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The atmospheric lepton fluxes play a crucial role in many particle and astroparticle physics experiments,
e.g., in establishing the neutrino signal and the muon background for neutrino oscillation measurements, or
the atmospheric background for astrophysical neutrino searches. The Matrix Cascade Equations (MCEQ)
code is a numerical tool used to model the atmospheric lepton fluxes by solving a system of coupled
differential equations for particle production, interaction, and decay at extremely low computational costs.
Previously, the MCEQ framework accommodated only longitudinal development of air showers, an
approximation that works well for neutrino and muon fluxes at high energies (Oð10 GeVÞ and above).
However, for accurate calculations of atmospheric lepton angular distributions at lower energies, the lateral
component of hadronic cascades becomes significant. We introduce “2D MCEQ,” an efficient numerical
approach for combined longitudinal and angular evolution of air showers that retains the low computational
complexity. The accuracy of the 2D MCEQ is affirmed by its benchmark comparison with the standard
Monte Carlo code CORSIKA. Our method can be used for two-dimensional evolution of hadronic cascades
in arbitrary media and paves the way for efficient three-dimensional calculations of atmospheric neutrino
fluxes.
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I. INTRODUCTION

Interactions of cosmic rays with the atomic nuclei in the
Earth’s atmosphere produce cascades of secondary par-
ticles, referred to as the extensive air showers. These
cascades have two components—electromagnetic (encom-
passing production and subsequent reinteraction of ener-
getic electrons and photons) and hadronic (including
production and subsequent reinteraction/decay of unstable
mesons). One of the byproducts of hadronic cascades are
neutrinos, which span the entire energy range from MeV to
PeV and thereby form a broad landscape for probing
fundamental physics. In particular, the GeV-scale neutrinos
produced in the air showers constitute the main signal for
atmospheric neutrino oscillation studies, including, e.g.,
muon neutrino disappearance [1–4], tau neutrino appear-
ance [5–9], and searches for physics beyond the Standard
Model [10–13]. In addition, atmospheric neutrinos are
an “irreducible background” for astrophysical neutrino
searches (e.g., [14–17]), which further strengthens the
motivation for accurate modeling of neutrino production
in the Earth’s atmosphere.
The unoscillated neutrino fluxes depend on several main

inputs: the primary cosmic ray flux (including composition

and spectrum [18–21]); the hadronic interaction model
(prescribing the probabilities of secondary particle yields in
hadron-nucleus collisions; e.g., [22–27]); decay probabil-
ities and branching ratios of unstable particles [18,28]; and
model for the atmospheric density as a function of altitude
for specific geographical locations [29–32]. At OðGeVÞ
and sub-GeV energies, the angular distributions of the air
shower secondary particles (“secondaries”) are further
affected by the Earth’s magnetic field, which curves the
trajectories of the charged cosmic ray primary particles
(“primaries”) and the secondary muons. In addition, the
angular spread of the low-energy secondaries with respect
to the primary particle axis becomes non-negligible: as the
transverse momentum is Lorentz-invariant, the deflection
angle grows with decreasing energy and can vary from a
few degrees to tens of degrees at GeV-scale energies. Both
of these effects are necessary to properly describe the
angular evolution of individual air showers and the result-
ing full-sky angular distribution of the OðGeVÞ atmos-
pheric neutrinos [33].
Monte Carlo simulations are the most natural approach

to incorporate the many stages of the air shower modeling
into a single computational framework [34,35]. The
Monte Carlo treatment implies that the generation and
propagation of the cosmic ray primaries and the inter-
actions and decays of the secondaries are executed on an*tetiana.kozynets@nbi.ku.dk
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event-by-event basis. These processes are stochastic and
follow the probabilistic particle yield prescriptions of a
given event generator. The most widely used realizations of
this method to date include the general-purpose codes such
as GEANT4 [36], FLUKA [37], MCNP [38], and PHITS [39] for
particle propagation in matter, as well as CORSIKA [32]
and AIRES [40] codes specialized in air shower evolu-
tion. The closed-source HKKMS [34] and Bartol [35]
atmospheric neutrino flux models are also based on
Monte Carlo simulations, employing event generators
JAM+DPMJET [26,41–43] and TARGET [44], respectively.
The HKKMS model has been tuned to reproduce the muon
flux data [41,45] and is set out to incorporate the fixed-
target experiment measurements of hadronic interaction
yields in the future [46]. It is therefore commonly used as
the baseline atmospheric neutrino flux model in experi-
mental analyses by, e.g., the Super-Kamiokande and the
IceCube collaborations, as well as in projections for the
upcoming Hyper-Kamiokande, JUNO, and DUNE experi-
ments [47,48]. Both the HKKMS and the Bartol flux
models include the geomagnetic effects and the deflection
of the secondaries from the primary axis, and therefore are
the standard reference for OðGeVÞ atmospheric lepton flux
calculations. While the Monte Carlo approach for the
inclusive atmospheric lepton flux calculations provides
high level of detail as an inherent advantage, it is computa-
tionally expensive, fairly complex, and lacks sufficient
flexibility for extraction of systematic uncertainties (e.g.,
those related to the cosmic ray flux model and the hadronic
interaction model parameters [20,49,50]).
Another natural path toward the inclusive atmospheric

