-density and low-
density data on the NMPs, we treat the third- and fourth-
order NMPs below and above the saturation independently
as described in Ref. [27]. The use of independent third- and
fourth-order parameters, in principle, breaks the unified
character of the EOS; however, the effect of those param-
eters at low density is found to be negligible on the
astrophysical quantities of interest for this paper. Hence,
in this way we obtain a unified EOS for each set of GDFM
model parameters combining core and crust using the same
set of first- and second-order NMPs.

III. BAYESIAN ANALYSIS WITH NUCLEAR
AND ASTROPHYSICS CONSTRAINTS

We perform a Bayesian study of the relativistic meta-
model incorporating different types of constraints as filters
for our generated samples of model parameters. The aim is
then to predict global NS properties respecting all available
constraints. To that end, the posterior distributions of our
set of model parameters ðX ¼ ai; bi; ci; diÞ satisfying all
the constraints C are defined as

PðXjCÞ ∝ PðXÞ
Y
k

PðCkjXÞ; ð6Þ

where PðXÞ is the prior distribution and Ck include the
various constraints from nuclear physics and astrophysics.
From the nuclear physics side, we first would like to
reproduce the properties of nuclear matter around satura-
tion, i.e., the values of the NMPs. Our model parameters
should be sampled in a way such as to cover the full ranges
of possible values for the NMPs. These values are given
in Table I, which were chosen such as to cover largely
their present uncertainties. In practice, we do not apply any
explicit likelihood model for the NMPs but rather consider
uniform priors for the model parameters of the GDFM
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Lagrangian within the ranges reported in Table II and then
select models within the uncertainty of the NMPs as
assumed in Table I.
The filters that an EOS must satisfy can be divided

broadly in two groups, the low-density (LD) filters,
originating from nuclear theory and experiments, and the
high-density (HD) ones, mainly inferred by astronomical
observations. We have used the theoretical calculations
from χ-EFT for SNM and pure neutron matter [3] in the
range of baryon number densities from 0.02 to 0.16 fm−3

as our main LD filter. This theoretical band is interpreted as
a 90% confidence interval, and for this reason it is enlarged
by 10% on each side. We use this constraint as a bandpass-
type filter, meaning that we considered only EOS models
that pass through the uncertainty region predicted by the
calculations. Since this is a range predicted from different
theoretical model Hamiltonians for the χ-EFT, we have
not interpreted this uncertainty region as distributed as
Gaussian.An extra constraint, particularly acting on the low-
order isoscalar NMPs, comes from nuclear experimental
data. Indeed, upon constructing the crust EOS, the param-
eters entering the CLDMmodel in addition to the NMPs are
optimized with the AME2016 mass table. The likelihood
function with the LD filter then takes the form

PLDðCnuclearjXÞ ∝ ωχ-EFTðXÞPAMEðXÞ; ð7Þ

where ωχ-EFT is either 0 or 1, depending on whether the
EOS model passes through the band predicted by χ-EFT
or not.
Our HD filter comes from the astrophysical observations

of massive pulsars and combined tidal deformability (Λ̃)
from GW170817. In particular, we use the mass measure-
ment of J0348þ 0432 as 2.01� 0.04M⊙ reported by
Antoniadis et al. [32] as a Gaussian likelihood:

PðCMmax
jXÞ ¼ 1

2

�
1þ erf

�
MmaxðXÞ=M⊙ − 2.04

0.04
ffiffiffi
2

p
��

: ð8Þ

Then, we impose the constraints on Λ̃ from Ref. [76]. The
value of Λ̃ thereby depends on several other parameters
of the binary system, notably the mass ratio q and the
chirp mass. The latter has been determined rather precisely
to be Mchirp ¼ 1.186� 0.001M⊙. We construct the like-
lihood for the data from GW170817 assuming the low-spin
prior as

