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The properties of self-interacting boson stars with different scalar potentials going beyond the
commonly used ϕ4 ansatz are studied. The scalar potential is extended to different values of the exponent
n of the form V ∝ ϕn. Two stability mechanism for boson stars are introduced, the first being a mass term
and the second one a vacuum term. We present analytic scale-invariant expressions for these two classes
of equations of state. The resulting properties of the boson star configurations differ considerably from
previous calculations. We find three different categories of mass-radius relation: the first category
resembles the mass-radius curve of self-bound stars, the second one those of neutron stars and the third
one is the well-known constant radius case from the standard ϕ4 potential. We demonstrate that the
maximal compactness can reach extremely high values going to the limit of causality Cmax ¼ 0.354
asymptotically for n → ∞. The maximal compactnesses exceed previously calculated values of Cmax ¼
0.16 for the standard ϕ4-theory and Cmax ¼ 0.21 for vectorlike interactions and is in line with previous
results for solitonic boson stars. Hence, boson stars even described by a simple modified scalar potential
in the form of V ∝ ϕn can be ultracompact black hole mimickers where the photon ring is located outside
the radius of the star.
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I. INTRODUCTION

Dark matter plays a crucial role in explaining certain
phenomena in cosmology and astrophysics on large scales,
where self-interacting dark matter provides an explanation
for small-scale structure observations such as the core-cusp
and the missing satellites problem [1]. By including self-
interactions dark matter can form compact objects, such as
boson stars. Boson stars are self-gravitating spheres,
described by complex scalar fields, see Ref. [2] for a
review. These kind of compact objects were discussed for
the first time by Wheeler in 1955 [3] with self-gravitating,
noninteracting spheres made of bosons, which he named
geons. However, these configurations turned out to be
unstable. In order to obtain stable stars one needs time
dependent solutions of the Klein-Gordon equation [4].
These stable boson stars were usually of microscopic sizes
for the noninteracting case [5,6]. Boson stars of astrophysi-
cal sizes were found for solitonic boson stars [7–10], by
introducing a self-interaction potential of the form V ¼ λϕ4

[11], and for repulsive vectorlike self-interactions propor-
tional to the density squared [12]. Generic self-interactions
have been considered in [13]. The properties of boson stars
with self-interactions have been investigated in detail using