neutrino flux modeling is via a solution to the cascade
equations describing particle production, interaction, and
decay in the atmosphere (see, e.g., [30] for a broad
introduction into this topic). Numerous studies have tackled
these equations semianalytically, with [51–53] being the
latest developments. The semianalytical method was fur-
ther overtaken by the high-precision numerical solutions
provided by the MCEQ software [22,54]. The MCEQ cascade
equation solver relies on the probabilities of the secondary
particle yields in the interaction and decay processes
extracted from event generators and stored as matrices.
Avoiding the need to repeatedly run event generators within
the user interface, MCEQ enables computation of inclusive
secondary particle fluxes on millisecond timescales, com-
pared to several CPU-hours typically required by the
Monte Carlo calculations.
Despite the significant speedup over the Monte Carlo

approaches and the flexibility to study the impact of the
systematic parameters, the MCEQ code could not be readily
used to predict the angular distributions of the OðGeVÞ
cascade secondaries. The reason for this constraint is that
MCEQ was originally written in the 1D approximation of the
air shower development, i.e., under the assumption of
strictly collinear (with respect to the primary cosmic ray
axis) secondary particle production and propagation.

In this study, we are seeking to extend the MCEQ

framework with the angular evolution of the individual
air showers. We develop the numerical technique and the
practical implementation of a two-dimensional cascade
equation solver, where the secondaries are allowed to
deviate from the primary particle trajectory. Our code,
“2D MCEQ”,1 enables numerical computation of the result-
ing angular distributions of secondary particles. This
advancement has broad applications in the analyses involv-
ing OðGeVÞ atmospheric leptons (and more generally, any
hadronic cascade secondaries in arbitrary media) and
contributes to future development of fully numerical or
hybrid three-dimensional calculations of atmospheric neu-
trino fluxes and air showers.
This paper is structured as follows. In Sec. II A, we

review the analytical cascade equations in the one-dimen-
sional approximation and further show how to incorporate
the second (angular) dimension in Secs. II B and II C. The
numerical (matrix) form of the 1D equations forming the
basis of the MCEQ code is reviewed in Sec. III A. We then
derive the matrix form for the 2D equations by reformu-
lating them in the frequency domain (Sec. III B). The
pipeline of the 2D MCEQ software is described in Sec. IV,
which includes the steps to prepare the interaction/decay
probability matrices (Sec. II B) and the principles of the 2D
cascade equation integrator (Secs. IV C and IV D). Finally,
we compare the 2D MCEQ angular distributions to those
obtained with the CORSIKA Monte Carlo in Sec. V, focusing
on 2D cascades induced by a single cosmic ray primary.

II. CASCADE EQUATION THEORY

A. One-dimensional cascade equations

In this work, we employ the cascade theory to character-
ize the spatial development of the secondary particle
showers induced by a single cosmic ray projectile. The
mathematical basis of this theory is the system of coupled
partial integro-differential cascade equations, which are a
form of the Boltzmann transport equations for multiple
particle species. For the secondary particle species h, we
define the single-differential particle density nh with
respect to the kinetic energy E:

nhðEÞ ¼
dNh

dE
; ð1Þ

which represents the number of particles Nh per energy
interval. In the one-dimensional cascade theory, this single-
differential density evolves as a function of the atmospheric
slant depth X:

XðhoÞ ¼
Z

ho

0

dlρairðlÞ; ð2Þ

1https://github.com/kotania/MCEq/tree/2DShow.
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where ho is the observation altitude above the surface of
the Earth, ρair is the depth-dependent air density, and the
integral is evaluated along the trajectory l of the shower
core. With ρair given in g cm−3, and l taken in cm, the unit
of X is g cm−2. Then, the one-dimensional coupled cascade
equations [22,30,54] read

dnhðE; XÞ
dX

¼ −
nhðE; XÞ
λint;hðEÞ

−
nhðE;XÞ

λdec;hðE;XÞ
ð3aÞ

−
∂

∂E
ðμEnhðE; XÞÞ ð3bÞ

þ
X
l

Z
∞

E
dEl

dNdec
lðElÞ→hðEÞ
dE

nlðEl; XÞ
λint;lðElÞ

ð3cÞ

þ
X
l

Z
∞

E
dEl

dNint
lðElÞ→hðEÞ
dE

nlðEl; XÞ
λdec;lðEl; XÞ

:

ð3dÞ

The “sink” terms in Eq. (3a) represent the decrease in the
density of particle type h as the result of its interactions in
the atmosphere after traveling the interaction length λint;h,
or its decay after traveling the decay length λdec;h. Another
sink term in Eq. (3b) stands for the energy losses of the
charged particles due to ionization, where μE ¼ −hdEdXi is
the average stopping power per unit length. The “source”
terms in Eq. (3c) and Eq. (3d) describe the increase of nh
due to the interactions and decays of other particle species
l with energy El. The respective yields of the particle h are
reflected in the differential production cross sections
dNlðElÞ→hðEÞ

dE . The energy conservation constraint is given in
the integral bounds (

R∞
E ) of Eqs. (3c) and (3d): it requires

that the total energy El of the primary particle must be
greater than, or equal to, the total energy E of the secondary
particle.

