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The central speed of sound (SS) measures the stiffness of the equation of state (EOS) of superdense
neutron star (NS) matter. Its variations with density and radial coordinate in NSs in conventional analyses
often suffer from uncertainties of the specific nuclear EOS used. Using the central SS and NS mass/radius
scaling obtained from solving perturbatively the scaled Tolman-Oppenheimer-Volkoff (TOV) equations,
we study the variations of SS, trace anomaly and several closely related properties of NSs in an EOS-
model-independent manner. We find that the SS increases with the reduced central pressure P̂c ≡ Pc=εc
(scaled by the central energy density εc), and the conformal bound for SS tends to break down for NSs with
masses higher than about 1.9M⊙. The ratio P=ε is upper bounded as P=ε ≲ 0.374 around the centers of
stable NSs. We demonstrate that it is an intrinsic property of strong field gravity and is more relevant than
the perturbative QCD bound on it. While a sharp phase transition at high densities characterized by a
sudden vanishing of SS in cores of massive NSs are basically excluded, the probability for a continuous
crossover signaled by a peaked radial profile of SS is found to be enhanced as P̂c decreases, implying it
likely happens near the centers of massive NSs. Moreover, a new and more stringent causality boundary as
Rmax=km≳ 4.73Mmax

NS =M⊙ þ 1.14 for the NS mass-radius curve is found to be excellently consistent with
observational data on NS masses and radii. Furthermore, new constraints on the ultimate energy density
and pressure allowed in NSs before collapsing into black holes are obtained and compared with earlier
predictions in the literature.

DOI: 10.1103/PhysRevD.108.103041

I. INTRODUCTION AND CONCLUSIONS

The speed of sound squared (SSS) is defined as s2 ¼
dP=dε [1], where P and ε are, respectively, the pressure and
energy density of the matter under consideration. The
conditions of stability and causality together require that
0 ≤ s2 ≤ 1 (adopting c ¼ 1). Because of the superdense
nature of neutron star (NS) matter [2–25] especially near its
core [26–36], the speed of sound (SS) can become very
close to 1 [37] or even exceed it in certain models of dense
matter. As a measure of the stiffness of the nuclear equation
of state (EOS), the behavior of the SS is closely related to
possible phase transitions (PTs) and/or a continuous cross-
over in NSs. In particular, a sharp vanishing of the SSS (i.e.,
s2 ¼ 0 or a constant P in a finite range of ε) signals the
occurrence of a first-order PT, while a smooth reduction of
s2 indicates a continuous crossover. Several possible
mechanisms for the PTs and/or crossover in NSs have
been proposed in the literature, see, e.g., Refs. [38–45] for
recent reviews. While possible imprint of the SS on NS

observables has been studied extensively, the SS in NSs is
not a quantity directly measurable and there are still many
interesting issues about it to be addressed.
Much progress has been made in understanding the

internal structures and observational properties of NSs
during the last decade thanks especially to the new oppor-
tunities provided by the era of multimessenger astronomy
since the discovery of GW170817 [46–68]. For instance, the
Neutron Star Interior Composition Explorer (NICER) and
XMM-Newton simultaneouslymeasured themass/radius for
PSR J0740þ 6620 [69–72] and that for PSR J0030þ 0451
[73,74]. However, the relevant phases of matter in NS cores
and therefore the EOS there still remain ambiguous
[75–114]. This is partially because of the lack of direct
access to the core EOS without relying on the still uncertain
structures and EOS in other parts of NSs, especially the NS
crust. Thus,many interesting and critical questions regarding
properties of superdense NS matter remain to be addressed.
To outline our motivations and set the context of this work,
we list below a few examples:
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(a) What is the EOS of densest visible matter existing in
the Universe? Can it be accessed/constrained directly
using certain astrophysical data such as observed NS
radii and/or masses without using any EOS model?

(b) There exists an ultimate limit for the pressure/energy
density in NSs above which the system becomes
unstable. What is this ultimate limit? Can the obser-
vational data on NSs tell this quantity?

(c) Is the limit on the ratio P=ε ≤ 1 (from the principle of
causality) relevant/sufficient in NS cores? If it is
insufficient, how and to what extent can this limit
be improved? In fact, P ≤ ε is equivalent to s2 ≤ 1
only for a linear EOS P ∝ ε, while the EOS in NSs
(especially in their cores) can be significantly non-
linear. As a result, the upper bound for P=ε in NSs is
expected to be smaller than 1. What are the implica-
tions of this refined upper bound for P=ε on certain NS
properties which are determined by the balancing acts
of gravitational attraction and nuclear repulsion? Is
this refined limit a fundamental bound from general
relativity (GR) theory of gravity or intrinsically related
to microscopic theories of dense matter EOS such as
perturbative QCD (pQCD)?

(d) How can one understand the possible violation of the
conformal bound (CB, i.e., the SSS is less than 1=3
based on the pQCD prediction) for the SSS in massive
NSs? Can one calculate/estimate certain characteristic
quantities related to the conformality via the general-
relativistic NS structural [Tolman-Oppenheimer-
Volkoff (TOV)] equations alone without using any
EOS model for NS matter?

(e) Is the available causality boundary in the literature for
NSs on the mass-radius (M-R) curve a tight one? Can
one refine or improve it? (Such boundary should be
consistent with NS observational data besides micro-
scopic physics constraints.) Similarly, how large can
the compactness mass/radius of a NS be?

(f) What is the radial profile of the SS in NSs? Can one
locate its peak if it exists?

Recently, we studied the question (a) above using a novel
approach [115] which facilitates extracting the central EOS
of NS matter in the maximum-mass configuration (where
dMNS=dεc ¼ 0 with εc being the central energy density on
the mass-radius curve) directly from the observational data
without relying on any specific EOS model. The method
was developed from analyzing perturbatively the dimen-
sionless TOVequations for NS internal variables scaled by
εc. In particular, a formula for the SSS in the center of these
NSs was obtained as

s2c ¼ P̂c

�
1þ 1

3

1þ 3P̂2
c þ 4P̂c

1 − 3P̂2
c

�
; ð1Þ

where P̂c ≡ Pc=εc is the ratio of the central pressure Pc
over the central energy density εc. From Eq. (1), one

immediately finds that s2c > 0, therefore excluding a sharp
PT (at high densities) occurring in cores of maximum-mass
configuration NSs. Whether it allows a continuous cross-
over in the cores depends on the behavior of the SSS away
from the center as sketched in Fig. 1(a). A continuous
crossover indicates s2ðε̂Þ > s2c [Fig. 1(b) where the SSS at
the center is smaller than that at a finite distance away] and
a possible peak in s2 somewhere away from the center as
the SSS should become zero at the core-crust transition
density, where r̂ is the dimensionless distance from the
center (Sec. II), ε̂ ¼ ε=εc, and D is a coefficient character-
izing the variation of s2 with r̂ (Sec. VII). It is seen from
Eq. (1) that the chance for s2ðε̂Þ > s2c is reduced as P̂c

increases since s2c is upper bounded. Therefore, for NSs
with their P̂c’s close to its upper bound of about 0.374 from
causality [115], the crossover near the center is unfavored
with high probabilities. In the limiting case of s2c → 1, the
probability naturally approaches zero and it is probably in
this situation s2c > s2ðε̂Þ [Fig. 1(c)]. Moreover, we can
deduce from Eq. (1) that s2c → 1=3 occurs earlier than
P̂c → 1=3. This also explains why the CB for the SSS is
highly likely to break down in NS cores.
In this paper, we report results of our investigations into

the remaining issues listed above [(b)–(f)] in essentially the
same framework as in our earlier work [115]. When
possible, we also compare our results with existing ones
by others in the literature. Our main contributions/findings
include the following:
(1) The NS radius R for a given dense matter EOS is

shown to scale with νc ≡ ε−1=2c ½P̂c=ð1þ 3P̂2
c þ

4P̂cÞ�1=2 along its M-R curve, extending the results
of Ref. [115]. This scaling could be used to reduce
uncertainties of the core EOS for a certain NS

FIG. 1. Sketch of the SSS near NS centers (a). The sign of
coefficient D [see Eq. (30)] characterizes the possibility of s2c <
s2ðε̂Þ [indication of a crossover/soft core (b)] or s2c > s2ðε̂Þ [the
center EOS is stiffer than its surroundings (c)].
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considering its mass/radius measurements. See Fig. 2
for illustrations of the R scaling.

(2) The SSS is shown to increase with Mmax
NS under the

assumption that NSs with masses aboutMmax
NS =M⊙ ¼

1.3 ∼ 2.3 (M⊙ ¼ solar mass) have similar radii about
12 km. As a result, the CB for the SSS [116,117] is
found to break down if Mmax

NS ≳ 1.9M⊙. See Fig. 5.
(3) Using the upper bound for the reduced central

pressure P̂c ≲ 0.374 to satisfy the causality require-
ment and the universal correlations given in
Ref. [115], a new causality boundary for the NS
M-R curve as Rmax=km≳ 4.73Mmax

NS =M⊙ þ 1.14 is
obtained. It is shown to be consistent with obser-
vational data of several NSs albeit in certain tension
with predictions using a few empirical EOS for NS
matter in the literature. As a direct corollary, the
radius of the PSR J0952-0607 [118] with a mass
about 2.35M⊙ is found to be≳12.25 km. See Figs. 7
and 8.

(4) The ultimate energy density and pressure allowed
in NSs are estimated, e.g., the existence of a
2.08M⊙ NS leads to εult ≲ 1.32 GeV=fm3 and
Pult ≲ 494 MeV=fm3, which are found to be con-
sistent with several recent microscopic model
analyses/calculations. See Fig. 9.

(5) By adopting the empirical criteria Θ ¼ ½ð1=3 −
P=εÞ2 þ ðs2 − P=εÞ2�1=2 ≲ 0.2 and γ¼ dlnP=dlnε≲
1.75 for identifyingconformality,we find it is unlikely
to be realized in cores of massive NSs. See Table II,
Fig. 16, and Eqs. (55)–(59).

(6) The P̂c is shown to be a key quantity determining the
onset of crossover at high densities (near the center).
Specifically, the probability of s2c < s2ðε̂Þ for ε̂≲ 1

(near the center) for the maximum-mass configura-
tions is found to be larger than about 50% for
P̂c ≲ 0.3. See Figs. 11–14.

(7) Continuing with the last point, the existence of a
peak in the derivative part of s2 as well as the
nonexistence of such peak in the nonderivative part
of s2 are generally demonstrated, as introduced and
discussed in Ref. [119]. See Eqs. (50) and (52).

(8) By extending the upper bound P̂c ≲ 0.374 holding at
NS centers for the maximum-mass configurations,
we demonstrated that the reduced pressure P=ε ¼
P̂=ε̂ is also bounded from above to about 0.374 at
finite distances near centers of stable NSs. Such
bound for P=ε is a unique consequence of strong
field gravity since it is much smaller in conventional
(low-density) nuclear physics problems. As a direct
corollary, the trace anomaly (TA) Δ≡ 1=3 − P=ε is
bounded from below to about Δ≳ −0.041 near the
centers of massive NSs. See Fig. 17 and Eqs. (47)
and (49).

Here, our findings (1)–(5) concern properties at NS centers,
while the points (6)–(8) are extended to positions away
from the centers (see Fig. 10 for a notation guide). A few
empirical relations in the literature are also explained using
our method (e.g., Figs. 3 and 4). Since our results are
obtained without using any specific input EOS for NS
matter, they provide generally EOS-model-independent
insights on several interesting properties of NSs especially
near their cores where direct observational data are lacking.
The rest of this paper is organized as follows: in Sec. II

we review briefly the methods of Ref. [115] on directly
extracting the NS central EOS from observational data and
then in Sec. III we estimate the central SS as a function of
Mmax

NS using Eq. (1). We study the causality boundary for the

FIG. 2. Correlation between the NS radii R and the factor νc
obtained from the nonrelativistic EDFs (of the Gogny-like and
Skyrme types) and the nonlinear RMF model EOS. The solid
symbol is for the maximum-mass configuration of each model
(corresponding to the solid symbol shown in the inset).

Jiang et al. [120]

FIG. 3. Correlation between ρc=ρsat and radius Rmax adopting
two reference values for P̂c (0.16 and 0.24), where ρsat ≈
0.16 fm−3 is used. An empirical prediction on ρc=ρsat-Rmax from
Ref. [120] (orange solid contour) is shown for a comparison.
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NS M-R curve in Sec. IV and the closely related compact-
ness parameter in Sec. V. Section VI gives the estimate on
the ultimate (maximum) energy density as well as the
pressure allowed in NS cores. Section VII is devoted to the
analysis on the possible occurrence of continuous crossover
in NS cores, and in Secs. VIII and IX we generalize
the limit P̂c ≲ 0.374 which holds at NS centers for the
maximum-mass configurations to stable NSs along the
M-R curve, either at centers or finite distances away. We
then summarize this work in Sec. X. In the Appendixes, we
give relevant mathematical details of expressions in the
main text and estimates on certain quantities involved.