a ϕ4-potential or vectorlike self-interactions [14–17].
Boson stars can be built via standard structure formation
from the early Universe [18,19]. So far the LIGO-Virgo
Collaboration has only detected one event of a neutron star-
neutron star merger, GW170817 [20], confirmed by a γ-ray
burst and the optical afterglow. A significant amount of the
gravitational wave sources measured by the LIGO-Virgo
Collaboration is located in the mass range between the
lightest black hole of 5M⊙ and the heaviest neutron star [21].
These compact objects could possibly be exotic stars since
the most massive neutron stars measured so far have masses
of 2.01� 0.04M⊙ respectively 2.08� 0.07M⊙, constrained
by observations of the radio pulsars PSR J0348þ 0432 and
PSR J0740þ 6620 [22–24] as well as 2.35� 0.17M⊙,
constrained from optical observations of the black widow
pulsar PSR J0952-0607 [25]. For example, in the gravi-
tational event GW190814 one compact object has a mass
of 2.6M⊙, exceeding all known neutron star masses
considerably [26]. Boson stars can be observed by the
emission of gravitational waves from a merger of two
boson stars or one boson star with a neutron star.
Moreover, gravitational waves from boson star-boson star
merger can be distinguished from other mergers by their
echo in gravitational waves [27–34]. Also collisions of
neutron stars with boson stars can send out gravitational
waves that are detectable by future telescopes [35]. Here an
unusual deviation by e.g., an extremely small value of the
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tidal deformability Λ can indicate such an exotic encoun-
ter. We will find below that the maximum compactness
C ¼ GM=R for boson stars is C ¼ 0.354. Since the tidal
deformability goes like Λ ∼ k2C−5 with a Love number of
k2 ≈ 0.03 or smaller the value for boson stars can be as low
as of the order of 1, which is much smaller compared to the
standard values for ordinary neutron stars. For comparison
we note that the limit Λ < 720 has been extracted from the
neutron star merger event GW170817 [36]. Another pos-
sibility of gravitational wave sources are ordinary neutron
stars containing a bosonic dark matter fluid [37–43]. These
two-fluid compact objects could contain dark matter cores
which are influencing the macroscopic properties of the star.
With the advent of observing supermassive black holes by
radio observations of the EHT Collaboration one can study
the accretion disk of these objects in detail [44,45]. The
precision of these measurements allows to distinguish
between black holes and other compact objects, as e.g.,
boson stars. In comparison to black holes boson stars do not
have a shadow since light does not interact with dark matter
and thus passes through the star. This feature has been used
in the analysis of the first pictures from black hole M87*
and SGR A* by radio observations to constrain models of
boson stars as black hole mimickers [46]. In our work we
are extending the standard ϕ4 self-interaction potential of
bosons to a general one of the form ϕn with arbitrary values
of the power n. Examples like the three gluon interaction for
n ¼ 3 and the Wess-Zumino-Witten term in the chiral
Lagrangian to describe the coupling between two kaons
and three pions for n ¼ 5, motivate the study of other values
of n. By choosing this generalized self-interaction potential
we find that compact stars with massive bosons can have
different forms of their mass-radius relations, with some of
them being similar to those of neutron stars or self-bound
stars. We find curves that are not constrained to the constant
radius case for the ϕ4-potential and the one of vectorlike
self-interactions. We will also show that their compactness
can exceed those of neutron stars and goes asymptotically to
the limit of causality with a compactness of C ¼ 0.354 for
large values of n. These extreme values of compactness are
similar to the ones found in a recent work on solitonic boson
stars [47] and lead to new opportunities in the search of
self-interacting boson stars via merging boson stars and thus
in the search of self-interacting dark matter. For a first
investigation of ultracompact solitonic boson star mergers
we refer to [34]. The outline of the paper is as follows: First
the theoretical basis from classical field theory for complex
scalar fields and general relativity is summarized. Then
equations of state (EOS) with different stability mechanisms
for boson stars will be introduced. We discuss two stabiliz-
ing mechanisms; a standard mass term in the Lagrangian
and a vacuum energy in the potential without a mass term.
Finally the mass-radius curves as well as the compactness
are presented.

II. THEORETICAL FRAMEWORK

A. Scale-invariant equation of state from a classical
scalar potential

Assuming a complex scalar field for the description of a
bosonic matter, a suitable Lagrangian reads as follows:

L ¼ ∂μϕ
�
∂
μϕþm2ϕ�ϕ − V; ð1Þ

where V represents the potential, m the mass of the boson
and ϕ the complex scalar field. The equation of motion is
then given by

ð∂μ∂μ þm2Þϕ ¼ −
∂V
∂ϕ� : ð2Þ

For the investigation of the potential we are going to present
analytic general EOS which only depend on the exponent n.
In this work we assume an ideal fluid for the bosons and
calculate the EOS adopting a flat space-time. Assuming flat
space-time is justifiable in a local density approach. Without
any interaction potential the radius of curvature of the boson
star is of the same order as the Compton wavelength of the
massive boson (r ∝ MP=m2

b with the Planck mass MP and
the mass of the boson mb) [11], which means space-time
is strongly curved. The opposite is given with a strong
interaction potential with an interaction strength λ. The
radius of curvature increases with MP=mb

ffiffiffi
λ

p
[11], which

allows us to consider flat space-time. Moreover, the scalar
field only varies on a large scale, so the gradient of the field
can be neglected. This is given when MP=mb

ffiffiffi
λ

p
≫ 1 [11].

Starting off with the energy-momentum tensor to calculate
the equation of state

Tμν ¼ −ημνLþ
X
ϕ;ϕ�

∂L
∂ð∂μϕiÞ

∂νϕi: ð3Þ

Together with Eq. (1) we get

Tμν ¼ −ημνLþ ∂μϕ
�
∂νϕþ ∂μϕ∂νϕ

� þ ∂V
∂ð∂μϕÞ ∂νϕ

þ ∂V
∂ð∂μϕ�Þ ∂νϕ

�: ð4Þ

The last two terms in Eq. (4) vanish since the potentials used
in this work do not depend on the derivatives of the scalar
field. The energy-momentum tensor reduces to the form for
an ideal fluid:

Tμ
ν ¼

0
BBBB@

ε 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

1
CCCCA; ð5Þ
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with the energy density ε and the pressure p. Calculating
T00 and Tii and making use of the ansatz ϕ ¼ ϕ0e−iωt leads
to the following equations:

T00 ¼ ϕ2
0ω

2 þm2ϕ2
0 þ V; ð6Þ

Tii ¼ ϕ2
0ω

2 −m2ϕ2
0 − V; ð7Þ

where ω and t denote energy and time respectively. Using
the ansatz together with Eq. (2) gives a relation between
ω and m,

ω2ϕ2
0 ¼ ϕ2

0m
2 þ ∂V

∂ϕ� ϕ
�: ð8Þ

Making use of this relation leads to the desired expressions
for ε and p:

T00 ¼ ε ¼ 2m2ϕ2
0 þ

∂V
∂ϕ� ϕ

� þ V; ð9Þ

Tii ¼ p ¼ ∂V
∂ϕ� ϕ

� − V: ð10Þ

To obtain dimensionless quantities we divide Eqs. (9)
and (10) by a factor of 1=m4 ,

ε0 ¼ 2ϕ02
0 þ ∂V 0

∂ϕ� ϕ
� þ V 0; ð11Þ

p ¼ ∂V 0

∂ϕ� ϕ
� − V 0; ð12Þ

with ε0 ¼ ε=m4, V 0 ¼ V=m4 and p0 ¼ p=m4.

B. Tolman-Oppenheimer-Volkoff equations

By solving the Tolman-Oppenheimer-Volkof (TOV)
equations one obtains the mass and the radius of an
compact object, which is necessary in order to calculate
the mass-radius curves:

dp
dr

¼ −G
mrðrÞεðrÞ

r2

�
1þ pðrÞ

εðrÞ
��

1þ 4πr3pðrÞ
mrðrÞ

�

×

�
1 −

2GmrðrÞ
r

�
−1
; ð13Þ

dmrðrÞ
dr

¼ 4πr2εðrÞ; ð14Þ

with the pressure pðrÞ, radius r, the gravitational constant
G, the mass mr inside a sphere of radius r and the energy
density εðrÞ. Since all the calculations are dimensionless,
the TOV equations need to be rescaled. Applying the
following scaling relations for the mass and the radius

mr ¼ ðG3 · ε0Þ−1=2m0
r; ð15Þ

r ¼ ðG · ε0Þ−1=2r0; ð16Þ

leads to the following form:

dp0

dr0
¼−

m0
rε

0

r02

�
1þp0

ε0

��
1þ4πr03p0

m0
r

��
1−

2m0
r

r0

�
−1
; ð17Þ

dm0
r

dr0
¼ 4πr02ε0; ð18Þ

with ε0 being a constant with dimension of an energy
density. Also, the pressure and the energy density need to
be rescaled:

p0 ¼ p
ε0
; ð19Þ

ε0 ¼ ε

ε0
: ð20Þ

Please note that in natural units the energy density and the
pressure have the same dimension. For example the case of
noninteracting massive bosons with a mass m one would
choose ε0 ¼ m4.

C. Dimensionless equation of state

Since all calculations are independent on units, we need
to derive an equation of state that satisfies this requirement.
We use in the following two different kind of generalized
scalar potentials: one with a mass term and one with a
vacuum term but without a mass term. It turns out that these
two kinds of potentials lead to stable compact star con-
figurations. We note in passing that without a mass and a
vacuum term the compact star configurations are unstable.
For the two different stability mechanisms the EOS differ
considerably as discussed below. The starting point for the
following calculations is Eq. (9), respectively Eq. (10). For
the scalar potential of the form

V ¼ λ

2n=2
ðϕ�ϕÞn=2 ð21Þ

we get

p0 ¼ λ0

2n=2
ðϕ0

0Þn
�
n
2
− 1

�
; ð22Þ

ε0 ¼ 2ϕ02
0 þ λ0

2n=2
ðϕ0

0Þn
�
n
2
þ 1

�
; ð23Þ

with the dimensionless coupling strength λ0 ¼ λ=m4−n and
the dimensionless scalar field ϕ0