B. Incorporating the second (angular) dimension

In high-energy inelastic collisions or decays, the angular
deflection θl→h of the secondary particles h from the
primaries l is minor (≪ 1° at energies ≫ 10 GeV),
justifying the use of the 1D approximation in the evolution
of high-energy hadronic cascades [33]. In this regime,
the velocity unit vector ûl→h of h translates to ð0; 0; 1Þ⊤
in a Cartesian coordinate system where the z axis aligns
with l. Lower energies necessitate consideration of the x
and y components of ûl→h and explicit inclusion of the
azimuthal angle φl→h. Then, the velocity vector becomes
ûl→h ¼ ðsin θl→h cosφl→h; sin θl→h sinφl→h; cos θl→hÞ⊤.
To second order in θ, this can be approximated as

ûl→h ¼

0
B@

θl→h cosφl→h

θl→h sinφl→h

1 − ðθl→hÞ2
2

1
CA: ð4Þ

Similarly, the initial particle l can be assigned a unit

velocity vector ûl ¼ ðθl cosφl; θl sinφl; 1 −
ðθlÞ2
2
Þ⊤ in a

fixed-frame Cartesian coordinate system, where θl is the
angle between the direction of l and the z axis of this
system, and φl is the respective azimuthal angle.
In a Monte Carlo simulation, where the interactions or

decays would be treated on an event-by-event basis, the
direction ûh of the secondary particle h in the fixed (lab)
frame could be found via a simple addition of ûl and
ûl→h. However, to incorporate angular evolution into the
semi-analytical cascade theory, the distributions of the
particle travel directions have to be formulated in terms
of angular densities. Invoking the azimuthal symmetry, i.e.,
the invariance with respect to φ, we define the double-
differential particle density η with respect to the energy and
the polar angle as

ηhðE; θÞ ¼
1

θ

d2NhðθÞ
dθdE

; ð5Þ

which is normalized to the single-differential density:

nhðEÞ ¼
Z

θmax

0

ηhðE; θÞθdθ: ð6Þ

Throughout this study, we assume θmax ¼ π=2, i.e., con-
sider only forward-going particles, as well as the delta
function-like angular distributions of the primaries. As the
cascade develops, more secondaries will be produced off-
axis and the angular distribution ηh of the secondaries will
evolve as a function of slant depth. On the other hand, the
distribution of the relative angles between the primaries and
the secondaries, θl→h, is defined by the allowed phase space
in a given interaction or decay process and constitutes a
fixed convolution kernel. The angular distribution of the
secondary particle h can then be obtained as a two-
dimensional convolution of the primary angular density
with the convolution kernel in the plane orthogonal to the
primary particle direction. For the case of secondaries
obtained in interactions, we denote this kernel as ςl→h
and write

ηhðE; θÞ ¼ ηlðE; θlÞ � �ςl→hðEl; E; θl→hÞ; ð7aÞ

¼
Z

θmax

0

ηlðθlÞςlðEl;θlÞ→hðE;θÞθldθl; ð7bÞ

where the “��” operator represents two-dimensional con-
volution. The convolution kernels for decays will be
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denoted as δl→h throughout this study. Following the
formalism of [55] for the convolution of two azimuthally
symmetric functions, we have absorbed the integration over
the azimuthal variables into the definition of ςl→h and
δl→h. To illustrate the 2D convolution principle, we
consider as an example a proton-induced hadronic cascade,
as shown in Fig. 1. In this simplified setup, a beam of
protons with the energy density n enters the atmosphere at
the slant depth X0 aligned with the downward-pointing z
axis, hence θprimary ¼ 0. The direction of this proton beam
is represented by the unit vector ûprimary. In the 1D
geometry, the velocity unit vector ûsecondary of νμ is aligned
with ûprimary, while in the 2D geometry, this does not hold
beyond X0. As the proton interacts with the atmospheric
nuclei at X1, the secondary products of the interaction
(including the πþ) gain transverse momentum, and their
angular distribution widens. This is represented by the
convolution with the kernel ςp→πþ . The angular distribution
of muon neutrinos at X2 further widens due to the
convolution of the pion angular density with the decay
kernel δπþ→νμ .
Mathematically, the production of the particle h with

the energy E by the interactions of the primary l with the

energy El leads to the following change in the angular
density of h:

dηinth ðθÞ
dX

¼ 1

λint;l

Z
π=2

0

ηlðθlÞςlðEl;θlÞ→hðE;θÞθldθl: ð8Þ

An equivalent expression can be formulated for decays by
replacing ςl→h with δl→h. The appearance of the θl factor
in the integrals of Eq. (8) is an important feature of the 2D
convolution in the xy plane, where θl and θ are interpreted as
the radii of the ûl and ûh velocity vectors projected onto xy.

C. Two-dimensional cascade equations
in the angular domain

Equation (8) and its equivalent for decays are the source
terms in the two-dimensional cascade equations; they
directly modify the angular densities of the secondaries,
which evolve longitudinally as a function of the slant depth
X in the atmosphere. At the same time, the sink terms in
Eq. (3a) and Eq. (3b) do not change the angular distribution
of the primaries and only contribute to the change in the
overall normalization. With these two observations com-
bined, we can write down the 2D version of Eq. (3) as
follows:

FIG. 1. Schematic development of a hadronic cascade (p → πþ → νμ) in the 1D (longitudinal-only) and the 2D
(longitudinalþ angular) geometries. In this diagram, the longitudinal propagation is performed over three discrete steps along the
slant depth X for illustrative purposes. At each step in X, the angular distribution of the primaries from the previous step is shown as the
dotted line, and the current angular distribution of the specified particle as the solid line. The distributions of secondaries get wider
further down the chain due to the convolution with the kernels ςp→πþ and δπþ→νμ (see text for details).
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dηhðE;X; θÞ
dX