II. A BRIEF REVIEW: NEUTRON STARMASS AND
RADIUS SCALINGS FROM PERTURBATIVE

SOLUTIONS OF THE SCALED TOV EQUATIONS

For completeness and ease of our following discussions,
we recall here the main points of solving perturbatively the
scaled TOV equations and the resulting mass and radius
scalings for NSs at the maximum-mass configuration. More
details of our approach can be found in Ref. [115]. We also
discuss here intuitively some general features of NSs from
the scaled TOV equations that are independent of the EOS
model and present the general radius scaling on the NS
mass-radius curve.
The TOV equations [121–123] describe the evolution of

the pressure P and mass M as functions of the distance r
from the NS centers (adopting c ¼ 1),

d
dr

P¼−
GðεþPÞðMþ4πr3PÞ

r2ð1−2GM=rÞ ;
d
dr

M¼ 4πr2ε: ð2Þ

They are conventionally integrated from the center to
surface (given an EOS for NS matter) to give the NS mass

MNS ≡M and radius R defined as the vanishing point of
pressure [i.e., PðRÞ ¼ 0]. We can rewrite the TOV equa-
tions by scaling the NS mass by W ≡G−1ð4πGεcÞ−1=2 and
the radius by Q≡ ð4πGεcÞ−1=2 [115],

d
dr̂

P̂ ¼ −
ðP̂þ ε̂Þðr̂3P̂þ M̂Þ

r̂2 − 2M̂ r̂
;

d
dr̂

M̂ ¼ r̂2ε̂; ð3Þ

Where P̂≡ P=εc and εc is the central energy density. The
above dimensionless TOV equations (3) can be solved by
expanding the (reduced) energy density, pressure, and mass
as ε̂ ¼ 1þP

K
k¼1 akr̂

k, P̂ ¼ P̂c þ
P

K
k¼1 bkr̂

k, and M̂ ¼P
K
k¼1 ckr̂

k with r̂ ¼ r=Q, whereK is the effective truncation
order of the polynomial expansions. As shown in detail in
Ref. [115], c1 ¼ c2 ¼ 0 and ck ¼ ak−3=k for k ≥ 3, and the
leading nonzero coefficient is b2 ¼ −6−1ð1þ 3P̂2

c þ 4P̂cÞ.
Truncating the pressure to order b2, namely, P̂c þ b2R̂

2 ¼ 0,
gives the reduced radius R̂ ∼ ½P̂c=ð1þ 3P̂2

c þ 4P̂cÞ�1=2 and
the physical radius R ∼ R̂Q is found to scale according
to [115]

R ∼ νc ≡ P̂1=2
cffiffiffiffi
εc

p
�

1

1þ 3P̂2
c þ 4P̂c

�
1=2

: ð4Þ

The NS mass MNS ∼ R̂3=
ffiffiffiffi
εc

p
is found to scale as [115]

MNS ∼ Γc ≡ P̂3=2
cffiffiffiffi
εc

p
�

1

1þ 3P̂2
c þ 4P̂c

�
3=2

: ð5Þ

In Ref. [115], the correlationsMmax
NS -Γc and Rmax-νc are then

verified using 87 widely used phenomenological and 17
microscopic EOS, whereRmax is the corresponding radius at
Mmax

NS . Specifically [115],

Rmax=km ≈ 1.05 × 103νc þ 0.64; ð6Þ

Mmax
NS =M⊙ ≈ 0.173 × 104Γc − 0.106: ð7Þ

The SSS of Eq. (1) is obtained via dMNS=dεc ¼ 0 at the
maximum-mass configuration on the M-R curve.
The scalings of (4) and (5) could be understood

intuitively by combining the quantum degeneracy of
nuclear pressure and the self-gravitating nature of NSs.
Since NSs are self-gravitating systems [124–133], one
expects that a larger energy density ε corresponds to a
smaller radius R. By temporally neglecting the general-
relativistic effects [134], one has dP=dr ¼ −GMε=r2 and
thus P ∼ −GMε=r ∼Gr2ε2, where dM=dr ¼ 4πr2ε or
M ∼ r3ε is used. Thus, r ∼ 1=

ffiffiffiffiffiffi
Gε

p
because P and ε have

the same dimension. On the other hand, NSs are supported
mainly by the neutron-degenerate pressure, a larger
pressure P naturally leads to a larger radius R, i.e.,
R ∼ Pϕ, where ϕ > 0. In order to infer the value of ϕ,

FIG. 4. A comparison of the radius scalings (R vs reduced
pressure P̂): the empirical power law R ∼ Pδ with δ ≈ 0.23 ∼ 0.26
from Ref. [13], the Newtonian scaling R̂ ∼ P̂1=2, and our full
scaling R̂ ∼ ½P̂=ð1þ 3P̂2 þ 4P̂Þ�1=2.
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one notices that P ∼
R
Mε=r2dr as a function of r is even,

since the ε is even of r and thus the mass M is odd of r
becauseM∼

R
r2εdr. Consequently, P∼ const:þBr2þ�� �,

from which one obtains ϕ ¼ 1=2 and R ∼ P1=2 þ � � �. The
absence of linear term (∝ r) in the expansion of P over r
could also be understood by the boundary condition
dP=dr ¼ 0 at r ¼ 0 (pressure cannot have a cusplike
singularity). By combining the self-gravitating and quan-
tum-degenerate nature of NSs, we have R ∼ ðP=εÞ1=2=ffiffiffiffiffiffi
Gε

p þ � � �, sinceP=ε is the relevant dimensionless quantity
from combining P and ε. The NS M-R relation is obtained
by integrating the TOV equations from a given central
energy density εc, thus R ∼ P̂1=2

c =
ffiffiffiffiffiffiffiffi
Gεc

p þ � � � ∼ P̂1=2
c =ffiffiffiffi

εc
p þ � � �, where P̂c ¼ Pc=εc. Considering general-relativ-

istic effects, the scaling for R will be modified to R ∼
P̂1=2
c =

ffiffiffiffi
εc

p
· ϑðP̂cÞ with the correction ϑðP̂cÞ to be revealed

by analyzing structures of the TOV equations [115]. In
particular, Eq. (4) tells that ϑðP̂cÞ¼ð1þ3P̂2

cþ4P̂cÞ−1=2<1,
i.e., the stronger gravity in GR than in Newtonian gravity
reduces the NS radius. Similar arguments give MNS∼
R3εc∼ P̂3=2=G3=2 ffiffiffiffi

εc
p þ�� �∼ P̂3=2

c =
ffiffiffiffi
εc

p þ�� � for the mass.
At this point, it is necessary to point out the potential

degrees of uncertainty inherent in our results, due to the
perturbative nature of our approach. While some of them
are general and robust, e.g., the correlations between Mmax

NS
and Γc and that between Rmax and νc [115] and the
consequent prediction on the causality boundary of
Fig. 7, the compactness constraint of Fig. 8, and the
ultimate energy density and pressure allowed in NSs of
Fig. 9, others may contain uncertainties. For example, when
estimating the possible peak of s2 as a function of r̂ [see
Eq. (39)], we expand the s2ðr̂Þ to order r̂4 which neglects
the higher-order contributions from r̂6 and r̂8, etc., and
these higher-order terms may induce quantitative effects on
the estimate for the peak. However, when investigating
whether there exists a peak in s2ðr̂Þ, the estimate on the sign
of the coefficient of r̂2 in the expansion of s2ðr̂Þ is enough,
and in this sense the result avoids suffering from contri-
butions from the higher-order terms. Similarly, when
bounding the ratio P=ε in Sec. VIII, the conclusion is
effective only near the NS cores and whether it is still
effective at places far from the center needs further analysis
by including higher-order terms in r̂. When necessary, we
may point out the relevant uncertainties and/or the limi-
tations of our results, see, e.g., the last second paragraph of
Sec. VII.
In addition the correlation between Mmax

NS and Γc dis-
cussed in Ref. [115], the NS radius for a given dense matter
EOS is also found to be strongly correlated with νc along
the M-R curve. We show in Fig. 2 the dependence of radius
R on νc using three kinds of EOS: the covariant relativistic
mean-field (RMF) models [135] and the nonrelativistic
energy density functionals (EDFs) of the Gogny-like type

[136] as well as the conventional Skyrme types [137–139].
Very good correlations between R and νc are found in all
cases as indicated by the very similar slopes (444, 454, and
462 in units of ½R�=½103νc� shown by the captions near the
lines), while the intercept has certain model dependence
(considering the two classes). A cutoff of MNS ≳ 1.2M⊙ is
necessary to mitigate potential influences of uncertainties
in modeling the crust EOS [140–142] for low-mass NSs.
The radii Rmax are also shown using solid symbols
(Mmax

NS =M⊙ ≈ 2.05 in the Skyrme model using the green
diamond). Points on the left side of Rmax correspond to
unstable NS configurations (i.e., for such NSs one has
dMNS=dεc < 0). The R-νc correlation could be used to
reduce uncertainties of the central EOS for a NS with
certain mass via its radius constraints/measurements within
a specific EOS model.
By using the scaling in Eq. (6) we can derive a relation

between NS central baryon density ρc and the radius Rmax.
The result is

ρc
ρsat

≈
7.35 × 103P̂c

1þ 3P̂2
c þ 4P̂c

�
Rmax

km
− 0.64

�
−2
; ð8Þ

where ρsat ≈ 0.16 fm−3 [143] is the nuclear saturation
density and the approximation ρc ≈ εc=MN is adopted with
MN ≈ 939 MeV the static nucleon mass. Shown in Fig. 3 is
the relation between ρc=ρsat and the radius Rmax using two
values of P̂c (0.16 and 0.24). For a comparison, an
algorithmic/empirical prediction from Ref. [120] is also
shown (orange solid contour). It is seen that the overall
correlation between ρc=ρsat and Rmax from our analyses
here is consistent with that from Ref. [120]. Moreover, one
can see from Eq. (8) that roughly ρc=ρsat ∼ R−2

max · ½1þ
corrections of R−1

max� once a P̂c is specified. The correlation
shown in Fig. 3 may help us to estimate the maximum
central (baryon) density when future radius measurements
of very massive NSs are available [144]. Moreover, the
above correlation is obtained under the approximation εc ≈
MNρc and principally one needs to use EðρcÞ þMN to
replace MN , where EðρcÞ, defined as the energy per
nucleon at ρc, has its own uncertainties. Doing so will
shift down the lines in Fig. 3 as EðρcÞ > 0.
It is appropriate at this point to compare our radius-

pressure scaling with existing ones in the literature in
Fig. 4. The gray band shows the empirical power law that
the NS radii depend on the pressure at 1–2 times ρsat, i.e.,
R ∼ Pδ with δ ≈ 0.23 ∼ 0.26 [13]. One finds that the
Newtonian prediction R̂ ∼ P̂1=2 (by neglecting the gen-
eral-relativistic correction 3P̂2 þ 4P̂) indicated by the blue
dashed line deviates significantly from the empirical power
law P̂δ. On the other hand, our full scaling R̂ ∼ ½P̂=ð1þ
3P̂2 þ 4P̂Þ�1=2 (magenta line) is rather consistent with the
empirical scaling, especially for 0.1≲ P̂≲ 0.3 (which is a
reasonable region for P=ε in NS cores).
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III. SPEED OF SOUND AND VIOLATION
OF THE CONFORMAL BOUND IN

MASSIVE NEUTRON STARS

The dependence of s2c on P̂c could be straightforwardly
transformed into its dependence on Mmax

NS =M⊙. In the
following, we assume that NSs with masses Xþ0.07

−0.07M⊙,
where X ¼ 1.3 ∼ 2.3, have similar radii as indicated by the
NICER observations to extract the νc from Eq. (6).
Specifically, NICER found that the radius of PSR J0740þ
6620 (mass ≈2.08þ0.07

−0.07M⊙) is about 12.39þ1.30
−0.98 km [70]

and that of the canonical PSR J0030þ 0451 (mass
≈1.34þ0.15

−0.16M⊙) is about 12.71þ1.14
−1.19 km [73] (see also

Ref. [74]). They are very similar, indicating that the NS
radius is less sensitive to the central EOS [115]. Therefore,
we obtain 103νc ≈ 11.2 fm3=2=MeV1=2 by using Rmax ≈
12.39þ1.30

−0.98 km [70]. Perturbatively, we have for the SSS at
NS center from expanding Eq. (1) as

s2c ≈
4

3
P̂c

�
1þ P̂c þ

3

2
P̂2
c þ 3P̂3

c

�
þOðP̂5

cÞ ð9Þ

≈
4

3
β

�
1þ 5β þ 57

2
β2 þ 175β3

�
þOðβ5Þ; ð10Þ

where β ≈ 0.052ðMmax
NS =M⊙ þ 0.106Þ ≪ 1. Keeping only

the leading-order term of (9) gives the Newtonian pre-
diction s2c ¼ 4P̂c=3 from which one infers P̂c ≲ 3=4. The
general-relativistic contributions in the TOVequations have
an effect of about 100% on the upper limit for P̂c.
Essentially, the s2c increases as Mmax

NS increases as shown
in Fig. 5. Results of Fig. 5 provide us a straightforward way
to infer the central sound speed s2c once the radii/masses are

known (measured). It also implies that more compact NSs
have larger s2c, e.g., NSs of masses 1.5M⊙ and 1.4M⊙ with
radii 9.9 ∼ 11.2 [145] and 11.0þ0.9

−0.6 km [146] have s2c ≈
0.31þ0.07

−0.07 and s2c ≈ 0.23þ0.03
−0.05 , respectively, shown as

red hexagons in Fig. 5. While for PSR J0740þ 6620,
as indicated with the green diamond, we have s2c ≈
0.45þ0.14

−0.18 using P̂c ≈ 0.24þ0.05
−0.07 [115].

In Fig. 5, the CB for the SSS [116,117], namely, s2 ¼
1=3 is also indicated (by the dashed orange line). Our result
on s2c implies that the CB for the SSS tends to break down
for Mmax

NS =M⊙ ≳ 1.89. The latter is very close to the
predicted most probable critical maximum mass about
Mmax

NS =M⊙ ≈ 1.87 given in Ref. [147], above which the
CB is likely to break down (see their Figs. 1 and 2). See
also Ref. [154], which predicted that the largest mass of
NSs being consistent with the CB should be ≲1.99M⊙.
Equivalently, the CB s2c ≤ 1=3 is broken for P̂c ≳ 0.195
from Eq. (1). The finding here is consistent with previous
studies on the same issue [148–157], indicating that Eq. (1)
grasps the main features of the SS. However, we emphasize
that our method adopts no specific model for NS matter
EOS. We also make no assumptions about the composition
of NSs (nucleons, hyperons, and/or quarks), and therefore
provide an EOS-model-independent way for investigating
the SS in NSs. Since the NS EOS are often softened
considering the exotic components such as hyperons, our
formula (1) indicates that the CB in these NSs containing
non-nucleonic particles is relatively easier to be obeyed,
see, e.g., Refs. [158–160] on related issues.
To avoid causing confusion, we emphasize here that,

although NSs with lower maximum mass have s2c ≲ 1=3, it
does not imply that these NSs exhibit conformal symmetry
(in their cores) since the latter emerges at extremely high
energies where the strong force coupling constant dimin-
ishes, leading to the “asymptotic freedom” of quarks and
gluons. This symmetry is broken as the energy scale lowers
or the theory is probed at larger scales. At the energy scales
relevant to NS cores, the presence of massive particles and
strong gravitational fields disrupt conformal symmetry. The
latter being not exact even in quark-gluon plasma is
generally expected to break down as the system transitions
to a hadronic phase. Thus, the observation of s2c ≲ 1=3 in
low-mass NSs should not be interpreted to imply that the
conformal symmetry is reached there [161].