0 ¼ ϕ0=m. In order to obtain
an analytic expression for the EOS, we can express the
pressure in terms of the scalar field and insert it into the
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expression for the energy density. The EOS can be further
simplified by rescaling the pressure and the energy density
with a factor λ0ðn=2 − 1Þ to the form

ε0 ¼ p02=n þ nþ 2

n − 2
p0: ð24Þ

It is evident that the EOS (24) is restricted to n > 2.
For the second form of the EOS studied we introduce a

vacuum term V0. We start with Eqs. (9) and (10) but setting
the mass term to zero. The potential in this case is given by

V ¼ λ

2n=2
ðϕ�ϕÞn=2 þ V0: ð25Þ

We obtain for the pressure and energy density

ε ¼ λ

2n=2
ϕn
0

�
n
2
þ 1

�
þ V0; ð26Þ

p ¼ λ

2n=2
ϕn
0

�
n
2
− 1

�
− V0: ð27Þ

Combining these two equations gives an EOS which is
independent on the interaction strength λ

ε ¼ nþ 2

n − 2
pþ 2n

n − 2
V0: ð28Þ

Interestingly, this EOS is the one for self-bound stars of
the form

p ¼ c2sðε − εvacÞ; ð29Þ

where the pressure vanishes at a nonvanishing vacuum
energy density, εvac. The prefactor c2s stands for the speed of
sound. As one can see from Eq. (28) different values of c2s ,
i.e., different stiffnesses of the EOS, emerge from the
chosen value of the power n in the scalar potential. Note
that the self-bound EOS for has been derived from interact-
ing bosonic matter. One arrives at the MIT bag EOS by
setting n ¼ 4 in Eq. (28) so that c2s ¼ 1=3. These similar
EOS are based on a completely different descriptions of the
matter, demonstrating that the EOS is composition blind so
that the results from general relativity do not depend on
the underlying microphysics, as dictated from the strong
equivalence principle. Rescaling the EOS with ε0 ¼ ε=V0

and p0 ¼ p=V0 results in a dimensionless EOS. A further
rescaling with the factor 2n=ðn − 2Þ gives the final dimen-
sionless EOS of the form

ε0 ¼ nþ 2

n − 2
p0 þ 1: ð30Þ

This EOS is quite similar to the one with the mass term [see
Eq. (24)]. The part linear in p stays the same but the second
part differs and is now a constant.

III. RESULTS: MASS-RADIUS CURVES
AND COMPACTNESS

By solving the TOV equations together with the derived
EOS, we obtain the corresponding mass-radius curves.
Figures 1 and 2 show the mass-radius curves for the case

with a mass term for different values of the power n. The
case n ¼ 3 is plotted in a separate figure, see Fig. 1, due to a
different magnitude of the maximum mass and the corre-
sponding radius. Additionally this curve differs in its shape
compared to curves with larger values of n, since the mass
decreases with increasing radius, in a fashion known for
e.g., neutron stars. Nevertheless its compactness is lower
than the ones for larger values of the power n. Note that the
solutions to the left of the maximum are unstable as depicted
in Fig. 1. The mass-radius curves for n ¼ 4 starts for
vanishing mass at a nonvanishing radius, as it is typical for a
mass-radius relation with a radius independent on the mass.
On the other hand, the mass-radius curves for the cases with
n ¼ 5 and larger start at the origin, i.e., at vanishing mass
and radius. The shape of these mass-radius curves look like
the ones of self-bound stars where the mass increases with
R3. However, the underlying EOS does not exhibit a
nonvanishing energy density at vanishing pressure.
In summary three types of solutions are identifiable, for

n ¼ 3, n ¼ 4 and n > 4. The curves differ in their behavior
in the limit of small masses. The curve with n ¼ 3 goes to
infinite radius, the curve with n ¼ 4 goes to a constant
value and the curves with n > 4 are going to zero for small
masses. In order to understand their behavior it is useful to
consider the limit of small pressure p for the EOS.
Equation (24) then simplifies to

FIG. 1. Mass-radius curve for V ∝ ϕ3 with a mass term in the
Lagrangian in dimensionless units. The mass decreases with
increasing radius in the stable branch as M ∝ R−1.
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ε ≈ p2=n: ð31Þ