PðCLVCjXÞ ¼
X
i

PLVCðΛ̃½qi�; qiÞ: ð9Þ

For each EOS, we vary q within [0.73, 1.00], to generate a
binary with Mchirp ¼ 1.186 and corresponding Λ̃ and then
find the probability from Eq. (9). The likelihood function
with the HD filter is simply the product

PHDðCastrojXÞ ¼ PðCMmax
jXÞ × PðCLVCjXÞ: ð10Þ

An extra constraint comes from the simultaneousmass-radius
measurements of PSR J0030þ 0451 and PSR J0740þ 6620
by NICER [36–39]. However, we have checked that all
models having passed the different filters of our choice
are already compatible with NICER data with comparable
likelihood; see also [49]. Therefore, we have not used this
extra constraint in theHD filter. However, our predictionswill
be compared to the NICER data in Sec. IVC.

IV. RESULTS

A. Nuclear matter parameters

Let us start the discussion of our results with the NMPs
of the GDFM model in terms of the model parameters
aj, bj, cj, and dj, j ¼ 1;…; 4. As mentioned before, our
choice of the functional form for the density dependence of
the couplings allows one to well explore the isovector
interaction channels. In particular, we manage to explore
regions of positive Ksym that have not been studied earlier
within this type of models; see, e.g., the recent studies
[60,62,63,77]. To better motivate this aspect of our work,
let us present two example EOS models: one with Ksym ¼
158 MeV and the other one with Ksym ¼ −156 MeV. The
lower-order NMPs for these two sets are very similar; i.e.,
they have similar symmetry energy and incompressibilities.

TABLE I. Ranges of values considered for various nuclear
empirical parameters.

Parameter Assumed range of values

nsat ðfm−3Þ 0.135, 0.195
Esat ðMeVÞ −17; − 14
Ksat ðMeVÞ 150, 350
Esym ðMeVÞ 20, 45
Lsym ðMeVÞ 20, 180

TABLE II. Ranges of model parameters used to explore the
NMPs.

Parameters Maximum value Minimum value

aσ 10.295748 6.9837231
bσ 3.2618188 2.0238622
cσ 2.7911622 1.6943625
dσ 5.2779045 2.4805772
aω 13.6596588 9.1064392
bω 2.35939872 1.57293248
cω 8.2559356 5.0097963
dω 1.6719065 0.67148104
aρ 1.0 −1.0
bρ 7.312709592 4.875139728
cρ 0.66405387 0.40285884
dρ 1.2092027 −1.2112768

GENERALIZED DESCRIPTION OF NEUTRON STAR MATTER … PHYS. REV. D 108, 103045 (2023)

103045-5



The model parameters corresponding to these two sets are
provided in Table III. We construct the EOS models in β
equilibrium and then calculate the TOV sequences, shown in
Fig. 1.Onemay see that theNSEOS aswell as themaximum
mass obtained from their TOV solutions are very similar.
The tidal deformabilities as a function of the NS mass can
differ by up to factor of 2–3 for high NS masses, but this
difference is not significant in view of the current precision
on Λ from GW detections. For a given mass, the radii
are slightly higher for the Ksym > 0 case, as expected for a
stiffer equation of state. However, the proton fraction looks
completely different between the two models. PositiveKsym

results in a much larger proton fraction, thus drastically
changing the chemical composition of the star. This latter
determines the transport properties of the star, such as the
thermal and electrical conductivity or neutrino emissivity.
This information is difficult to extract directly from the
astronomical observations sensitive to the EOS; still, the
knowledge of the composition is crucial to correctly model
astrophysical phenomena such as NS cooling or pulsar
glitches [2,66,67,78,79]. Therefore, one can conclude that
our approach provides enough flexibility to explore all
possibilities for the neutron star interior structure given a
typical observation of NS global properties.
Next, we explore further the range of values for the