¼ −
ηhðE;X; θÞ
λint;hðEÞ

−
ηhðE;X; θÞ
λdec;hðE;XÞ

−
∂

∂E
ðμEηhðE; X; θÞÞ

þ
X
l

Z
π=2

0

θldθl

Z
∞

E
dEl

ςlðEl;θlÞ→hðE;θÞ
λint;lðElÞ

ηlðEl; X; θlÞ

þ
X
l

Z
π=2

0

θldθl

Z
∞

E
dEl

δlðEl;θlÞ→hðE;θÞ
λdec;lðEl; XÞ

ηlðEl; X; θlÞ: ð9Þ

The longitudinal development of the secondary particle
cascades is computed through the forward difference
integration of Eq. (9). The new component in Eq. (9)
compared to Eq. (3) is the angular development of the
secondaries, which is taken care of via the 2D convolutions
of the angular densities of the primaries with the inter-
action/decay convolution kernels.

III. MATRIX CASCADE EQUATIONS
AND THE MCEQ CODE

The basic principle of the MCEQ code is to evolve the
hadronic and electromagnetic cascades in the atmosphere,
given a cosmic ray primary flux and the probabilities of
interactions and decays of all primary and secondary
particles. With these inputs, MCEQ solves the cascade
equations for the densities of the secondaries of interest.
We begin this section with a review of the numerical form
of the one-dimensional equations [Eq. (3)] based on the
formalism derived in [22,50,54]. We further extend this
numerical framework to two dimensions, building on [56].

A. Review of the matrix cascade equations in 1D

For a shower particle h which can interact with nuclei in
the atmosphere (e.g. 14N or 16O), the interaction cross section
is energy-dependent, as is the yield of the interaction
products in an inelastic collision. Additionally, if the par-
ticle is unstable, the energy spectra of its decay products
depend on the boost of the parent particle. It is therefore
natural to discretize the transport equation in energy, i.e.,
to represent the particle densities in discrete energy bins
Ei, i∈ ½0; NE − 1�. The discrete one-dimensional cascade
equation reads:

dnhEi
ðXÞ

dX
¼ −

nhEi
ðXÞ

λhint;Ei

−
nhEi

ðXÞ
λhdec;Ei

ðXÞ ð10aÞ

− ∇i½μhEi
nhEi

ðXÞ� ð10bÞ

þ
X
l

X
E�
k≥E

�
i

clðEkÞ→hðEiÞ
λlint;Ek

nlEk
ðXÞ ð10cÞ

þ
X
l

X
E�
k≥E

�
i

dlðEkÞ→hðEiÞ
λldec;Ek

ðXÞ nlEk
ðXÞ; ð10dÞ

where we arranged the terms in the same order as in
Eq. (3) to clarify the correspondences between the con-
tinuous and the discrete equation versions. In Eq. (10c),
we defined the coefficient c for the yield of particle h in
interactions as

clðEkÞ→hðEiÞ ¼
dNlðEkÞ→hðEiÞ

dE

����
E¼Ei

ΔEk; ð11Þ

which translates as the energy density of particles h
with energy Ei generated per primary l within the energy
bin Ek. The decay coefficients d in Eq. (10d) are defined
in the same way. The equations for the different particle
species are coupled through the yield coefficients cl→h
and dl→h. The solution is obtained by solving Eq. (10) in
X [22,54] iteratively in the matrix form. The yield
coefficients are derived from the event generators (e.g.,
URQMD [25], DPMJET [26,27], SIBYLL [22,23], or EPOS-

LHC [24] for hadron-nucleus collisions, and PYTHIA [28]
for decays) by histogramming the secondary particle
yields as a function of the secondary particle kinetic
energy, Ei. In the 1D approximation, all secondary par-
ticle angles with respect to the primary particle direction
of motion are contributing to the yield coefficient,
thereby resulting in an angle-integrated interaction/decay
probability.

B. 2D matrix cascade equations
in the Hankel frequency domain

Depending on the energy scales of hadronic inter-
actions and unstable particle decays in the atmosphere,
the widths of the angular distributions of the secondary
particles can vary by orders of magnitude. For example,
the average emission angle of 2 GeV pions produced in a
collision of a 100 GeV is 10° with respect to the primary
proton direction, while 20 GeV pions deflect only by ∼1°
from the proton axis and produce νμ at angles as small as
0.01° relative to the pion direction. Due to the evolution
of hadronic cascades over multiple generations (shower
age), the total deflection is amplified by the number of
generations even if the angular deflection in a single
interaction/decay is small. As a result, Eq. (9) requires a
“universal” θ grid which could accommodate both large
and small angular deflections. Making such a grid linear
would imply an extremely fine discretization, and the
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numerical evaluation of the 2D convolution integrals
would become prohibitively expensive. If the θ grid was
logarithmic, the computation of the convolution integral
would become more complicated due to the misalignment
of the input and the output grids. While the techniques
for convolving functions defined on logarithmic grids
exist, they usually come with hyperparameters to be
tuned by the user in order to keep the numerical errors to
the minimum [57–59]. This extra freedom in the choice
of hyperparameters could lead to unpredictable numerical
behavior in the integration of Eq. (9) over thousands of
steps in X.
To avoid the complications of the 2D convolutions

in the θ space (which we will also refer to as the
“real” space), we choose to operate in the spectral
(“frequency”) domain instead. This is motivated by
the existence of the convolution theorem, which trans-
forms the convolutions in the real space into multi-
plications in the frequency space. For the specific case
of the 2D convolution of the azimuthally symmetric
functions ςl→h; δl→h, and ηðX; θlÞ, the correct trans-
form enabling the use of the convolution theorem is the
zeroth-order Hankel transform H [55]:

H½fðθÞ�ðκÞ ¼
Z

∞

0

fðθÞJ0ðκθÞθdθ; ð12Þ

where fðθÞ is a function of the continuous variable θ, κ
is the spectral frequency mode (κ ≥ 0), and J0 is the
zeroth-order Bessel function of the first kind. In the
formal definition of H, the upper limit of the θ integral
in Eq. (12) is ∞, however we only consider the forward-
going particles with θ ≤ π=2.
The convolution theorem states that, for the azimuthally

symmetric functions fðθÞ and gðθÞ,

H½fðθÞ � �gðθÞ� ¼ H½fðθÞ�ðκÞ ·H½gðθÞ�ðκÞ; ð13Þ

i.e., the Hankel transform of the convolution result is a
product of the Hankel transforms of the input functions in
the frequency space [55]. Equation 13 is fully applicable to
the two-dimensional cascade equations in Eq. (9). We
therefore bring the convolution kernels and the angular
densities of the cascade particles to the Hankel frequency
space by defining their zeroth-order Hankel transforms as
follows:

η̃hEi
ðX; κÞ≡H½ηhEi

ðX; θÞ�ðκÞ; ð14aÞ

ς̃lðEkÞ→hðEiÞðκÞ≡H½ςlðEkÞ→hðEiÞðθÞ�ðκÞ; ð14bÞ

δ̃lðEkÞ→hðEiÞðκÞ≡H½δlðEkÞ→hðEiÞðθÞ�ðκÞ: ð14cÞ

Then, we can reformulate Eq. (9) as

dη̃hEi
ðX; κÞ
dX

¼ −
η̃hEi

ðX; κÞ
λhint;Ei

−
η̃hEi

ðX; κÞ
λhdec;Ei

ðXÞ − ∇i½μhEi
η̃hEi

ðX; κÞ�

þ
X
E�
k≥E

�
i

X
l

½ς̃lðEkÞ→hðEiÞ · η̃
l
Ek
�ðκÞ

λlint;Ek

þ
X
E�
k≥E

�
i

X
l

½δ̃lðEkÞ→hðEiÞ · η̃
l
Ek
�ðκÞ

λldec;Ek
ðXÞ ; ð15Þ

which is the main equation to be solved in “2D MCEQ.”
For practical applications, the κ grid is made discrete and

integer-valued. This implies that in Eq. (15), the multipli-
cation of the Hankel-transformed convolution kernels and
the Hankel-transformed angular densities of the primaries
is performed elementwise with respect to the discrete
frequency modes κ. The 1D MCEQ equation [Eq. (10)] is
a special case of Eq. (15) for κ ¼ 0, as J0ð0Þ ¼ 1 and
Eq. (12) becomes equivalent to our earlier definition of the
angular density normalization from Eq. (6). Therefore,
Eq. (15) retains the computational complexity of Eq. (10),
up to a linear scaling by the number of the frequency modes
(Nκ). One can then either choose to solve the Nκ equations
(one for each κ) sequentially or in parallel, or to assemble
the Hankel-transformed yield coefficients and angular
densities into a more complex matrix structure. Our current
implementation relies on the sequential solution of the Nκ

equations but can easily be adapted to the user’s preference.
In Secs. IVA and IV B, we explain how to arrive at the
Hankel-transformed yield coefficients for the relevant
interaction and decay channels, as well as provide further
details on our choice of the κ grid where these coefficients
are stored.

IV. 2D MCEQ PIPELINE AND SOLUTION SCHEME

The main computational advantage of the MCEQ code
compared to the Monte Carlo simulations comes from
the precalculation of the particle yields, which is done
outside of the user interface. The pre-tabulated interaction
and decay coefficients are used to build the matrices for
Eq. (10) (1D MCEQ) or Eq. (15) (2D MCEQ) during the code
initialization. These coefficients are derived from the
histogrammed kinematic properties of the secondary par-
ticles in hadronic interactions or decays, as evaluated via
the CHROMO code [60]. The histograms for 1D MCEQ

include primary and secondary particle energies (Eprim
and Esec). For 2D MCEQ, an additional Hankel mode κ is
incorporated as a third dimension, which stores the angular
densities of the secondaries in a compact form. Below, we
describe how the output of any given event generator is
used to populate the ðEprim; Esec; κÞ grid.
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A. Compact representation of event information

For the low-energy atmospheric neutrino flux calculations
(OðGeVÞ and below), we deploy a logarithmically-spaced
kinetic energy grid ranging from 10 MeV to 10 TeV.2 This
grid utilizes a bin width of Δ log10 Ekin ¼ 0.1, resulting in
NE ¼ 60 energy bins. The 2DMCEQ code currently excludes
electromagnetic cascades, deemed unnecessary for the
evolution of hadronic cascades that produceOðGeVÞ atmos-
pheric leptons.3 Thus, we apply Eq. (15) only to hadrons
and leptons (excluding the τ lepton), totaling H ¼ 21 par-
ticle species: 6 baryons (p=p̄; n=n̄, and Λ0=Λ̄0), 5 mesons
(π�; K�; K0

L,), and 10 leptons (μ�R=L; μ
�; νe=ν̄e, and νμ=ν̄μ).