IV. CAUSALITY BOUNDARY FOR NEUTRON
STAR MASS-RADIUS CURVE

The correlations of Mmax
NS -Γc and Rmax-νc also enable us

to localize the causality boundary of the NS M-R curve.
Combining Eqs. (6) and (7) leads to

Mmax
NS

M⊙
≈

1.65P̂c

1þ 3P̂2
c þ 4P̂c

�
Rmax

km
− 0.64

�
− 0.106: ð11Þ

FIG. 5. Dependence of s2c on the maximum massMmax
NS =M⊙ (of

a given EOS for NS matter); the CB on the SSS is indicated by the
dashed orange line. The inset plots the s2c as a function of P̂c,
where the light blue curve is allowed by conditions of stability
and causality (0 ≤ s2c ≤ 1).
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The in-front coefficient f ≈ 1.65P̂c=ð1þ 3P̂2
c þ 4P̂cÞ is a

slow-varying function of P̂c, and it essentially explains the
conventional quasilinear correlation between Mmax

NS =M⊙
and Rmax from model calculations. In Fig. 6, we show
the scatters of Mmax

NS and Rmax using the RMF approaches
and the nonrelativistic EDFs of Gogny-like and Skyrme
types together with a few microscopic EOS [115]. The
fitting lines of Eq. (11) adopt four fiducial values for P̂c
(captioned near the lines with the same color), from which
one finds that for P̂c ≳ 0.3 the expression (11) could
reasonably describe the EOS samples. However, obvious
dispersions can be seen for these scatters. In addition,
certain EOS are unfavored by the causal limit P̂c ≲ 0.374
(solid black line, corresponding to s2c ≤ 1 [115]), see Fig. 7
for further discussions.
Since the factor ð1þ 3P̂2

c þ 4P̂cÞ=P̂c takes its minimum
about 7.80 at P̂c ≈ 0.374, we have from Eq. (11) that

Rmax=km≳ 4.73Mmax
NS =M⊙ þ 1.14: ð12Þ

The inequality (12) is obtained for the maximum-mass
configuration via the causal condition s2c ≤ 1; it therefore
gives a causality boundary for the NS M-R curve. In Fig. 7,
we show the causality boundary of (12) (black solid line)
together with the M-R constraints for a few NSs including
the J0740þ 6620 and J0030þ 0451 [69–74] (red and light
blue contours), the 4U 1820-30 and EXO 1745-248 [162]
(green and magenta contours), the recently reported (“black
widow”) PSR J0952-0607 with a mass about 2.35M⊙ [118]
(pink hatched band), GW190814’s secondary component
with a mass of 2.59þ0.08

−0.09M⊙ [163] (cyan hatched band), and
the M-R curves from several empirical dense matter EOS
[8,27,164–175] (gray solid lines). The violet and the
chocolate bands are obtained from the GW170817 event

using the universal relations (URs) and the spectral EOS
(specEOS) approaches [47], respectively, while the cyan
solid contour is based on the GW190425 event for a
compact binary coalescence with total mass about 3.4M⊙
[176]. Additionally, the gray dotted line (marked as
“LPMY”) was empirically given by Ref. [177] as
Rmax=km≳ 4.51Mmax

NS =M⊙, by considering nuclear EOS
effects. Recently, the causality boundary for the NS M-R
curve was localized using an analysis of TA [119] via the
condition Δ ≥ 0 (blue dashed line), where Δ≡ 1=3 − P=ε
was suggested to measure the TA (see Sec. VIII for more
discussions on Δ and related issues).
At this point, it is necessary to discuss in more detail the

fundamental difference between the apparent condition
P=ε ≤ 1 from the principle of causality and s2 ≤ 1, with
the latter being quite relevant in NSs. The physical origin of
this distinction can be traced back to the nontrivial/non-
linear dependence of the s2c on P̂c, as shown clearly in
Eq. (1) which was revealed by the intrinsic structures of the
TOV equations [115] (similar clarifications were given
recently in Ref. [119] using the TA). Actually, even an
“ultrastiff” EOS P ¼ ε may introduce probable tension/
conflict with the observational data of NSs, e.g., see and
compare the upper gray dashed line (marked by “P ¼ ε”)

FIG. 6. Scatters of Mmax
NS and Rmax with the covariant RMF

approaches, the nonrelativistic EDFs of Gogny-like and Skyrme
types, and several extra microscopic EOS [115]. The captions
near each line are the fiducial values for P̂c.

FIG. 7. Causality boundaries for NS M-R curve, where the
black solid line is based on inequality (12) (see the corresponding
black line in Fig. 6). The prediction using the trace anomaly
Δ≡ 1=3 − P=ε ≥ 0 (blue dashed line) as well as the previous
constraint Rmax=km ≳ 4.51Mmax

NS =M⊙ (gray dotted line) are also
shown for comparison. The M-R constraints for several NSs
(magenta, green, light blue, red contours), M-R curves from a few
typical empirical dense matter EOS (gray solid lines), and the
constraints for the M-R relation based on events GW170817
(chocolate/pink bands) and GW190425 (cyan solid contour) are
also shown. See text for details.
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and the red solid contour for PSR J0740þ 6620 (at a
68% confidence level). Specifically, one can solve analyti-
cally the TOV equations adopting the linear EOS P ¼ wε
(for which s2 ¼ P=ε ¼ w and therefore P=ε ≤ 1 and s2 ≤ 1
are totally equivalent) to give the M-R relation as (adopting
c ¼ G ¼ 1)

MðwÞ
NS ¼ 2w

1þ 6wþ w2
R: ð13Þ

Consequently, Mðw¼1Þ
NS ¼ R=4 is obtained, which is smaller

than both the Schwarzschild relation MSchw ¼ R=2 and the
Buchdahl prediction MBuch ¼ 4R=9 [178]; see the tan and
deep-tan bands for the latter two relations in Fig. 7. On the
other hand, compared with the observational data, the
ultrarelativistic Fermi gas EOS (with P ¼ ε=3) leads to
quite an inconsistent causality boundary (shown as the
lower gray dashed line marked by “P ¼ ε=3”), i.e.,

Mðw¼1=3Þ
NS ¼ 3R=14 [179]. The central SSS is 7=9 if

P̂c ¼ 1=3 is inserted into Eq. (1).
Interestingly, our result (12) puts a more stringent

constraint on the M-R curve than those through the TA
analysis [119] and the one from Ref. [177]. Moreover, it is
very consistent with the observational data while excluding
a few celebrated empirical dense matter EOS as indicated in
Fig. 7. In particular, the observational boundary of M-R
data for PSR J0740þ 6620 [69–72] and those from the
events GW170817 [47] and GW190425 [176] are basically
consistent with the relation (12). Therefore, it is important
to check the new causality boundary (12) as more obser-
vational data on NS masses/radii or gravitational wave
events become available (see similar discussions given in
Ref. [119] and their Fig. 3). As an illustration of applying
the new causal boundary on the mass-radius curve, we give
a lower limit for the radius as Rmax ≳ 12.25 km for the
recently identified PSR J0952-0607 [118] from (12), while
for the canonical NS the radius is bounded from below to
about 7.77 km (shown as the cyan solid diamond in Fig. 7).
Inversely, if the radii of NSs were known (constrained),
e.g., Rmax ≈ 12.39 km (for PSR J0740þ 6620 [70] from
NICER), using the causal limit P̂c ≲ 0.374 gives an upper
limit Mmax

NS ≲ 2.38M⊙. Similarly, if Rmax ≈ 11.41 or
13.69 km (the lower/upper constraints for radius of PSR
J0740þ 6620 [70]) is adopted, one hasMmax

NS ≲ 2.17M⊙ or
Mmax

NS ≲ 2.65M⊙, respectively.

V. CONSTRAINTS ON NEUTRON STAR
COMPACTNESS

An important quantity connected with the causality
boundary is the NS compactness (parameter) defined as ξ ¼
MNS=R (adopting c ¼ G ¼ 1). For the maximum-mass
configuration on the NS M-R curve, one obtains the upper
bound for ξmax ¼ Mmax

NS =Rmax by neglecting the intercepts
0.106 and 0.64 in Eqs. (6) and (7), respectively, as

ξmax ≤
0.173 × 104Γc

1.05 × 103νc

�
M⊙

km

�
≈

2.44P̂c

1þ 3P̂2
c þ 4P̂c

≡ ξðupÞmax :

ð14Þ

Therefore, ξmax ≲ 0.313 by taking P̂c ≈ 0.374, which is
about 30% smaller than the Buchdahl limit 4=9 ≈ 0.444.
In Fig. 8, we plot the compactness parameter ξmax of

Eq. (14) as a function of the central SSS s2c [which depends
on the P̂c in the form of Eq. (1)], where the compactness for
PSR J0740-6620 about 0.217 ∼ 0.279 (with the central
value about 0.248) is also shown by the light blue hatched
band (and the purple shallow circle) directly from its
observational mass about 2.08þ0.07

−0.07M⊙ [69] and radius
about 12.39þ1.30

−0.98 km [70]. The compactness about
0.163þ0.019

−0.026 for PSR J0030þ 0451 [74] is shown by the
light green diamond [the SSS is obtained from its mass and
radius using Eqs. (1), (6), and (7)]. A similar result for NS
EXO 1745-248 [145] is shown by the magenta hexagon.
We notice that neglecting the intercepts 0.106 and 0.64 in
Eqs. (6) and (7) slightly overestimates the compactness.
Actually, by rewriting (12) we can obtain

ξmax ≲ 0.313 · ð1 − 1.14 km=RmaxÞ; ð15Þ

where 1.14=Rmax ≪ 1 could be treated as a correction to
Eq. (14). Considering a typical NS radius Rmax ≈ 12 km
(with a reduction about 10% on ξmax), it then leads to
ξmax ≲ 0.283 (gray dash-dotted line). In this sense, the
ξmax ≲ 0.313 from Eq. (14) provides an upper limit for the
NS compactness. An early constraint on the compactness ξ
about ξ≲ 0.353 [128] is indicated by the dashed red line
(with a row of arrows). Furthermore, the constraint on NS
compactness can also be obtained from the gravitational
redshift z defined by 1þ z ¼ ð1 − 2ξÞ−1=2. Interestingly, a

FIG. 8. Compactness parameter ξmax for the maximum-mass
configuration as a function of the central SSS s2c . Several other
constraints/observational samples (see the text for details) are also
shown for comparisons.
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new constraint on z was derived very recently from
comparing x-ray burst model simulations with observatio-
nal data for GS 1826-24 using newly measured atomic
masses around the rapid proton capture process waiting-
point nucleus 64Ge [180]. The resulting NS compactness is
about 0.244 ∼ 0.342 with the most probable value 0.27 at
95% confidence level (shown by the tan band). In addition,
the lower limit of the tan band and the dash-dotted gray line
together imply that s2c ≳ 0.4, implying the CB of 1=3 tends
to break down. Compared to all of the above constraints
available on NS compactness, ours is probably the most
stringent one so far.
We notice in passing that the compactness parameter is

closely related to some bulk properties of NSs such as
the moment of inertial I and/or the NS binding energy Eb
[13–15,142,181–184]. Therefore, the constraint on ξ may
naturally lead to some constraints on these quantities. For
example, via the empirical expression for the moment of
inertia as I=MNSR2 ≈ 0.237ð1þ 2.84ξ2 þ 18.9ξ4Þ given
by Ref. [182], one may obtain that I=MNSR2 ≲ 0.49
using ξ≲ 0.313 or I=MNSR2 ≲ 0.46 using ξ≲ 0.283.
Similarly, Ref. [13] approximated the Eb as Eb=MNS≈
0.6ξ=ð1 − ξ=2Þ, and therefore Eb=MNS ≲ 0.22 and
Eb=MNS ≲ 0.20 using ξ≲ 0.313 and ξ≲ 0.283, respec-
tively. We will not discuss these quantities further in the
current work since they could be treated as direct corol-
laries of the constraints on ξ.

VI. THE ULTIMATE ENERGY DENSITY AND
PRESSURE IN NEUTRON STARS

Actually, the correlationMmax
NS -Γc alone is already useful

for inferring the ultimate (maximum) energy density εult as
well as the ultimate pressure Pult allowed in NSs before
they collapse into black holes. By rewriting Eq. (7) and
considering the causal limit P̂c ≲ 0.374, we obtain

εc ≤ εult ≡ 6.32ðMmax
NS =M⊙ þ 0.106Þ−2 GeV=fm3: ð16Þ

Using the constraint P̂c ≲ 0.374 once again gives

Pc ≤ Pult ≡ 2.36ðMmax
NS =M⊙ þ 0.106Þ−2 GeV=fm3: ð17Þ

We note that the correlation between Rmax and νc of Eq. (6)
is not used in establishing these limits.
Based on Eq. (16) for εult and Eq. (17) for Pult, we find

that the existence of a 2.08M⊙ (1.97M⊙) NS leads to εc ≲
1.32 GeV=fm3 (1.47 GeV=fm3) and Pc ≲ 494 MeV=fm3

(548 MeV=fm3), respectively. It is necessary to point out
that the upper limit Pc ≲ 548 MeV=fm3 is quite consistent
with Pmax ≲ 570 MeV=fm3 (shown as the cyan diamond
with error bars in the inset of Fig. 9) obtained from
Ref. [146] where the maximum masses are assumed
to be larger than 1.97M⊙ [185]. The general Mmax

NS

dependence of εult and that of Pult are shown by the
magenta lines (together with the gray band). Also shown are
the predictions on εult and Pult (black dashed lines with the
lavender band) from Ref. [132], i.e., εult ≈ 7.62½M⊙=Mmax

NS �2
and Pult ≈ 5.12½M⊙=Mmax

NS �2 GeV=fm3 (cited as “LP
[132]”), respectively. Considering Mmax

NS =M⊙ ≈ 2.08, these
relations lead to the estimates εult ≲ 1.76 and
Pult ≲ 1.18 GeV=fm3, which are about 33% and 139%
larger than those from Eqs. (16) and (17), respectively. In
addition, we find the constraint εc ≲ 1.41 GeV=fm3 [by
using Mmax

NS =M⊙ ≈ 2.01 [186] in Eq. (16)] is close to εc ≲
1.18þ0.17

−0.17 GeV=fm3 from recent ab initio QCD calculations
[187], which also assumed the NS masses are greater than
2.01M⊙ as shown by the blue hexagon. Similarly, we have
the limit εc ≲ 1.42 GeV=fm3 [using Mmax

NS =M⊙ ≈ 2 in
Eq. (16)], which is close to the limit 1.46 GeV=fm3 of
Ref. [154] where the algorithm rejects masses ≤ 2M⊙ (red
circle). Furthermore, the maximum central energy density
≲1.16þ0.11

−0.10 GeV=fm3 from Ref. [188] is also shown using
the green diamond, in which the maximum mass Mmax

NS is
greater than about 2.2M⊙. Using our estimate of Eq. (16), for
suchMmax

NS ≈ 2.2M⊙ the central energy density is found to be
about 1.19 GeV=fm3. We summarize in Table I these
constraints on εult andPult. Finally, by considering the (black
widow) PSR J0952-0607 [118] with its mass about 2.35M⊙,
the ultimate energy density εult and pressure Pult are
estimated to be about 1.05 GeV=fm3 and 392 MeV=fm3

(light blue bands), respectively.