These different shapes can be understood by having a look
at the mass-radius relation of a sphere in hydrostatic
equilibrium for a polytropic EOS of the form p ∝ ρΓ, with
ρ being the mass density and Γ a constant. In the non-
relativistic limit at low density, the energy density is simply
given by the mass density ε ¼ ρ. The massM and the radius
R for a polytrope are related by (see e.g., [48])

M2−Γ · R3Γ−4 ∝ const: ð32Þ

Equation (31) describes a polytropic EOS and thus gives the
possibility to make use of Eq. (32) by setting Γ ¼ n=2.
In Table I we calculated the mass-radius relations for

different values of n. We can reproduce that the mass
decreases in the limit of large radii in the case of n ¼ 3 as
M ∝ R−1. Furthermore Table I confirms a constant value of
the radius R for small pressures, respectively small masses,
for the case n ¼ 4. The remaining cases (with n > 4) are
described by slightly different mass-radius relations.
However, the mass vanishes in all these cases in the limit
of R → 0, making them look like the mass-radius curves of

self-bound stars. In the limit of n → ∞ one recovers the
mass-radius relation of an incompressible fluid, i.e.,
M=R3 ¼ const as for self-bound stars. Please note that
these relations are valid for small pressure p which
corresponds to small masses. For higher pressures p the
first term in Eq. (24) dominates so that the mass-radius
relations shown in Table I do not hold anymore. As seen in
Figs. 1 and 2, this is the case for the configurations close to
the maximum mass.
Another way to understand the shape of the curves is by

having a look at their slope. By rearranging Eq. (32) we
obtain the relation

d logM
d logR

¼ 3Γ − 4

Γ − 2
: ð33Þ

We can now identify the right-hand side of the equation
with the slope of the curvem. For n ¼ 3 one findsm ¼ −1,
for n ¼ 4 the slope goes to infinity (m → ∞) and the case
n > 4 gives constant positive values for m. Again we can
confirm the shape of the curves with our numerical results.
As already mentioned before the curves for n > 4 look
similar to those of self-bound stars, where gravity is not
needed to ensure stability. Self-bound stars are character-
ized by a nonvanishing value of the energy density at zero
pressure. The shape of the mass-radius relation is deter-
mined by a constant energy density, ensuring that M ∝ R3

holds. This explains why the mass-radius curves of those
stars are located at the origin. However, we stress that the
stars here at not purely self-bound, since they need gravity
to remain stable.
The mass-radius curves for the scalar potential without a

mass term but with a vacuum term are depicted in Fig. 3.
Contrary to the mass term case, these mass-radius curves
only lead to one type of solution. The mass vanishes for
small radii and increases with increasing radius. The mass-
radius curves for the different values of n are lying on top
of each other for small radii. This feature originates from
the dominant behavior of the vacuum term in the EOS at
low densities, which is independent on the value of n. The
energy density stays nearly constant as it is just given by
the vacuum energy density resulting in a mass-radius
curve of the form M=R3 ¼ const., i.e., the familiar one
for self-bound stars. The maximum masses and radii
increase with higher values of n. For both types of EOS
we also investigated their dependence on the speed of

FIG. 2. Mass-radius curves for V ∝ ϕn for n ¼ 4 up to n ¼ 100
with a mass term in the scalar potential, shown in dimensionless
units. The maximum mass and radius decrease with n. The mass-
radius curve for n ¼ 4, i.e., for the standard ϕ4-potential, has a
different shape compared to the curves with n > 4 since the
radius goes to a constant value when the mass goes to zero. The
other mass-radius curves resemble those of self-bound stars as
they start at the origin.

TABLE I. Mass-radius relations for different values of n derived by using Eq. (32).

n 3 4 5 6 7 8 ∞
Γ 3

2
2 5

2
3 7

2
4 ∞

M-R relation M ∝ R−1 R ∝ const. M ∝ R7 M ∝ R5 M ∝ R13=3 M ∝ R4 M ∝ R3
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sound squared c2s , which is defined as the derivative of the
pressure with respect to the energy density,

c2s ¼
∂p
∂ε

: ð34Þ

This gives the following simple relation between the
equation of state and c2s for the vacuum term case:

c2s ¼
n − 2

nþ 2
ð35Þ

while for the case with a mass term one arrives at the
relation,

c2s ¼
�
2

n
p

2−n
n þ nþ 2

n − 2

�
−1
: ð36Þ

One realizes that the EOS with a vacuum term results in a
constant c2s . The EOS with a mass term has an increasing
c2s with increasing pressure (strictly speaking for n > 2
which is the case in our studies). In the limit of p → ∞ one
recovers the speed of sound squared of the case with a
vacuum term. Hence, for a given power n, c2s will always
be larger for the EOS with a vacuum term compared to the
one with a mass term. Thereby, the EOS with a vacuum
term will be stiffer, for a fixed value of n, compared to the
one with a mass term. We also see, that c2s increases
monotonically with the power n reaching c2s ¼ 1 in the
limit n → ∞.
In Fig. 4 we plot the results for the maximal value of c2s

in the center of the maximum mass configuration, com-
pared for both cases of the EOS. We find that the values of
c2s are in good agreement but not identical as expected. This

feature indicates that the maximum mass configuration for
the EOS with a mass term has a c2s close to their asymptotic
limit for large pressures. For large values of n the speed of
sound squared reaches the causal limit c2s ¼ 1 where the
speed of sound squared equals the speed of light.
In addition to c2s we also studied the compactness,

respectively the maximum compactness Cmax, of the
resulting compact star configurations, defined as

C ¼ M
R
; ð37Þ

with M and R representing the dimensionless quantities
calculated by solving the TOVequations. In the following
we demonstrate that Cmax can exceed the maximum value
for quark stars (Cmax ¼ 0.271), as well as the compactness
needed to place the photon orbit outside the star
(Cmax ¼ 1=3) and that the maximum compactness goes
asymptotically to the limit of causality Cmax ¼ 0.354
for large values of the power n. The existence of a
photon sphere for boson stars increases the probability
of misinterpreting them as black holes, since black holes
always have a photon sphere around them as a tell-tale
signature [49].
The results for both cases of the EOS are depicted in

Fig. 5. We find that for higher values of n the maximum
compactness increases monotonically. The steepest slope of
the curves is in the range of n ¼ 3 up to n ¼ 10. From that
point on the maximum compactness goes asymptotically to
an upper limit. This boundary is given by the limit of
causality c2s ¼ 1 with C ¼ 0.354, where the speed of sound
is equal to the speed of light.
This feature implies that the compactness can be greater

than C ¼ 1=3. The photon sphere for the Schwarzschild

FIG. 3. Mass-radius curves for V ∝ ϕn stabilized with a
vacuum constant in dimensionless units. All curves have a
similar shape and the same behavior in the limit of small masses,
i.e., the radius vanishes for small masses. The maximum mass
and radius increase with n.

FIG. 4. The speed of sound squared c2s plotted against the
exponent of the potential n. c2s increases with increasing n and
goes asymptotically to c2s ¼ 1. This is the stiffest possible
equation of state, where the speed of sound is equal to the speed
of light.
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metric lies at R ¼ 3M with a corresponding minimal
compactness of C ¼ M=R ¼ 1=3. According to Fig. 5
one realizes that the photon orbit can lie outside of the
boson star for sufficiently large values of n, producing a
light ring. A similar feature has been seen for solitonic
boson stars where the maximum compactness also reaches
asymptotically the one for the causal limit [47]. We
conclude that solitonic boson stars as well as self-interacting
boson stars studied here can constitute black hole mimickers
with a maximal compactness in excess of C ¼ 1=3.
Figure 5 shows that boson stars can reach higher Cmax

than expected. These values exceed those of standard
neutron stars (without a phase transition typically Cmax ¼
0.2 to 0.3) or other exotic compact objects like quark stars
where C ¼ 0.271, (see e.g., the discussions in [48,50]). We
find that the maximal compactness for n ¼ 4 in the
vacuum term case is C ¼ 0.271 which is in agreement
with the values for quark stars quoted above. This was
expected since Eq. (28) for this value of n is ε ¼ 3pþ
const which is the equation of state for an ultrarelativistic
ideal gas of quarks with nonvanishing vacuum energy,
given by the MIT bag constant, or more general a
conformal EOS with c2s ¼ 1=3.