Muons contribute 6 species, where each μ� includes two
polarizations: left-handed “L”, right-handed “R”, and an
unpolarized component (denoted as μ� without a subscript).
For hadronic interactions, the CHROMO code [60] runs

the following models: URQMD [25], EPOS-LHC [24], SIBYLL-
2.3D [22,23], and DPMJET-III 19.1 [26,27]. PYTHIA 8.306 [28] is
used for unstable particle decays. However, it cannot
simulate the production of polarized muons in π� and
K� two-body decays or the three-body decays of polarized
muons, instead generating events in the spin-averaged
phase spaces. Hence, muon polarization modeling is
done separately, as outlined in Sec. IV E and detailed in
Appendix A 3.
Our event generation and histogramming scheme is

consistent across all interaction/decay channels. For
every primary in the kinetic energy bin k, we assign
the logarithmic center (Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek0 · Ek00

p
for ½Ek0 ; Ek00 �)

as the primary’s initial energy. This primary particle
enters the chosen event generator with four-momentum

pμ
prim ¼

�
Ek; 0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k þ 2Ekmprim

q �⊤
, moving along the

positive z axis. A stationary nitrogen nucleus (14N) is the
target for simulating hadronic interactions. Using other
atmospheric nuclei like 16O has little effect on secondary
particle yields. For decays, we set the unstable particle at
rest and boost its decay products to the lab frame, recording
the daughter energies as in 1D MCEQ.
To solve the 2D cascade equation [Eq. (15)], we addi-

tionally need to compute the Hankel-transformed angular
densities of secondary particles, i.e., ς̃lðEkÞ→hðEiÞðκÞ. We
illustrate this process using the muon neutrino production
chain from Fig. 1, i.e., pþ 14N → πþ þ X� → νμ þ μþ,
where X� denotes all other secondary particles and nuclear

remnants. As angular distributions of all particles fill a
discrete energy grid, we select the primary proton, secon-
dary pion, and tertiary neutrino energy bins around
100 GeV, 10 GeV, and 4 GeV, respectively. This illustrative
choice reflects the characteristic energies for the low-
energy neutrino production in air showers.
The simulation chain begins with protons incident on

14N. We choose the EPOS-LHC hadronic model and com-
pute the yield of the secondary πþ. The top left panel of
Fig. 2 shows the distribution of angles θp→πþ that the
secondary pions make with the primary proton axis. The
number of entries in the histogram, nπþ ≡ np · cp→πþ , is
equal to the total secondary pion yield in this interaction.
Each pion contributes a delta function δðθ − θjp→πþÞ;
j∈ ½0; nπþ − 1�, to the angular density. The Hankel trans-
form of the delta function has an analytical representation,
H½1a δðθ − aÞ�ðκÞ ¼ J0ðκaÞ,4 which can populate the κ-grid
immediately after the event generation. Summation of
these Hankel-transformed delta functions approaches the
Hankel transform of the secondary pions’ underlying
angular density. This density can be expressed via inverse
Hankel transform as:

ςp→πþðθÞ ¼
1

np
H−1½ς̃p→πþðκÞ�; ð16aÞ

¼ 1

np
H−1

�Xnπþ
j¼1

J0ðκθjp→πþÞ
�
ðθÞ: ð16bÞ

Equations (15) and (16) could theoretically extend to an
infinite number of modes κ. In practice, a truncated κ-grid
with 24 logarithmically spaced integer modes between 0
and 2000 suffices to accurately represent the angular
distributions of GeV-scale atmospheric leptons. In the
example shown in Fig. 2, two key observations validate
this approach. First, the inverse Hankel transform from
Eq. (16) effectively represents the original pion angular
distribution, thus demonstrating the utility of the Hankel
transform for compacting angular densities of secondary
particles. Secondly, the amplitudes of the higher-frequency
modes with κ ≥ 100 are negligible, indicating a sufficiently
broad angular distribution of the GeV-scale pions produced
in proton-14N interactions. For sharper-edged distributions,
like in the pion decay to muon neutrinos (middle panel of
Fig. 2), the truncated κ grid may not sufficiently reconstruct
the angular density, resulting in a characteristic “ringing.”
However, in a realistic air shower, the effect of this artefact
is minimal due to the wider pion angular distribution.

22D MCEQ solutions for atmospheric neutrino fluxes are
numerically stable down to energies around 50 MeV.

3Based on our CORSIKA simulations, electromagnetic inter-
actions (such as the muon pair production and the photonuclear
interactions) in proton-induced air showers with energies up to
1 TeV contribute ≲1–2% to the energy density of atmospheric
leptons. The full cosmic ray spectrum follows an inverse power
law, and the contribution of cosmic rays with energies ≫ 1 TeV
to the OðGeVÞ atmospheric lepton flux is suppressed.