NMPs produced by the relativistic metamodel with the
samples uniformly drawn from the range of model para-
meters shown in Table II. In Figs. 2 and 3, we show the

distributions of the isoscalar and isovector parameters,
respectively. To obtain what we will call in the following
our prior (blue distributions in Figs. 2 and 3), we first stitch
the crust EOS calculated for the same set of NMPs
following [75] to the high-density GDFM EOS model.
For the third- and fourth-order NMPs, we do not assume
them to be the same for low density and high density,
i.e., crust and core. The parameters named Q’s and Z’s
correspond to those calculated from the GDFM calcula-
tions, while independent third- and fourth-order parameters
are generated for the calculations of the crust EOS [27]. The
construction of the crustal EOS further requires the
definition of the surface parameters that are optimized
for each EOS set; see Carreau, Gulminelli, and Margueron
[75] for details. This is done by imposing the reproduction
of the nuclear masses (PAME), and furthermore the models
unable to produce a viable crust are removed from our
samples. As a consequence, a part of the impact of the
nuclear measurements is already introduced effectively in
what we call “prior.”
After application of the extra low-density constraints via

the ωχ-EFT filter [see Eq. (7)], the final posteriors are found
by imposing the likelihood models from the astrophysical
observations as discussed in Sec. III. As we can see from
Figs. 2 and 3, the χ-EFT constraint has a small effect on the
isoscalar parameters, while it is more effective in narrowing
the distributions of the low-order isovector parameters, as
expected. Globally, we can say that the filters are not very
effective in determining the optimal values of the param-
eters. This is due to the fact that the physical properties are
not determined by specific well-identified parameters but
only by complex combinations of the whole parameter set.
For this reason, it is not possible to a priori reduce the prior
range of the parameters as given in Tables I and II without
creating an uncontrolled bias. Only ∼0.43% of the models
are retained by the pass-band filters, but the size of the prior
N ¼ 6.5 × 106 is chosen such as to guarantee the posterior
statistics is sufficient to have convergent estimations for the
observables shown in the paper. Interestingly, the prior
distribution contains some correlations between the
NMPs that are sharpened by the χ-EFT filter, notably,
the Esym-Lsym and theKsym-Lsym correlations in Fig. 3. This
suggests that those built-in correlations of the GDFM
correspond to physical properties and are not induced by
the arbitrary form of the density dependence of the meson
couplings. Other more unexpected correlations are seen
in the isoscalar sector, notably, between nsat and Zsat.
Unfortunately, the existing constraints are too loose to
influence Zsat, and, therefore, it is difficult to unambigu-
ously assign a physical content to this correlation. We can
also observe that the full symmetry energy posteriors
(green distributions labelled “Posterior” in Fig. 3) are very
similar to the distributions obtained after the application of
the low-density filters only (orange distributions labelled
“χ-EFT” in Fig. 3). This underlines the fact that present

TABLE III. Two representative models corresponding to neg-
ative (model I) and positive (model II) Ksym.

Parameters Model I Model II

aσ 8.225494 7.849499
bσ 2.7079569 2.9940229
cσ 2.4776689 2.4904544
dσ 3.8630221 4.5836619
aω 10.426752 9.9826068
bω 1.6468675 1.7422104
cω 6.8349408 7.4337329
dω 1.4458185 1.3409159
aρ 0.64584657 −0.85630723
bρ 5.2033131 6.7966817
cρ 0.4262597 0.517707
dρ −0.1824181 1.0008296

nsat ðfm−3Þ 0.16194209 0.16249048
m� 0.67879492 0.69872797
Esat ðMeVÞ −15.526417 −15.082767
Ksat ðMeVÞ 249.10229 236.40272
Esym ðMeVÞ 32.908066 31.465153
Lsym ðMeVÞ 53.129645 76.468950
Ksym ðMeVÞ −156.06294 158.18981

MmaxðM⊙Þ 2.30883 2.30272
RMmax

ðkmÞ 11.3041 12.2781
R1.4ðkmÞ 12.8175 13.7942
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astrophysical constraints are not very effective in unam-
biguously pinning down the density dependence of the
nuclear symmetry energy, as already observed by different
authors [80,81].
These observations can be better quantified by looking at

Fig. 4. In this figure, we present the Pearson correlation
coefficients between the NMPs calculated from the GDFM
metamodel for the priors and the posteriors. Here, we see
the prior correlations as the intrinsic properties of the
metamodel and find how the different filters modify them.
We quantitatively confirm the information obtained visu-
ally from Figs. 2 and 3. The appearance of quasisystematic
strong correlations between the high-order parameters
and the low-order ones is very encouraging information:
It suggests that more stringent constraints from nuclear data
would pin down the density dependence of the EOS also at
higher densities.