FIG. 9. The ultimate energy density εult and the pressure Pult
(inset) allowed in NS cores as functions of the maximum mass
Mmax

NS of NS M-R relation. The previous predictions on εult and
Pult from Ref. [132] are also shown for comparison (black dashed
line). See text for details.
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VII. CONTINUOUS CROSSOVER OF SOUND
SPEED IN NEUTRON STAR CORES

Up until now, we have investigated a few consequences
of the s2c of Eq. (1) holding only at NS centers. In this
section, we study the possible occurrence of continuous
crossover signaled by a smooth reduction of s2 at high
densities in NS cores [as sketched in Fig. 1(b)], by
generalizing s2c of Eq. (1) to finite distances away from
NS centers.
In this and the next sections, we shall encounter two

types of dependence of a certain quantity P on the energy
density: One is the dependence of (central) Pc ≡ PðεcÞ on
εc [Fig. 10(a)] or, equivalently, on P̂c, e.g., Figs. 11, 15, etc.
The other is the dependence of P on the reduced energy
density ε̂ ¼ ε=εc, e.g., Eqs. (41) and (42), etc., see
Fig. 10(b). The latter actually encapsulates the radial
dependence of the quantity, i.e., a finite r̂ corresponds to
a finite ε̂ < 1. We may write explicitly the subscripts to
avoid potential confusions.

A. First order in ε̂− 1: Sign of s2c − s2ðε̂Þ for ε̂ < 1

One can straightforwardly obtain the SSS at distance r̂
from the center r̂ ¼ 0 by considering the perturbative
expressions for the reduced pressure P̂ ≈ P̂c þ b2r̂2 þ
b4r̂4 þ � � � and the reduced energy density ε̂ ≈ 1þ a2r̂2 þ
a4r̂4 þ � � � [115],

s2ðr̂Þ ¼ dP̂
dε̂

¼ dP̂
dr̂

dr̂
dε̂

¼ b2 þ 2b4r̂2 þ � � �
a2 þ 2a4r̂2 þ � � � : ð18Þ

Taking r̂ ¼ 0 in Eq. (18) gives us s2c ¼ b2=a2 and therefore
a2 ¼ b2=s2c < 0, since b2 ¼ −6−1ð1þ 3P̂2

c þ 4P̂cÞ < 0

[115], i.e., the energy density at the center is larger than
its surroundings. However, it does not necessarily mean
that the center is stiffer than its surroundings in terms of the
SSS. We can expand Eq. (18) as an even power series of r̂
(which becomes accurate as r̂ → 0),

s2ðr̂Þ ≈ s2c

�
1þ 2

b2
ðb4 − s2ca4Þr̂2

�
þOðr̂4Þ: ð19Þ

The expression for a4 could be obtained by using the
expansion of P̂ over ε̂. Specifically, by collecting the terms
in the expansion of P̂ ¼ P

k¼1 dkε̂
k in front of r̂4 and

comparing it with b4r̂4 in the expansion of P̂ over the
coefficients fbkg’s, one finds that

a4 ¼
1

s2c

�
b4 − a22

XK
k¼1

kðk − 1Þ
2

dk

�
; ð20Þ

where the following general sum rules are used:

P̂c ¼
XK
k¼1

dk; s2c ¼
dP̂
dε̂

����
ε̂¼ε̂c¼1

¼
XK
k¼1

kdk: ð21Þ

Here K is the effective truncation order of the expansions.
Putting the expression of a4 of Eq. (20) into Eq. (19) leads
to the final expression for s2 as

s2ðr̂Þ ≈ s2c þ 2a2Dr̂2; D ¼
XK
k¼1

kðk − 1Þ
2

dk: ð22Þ

Furthermore, since we have for the ε̂ away from the
center perturbatively as ε̂ðr̂Þ ≈ 1þ a2r̂2, the dependence of
s2 on r̂2 could be transformed into that on ε̂ as

s2ðε̂Þ ≈ s2c þ 2Dðε̂ − 1Þ: ð23Þ

The above approximation (23) is expected to be valid only
near the NS centers [nevertheless, the sign ofD is sufficient
for our purpose to deduce a relative relation between s2ðε̂Þ
and s2c]. According to Eq. (23), we then have

D < 0 ↔ s2c < s2ðε̂Þ
↔ “reduction of s2 towardNS centers;” ð24Þ

TABLE I. Summary of the constraints on εult and Pult existing in the literature and from Eqs. (16) and (17); here
εult and Pult are measured in GeV=fm3 and MeV=fm3, respectively.

Mmax
NS =M⊙ εult Pult References Equation (16) Equation (17)

≳1.97 � � � 570þ320
−320 [146] 1.47 548

≳2.0 1.46 � � � [154] 1.42 533
≳2.01 1.18þ0.17

−0.17 � � � [187] 1.41 528
≳2.2 1.16þ0.11

−0.10 � � � [188] 1.19 444

FIG. 10. Sketch for two types of dependence of certain physical
quantities on energy density, where panel (a) is for the central
energy density dependence while panel (b) is for the energy
density dependence.
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since ε̂ − 1 < 0, see Fig. 1(b). In both Eqs. (22) and (23) the
zeroth-order term is the SSS at center; what we investigate
is the possible crossover at zero temperature (cold NSs) and
high densities ≳5ρsat [108–111], with a peaked behavior in
s2 (see next subsection).
In addition to (21), the stability/causality condition for

any ε̂, i.e., 0 ≤ s2 ≤ 1, can be written as

0 ≤ d1 þ 2d2ε̂þ 3d3ε̂2 þ � � � ≤ 1; ð25Þ

which guarantees the pressure P̂ never becomes negative.
The analyses given up to now are general and not limited to
the maximum-mass configuration Mmax

NS .
For the maximum-mass configuration Mmax

NS on the NS
M-R curve, the inequality d2Mmax

NS =dε2c < 0 gives

ds2c
dP̂c

����
Mmax

NS

< σ2c ≡ d

dP̂c
s2c ¼

2

3

9P̂4
c − 3P̂2

c þ 4P̂c þ 2

ð1 − 3P̂2
cÞ2

; ð26Þ

where s2c is given by Eq. (1). Inequality (26) implies, e.g.,
for PSR J0740þ 6620 that ds2c=dP̂c ≲ 2.74 using P̂c ≈
0.24 [115], which means if P̂c increases by about 0.1, the
increasing of s2c should be smaller than 0.274. Moreover,
we obtain using the relation ds2=dP̂ ¼ ds2=dε̂ · dε̂=dP̂ ¼
d2P̂=dε̂2 · dε̂=dP̂ an equivalent form of (26),

d2P̂
dε̂2

����
ε̂¼ε̂c¼1

¼
XK
k¼1

kðk − 1Þdk ¼ 2D < σ2cs2c : ð27Þ

The coefficients d1 and d2 [via conditions of (21)] and the
correction D are given, respectively, by

d1 ¼ 2P̂c − s2c þ
XK
k¼3

ðk − 2Þdk; ð28Þ

d2 ¼ −P̂c þ s2c −
XK
k¼3

ðk − 1Þdk; ð29Þ

D ¼ −3P̂c þ 2s2c þ
XK
k¼3

ðk − 2Þðk − 3Þ
2

dk: ð30Þ

The first two terms inD are deterministic, while the last one
has certain randomness (reflecting the uncertainties of the
dense matter EOS).
As an example, we use the above scheme to determine the

correction coefficientD forK ¼ 5. The sum rules of (21) [or,
equivalently, Eqs. (28) and (29)] can be used to express the
coefficients d1 and d2 as d1 ¼ 2P̂c − s2c þ d3 þ 2d4 þ 3d5
and d2 ¼ −P̂c þ s2c − 2d3 − 3d4 − 4d5, respectively. Then,
the vanishing of s2 when ε̂ ¼ 0 or, equivalently, d1 ¼ 0

enables us towrite d3 ¼ −2P̂c þ s2c − 2d4 − 3d5. Therefore,
according to the basic definition ofD in Eq. (22), we obtain

D ¼ d2 þ 3d3 þ 6d4 þ 10d5 ¼ d4 þ 3d5 þ 2s2c − 3P̂c,
which is just the content of Eq. (30). See Appendix A for a
proof of Eq. (30) for general K.
The probability ofD < 0 could be estimated by combin-

ing the condition (25) of 0 ≤ s2 ≤ 1, inequality (27),
together with the general sum rules of (21), i.e.,

probðD< 0Þ

≈
Numberof ½0≤ s2 ≤ 1and2D< σ2cs2c andD< 0�

Numberof½0≤ s2 ≤ 1and2D< σ2cs2c �
; ð31Þ

for the maximum-mass configuration Mmax
NS of the NS M-R

curve, here the number of samples of […]. In the following,
we uniformly sample the coefficients dk for k ≥ 4 within
certain ranges, fulfilling the requirements 0 ≤ s2 ≤ 1 and
2D < σ2cs2c , and count the events of D < 0 to estimate the
probability of D < 0. The value of d2 could be obtained
correspondingly using Eq. (29) and d3 via Eq. (28), i.e., the
sum rules of (21). For a certain truncation order K, different
empirical ranges for the parameters dk are adopted to boost
the sampling efficiency.
The simplest situation is K ¼ 3, i.e., P̂ ≈ d1ε̂þ d2ε̂2þ

d3ε̂3 ≈ d2ε̂2 þ d3ε̂3. Correspondingly, we shall obtain d2 ¼
−s2c þ 3P̂c and d3 ¼ s2c − 2P̂c, and the condition D < 0
[see Eq. (30)] is now equivalent to (with the approximation
holding for small P̂c as we have s2c ≈ 4P̂c=3),

uc ≡ 2s2c − 3P̂c ≈ −P̂c=3 < 0: ð32Þ

Considering Eq. (1), we then obtain P̂c ≲ 0.105 in order to
make D < 0 (see the inset of Fig. 11 where the diamond is
at P̂c ≈ 0.105). For P̂c ≳ 0.105, there is no space for the
occurrence of D < 0, and the transition on the probability

FIG. 11. The probability of D < 0 for K ¼ 3 with K the
truncation order of expansion P̂ ¼ P

K
k¼1 dkε̂

k ¼ d1ε̂þ d2ε̂2þ
d3ε̂3.

CENTRAL SPEED OF SOUND, THE TRACE ANOMALY, AND … PHYS. REV. D 108, 103041 (2023)

103041-11



of D < 0 from P̂c ≲ 0.105 to P̂c ≳ 0.105 is sharp (Fig. 11).
Equivalently, this means s2c is definitely larger than its
surroundings for P̂c ≳ 0.105. Because of the importance of
D for our analysis, we explain/illustrate in Appendix B why
the D tends to be negative for small P̂c using K ¼ 4.
The above example with K ¼ 3 involving the cubic

polynomial of P̂ over ε̂ is a very special case for demon-
stration. In order to analyze the probability of D < 0 more
generally, we study more cases of varying K as shown in
Fig. 12 (each panel simulates 108 uniform samples). It is seen
that as the truncation order K increases, the probability of
D < 0 eventually stabilizes [see Figs. 12(a)–12(h) where K
varies from 4 to 40]. One finds from the curves that for P̂c ≲
0.3 the probability of D < 0 is larger than about 50%,
indicating that the continuous crossover probably occurs near
the center. For PSR J0740þ 6620 with its mass ≈2.08�
0.07M⊙ [69–72], which is close to the theoretical predicted
maximum NS mass about 2.01 ∼ 2.16M⊙ [189] (Ref. [190]
showed that it should be smaller than about 2.17M⊙ while
Ref. [191] predicted Mmax