4Note that the delta function, represented as δ, is distinguished
from the decay coefficient δl→h used earlier in Eq. (9). The (1=a)
scaling of the delta function centered at θ ¼ a maintains con-
sistency with the angular density definition in Eq. (6).
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The final νμ angular distribution from the Monte Carlo
simulation chain is successfully reconstructed through the
inverse transform of the convolution result in the Hankel
space:

ςp→νμðθÞ ¼ H−1½ς̃p→πþðκÞ · δ̃πþ→νμðκÞ�ðθÞ: ð17Þ

This demonstrates the application of the convolution theorem
from Eq. (13). Notably, after successive convolutions, the

FIG. 2. Top left: angular distribution of secondary pions in pþ 14N → πþ þ X, derived from the EPOS-LHC event generator (solid blue
line), and the inverse Hankel transform result (dashed red line) of the top right panel. Top right: Hankel transform of the secondary
pions’ angular distribution, calculated using Eq. (16). Middle: similar to the top panels but evaluated for daughter νμ in πþ → μþ þ νμ
decay. Bottom: demonstrating the convolution theorem on the p → πþ → νμ chain: the inverse transform of the product of the Hankel
transforms (top right and middle right) reproduces the angular density of the tertiary neutrinos (bottom left). The dotted black line in the
bottom left panel indicates the properly normalized angular distribution of secondary pions for comparison. Energy settings for all
considered particles are found in Table I.
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final θ refers to the angle of the secondary particle with
respect to the original shower-inducing primary.

B. 2D MCEQ matrix production

We generate 10 million events per primary species
and energy bin on the MCEQ grid, following the meth-
odology in Sec. IVA. Since different hadronic models
have different valid energy ranges, we create interpolated
matrices which allow to smoothly transition between
the hadronic model choices. This emulates the approach
used in codes such as CORSIKA and is explained in
Appendix A 2.
The generation of secondary particle yields involves

H ¼ 21 primary particles in 2D MCEQ. The yield of the
secondaries is stored as a function of the secondary and
primary kinetic energies (on a grid of length NE) and the
Hankel frequency mode κ. The resulting dimension of the
2D MCEQ matrices is Nκ × ðNE ·HÞ × ðNE ·HÞ, equating
to 24 × ð1260 × 1260Þ. These are treated as 24 separate
sparse matrices when solving the 2D cascade equation in
the Hankel frequency domain.

C. Solution in the Hankel space

The convolution theorem transforms the 2D convo-
lution into multiplication in the Hankel frequency
domain. The amplitude of the primary angular distri-
bution corresponding to the mode κ is multiplied by the
amplitude of the interaction/decay kernel corresponding
to exactly the same mode, i.e., the modes κ1 and κ2 are
not coupled if κ1 ≠ κ2. This allows us to treat each of
the Nκ ¼ 24 equations of the 2D MCEQ completely
independently and solve them using the strategy analo-
gous to that of the 1D MCEQ [22,54]. This involves
applying the forward Euler integrator to Eq. (15), i.e.,
performing the longitudinal evolution of the Hankel-
transformed angular densities of the cascade secondaries
in discrete slant depth steps ΔX. This approach is best
summarized in the matrix form:

η̃ðXtþ1; κÞ ¼ η̃ðXt; κÞ − ∇E½diagðμÞ · η̃ðXt; κÞ�

þ ΔXt

�
ð−I þ CkÞΛint

þ 1

ρðXtÞ
ð−I þDkÞΛdec

�
η̃ðXt; κÞ; ð18Þ

where Xt and Xtþ1 ¼ Xt þ ΔXt are two consecutive
slant depth values, and Cκ and Dκ are the slices of
the yield coefficient “cubes” ςl→hðκÞ and δl→hðκÞ at the
frequency mode κ. Following [22,54], we also construct
the diagonal matrices Λint and Λdec from interaction and
decay lengths. Each diagonal entry corresponds to a
specific particle h and energy bin Ei, arranged similarly
to the particle density vector η̃ðX; κÞ that we seek to
evolve. After η̃ðXfinal; κÞ is computed, the final step is to
reconstruct the angular densities of ηðXfinal; θÞ via the
inverse Hankel transform.

D. Reconstruction of the real-space solutions

After the final integration step, the 2D MCEQ solver
returns the state vector η̃ðXfinal; κÞ. This includes the Hankel
frequency space amplitudes for all cascade particles across
the MCEQ energy grid. The inverse Hankel transform
enables the reconstruction of the secondary particle den-
sities as a function of the angle θ relative to the primary
particle axis:

ηðXfinal; θÞ ¼ H−1½η̃ðXfinal; κÞ�ðθÞ; ð19aÞ

≡
Z

∞

0

η̃ðXfinal; κÞJ0ðκθÞκdκ; ð19bÞ

≃
Z

κmax

0

η̃ðXfinal; κÞJ0ðκθÞκdκ: ð19cÞ

Although the κ grid in 2D MCEQ is discrete with
logarithmically spaced modes, accurate computation of

TABLE I. Energy grid settings for the event generation chain example in Fig. 2. The three columns (from left to
right) correspond to the left bin edge, the bin center, and the right bin edge of the respective particles on the MCEQ
kinetic energy grid.