B. Equation of state and composition
of neutron star matter

In Fig. 5, we show the pressure of cold matter in β
equilibrium as a function of the baryon number density

corresponding to the NMP distributions in Figs. 2 and 3.
Here, we distinguish between the EOSmodels generated by
the GDFM metamodel in terms of 99% prior and the 68%
and 95% posteriors obtained after applying the different
filters, respectively. The comparison between the distribu-
tion obtained applying only the low-density filter and the
full posterior (at 68% confidence interval), in the right
panel in the figure, shows that the astrophysical observa-
tions, particularly the tidal polarizability measurement, are
very effective in constraining the equation of state. To be
specific, we find that the posterior after applying the
relevant high-density filters prefers relatively softer regions
of the prior. The equations of state corresponding to the
two representative models I and II associated to extreme
values of the isovector compressibility Ksym (see Fig. 1 and
Table III) are also reported in Fig. 5 (left panel). We can see
that both models lie well within the higher probability
region of our posterior, meaning that very different Ksym

values cannot be easily discriminated by measurements
of the EOS, at least within the present uncertainties
of the astrophysical measurements. This is consistent
with the similar mass-radius relation observed in Fig. 1.

FIG. 1. Pressure (a) and proton fraction (b) as a function of baryon density nB, mass radius (c), and tidal deformability (d) for two
example EOS models with negative and positive Ksym, respectively; see the text for details.
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It is important to stress that these models are covariant by
construction, and, therefore, they have causality built in and
can be calculated at any density.
This is better shown by the behavior of the sound speed,

displayed in Fig. 6 as a function of the baryon number
density. As in Fig. 5, we show in the left panel the 99%
prior of the GDFM models together with the contours for
the 68% and 95% of the posteriors. Since this is a
relativistic model, cs never reaches unity and our models
remain causal. The posterior of c2s first increases with
density and then attains a roughly constant value around
∼0.7c2. In the prior, we see a moderate kink which is not
prominent in the posteriors. The most viable reason
behind this behavior is that the models with stiffer EOS
and, thus, a strong increase in the sound speed at low
densities are excluded in the posteriors after applying the
likelihood of the gravitational wave measurement, as seen
in Fig. 5, too. Furthermore, we can see from the two
representative models I (blue) and II (red) associated to
very different values of the Ksym parameter that the typical

behavior of the sound speed is not necessarily monotonic,
and this function can present convexities (in the Ksym < 0

case) or even maxima (in the Ksym > 0 case). Peaks in the
sound speed are typically associated to the emergence
of new degrees of freedom that soften the equation of
state; see, e.g., [52,63,82–86] for different scenarios.
Our findings demonstrate, however, that new degrees of
freedom at high density are not a necessary condition for
nonmonotonicity in the sound speed. The effect of the
low-density and high-density filters are outlined in the
right part in the figure. Consistently with the results in
Fig. 5, we can see that the χ-EFT constraint is not very
influent in determining the behavior of the sound speed,
while the information from the gravitational wave
observation tends to exclude the highest sound speed
models.
Now, let us look at the matter composition for these

different EOS models. As we have discussed before
(see also Fig. 1), the GDFM models can produce a large
variation of proton fraction at a particular density due to the