NS ≲ 2.16 ∼ 2.28M⊙ via general-
relativistic magnetohydrodynamics simulations) as well as
P̂c ≈ 0.24 and s2c ≈ 0.45 [115], this probability is found to
be larger than about 63%. As P̂c increases even further,
the probability of D < 0 decreases. In the limiting case of
s2c → 1 (or, equivalently, P̂c → 0.374), this probability is
extremely small.
The physical reason for these behaviors could be traced

back to the (deterministic) term 2s2c − 3P̂c in D of Eq. (30)
which is negative for small P̂c [see Eq. (32)], though the
summation term of Eq. (30) may be either positive or
negative (EOS uncertainties). It indicates that P̂c is the

relevant quantity for the onset of the continuous crossover
[s2ðε̂Þ > s2c] at zero temperature and high densities (i.e., in
the cores of cold NSs) [108–111]: It is likely to happen for
large (P̂c is small and the core is denser) and massive NSs
(so they are near the maximum-mass configuration on the
M-R curve). At the Newtonian limit sc ≈ 4P̂c=3, since uc ¼
−P̂c=3 the coefficient D tends always to be negative (e.g.,
see relevant discussion/illustration given in Appendix B
and Fig. 23). In this case, we expect that the probability of
s2ðε̂Þ > s2c is large. Therefore the general-relativistic effects
reduce the probability for s2ðε̂Þ > s2c.
According to Eq. (22), the deviation of the SSS from its

central value is proportional to 2a2Dr̂2. To evaluate the
relative changing rate of the SSS from its central value, we
show in Fig. 13(a) the h2a2D=s2ci defined as

h2a2D=s2ci ¼ ð2a2=s2cÞ
X
k¼�

probðDkÞDk; ð33Þ

here Dk ¼ D� denotes the value of D > 0 or D < 0. For a
comparison, the average value of 2a2D−=s2c is also shown
(blue dashed line). Considering P̂c ≈ 0.24 [115] for PSR
J0740þ 6620 [69–72], we obtain h2a2D=s2ci ≈ 1.6, i.e.,
s2ðr̂Þ=s2c ≈ 1þ 1.6r̂2 for small r̂. Transforming it back
using Eq. (23) gives us s2ðε̂Þ=s2c ≈ 1þ 2ð1 − ε̂Þ ≈ 3 − 2ε̂,
where ε̂ being very close to 1 is assumed. Equivalently, we
can rewrite the radial dependence of the SSS by using
Eq. (6) approximately as (by neglecting the intercept 0.64)

s2=s2c ≈ 1þ 9.4P̂cha2D=s2ci
1þ 3P̂2

c þ 4P̂c

�
r

Rmax

�
2

; ð34Þ

FIG. 12. The same as Fig. 11 but for more cases of the truncation orderK. Dashed vertical blue line in each panel is for P̂c ≈ 0.24 (PSR
J0740þ 6620) extracted in Ref. [115], and the black horizontal dashed line is plotted at probðD < 0Þ ¼ 50%.
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where r ¼ r̂Q is the physical radius and Rmax is measured
in kilometers. Taking P̂c ≈ 0.24, we obtain s2=s2c ≈ 1þ
0.85ðr=RmaxÞ2.
The consistency between Eqs. (19) and (22) implies b4 −

s2ca4 < 0 if D < 0 due to the negativeness of a2 and b2.
Consequently, we obtain a4 > b4=s2c > 0 since b4 > 0
[115]. As a rough (order of magnitude) estimate for a4,
e.g., we take P̂c ≳ 0.16 (for massive NSs), therefore
a4 > b4=s2c ≳ 0.86, i.e., a4 ∼Oð1Þ (see Appendix D for
another order of magnitude estimate for a4). Since all of our
perturbative expansions including ε̂ and ρ̂ ¼ ρ=ρc [see
Eq. (53)] over r̂ are dimensionless, it is reasonable to
expect the magnitude of the expansion coefficients is
natural, i.e., it is ∼Oð1Þ. On the other hand, if D > 0,
then the consistency between Eqs. (19) and (22) implies
a4 < b4=s2c . Combining these two cases leads to

Dðb4=s2c − a4Þ > 0; ð35Þ

i.e., D and b4=s2c − a4 have the same sign. The inequality
(35) is a general constraint on the expansion coefficients.

B. Second order in ε̂− 1: Estimates on the peak of s2

The s2 approaches zero at the core-crust transition
density below which the dynamical fluctuations in uniform
matter will be unstable, indicating the onset of forming
clusters in the crust. It implies that there should exist a peak
in s2 somewhere along the path away from the center if
D < 0. In fact, Refs. [151,152] predicted that the peak of s2

for NSs with masses Mmax
NS ≳ 2M⊙ is located at about 2=3

of its radius. As ε is a decreasing function of r̂, the peak of
s2 is located at a energy density εpk < εc, e.g., Ref. [192]
predicted that εpk ≈ 565 MeV=fm3 for massive NSs.
Taking our oversimplified EOS with truncation order
K ¼ 3 (Fig. 11) as an example, the peak ε̂pk of s2ðε̂Þ
can be obtained as ε̂pk ≈ 5=6þ P̂c þ 7P̂2

c=2þ 13P̂3
c ≳ 5=6

and s2ðε̂pkÞ ≈ 25P̂c=18þ 5P̂2
c=9þ 17P̂3

c=6 (with P̂c being
small ≲0.105) using s2 ≈ 2ð3P̂c − s2cÞε̂þ 3ðs2c − 2P̂cÞε̂3.
In addition, the peak of s2 could not be estimated through
Eq. (23) since it is linear in ε̂ and the higher-order terms,
e.g., a4, b4, and a6, etc., are necessary for such estimate.
We now use our perturbative expansions as a tool and

include these higher-order contributions to explore whether
there would exist a plateau for P̂ for a finite range of ε̂
(relevant for sharp PTs) and estimate the peak of s2 (near
NS centers) if it exists. When considering terms including
order b6 coefficient in the expansion of P̂ and the a6-term in
the expansion of ε̂, namely, P̂ ≈ P̂c þ b2r̂2 þ b4r̂4 þ b6r̂6

and ε̂ ≈ 1þ a2r̂2 þ a4r̂4 þ a6r̂6, we derive the SSS like
Eq. (19),

s2=s2c ≈ 1þ 2

b2
ðb4 − s2ca4Þr̂2

þ 3

b2

�
ðb6 − s2ca6Þ −

4

3

a4
a2

ðb4 − s2ca4Þ
�
r̂4: ð36Þ

The coefficient a6 could be eliminated as a4 in Eq. (19):
expanding the reduced pressure P̂ ¼ P

K
k¼1 dkε̂

k with ε̂ ¼
1þP

K
k¼1 akr̂

k and comparing the coefficient of r̂6 in the
expansion P̂ ¼ P̂c þ

P
K
k¼1 bkr̂

k. The result is

b6 − s2ca6 ¼ a32J þ 2a2a4D; ð37Þ

where J is a quantity constructed from dk’s defined in the
expansion P̂ ¼ P

K
k¼1 dkε̂

k,

J ¼
XK
k¼1

kðk − 1Þðk − 2Þ
6

dk ¼ d3 þ 4d4 þ 10d5 þ � � � :

ð38Þ

The coefficient J has certain randomness like the coef-
ficient D (characterizing the uncertainties of the dense
matter EOS). Using this J, we can rewrite the radial
variation of s2 as

s2ðr̂Þ ≈ s2c þ 2a2Dr̂2 þ ð3a22J þ 2a4DÞr̂4: ð39Þ

As discussed above, the peak of s2 exists in the situation
of D < 0 and where a4 > b4=s2c > 0 [see inequality (35)].
Taking the derivative ds2=dr̂ and setting it to zero locates
the peak of s2 to

r̂pk ¼
�
−

a2D
3a22J þ 2a4D

�
1=2

: ð40Þ

Here a2D > 0, so the expression under the square root is
positive if J < −2a4D=3a22 (with the latter being positive
since a4D < 0). A further quantitative estimate for r̂pk
depends strongly on the coefficients a4, D, and J.
Inverting ε̂≈1þa2r̂2þa4r̂4þa6r̂6 gives us r̂2≈ ðμ=a2Þ½1−
ða4=a22Þμþð2a24=a42−a6=a32Þμ2�, where μ≡ ε̂ − 1 < 0.
Putting this r̂2 into the full expression for s2ðr̂Þ to order
r̂4 of Eq. (39) enables us to write the s2ðε̂Þ ¼ s2ðμÞ as

s2ðμÞ ≈ s2c þ 2Dμþ 3Jμ2 −
2

a22

�
3a4J þ

a6
a2

D

�
μ3; ð41Þ

which generalizes (23). Thus, we have to order Oðμ3Þ,
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P̂ðμÞ ≈ P̂c þ s2cμþ
1

2

ds2

dμ

����
μ¼0

μ2 þ 1

6

d2s2

dμ2

����
μ¼0

μ3

≈ P̂c þ s2cμþDμ2 þ Jμ3: ð42Þ

In fact, Eq. (42) could be obtained straightforwardly via
the expansion P̂ ¼ P

K
k¼1 dkε̂

k. However, the coefficient J
[Eq. (38)] now like the coefficientD [Eq. (30)] is not totally
random, but is constrained through the general requirements
0 ≤ s2 ≤ 1 and σ2cs2c > 2D used in the algorithm of Eq. (31);
i.e., the randomness of J andD is effectively reduced by the
physical constraints. Therefore,we can estimate J in a similar
manner as forD. Taking P̂c ≈ 0.24 (for PSR J0740þ 6620)
we obtain an estimate J ≈ −2.7 [Fig. 13(b)]. Combining s2c ≈
0.45 and D ≈ −0.45 [Fig. 13(b)] for P̂c ≈ 0.24, the P̂ðε̂Þ is
found to be an increasing function of ε̂ for ε̂≳ 0.7. It basically
excludes the possibility of having a plateau in P̂ at high
densities near the center. Including the last term in Eq. (41)
may slightly shift ε̂≳ 0.7 to a higher value,wherea6 could be
estimated via Eq. (37) with the expression for coefficient b6
given in Ref. [115]. Moreover, theD- and J-terms contribute
to s2ðμÞ [and also P̂ðμÞ] with different signs (since μ < 0) for
P̂c ≲ 0.3 [Fig. 13(b)], explaining the existence of a peak in
s2ðμÞ. One finds the peak of s2ðμÞ from Eq. (41) (neglecting
the last term) as

μpk ≈ −D=3J: ð43Þ

Wecan see that the possible peak in the derivative part of s2 is
shifted to a slightly lower value [see Eq. (50)].
As an illustration, we take εc ≈ 901 MeV=fm3 (which is

the central energy density for PSR J0740þ 6620) [115] and
R ≈ 12.39 km [70], while we let P̂c be a free parameter to
demonstrate the numerical results. The radius length is
obtained as Q ¼ ð4πGεcÞ−1=2 ≈ 8.7 km. Shown in Fig. 14
are our estimates for the peak in s2 for either s2ðε̂Þ or s2ðr̂Þ.
Specifically, ε̂pk ¼ 1þ μpk ≈ 1 −D=3J and r̂pk is given by
Eq. (40). The enhancement on s2, i.e.,Δs2 ¼ s2ðr̂pkÞ − s2c ¼
−D2=ð3J þ 2a4D=a22Þ from Eq. (39) is also shown, where
a4 ≈ 1 is adopted. Considering that j2a4D=a22j ≪ j3Jj, we

haveΔs2 ≈ −D2=3J usingEq. (43) [see the cyandash-dotted
line in Fig. 14 for 15 · ð−D2=3JÞ ¼ −5D2=J]. The differ-
ence betweenΔs2 using Eqs. (39) and (41) is that Eq. (39) is
full to order r̂4 while Eq. (41) is an approximation (even if the
μ3-term is included). It is seen that as the P̂c increases, the ε̂pk
eventually approaches 1, implying that the peak ε̂pk even-
tuallymoves to the center, and itmay even disappear if the P̂c

increases further. Actually for P̂c ≳ 0.3 [Fig. 13(b)], the D
changes from being negative to positive and therefore both
terms 2Dμ and 3Jμ2 in s2ðμÞ are negative, i.e., s2c is larger
than its surroundings. Similar phenomena occur for the Δs2

and r̂pkQ=R. For example, we have for P̂c → 0.374 that
s2c → 1 [Eq. (1)] and thereforeΔs2 → 0 (no space under this
limit for s2 to be enhanced when going outward from the
center). In our illustration, we find ðΔs2Þmax ≈ 0.038 occur-
ring for P̂c ≈ 0.16, therefore ðΔs2Þmax=s

2
c ≈ 14% using

s2c ≈ 0.26. Similarly, we have Δs2=s2c ≈ 5% for P̂c ≈ 0.24.
For situations with positive D (thus a2D < 0), the SSS

may first decrease as finite r̂ develops and then increase
further if 3a22J þ 2a4D > 0. There exists then a valley r̂va
in s2, which may still be estimated by using Eq. (40). The
self-consistent requirement between expansions (36) and
(39) considering the coefficients of r̂4 gives us [see the
similar inequality (35) from the preceding order]

�
4a4
3a2

�
b4
s2c

− a4

�
−
�
b6
s2c

− a6

���
J þ 2a4

3a22
D

�
> 0; ð44Þ

where b4 and b6 were given in the Appendix of Ref. [115]
and a4 as well as a6 are expected to be Oð1Þ.

FIG. 13. Averages of 2a2D=s2c and 2a2D−=s2c as functions of
P̂c (a) and coefficients D and J (b) defined in Eqs. (22) and (38),
respectively. The vertical dashed line is at P̂c ¼ 0.24.

FIG. 14. Estimate for the peak in s2 either for s2ðε̂Þ or s2ðr̂Þ, the
enhancement on s2, i.e., Δs2 ¼ s2ðr̂pkÞ − s2c ¼ −D2=ð3J þ
2a4D=a22Þ and its approximation 15 · ð−D2=3JÞ ¼ −5D2=J are
shown. The coefficientD becomes averagely negative when P̂c ≳
0.3 (see Fig. 13). In the simulation, the effective truncation order
of the expansions is set at K ¼ 8.
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The above results/estimates on the peak of s2 as well as
the qualitative predictions for the P̂ðε̂Þ ¼ P̂ðμÞ are expected
to be (nearly) model independent, because we rely only on
(without using extra assumptions) the general conditions/
requirements [including the inequality 0 ≤ s2 ≤ 1 of (25),
inequality (27), and the sum rules of (21)] together with
formula (1) and also bound the high-order coefficients such
as a4 (Appendix D) and a6, etc.
It is necessary to emphasize that due to its perturbative

nature, however, the above analysis on the ε̂ dependence of
s2 (or the signature of the continuous crossover) is only
effective and qualitatively reasonable at finite distances r̂
being very close to NS centers (r̂ ¼ 0). Whether there exist
sharp PTs at some large distances away from the centers (or
at certain intermediate energy density ε) could not be
excluded immediately and should be, in principle, analyzed
by including more higher-order terms in the expansions,
and the results may have certain model dependence.
Furthermore, P̂ðμÞ < P̂c is definite for μ ≈ 0− consid-

ering Eq. (42) which is fundamentally different from s2ðμÞ
of Eq. (41), since D still has sizable probabilities to be
positive even for small P̂c and thus s2ðμÞ < s2c [Fig. 1(c)].
We discuss in further detail in the next section the possible
bound on P=ε in NS cores.