IV. SUMMARY AND CONCLUSIONS

We investigated the properties of boson stars with a
generalized scalar potential by extending the power-law
potential V ∝ λϕn to an arbitrary value of the exponent n.
We derive analytic expressions for the equation of state as

input to the TOV equations for static spheres of fluids. We
introduced two ways to stabilize the boson star configu-
rations; by including a mass term for the bosons and by
including a vacuum term in the scalar potential without a
mass term. For both cases we calculated the mass-radius
curves, the speed of sound, as well as their maximal
compactness. We found three different categories of the
mass-radius curves for the EOS with a mass term.
They differ in their behavior in the limit of small masses.
The radius R for the case n ¼ 3 goes to infinity when the
massM goes to zero. For the classical ϕ4-potential, i.e., for
n ¼ 4, the radius goes to a constant value for small masses.
The mass-radius curves for larger values of n resemble the
mass-radius curves of self-bound stars as their mass
vanishes when the radius goes to zero. Nevertheless, these
compact star configurations are not self-bound because
gravity is needed to stabilize them. However, we find that
the mass-radius curves for the EOS with a vacuum term
turn out to be like those of self-bound stars. The mass
vanishes for small radii but in this case the EOS has a
nonvanishing energy density for a vanishing pressure so
that these compact star configurations are bound without
gravity, i.e., they constitute self-bound star configurations.
For both types of EOSs studied we find that the speed of
sound squared c2s goes asymptotically to the limit of
causality c2s ¼ 1. The case for the EOS with a vacuum
constant and the one with a mass term case differ slightly
in their absolute values for the same value of the power n
while the former one turns out to be always stiffer
compared to the latter one. Both cases show an increase
of the speed of sound squared with the power n, so that
higher powers in n lead to a stiffer EOS. We calculated also
the compactness for several values of the exponent n in the
range between n ¼ 3 and n ¼ 100. We demonstrate that
the maximal compactness Cmax increases continuously
with the power n. The highest increase occurs between
n ¼ 3 and n ¼ 10. For higher values of n the maximal
compactness goes asymptotically to the limit of causality
for both types of EOS, in line with the increase of the speed
of sound squared c2s with n seen before. The highest values
of Cmax for a given power n are reached with the EOS with
a vacuum term. Even for low values of n the compactness
can be already close to the conformal limit, where
c2s ¼ 1=3. Specifically, for the EOS with a vacuum term
and n ¼ 4 we reproduce the result from the equation of
state of an ultrarelativistic ideal gas of quarks with a
vacuum term, the MIT bag model, with a compactness of
C ¼ 0.271. Furthermore, for the EOS with a mass term and
the one with a vacuum term the maximal compactness can
reach and even surpass a compactness of C ¼ 1=3marking
the compactness needed to place the photon ring outside of
the compact object. This makes boson stars described by a
scalar potential with a power law with the power of n ≳ 20
black hole mimickers. In summary, we establish that by
extending the scalar potential V ¼ λϕn to an arbitrary value

FIG. 5. The maximum compactness for the V ∝ ϕn potential
with a mass and a vacuum term plotted against n. Furthermore
different limits for compact objects are included in the plot. The
red line represents the limit for the photon sphere being outside the
radius of the star (C ¼ 1=3). The green line displays the maximum
compactness for causal EOS (C ¼ 0.354) (causal in the sense that
the speed of sound cannot exceed the speed of light). The blue line
represents the maximum compactness for self-bound stars with a
conformal EOS where c2s ¼ 1=3 (C ¼ 0.271).
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of the exponent n we change the properties, in particular the
compactness, of the resulting compact configurations dras-
tically. We point out that we have investigated properties like
mass and radius of the boson star independently of the mass
of the scalar field bosonm as well as the coupling strength λ,
which enables a generic approach. For a given dark matter
model of self-interacting bosonic dark matter our results can
be rescaled to physical units by the simple rescaling laws
given in the derivation of the EOS. By choosing a suitable
mass scale and interaction strength one can obtain boson
stars with masses and radii comparable to (supermassive)
black holes and neutron stars, for example. Our results could
be used to study now boson star mergers with the gener-
alized scalar potential. By choosing different values of the
power of the scalar potential one is now able to study within

the same setting boson star configurations with entirely
different properties concerning the mass-radius relation, the
speed of sound squared, and the maximal compactness up to
black hole mimickers and to delineate the impact on the
pattern of emitted gravitational waves and possible signals
for their detection in present and future gravitational wave
observatories.
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