FIG. 2. Isoscalar NMPs for the relativistic metamodel, with priors taken from the uniform parameter distribution of the GDFMmodel;
see Table II. The prior (blue), low-density (denoted as χ-EFT) (orange), and full (LDþ HD, green) posteriors are shown. 68% and 95%
probability contours are given in the correlation plots. The green distributions are very close to the orange ones and almost invisible on
the scale of the figure.
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freedom provided in the isovector couplings, i.e., those
associated with the ρ meson. In Fig. 7, we present the prior
and the posterior ranges for the proton fraction of neutron
star matter in β equilibrium as a function of the baryon
number density. As in the previous figures, the separate
effect of the low- and high-density filters (right panel), and
the representative behavior of model 1 (blue) and model 2
(red), are also reported. We can see that very high proton
fractions reaching almost xp ¼ 0.5, although being present
in the prior, are excluded by the astrophysical data which
push the posterior to lower proton fractions. But, due to the
large freedom in the isovector interaction channel that is
presently largely unconstrained, we still find that xp can
reach a substantially high value at high densities, about
∼0.3 considering the 68% posterior and even 0.4 for the
95% one. This means that our metamodel predicts that the
core of massive NS can a priori be quite proton rich even
after all the relevant existing constraints are applied; see
also the discussion in Ref. [87]. In principle, detailed
observations of the cooling behavior of neutron stars
could help in this respect, since via the opening of direct
URCA-type reactions, which very efficiently emit neutrinos,

proton-rich neutron stars cool down very fast [88]. The main
difficulty is, however, that observationally it is not obvious to
associate a mass to a NS for which the surface temperature is
measurable. Let us stress, too, that this study supposes a
purely nucleonic composition of the neutron star interior and
that further uncertainties on the composition arise from the
possible presence of non-nucleonic degrees of freedom at
high densities, such as hyperons, mesons, or a transition to
deconfined quark matter.

C. Neutron star properties

Next, we turn our attention to the NS configurations
generated from theEOSpredicted by ourmetamodel. To that
end, we solve the TOV equations [89,90] for a spherically
symmetric relativistic star supplemented with the equations
determining the response to an external quadrupolar per-
turbation which allow one to calculate the tidal deform-
ability [91,92]. In Fig. 8, we display the resultingM-R (left
panel) and theM-Λ (right panel) relations. Again, the orange
regions represent the 99% prior from GDFM, whereas the
posterior regions include the low-density filter from χ-EFT
as well as the high-density filters from massive pulsars and

FIG. 3. The same as Fig. 2 but for the isovector NMPs.
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the tidal deformability measurement of GW170817; see
Sec. III for details. In the left panel, we show in addition
by the two black contours the 1σ regions for the NICER
measurements of J0740þ 6620 [38,39] and J0030þ 0451
[36,37], respectively. It is obvious, as mentioned before,
that the GDFM is consistent with the NICER results,
which explains why adding these extra constraints would
not modify our posterior distributions in an impactful way.
Following the previous trend in Figs. 5 and 6,we find that the
stiffer parts of the prior EOS models that produce consis-
tently larger radii are excluded. In agreement with previous
results in the literature [49,60], we predict from current

constraints that the radius of a 1.4M⊙ star is most likely to be
in the range ∼12–13 km. For the tidal deformabilities, we
find the equivalent results to those that are seen in theM-R
space. Median values of radius and tidal deformability for
prior, χ-EFT, and posterior in 1.4M⊙ and 2.0M⊙ NSs, along
with their 1σ uncertainties, are listed in Table IV.
We can also see from Fig. 8 that the relativistic meta-

modeling presented here can accommodate very high values
of the maximum mass. Even if we have not included
hyperons in the present modeling due to the high degree
of uncertainty associated with their couplings [2,93], this
information suggests that there will be a large parameter

FIG. 4. Right: Pearson correlation coefficients between the different NMPs for the GDFM prior (upper part) and full posterior (lower
part) distribution. Left: the same but for χ-EFT filter in the lower part.