VIII. UPPER BOUND FOR P=ε AND CONFORMAL
ANOMALY NEAR NEUTRON STAR CENTERS

In this section, we discuss more on P=ε in NS cores.
Considering the trace anomaly (or the conformality mea-
sure)Δ ¼ 1=3 − P=ε and compared with the analysis given
in Ref. [119], our formula (1) predicts a slightly different
bound for Δc as Δc ≳ −0.04, and for P̂c ≈ 0.24 (PSR
J0740þ 6620) we found Δc ≈ 0.09. Although our Δc and
that from TA analysis are close to each other, the physical
origins seem different. While the TA is based on properties
of pQCD, ours could be traced back to the structures
encapsulated in the (general-relativistic) TOV equations.
Thus, whether there exists a deep connection between them
needs further investigations.
First, we mention a few similar evaluations of Δ in the

recent literature. An analysis in Ref. [152] using an agnostic
EOS showed that Δ is very close to zero forMmax

NS ≳ 2.18 ∼
2.35M⊙ andmay be slightly negative for even more massive
NSs (e.g., Δ≳ −0.02 for Mmax

NS ≳ 2.52M⊙). Moreover, in
Ref. [192], the central minimum value of Δ is found to be
about Δmin ≈ 0.04 using the NICER data together with the
tidal deformability from GW170817. A value of Δmin ≈
−0.05 was inferred considering additionally the second
component of GW190814 as a neutron star with mass about
2.59M⊙ [163] using two hadronic EOS models [192]. See
also the recent works on the similar issue in Refs. [194,195],
e.g., Ref. [194] predicted that Δc ≳ −0.046 if Mmax

NS ≥
2.2M⊙. Another analysis within the Bayesian framework
considering the state-of-the-art theoretical calculations

showed that Δ≳ −0.01 (where Mmax
NS ≈ 2.27þ0.11

−0.11M⊙) and
for a 2M⊙ NS the polytropic index γ ≡ d lnP=d ln ε ¼
s2=ðP=εÞ is found to be about 2 [193]. The γ parameter in
NS centers, actually, cannot be unity [119,193] sinceΔc (P̂c)
and s2c could not approach zero (1=3) and 1=3 simultane-
ously, as shown by Eq. (1). Physically, due to the nonlinear
nature of the central EOS in NSs, it is likely that γ ≠ 1
(actually γ ¼ 1 if and only if P ∝ ε); see the relevant
discussions in detail in Sec. IV and Fig. 7. Using our
formula (1), it is straightforward to find that 4=3 ≤ γc ≲
2.67 and considering P̂c ≈ 0.24þ0.05

−0.07 for PSR J0740þ 6620

[115], we obtain γc ≈ 1.86þ0.22
−0.21 . Moreover, forΔc ¼ 0 the γc

index is 7=3 ≈ 2.33. Furthermore, Ref. [193] also defined a
quantity Θ≡ ½Δ2 þ ðP=ε − s2Þ2�1=2 to measure the confor-
mality and found it should be≲0.65 for allNSs. The criterion
Θ≲ 0.2 (besides γ ≲ 1.75) was adopted [193] to identify the
near conformality at a given density. Based on our for-
mula (1), we can find 0.19≲ Θc ≲ 0.63 with the minimum/
maximumvalue obtained at P̂c ≈ 0.18=P̂c ≈ 0.374 andΘc ≈
0.22þ0.09

−0.03 for P̂c ≈ 0.24þ0.05
−0.07 (PSR J0740þ 6620).

We summarize in Table II these values at three reference
P̂c’s (0.18, 0.24, and 0.374), where tc ≡ dΔc=d ln εc ¼
P̂c − s2c as the logarithmic derivative of Δc [193] (with
respect to εc) is also given. We have tc → 0 if γc → 1 (the
so-called conformal limit of matter), therefore −tc charac-
terizes the deviation from the conformal limit. In
Ref. [119], −t ¼ s2 − P=ε and 1=3 − Δ ¼ P=ε are decom-
posed as the derivative and nonderivative parts of s2,
respectively. Equivalently, one has Θ ¼ ðΔ2 þ t2Þ1=2. See
Fig. 15 for an example whereMmax

NS =M⊙ ¼ 2 is adopted for
the illustration [using Eq. (7) to solve for P̂c and s2c].
According to Eq. (1), we find both the nonderivative and
derivative parts of s2c are increasing functions of εc and take
their maximum values at P̂c ≈ 0.374. The solid diamonds in
Fig. 15 characterize the boundary P̂c ≲ 0.374, i.e., the
curves above εc ≳ 1.42 GeV=fm3 (for Mmax

NS =M⊙ ¼ 2, see
Table I) violate the causality condition s2c ≤ 1. For other

TABLE II. Ranges of several quantities relevant for the trace
anomaly as defined in the text, the values for them at three
reference P̂c’s are also shown (last three columns), tc ¼
dΔc=d ln εc ¼ P̂c − s2c is the logarithmic derivative of Δc, and
uc ¼ 2s2c − 3P̂c is the quantity closely related to the possible
crossover occurring near the NS centers [see Eq. (30)].

Quantity Range P̂c ≈ 0.18 0.24 0.374

Δc ¼ 1=3 − P̂c −0.041≲ Δc ≤ 1=3 0.15 0.09 −0.041
s2c ¼ dPc=dεc 0 ≤ s2c ≤ 1 0.31 0.45 1
γc ¼ s2c=P̂c 4=3 ≤ γc ≲ 2.67 1.68 1.86 2.67

tc ¼ P̂c − s2c −0.63≲ tc ≤ 0 −0.13 −0.21 −0.63
Θc ¼ ðΔ2

c þ t2cÞ1=2 0.19≲ Θc ≲ 0.63 0.19 0.22 0.63
uc ¼ 2s2c − 3P̂c −0.01≲ uc ≲ 0.88 0.07 0.17 0.88
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values of Mmax
NS the shapes of the curves in Fig. 15 are

similar. Shortly after, we may show that there exists a peak
in the derivative part of s2 when considering positions
having finite distance from the center [see Eq. (50)].
In Table II, the columnwith P̂c ≈ 0.18 is also shown as the

measureΘc takes its minimum at this P̂c. Interestingly, if one
requires Θc ≈ 0.2, then two solutions P̂c ≈ 0.21 and P̂c ≈
0.16 should be obtained, and the corresponding γc is found to
be about 1.75 and 1.62, respectively.We have approximately
Θc≈1=3−ηþ2η2=3þ13η3=6þ41η4=8þ���, where 0.5≳
η≡ 1–4=3γc ≥ 0 acts as a small-expansion quantity (since
2.67≳ γc ≥ 4=3). These numerical values indicate that
empirically the near conformality may be possible in the
core of very massive NSs (with masses ≳2M⊙). We notice
that P̂c ≈ 0.189 [115] and correspondingly Θc ≈ 0.195 and
γc ≈ 1.70 are obtained if the radius about 13.7 km was
adopted for PSR J0740þ 6620 [71]. However, the like-
lihood for realizing conformality near the centers is small if
the criteria Θc ≲ 0.2 and γc ≲ 1.75 [193] were adopted
simultaneously, as shown in Fig. 16, where the constraints
γ ≲ 1.79 and Θ≲ 0.24 from Ref. [193] are shown (green
solid lines associated with arrows) for comparison.
Moreover, Eqs. (55)–(59) given in the following together
may extend this conclusion to situations where ε̂≲ 1 (or
equivalently at some finite distances away from the center).
Furthermore, Fig. 16 also supports the conclusion that the
criterion Θc ≲ 0.2 is more restrictive than γc ≲ 1.75 [193].
In Fig. 17, we show the Δc ¼ 1=3 − P̂c as a function of

εc for different values of Mmax
NS (varying from 1.7M⊙ to

2.4M⊙) using the mass correlation (6). The parametrization
for Δ suggested by Ref. [119] is also shown (green dotted
line), which is positive definite by construction. In addition,
two model predictions for Δ are represented by lavender
[119] and cyan dashed [187] bands using machine-learning
algorithms and ab initio QCD calculations, respectively.
For relatively light NSs, the condition Δc ≥ 0 generally

holds since the central energy density εc is relatively low,
e.g., for Mmax

NS =M⊙ ¼ 1.7 the condition εc ≲ 1.8 GeV=fm3

is safely satisfied. On the other hand, the εc may exceed the
value set by Δc ≈ 0 as Mmax

NS increases. Our constraint on
the lower bound of Δc is quite consistent with those from
Refs. [119,187]. The inset of Fig. 17 shows the dependence
of Δc on s2c . It is seen that for s2c ≥ 7=9 ≈ 0.78 [see Eq. (1)]
the Δc becomes negative. In short, Fig. 17 clearly explains
why the criterion Δ ≥ 0 tends to break down for massive
NSs with increasing Mmax

NS [152,192,193,196], instead of
for light NSs.

FIG. 15. Decomposition of s2c into its nonderivative part (P̂c)
and derivative part (s2c − P̂c) for Mmax

NS =M⊙ ¼ 2. Solid diamonds
characterize the boundary of s2c ≤ 1 (left of the lavender band).

FIG. 16. Dependence of Θc on the polytropic index γc for the
maximum-mass configuration Mmax

NS , where in the light blue
region two criteria Θc ≲ 0.2 and γc ≲ 1.75 hold simultaneously.
The constraints from Ref. [193] on γ and Θ are also shown (green
solid lines associated with arrows) for comparison. The inset
amplifies the light blue region.

FIG. 17. Conformality measure Δc ¼ 1=3 − P̂c as a function of
εc for differentMmax

NS =M⊙ (from 1.7 to 2.4), where light blue solid
diamonds mark the points set by P̂c ≲ 0.374, while the vertical
black dashed lines are for the vanishing points of Δc for each
Mmax

NS . Two model calculations (lavender/cyan) [119,187] and a
parametrization for Δ (green dotted) [119] are also shown for
comparison. Inset gives the dependence of Δc on s2c .
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We have studied above the consequences of P̂c on a few
quantities. We now investigate to what extent the limit P̂c ≲
0.374 holds. In order to bound P=ε ¼ P̂=ε̂ (notice that the
hatted pressure and energy density are both scaled with εc),
we need to take three generalizations of P̂c ≲ 0.374
obtained from Eq. (1) by studying the following questions:
(a) How does the P̂=ε̂ behave at a finite r̂ for the

maximum-mass configuration Mmax
NS ?

(b) How does the limit P̂c ≲ 0.374 modify when we
consider stable NSs on the M-R curve away from
the maximum-mass configuration?

(c) By combining (a) and (b), how does the P=ε behave
for stable NSs at finite distances r̂ away from their
centers?

For the first question, since the pressure P̂ and ε̂ are
decreasing functions of r̂, i.e.,

P̂ ≈ P̂c þ b2r̂2 < P̂c; ð45Þ

ε̂ ≈ ε̂c þ a2r̂2 ¼ 1þ s−2c b2r̂2 < 1 ¼ ε̂c; ð46Þ

we obtain by taking their ratio

P=ε¼ P̂=ε̂≈ P̂c=ε̂c þ
�
1−

P̂c

s2c

�
b2r̂2 ≈ P̂c þ

1

4
b2r̂2 < P̂c:

ð47Þ

Generally, 1 − P̂c=s2c > 0 and the approximation s2c ≈
4P̂c=3 is used for small P̂c in the last step. This means
not only P̂ and ε̂ decrease for finite r̂, but so also does their
ratio P̂=ε̂. Thus, for NSs at the maximum-mass configu-
ration of the M-R curves, we have P̂=ε̂ ≤ P̂c ≲ 0.374.
Considering the second question and for stable NSs on the
M-R curve, one has Ψ ∼ dMNS=dεc > 0 and Eq. (1) should
be modified to

s2c ¼ P̂c

�
1þ 1þ Ψ

3

1þ 3P̂2
c þ 4P̂c

1 − 3P̂2
c

�
: ð48Þ

Consequently, the upper limit for P̂c constrained by s2c ≤ 1
should be smaller than 0.374 due to the positiveness of Ψ.
Furthermore, for the last question (c), the inequality (47)
still holds and is modified for small P̂c,

P̂=ε̂ ≈ P̂c þ
1þ Ψ
4þ Ψ

b2r̂2 < P̂c: ð49Þ

Combining the above three aspects, we find that P=ε ¼
P̂=ε̂ ≤ P̂c ≲ 0.374 holds for all stable NSs along the M-R
curve either at or being close to their centers. Nevertheless,
the validity of this conclusion is still limited to small r̂ (like
the SSS) due to the perturbative nature of the expansions of
P̂ðr̂Þ and ε̂ðr̂Þ. Whether P=ε could exceed such upper limit

at even larger distances away from the centers depends on
the joint analysis of s2 and P=ε, by including more higher-
order contributions of the expansions.
The upper bound P=ε≲ 0.374 (at least near the NS

centers) is an intrinsic property of the TOV equations,
which embody the strong field aspects of gravity (GR). In
this sense, there is no guarantee a priori that this bound is
consistent with all microscopic nuclear EOS. This is mainly
because the latter were conventionally constructed without
considering the strong field ingredients of gravity; see, e.g.,
the sizable tension between our causality boundary on the
M-R diagram of Fig. 7 (solid black line) and predictions of
a few nuclear EOS. The robustness of such upper bound for
P=ε can be checked only by observable astrophysical
quantities/processes involving strong field aspects of grav-
ity such as NSM-R data, NS-NS mergers, and/or NS–black
hole mergers [197].
We use the perturbative expansion of P=ε and Eq. (41) to

explain the existence of a peak in the derivative part −t of
the SSS [119]. Dividing Eq. (42) by μ ¼ ε̂ − 1 gives the
ratio P=ε to order μ2 as P=ε ≈ P̂c − tcμþ ðDþ tcÞμ2,
where tc ¼ P̂c − s2c ; this expansion generalizes Eq. (47).
Consequently, the derivative part −t of s2 is obtained as
−tðε̂Þ ¼ −tðμÞ ≈ −tc þ ð2Dþ tcÞμþ ð3J −D − tcÞμ2 (to
order μ2), from which the peak could be found,

μð−tÞpk ¼ ε̂ð−tÞpk − 1 ¼ 1

2

2Dþ tc
Dþ tc − 3J

: ð50Þ

Taking for example P̂c ≈ 0.16 ∼ 0.30, this peak is shown to

be located at about −μð−tÞpk ≈ 10% ∼ 5% [see discussions
given after Eq. (42) for the estimate on D and J]. On the
other hand, using the expansion P=ε just given here, we
deduce that tc=2ðDþ tcÞ > 0, i.e., there would be no peak
in the nonderivative part of s2 or this part is an increasing

function of ε [119]. The value of −t at μð−tÞpk is

−tpk ≡ −tðμð−tÞpk Þ ¼ 4D2 þ 12Jtc − 3t2c
4D − 12J þ 4tc

: ð51Þ

Then, we have−tpk ≈ 0.15 ∼ 0.35 and the nonderivative part
(of s2), namely, P=ε ≈ 0.14 ∼ 0.28 for P̂c ≈ 0.16 ∼ 0.30.