FIG. 5. Pressure at β equilibrium as a function of baryon density. Left: prior and posterior distributions within different probability
ranges. The blue (red) curve corresponds to the representative model I (II), respectively. Right: the 99% prior and the 68% posterior are
confronted to the posterior obtained applying only the low-density constraints. The statistics is the same in each density bin.
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FIG. 6. The same as Fig. 5 but for the speed of sound as a function of the baryon number density.

FIG. 8. Mass-radius (left) and mass-tidal deformability (right) relations corresponding to the EOS model ranges shown in Fig. 5
along with models I and II obtained in the present study. 1σ constraints from the NICER observations are also indicated in the
mass-radius panel.

FIG. 7. The same as Fig. 5 but for the proton fraction as a function of baryon number density.
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space accessible for the possible presence of hyperons [63].
The marginalized distribution of the maximum mass (left),
together with the associated central density (center), and
the same for 1.4M⊙ and 2.0M⊙ NSs (right) is displayed in
Fig. 9. Though extreme mass values allowed in the prior
are drastically reduced by theGW170817 constraint, we can
see that masses compatible with the M ≈ 2.6M⊙ inferred
by GW190814 observation [94] are not excluded in our
modeling. As expected, the nuclear physics knowledge
embedded in the low-density filter (dashed lines in
Fig. 9) is not informative concerning the maximum mass.
It is also interesting to observe that the central density
posterior for the heaviest neutron stars peaks at extreme
values nMmax

B;c ≈ 0.9 fm−3 (middle panel), which significantly
reduces to ∼0.5 fm−3 in 2M⊙ NSs (right panel). This is
encouraging concerning the possibility of observing decon-
fined matter in the core of massive neutron stars, since the
occurrence of such a phase transition is typically ruled out
at low densities, even though there is a large uncertainty
involved [95–97].

D. Correlations between the different
NMPs and NS properties

In recent years, many efforts have been devoted to find
correlations between different NMPs (see, e.g., Ref. [98])
and between the NMPs and global NS properties (see,
e.g., [77,99]). The most prominent one is probably a cor-
relation which has been proposed between the slope of
the symmetry energy, Lsym, and the NS radius [100]. It was
already shown that the correlations between the NMPs
observed in many nuclear interaction models are blurred
by the presence of higher-order NMPs; see the thorough
discussion in Ref. [101].
In Fig. 10, we show within the present GDFM meta-

model the Pearson correlation coefficients between the
NMPs and selected global NS properties such as radii, tidal
deformabilities, and proton fractions for 1.4M⊙ and 2M⊙
stars as well as the maximum mass and the central density
of the maximum mass configuration. Again, we show the
results for the GDFM prior distribution and those after
having applied the filters. As we have already discussed,
the constraints implied by the ab initio χ-EFT calculations
and the low-energy nuclear experiments do not bring much
information on the global star properties; see also [27].
Also, the NICER measurements of neutron star radii still
have too high systematics to provide effective constraints.
Moreover, the maximum mass predicted by our GDFM
metamodels typically exceeds the highest measured masses
included in the Mmax filter [Eq. (8)]. For this reason, the
correlations observed in the final posterior as shown in
the right part in the figure are essentially brought by the
GW170817 tidal polarizability measurement [Eq. (9)].

TABLE IV. Median values of NS radii and tidal deformabilities
for 1.4 and 2.0M⊙ stars along with their 1σ uncertainties obtained
for prior, low-density filter χ-EFT, and full posterior.