Moreover, comparing μð−tÞpk of Eq. (50) and μpk ¼ −D=3J of
s2ðμÞ [see Eq. (43)] leads us to

μpk − μð−tÞpk ¼ 2D2

9J2
1þ tc=Dþ 3Jtc=2D2

1 −D=3J − tc=3J
> 0: ð52Þ

Thismeans the location of the peak in s2 (i.e., μpk) occurs at a

higher-energy density than that of the peak in −t (i.e., μð−tÞpk ),
see also Fig. 2 of Ref. [119]. Equivalently, the peak in s2 is
closer to the NS center than the peak in −t. When higher-
order terms of μ are included in the expansions, the specific
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location of μpk and μð−tÞpk may vary, however, the relation

μpk − μð−tÞpk > 0 would not be changed.
In Fig. 18, we show the P̂c dependence of coefficient CΦ

appeared in the approximation Φ ≈ 1þ CΦr̂2 þOðr̂4Þ for
Φ ¼ P̂=P̂c; ε̂=ε̂c; ðP̂=ε̂Þ=ðP̂c=ε̂cÞ, and ρ=ρc, for the Mmax

NS

configuration. Here in addition to the relations for P̂, ε̂, and
P̂=ε̂, we also have the corresponding relation for baryon
density ρ as (to order r̂4),

ρ̂≡ ρ=ρc ≈ 1þ
�
b2=s2c
1þ P̂c

�
r̂2 þ 1

1þ P̂c

�
a4 −

b22=2s
2
c

1þ P̂c

�
r̂4;

ð53Þ
obtained using the thermodynamic relation ρ∂ε=∂ρ ¼ Pþ ε
with ρc the baryon number density at NS center. Here, a4
characterizes the model dependence of ρ=ρc. Without any
surprise, ρ < ρc for finite r̂ ≠ 0. By taking P̂c ≈ 0.24 for
PSR J0740þ 6620 [115], we then obtain numerically
P̂=P̂c ≈ 1–1.5r̂2, ε̂=ε̂c ≈ 1 − 0.8r̂2, ðP̂=ε̂Þ=ðP̂c=ε̂cÞ ≈ 1−
0.7r̂2, and ρ=ρc ≈ 1 − 0.6r̂2, where ε̂c ¼ εc=εc ¼ 1. Two
reference values for P̂c at 0.24 and 0.374 are marked using
the black dash-dotted lines. It is clearly shown that all these
CΦ’s are definitely negative for 0 ≤ P̂c ≲ 0.374, which are
different from the coefficient CΦ for Φ ¼ s2=s2c. The latter
may be either positive or negative (Figs. 12 and 13). By
recovering the physical radius r, one can find from Eq. (45)
the (reduced) pressure P=Pc ≈ 1 − 0.78ðr=RmaxÞ2 [neglect-
ing the intercept 0.64 in Eq. (6)], holding for perturbatively
small r=Rmax. Combining (46) and (53) gives (to order μ2

and P̂2
c)

ρ=ρc ≈ 1þ χμ − s2cχ2μ2 ≈ ε̂ − μ

�
1þ 4

3
μ

�
P̂c

�
1 − P̂c

�
;

ð54Þ

where χ ¼ 1=ð1þ P̂cÞ and μ ¼ ε̂ − 1 < 0, i.e., ρ̂ ≈ ε̂ to
leading order near the center and ρ̂≳ ε̂ considering finite
P̂c. Relation (54) gives us an estimate on the location of the
possible peak in s2ðρÞ as a function of ρ; e.g., by considering
ε̂pk − 1 ¼ μpk ¼ −D=3J of Eq. (43) and Fig. 14 we find that
the peak is at ρ̂pk ¼ ρpk=ρc ≈ 95% by takingD ≈ −0.45 and
J ≈ −2.7 (relevant for PSR J0740þ 6620), i.e., it is very
close to the center [the finite P̂c correction of (54) is ≲1%].
The expansion (53) is useful and we give in Appendix D an
order of magnitude estimate for the coefficient a4 via the
decreasing feature of ρ̂ as a function of r̂.
In addition, since P=ε is a decreasing function for small r̂

as given in Eq. (47), the conformal anomaly Δ ¼ 1=3 −
P=ε essentially increases with r̂ (i.e., when going outward)
not so far (r̂ being small). This means that it is disadvanta-
geous for the NS matter to become (nearly) conformal
when going not so far away from the center. This is also
reflected in the behaviors of γ ¼ s2=ðP=εÞ and Θ ¼ ½Δ2 þ
ðP=ε − s2Þ2�1=2 at finite r̂ or finite ε̂ (or, equivalently, μ). In
fact, we can show straightforwardly that

γ=γc ≈ 1þ b2
s2c

�
1þ 2D

s2c
−
s2c
P̂c

�
r̂2

≈ 1 −
3D

16P̂2
c
r̂2; ð55Þ

Θ=Θc ≈ 1þ b2
s2c

3tcð1þ 3s2c − 6P̂c − 6DÞ
1þ 9s2c − 6P̂cð1þ 3s2cÞ þ 18P̂2

c
r̂2

≈ 1þ 1 − 6D
8

r̂2; ð56Þ

where b2 ¼ −6−1ð1þ 3P̂2
c þ 4P̂cÞ and the coefficients in

front of r̂2 in γ=γc andΘ=Θc are both positive, and the second
line for eachquantity keeps only the leading-order term in P̂c.
Numerically, then Θ=Θc ≈ 1þ 3.8r̂2 and γ=γc ≈ 1þ 2.3r̂2

for P̂c ≈ 0.24 using D ≈ −0.45 [Fig. 13(b)]. For small
P̂c → 0, the second line of Eq. (56) gives approximately
Θ=Θc ≈ 1þ r̂2=8 since D ∼ P̂2

c → 0 indicated by Eq. (55)
[see also Fig. 13(b)]. Similarly, the μ dependence of γ andΘ
could be obtained,

γ=γc ≈ 1þ
�
tc
P̂c

þ 2D
s2c

�
μ

≈ 1þ 3D

2P̂c
μ; ð57Þ

Θ=Θc ≈ 1þ 3tc þ 9s2cðtc þ 2DÞ − 18P̂cðtc þDÞ
1þ 9s2c − 6P̂cð1þ 3s2cÞ þ 18P̂2

c
μ

≈ 1þ ð6D − 1ÞP̂cμ: ð58Þ

The coefficients in front of μ in Eqs. (57) and (58) are both
negative, e.g., we have γ=γc ≈ 1–2.9μ and Θ=Θc ≈ 1–4.8μ

FIG. 18. The P̂c dependence of coefficients CΦ appeared in
Φ ≈ 1þ CΦr̂2 þOðr̂4Þ for Φ ¼ P̂=P̂c, ε̂=ε̂c, ðP̂=ε̂Þ=ðP̂c=ε̂cÞ,
and ρ=ρc.
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for P̂c ≈ 0.24. Therefore, Eqs. (55)–(58) together generalize
the conclusion of Fig. 16: If the matter at centers of massive
NSs was not conformal, it is likely its nearby surroundings
are also not conformal. Combining the leading-order terms of
Eqs. (57) and (58) or those of Eqs. (55) and (56) leads us to
the correlation between the γ and Θ parameters as

ΔΘ ≈ ð4 − 2D=3ÞP̂2
c · Δγ; ð59Þ

which holds near NS centers. Equation (59) tells us that two
positive quantities ΔΘ≡ Θ=Θc − 1 and Δγ ≡ γ=γc − 1 are
positively correlated [4 − 2D=3 > 0 according to Fig. 13(b)].
Another feature of Eq. (48) is that, for NSs close to the

maximum-mass point Mmax
NS along the M-R curve, one has

d2MNS=dε2c < 0 and therefore the criterion (31) still holds.
However, the deterministic term uc ¼ 2s2c − 3P̂c in the
coefficient D of Eq. (30) should be modified to (for
small P̂c)

uc ¼ 2s2c − 3P̂c ≈ −
1 − 2Ψ

3
P̂c; Ψ > 0; ð60Þ

by expanding Eq. (48) over P̂c as s2c ≈ ð4þ ΨÞP̂c=3
(Newtonian limit). A positive Ψ tends to make the
correction D positive and therefore reduce the probability
of s2c < s2ðε̂Þ [see Eq. (23)]. For example, a canonical NS is
less likely to have the crossover in the core than a massive
NS (assuming they have similar radii), since the former is
more likely (than the latter) to be on the climbing stage of
the M-R curve. Our analysis is consistent with Ref. [152]
which predicted the increasing of s2 is reduced, even to
disappear, when going out as the NS mass decreases from
Mmax

NS to 1.4M⊙. On the other hand, for massive NSs with
similar radii of PSR J0740þ 6620 (thus the P̂c’s are also
similar), the reduction on the probability of D < 0 due to a
(small) positive Ψ is expected to be small as they are near
the maximum-mass configuration [189–191].

IX. DISTINGUISHING COMPACTNESS FROM
STIFFNESS IN NEUTRON STARS AND pQCD
PREDICTION FROM GENERAL RELATIVITY

REQUIREMENT ON TRACE ANOMALY

With both analytical analyses and numerical examples,
we have investigated separately in detail in the previous two
sections the radial variation of the SSS and the various
bounds on the trace anomaly. To this end, it is useful to
summarize the main differences between the compactness
and stiffness of NSs. It is also important to emphasize the
respective applicabilities of the pQCD prediction and GR
limit on trace anomaly in NSs.
According to the perturbative expressions (45)–(47) (as

well as Fig. 18), the energy density ε, the pressure P, their
ratio P=ε, and the baryon density ρ [see Eq. (53)] are all
decreasing functions of r̂ definitely. While on the other

hand, the SSS s2 has sizable probabilities to be enhanced
when going outward from centers of NSs, see sketches
shown in Fig. 19. This demonstrates the fundamental
difference between the stiffness (characterized effectively
by s2) and the denseness/compactness (characterized
effectively by ρ, P, ε, or P=ε), although they are closely
related to each other [see, e.g., Fig. 8 or the s2c of Eq. (1)
itself]. An illustrative/useful example is that s2c [of Eq. (1)]
approaches 1=3 (stiffness) earlier than P̂c → 1=3 (compact-
ness). Physically, it is because the EOS of NS matter
(especially near the centers) is nonlinear [otherwise
s2 ¼ P=ε, γ ¼ 1, and Θ ¼ ½Δ2 þ ðP=ε − s2Þ2�1=2 ¼ jΔj].
Closely related is the trace anomaly (or the conformality

measure) Δ ¼ 1=3 − P=ε [119,198]. We sketch in Fig. 20
the Δ as a function of energy density ε, where ε0 ≈
150 MeV=fm3 is the fiducial energy density at ρsat, around
which the low-energy nuclear theories constrain theΔ quite

FIG. 19. Qualitative sketch of the reduction of P̂, ε̂, P̂=ε̂, and ρ̂
(these quantities characterize the compactness/denseness of the
matter) to order r̂2 and the probable increasing of s2 (character-
izing the stiffness of the matter) near NS centers. Here b2 ¼
−6−1ð1þ 3P̂2

c þ 4P̂cÞ and the coefficient D depends on P̂c [see
Fig. 13(b)].

FIG. 20. Sketch of the patterns for Δ ¼ 1=3 − P=ε in NSs. The
Δ is well constrained around the fiducial density ε0 ≈
150 MeV=fm3 by low-energy nuclear theories and is predicted
to vanish due to conformality of the matter at ε ≳ 50ε0 using
pQCD theories. Massive and compact NSs provide a unique
opportunity to probe the negativeness of Δ in certain energy
density regions, where the GR bound on Δ [with ε being around
(4–8)ε0] is expected to be more relevant than the pQCD bound
(ε ≳ 50ε0) in these NSs.
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well. The pQCD bound Δ ¼ 0 applies effectively at very
large energy densities ε≳ 50ε0 ≈ 7.5 GeV=fm3 [119,199],
which is far larger than the energy density reachable in NSs.
Thus, it is possibly relevant but not fundamental for
explaining the observed P=ε≳ 1=3 in massive NSs (using
microscopic/phenomenological models). On the other
hand, we have demonstrated that a GR bound on P̂c ¼
Pc=εc and P=ε (near NS centers) naturally emerges when
dissecting perturbatively the TOV equations without using
any specific EOS model [115]. In this sense, the GR bound
on Δ [with the ε being roughly around ð4–8Þε0] is likely
more relevant/fundamental than the pQCD prediction for
nuclear EOS in NSs, although the latter may influence the
extraction of Δ [194]. Whether these two specific bounds
(being very close to each other) are interrelated may deepen
our understanding on the connection between GR and the
microscopic theories of elementary particles. Our above
discussions and findings are not out of bounds, as ulti-
mately properties of compact objects are determined by the
Hamilton principle using the total action of the whole
system including gravity, matter (including nuclear matter,
dark matter, and energy), and their couplings [200].
As a negative Δ is unlikely to be observed in ordinary

NSs (e.g., NSs with masses ∼1.7M⊙), see Fig. 17, the
evolution of Δ is probably like the green line in Fig. 20. An
(unconventional) exception may come from light but very
compact NSs, e.g., a 1.7M⊙ NS with radius about 9.3 km
(therefore εc ≈ 1.86 GeV=fm3 and Pc ≈ 654 MeV=fm3

and P̂c ≈ 0.351) has its Δc ≈ −0.02 (Fig. 17). On the other
hand, massive and compact NSs (masses ≳2M⊙) have the
most relevance to observe a negative Δ (as indicated by the
magenta line in Fig. 20), and how the negative Δ evolves to
the pQCD bound may tell more on the properties of
superdense matter. Unfortunately, the region with ε≳
8ε0 is largely inaccessible in NSs (sketched by the light
cyan rectangle band) due to their self-gravitating nature
(see Fig. 9 which indicates that observations of massive
NSs should inevitably put an upper bound on the central
energy density as εc ≲ εult).