R1.4 ðkmÞ R2.0 ðkmÞ Λ1.4 Λ2.0

Prior 13.64þ0.77
−0.78 13.78þ0.88

−0.87 943þ315
−305 110þ49

−49
χ-EFT 13.38þ0.58

−0.59 13.50þ0.80
−0.79 845þ250

−247 96þ43
−42

Posterior 12.72þ0.46
−0.46 12.58þ0.68

−0.67 588þ143
−139 54þ24

−24

FIG. 9. Distribution of maximum masses and central densities of maximum mass stars for different filters are shown in the left and
middle panels, respectively. In the right panel, the distributions of the central densities of 1.4M⊙ and 2.0M⊙ stars are shown for the
priors and posteriors, respectively.
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Similar trends are observed in both cases for the majority of
combinations. We can see that the built-in correlations
of the GDFM metamodel are typically preserved and
sharpened by the observations, particularly in the isovector
sector. This again suggests that they contain physical
information and are not spuriously induced by the arbitrary
functional form assumed for the meson couplings. The
loose correlations in the prior observed in the isoscalar
sector are essentially due to the nuclear mass constraints
PAME, that is already incorporated in our prior. The nuclear
mass information is very effective in constraining the low-
order parameters such as nsat, Esat, and Esym, but this
information gets diluted when the information coming
from the high-order parameters is included through the
astrophysical constraints. We find very strong correlations
between the central proton fractions of 1.4M⊙ and 2M⊙
stars with both Lsym and Ksym and to less extent with
Zsym. This finding is in agreement with the discussion in
Secs. IVA and IV B pointing out the importance of the
isovector parameters for the NS interior composition. A
similar strong correlation can be seen between the central
densities of the maximum mass stars and Zsat for both prior
and posterior. This shows the importance of this high-order
NMP for the high-density part of the EOS. Interestingly, the
correlation between nMmax

B;c and Zsym that is negligible in the
prior becomes substantial in the posterior. This is consistent
with the strong effect of the GW170817 filter observed on
the central densities in Fig. 9 and underlines the effective-
ness of the tidal polarizability observable to pin down the
high-density behavior in the isovector sector.

V. CONCLUSION

In this work, we have presented a relativistic generali-
zation of the nuclear metamodeling technique developed

in Refs. [47–49,75] for the nonrelativistic case. We have
discussed the importance of a relativistic approach which
guarantees causality. In particular, it avoids artifacts in
the sound speed distribution that could arise from exclud-
ing models which become acausal at some density in a
nonrelativistic setup. In a first step, we have shown that a
wide exploration of the nuclear matter parameters space
is possible by a judicious choice of the values for the
couplings of the Lagrangian. For exploring the uncertain-
ties in neutron star properties, we have imposed existing
constraints on the EOSs in a Bayesian way. Then, we have
explored the properties of cold infinite nuclear matter
in β equilibrium as found in mature neutron stars. Our
findings indicate that the relativistic model can pro-
duce large variations of the proton fraction, thus allowing
for a proton-rich composition of matter at high densities,
in contrast to previous results which did not include
enough freedom in the isovector channel. Filtering the
models with respect to existing constraints from theoreti-
cal predictions for pure neutron matter from χ-EFT, the
observation of massive pulsars, and the tidal deformability
of GW170817 favors lower proton fractions at high
densities and reduces the variation with respect to the
prior. But still relatively large proton fractions could
be possible. As pointed out before by different authors
(see, e.g., [80,81]), to better constrain the composition
of neutron star matter, additional observables sensitive
to transport such as NS cooling, etc., are necessary.
Concerning the NS EOS, the combined effect of the
different filters of our choice selects the moderately stiff
EOSs from the prior GDFM models. Consequently, lower
NS radii and tidal deformabilities are favored more,
compared to the full space available in the prior distri-
bution. The major impact on neutron star observables
comes from the tidal deformability constraint provided by

FIG. 10. Pearson correlation coefficients among NMPs and some selected NS properties. Left: prior. Right: posterior.
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the GW170817 data, while the χ-EFT filter is seen to
strongly constrain the behavior of the symmetry energy.
These results are in qualitative agreement with previous
findings and are compatible with NICER observations.
Hence, we conclude that the GDFM metamodel can
provide a robust framework to quantify uncertainties
bands on NS properties. It is causal by construction,
and it will allow one to study exotic matters in a consistent
way, which will be investigated in the future. Finally,
we have uploaded the EOS tables corresponding to the
parameter sets, models I and II in Table III on the publicly
available CompOSE [102] database.
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