X. SUMMARY

Using the central SSS s2c and NS mass/radius scaling
obtained from analyzing perturbatively structures of the
scaled TOVequations [115], we studied the radial variation
of the SSS, trace anomaly, and several closely related
properties of NSs in an EOS-model-independent manner.
We found that the reduced pressure P̂c ¼ Pc=εc is the most
relevant quantity determining the onset of a continuous
crossover of the SSS in the cores of massive NSs. With
sizable probabilities the crossover occurs near the centers of
massive NSs if P̂c ≲ 0.3, e.g., with a probability ≳63% for
P̂c ≈ 0.24 (PSR J0740þ 6620). The resulting peak of s2 or
its derivative part (defined as s2 − P=ε) near NS centers is
generally demonstrated.

With the help of the universal correlations of Mmax
NS -Γc

and Rmax-νc [115] and the nonlinear dependence of s2c on P̂c
[of Eq. (1)], a new causality boundary for the NS M-R
curve as Rmax=km≳ 4.73Mmax

NS =M⊙ þ 1.14 was obtained.
It is shown to be excellently consistent with several NS
mass/radius observations and puts a more stringent con-
straint on the dense matter EOS compared to the ones
available in the literature. Moreover, the NS maximum
compactness parameter is limited to≲0.313 · ð1−1.14 km=
RmaxÞ≲0.283 (using Rmax ≈ 12 km). The difference
between s2 ≤ 1 (stiffness) and P=ε ≤ 1 (compactness) in
NSs is clarified, with its physical origin being traced back
to the nonlinear characteristic of the core EOS in NSs.
While s2 ≤ 1 is more relevant than P=ε ≤ 1 in NSs, the
latter is shown to be ≲0.374 or, equivalently, Δ ¼ 1=3 −
P=ε≳ −0.041 around the centers of stable NSs. Such
bound is a direct consequence of GR (encapsulated in
the TOVequations) and is expected to be more fundamental
than the pQCD prediction of dense matter EOS for NSs.
Closely related, the matter in cores of massive NSs is
unlikely to be conformal if the criteria Θ ¼ ½Δ2 þ ðP=ε −
s2Þ2�1=2 ≲ 0.2 and γ ¼ d lnP=d ln ε≲ 1.75 were adopted.
Moreover, the violation of conformal bound is found to
basically depend on P̂c, e.g., the bound is broken ifMmax

NS ≳
1.9M⊙ as s2c increaseswithMmax

NS =M⊙ (under the assumption
NSs with masses about 1.3 ∼ 2.3M⊙ have similar radii
≈12 km). Furthermore, the ultimate energy density εult
and pressure Pult allowed in NSs are estimated. The obser-
vations of massive NSs may induce corresponding upper
limits for εult and Pult, e.g., the existence of a 2.08M⊙ NS
leads to εult≲1.32GeV=fm3 and Pult ≲ 494 MeV=fm3,
respectively. This improves previous constraints on the same
quantities.
Finally, unlike most existing studies of NSs in the

literature, our analyses are carried out without using any
model EOS for NS matter thus largely free of the
uncertainties in modeling the dense matter EOS. We have
demonstrated that some properties of the underlying NS
EOS (pressure versus energy density) can be inferred
directly from the observational data alone. This in turn
can help constrain predictions of dense matter EOS based
on nuclear many-body theories. Overall, our work con-
tributes to realize the ultimate goal of understanding
properties of strong field gravity, dense matter, and their
couplings in compact objects.
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APPENDIX A: PROOF OF EQ. (30)
FOR A GENERAL K

From Eq. (28), we can solve for d3 in terms of other dk’s
(using the property that s2 ¼ 0 for ε̂ ¼ 0),

d3 ¼ −2P̂c þ s2c −
XK
k¼4

ðk − 2Þdk; ðA1Þ

where we split the summation
P

K
k¼3ðk − 2Þdk in Eq. (28)

into d3 þ
P

K
k¼4ðk − 2Þdk. Therefore, according to the basic

definition of D of Eq. (22), we obtain

D ¼
XK
k¼1

kðk − 1Þ
2

dk ¼ d2 þ 3d3 þ
XK
k¼4

kðk − 1Þ
2

dk

¼ 2s2c − 3P̂c þ
XK
k¼4

�
kðk − 1Þ

2
− ðk − 1Þ − ðk − 2Þ

�
dk

¼ 2s2c − 3P̂c þ
XK
k¼4

ðk − 2Þðk − 3Þ
2

dk; ðA2Þ

where the expression for d2 of Eq. (29) is used. In
summary, condition d1 ¼ 0 and the sum rules of (21)
together enable us to rewrite D in the form of Eq. (30), and
for the special case of K ¼ 3 the D becomes deterministic.

APPENDIX B: EXPLAINING
THE SIGN OF D AND J

In the main text, we analytically study the case of K ¼ 3
(see Fig. 11), where a sharp change for the probability of
D < 0 to D > 0 occurs at P̂c ≈ 0.105. For more general
values of K, similar phenomenon may happen. In this
appendix, we try to explain why the coefficient D tends to
be negative (positive) for small (large) P̂c, using the
expansions with K ¼ 4. We have two relations, i.e., d2 þ
d3 þ d4 ¼ P̂c and 2d2 þ 3d3 þ 4d4 ¼ s2c , from which we
can solve for d2 and d3 to be expressed in terms of d4. The
general condition 0 ≤ s2 ≤ 1 now reads 0 ≤ 2d2ε̂þ 3d3ε̂2þ
4d4ε̂3 ≤ 1. Putting the expressions of d2 and d3 into it gives

the upper and lower limit for d4, i.e., d
ðlÞ
4 ≤ d4 ≤ dðuÞ4 , where

dðlÞ4 ¼ ε̂ðP̂c − s2cÞ− P̂c þ ε̂−1

4ε̂2 − 3ε̂− 1
; dðuÞ4 ¼ ε̂ðP̂c − s2cÞ− P̂c

4ε̂2 − 3ε̂− 1
:

ðB1Þ
Adding the deterministic term uc¼−3P̂cþ2s2c of Eq. (32),

we obtain correspondinglyDðu=lÞ ¼ ucþdðu=lÞ4 [see Eq. (30)].
The results are summarized in Fig. 21. Here, in each

panel, the magenta (blue) line is for DðuÞ (DðlÞ), and the
orange line marks the general boundary of 2D < σ2cs2c [see
the estimate algorithm of (31)]. The positive and negative

regions for D are shown by the gray and lavender bands,
respectively. Moreover, D ≤ DðuÞ indicates that D should
be smaller than the lowest point D1 on the magenta line
[solid green diamond in Fig. 21(c)]. Similarly, D ≥ DðlÞ
implies thatD should be larger than the highest pointD2 on
the blue line [shallow red circle in Fig. 21(c)]. When P̂c is
small [such as in Figs. 21(a) and 21(b)], the magnitude of
the red circle is larger than that of the greed diamond,
indicating that D is more probable to be negative than
positive. As P̂c increases one eventually encounters D1 ≈
−D2 [as Fig. 21(c) shows],D2 ≈ 0 andD2 ≳ 0 [Fig. 21(d)].
The situation D1 ≈ −D2 roughly marks the value of P̂c
corresponding to equal probability of D > 0 and D < 0,
this is about P̂c ≈ 0.3 (as verified by simulation given in the
main text, see Fig. 12). When P̂c increases even further, the
probability of D < 0 (of D > 0) quickly decreases
(increases). The coefficient J could be similarly analyzed,

i.e., J ¼ 3d4 þ ðs2c − P̂cÞ=3, where dðlÞ4 ≤ d4 ≤ dðuÞ4 [see
(38) and (B1)]. Therefore JðlÞ ≤ J ≤ JðuÞ, and we probably
have J < 0 though the allowed region of J < 0 (of J > 0)
eventually shrinks (expands) as P̂c increases, see Fig. 22.
For other values of K, the general features are similar to
Figs. 21 and 22 and are consistent with the results given in
the main text (see Figs. 12 and 13).
Moreover, if one artificially adopts the Newton approxi-

mation for s2c as s2c ≈ 4P̂c=3 [Fig. 23(a)] or the conformal
limit γc ¼ s2c=P̂c ≈ 1 ↔ s2c ≈ P̂c [Fig. 23(b)], then even a
large P̂c ≈ 0.6 may still tend to induce a negative D
(compared with Fig. 21). In particular, the D in conformal
limit is very likely negative. In addition, if s2c is nearly a

FIG. 21. Explanation on why D tends to be negative (positive)
for small (large) P̂c (panels (a)–(d)), using K ¼ 4. See text for
details.
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constant (independent of P̂c), then the condition D <
σ2cs2c=2 alone tells us that D < 0 since σ2c ¼ ds2c=dP̂c ¼ 0

[see the inequality (26)]. In this case if s2c ¼ 1, then its
nearby s2ðε̂Þ keeps 1, otherwise s2ðε̂Þ > s2c . These results
clearly show that the nonlinear dependence of s2c on P̂c [of
Eq. (1)] is fundamental to account for the eventual change
on the sign ofD, and therefore it may influence the possible
continuous crossover occurring in cores of NSs.

APPENDIX C: PERTURBATIVE
CORRECTIONS TO s2c

In this appendix, we estimate the first few perturbative
corrections to s2c from the b4-term. The scheme is given as
follows: We first notice that [115]

b4 ¼ −
1

2
b2

�
P̂c þ

4þ 9P̂c

15s2c

�
; ðC1Þ

where b2 ¼ −6−1ð1þ 3P̂2
c þ 4P̂cÞ [115]. In (C1), the s2c

should be modified [compared with Eq. (1)] as

s2c ≈ P̂c

�
1þ 1

3

1þ 3P̂2
c þ 4P̂c

1 − 3P̂2
c

��
1þ l1P̂c þ l2P̂

2
c

�
;

ðC2Þ

wherel1 and l2 are two coefficients to be determined.When
writing out (C2), the applicable region of the perturbative
expansion should be set as jl2P̂

2
c j≲ jl1P̂cj and jl1P̂cj≲ 1,

or equivalently, P̂c ≲minfjl1l−1
2 j; jl−1

1 jg. The reduced
radius R̂ is estimated from P̂c þ b2R̂

2 þ b4R̂
4 ¼ 0, see

treatments given in the Appendix of Ref. [115].
Similarly [115], the NS mass is given asMNS ∼ R̂3=

ffiffiffiffi
εc

p
.

Taking the derivative ofMNS with respect to εc and making
it be zero gives the s2c , i.e.,

s2c ≈
4

3
P̂c þ

4l1 þ 923

708
P̂2
c þ

37l1 − 4l2
1 þ 4l2 þ 583

354
P̂3
c :

ðC3Þ

By comparing it with the corresponding perturbative
expansion of (C2) to the same order, namely,

s2c ≈
4

3
P̂c þ

�
4

3
þ 4

3
l1

�
P̂2
c þ

�
2þ 4

3
l1 þ

4

3
l2

�
P̂3
c ; ðC4Þ

one obtains l1 ¼ −21=940 ≈ −0.02 and l2 ≈ −0.25. The
effective applicable region is estimated as P̂c ≲ P̂eff

c ≈
minfjl1l−1

2 j; jl−1
1 jg ¼ jl1l−1

2 j ≈ 0.09.
Although P̂c ≲ 0.09 is required, one can find that for

P̂c ≈ 0.24 the central SSS s2c ≈ 0.438, which is very close to
about 0.446 predicted by Eq. (1). Furthermore, setting
s2c ≤ 1 from the causality condition now leads to P̂c ≲
0.381 (it should be noticed, however, this upper bound far
exceeds the effective region of P̂c ≲ P̂eff

c ≈ 0.09).

APPENDIX D: ORDER OF MAGNITUDE
ESTIMATE FOR a4

In this appendix, we give an order of magnitude estimate
for the coefficient a4 appearing in the expansion of
ε̂ ≈ 1þ a2r̂2 þ a4r̂4. The starting point is that both ε̂
and ρ̂ ¼ ρ=ρc are decreasing functions of radial distance
from the center. We may use the following elementary
result: If yðxÞ ¼ 1þ Axþ Bx2 (A < 0) is a decreasing
function defined for positive x, then the first-order deriva-
tive y0ðxÞ should be negative, and consequently,

FIG. 22. The same as Fig. 21 but for the coefficient J of
Eq. (38).

FIG. 23. The same as Fig. 21 but adopting the Newtonian limit
s2c ≈ 4P̂c=3 (a) and conformal limit s2c ≈ P̂c (b). The principle of
causality requires then P̂c ≲ 3=4 and P̂c ≲ 1 for these two
situations, respectively. Symbols and lines have the same mean-
ing as in Fig. 21.
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B ≤ −A=2xmax; ðD1Þ

with xmax the maximum value of x the y could take.
Applying the criterion (D1) to ε̂ ≈ 1þ a2r̂2 þ a4r̂4 and

expression (53) in the main text and treating them as
functions of r̂2 gives

a4 ≤ −
b2
2s2c

1

R̂2
; and; a4 ≤

b2
2s2c

�
b2

1þ P̂c
−

1

R̂2

�
;

ðD2Þ

respectively, where R̂ ¼ R=Q is the reduced NS radius and
a2 ¼ b2=s2c is used here. In order to estimate the order of
magnitude of a4 conservatively, we take both R̂ and P̂c as
small as possible [determined by the structure of (D2)]. For
instance, by taking R ≈ 10 km and εc ≈ 0.5 GeV=fm3, we
obtain R̂ ≈ 0.91 as Q ¼ ð4πGεcÞ−1=2 ≈ 11 km. Similarly,
we adopt the reduced central pressure as P̂c ≈ 0.16 (for
massive NSs), so the first inequality of (D2) leads to
a4 ≲ 0.67, while the second gives a4 ≲ 0.80. Therefore,
a4 ∼Oð1Þ. On the other hand, both ε̂ and ρ̂ are obviously
decreasing functions of r̂ if a4 < 0.
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