Particle log10ð Ek0
GeVÞ ½Ek0 ðGeVÞ� log10ð Ek

GeVÞ ½EkðGeVÞ� log10ðEk00
GeVÞ ½Ek00 ðGeVÞ�

p 2.0 [100.0] 2.05 [112.2] 2.1 [125.8]
πþ 1.0 [10.0] 1.05 [11.2] 1.1 [12.6]
νμ 0.5 [3.2] 0.55 [3.5] 0.6 [4.0]
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the integral in Eq. (19c) requires a quasicontinuous κ range,
which is achieved via spline interpolation of η̃ðXfinal; κÞ.
This can be done at any Xt (0 ≤ Xt ≤ Xfinal) along the
integration path, should the solution at a particular slant
depth/altitude be of interest to the user.
The reconstruction of angular densities of high-energy

secondaries (with kinetic energies of 10 GeV and
above), as well as those created very early in the
cascade evolution, must be treated with care if the
starting angular distribution of the primaries is narrow
(e.g., delta function-like). Direct application of Eq. (19)
may lead to “ringing” in the reconstructed angular
densities for such secondary particles. Thus, it is
recommended to apply Eq. (19) for secondary particles
with energy ≲10 GeV at several kilometers into the
atmosphere, and to use the 1D approximation at high
energies/altitudes.

E. Modeling of muon transport

Muons play a crucial role in air shower development
and atmospheric neutrino flux calculations. They either
decay in-flight, generating muon and electron (anti)
neutrinos, or survive until the surface level, creating a
source of background in neutrino detection.
Muon polarization occurs as atmospheric muons are

produced in the two-body decays of π� and K�. In
the parent meson rest frame, the muons are fully
polarized, with their momenta perfectly aligned or
antialigned with their spin direction. This affects the
angular distributions and the energy spectra of neutrinos
originating from muon decays [53]. A simplified rep-
resentation of the muon population across the entire
continuous range of helicities is achieved by including
only six muon species into the 2D MCEQ cascade
equations (see Sec. IVA).
Another phenomenon affecting muon transport is

multiple scattering, which modifies the trajectories of
the muons as they scatter with atmospheric nuclei. We
implement a Gaussian approximation to the Molière
formalism for describing this effect [32,61]. This results
in an overall widening of the muon angular distributions
compared to the case without multiple scattering.
Appendix A 3 details the implementation of muon

polarization and multiple scattering, as well as their impact
on the results of 2D MCEQ.

V. BENCHMARKING AGAINST CORSIKA

A. Simulation setup

To validate our solutions to the two-dimensional matrix
cascade equations via 2D MCEQ, we use the CORSIKAv7.75

Monte Carlo code [32] as a benchmark. We aim to com-
pare the angular distributions of the GeV-scale atmos-
pheric neutrinos and muons generated in the cosmic-ray
induced air showers. All of our simulations are run for a

single angle of incidence of the cosmic ray primary, and
the secondary particle angular distributions are com-
puted with respect to the primary particle axis. In the
terminology of Fig. 1, we are comparing the distribu-
tions of arccosðûprimary · ûsecondaryÞ between 2D MCEQ and
CORSIKA.
To ensure a fair comparison, we equalize the con-

figuration settings between MCEQ and CORSIKA to the
extent possible. Most importantly, we match the choice
of hadronic interaction models by using URQMD [25] as the
low-energy model5 and EPOS-LHC [24] as the high-energy
model in both CORSIKA and 2D MCEQ. The transition energy
between models is set to 150 GeV.6 In Appendix B, we
provide a comprehensive list of other relevant physics settings
in MCEQ and CORSIKA.
Our setup for the benchmarking of lepton densities

consists of a proton primary incident onto the Earth’s
atmosphere at an inclination angle θ0 with respect to the
negative z axis (downward direction). We test both vertical
(θ0 ¼ 0°) and inclined showers (30° ≤ θ0 ≤ θmax ¼ 80°).
The energy of the proton either is fixed or follows a
spectrum with a power-law dependence (e.g. ∝ E−2.7). For
each considered initial condition, we simulate ∼1 million
events in CORSIKAwith different random seeds. This lets us
gather enough statistics for the low-energy muons and
neutrinos at several observation altitudes. The corres-
ponding binned angular distributions are compared directly
to the angular densities obtained with 2D MCEQ by
solving Eq. (15).

B. Results

To provide a representative example of how the 2D MCEQ

solutions compare to the CORSIKA Monte Carlo outputs, we
choose the case of a 100 GeV proton primary incident at
θ0 ¼ 30°. In Fig. 3, we show the angular densities of
neutrinos (νμ þ ν̄μ; νe þ ν̄e) and muons (μ− þ μþ) at low
energies (up to 5 GeV).
From Fig. 3, we find that the angular distributions of O

(few GeV) leptons with respect to the proton primary axis
are in a very good agreement between 2D MCEQ and
CORSIKA. For neutrinos, the differences between the two
codes are predominantly statistical and reach at most 10%
in the tails of the distributions. This level of agreement
holds across all altitudes and energy bins considered. For
muons, a characteristic tilt of the CORSIKA-to-MCEQ angular
distribution ratio is observed at all altitudes, reaching∼20%
in the distribution tails. This is indicative of a bias of the

5
CORSIKA uses the older URQMD-1.3, while our 2D MCEQ

matrices were produced with the newer URQMD-3.4 model
accessed via a preliminary version of the CHROMO tool [60].

6The URQMD model was tested and shown to give reason-
able results in the energy range Elab ¼ 2–160 GeV [62]. The
usage of the model up to the maximum energy of the Relativistic
Heavy Ion Collider (250 GeV for proton beams) is considered
valid [63].
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CORSIKA angular distribution toward smaller angles or the
MCEQ angular distributions toward larger angles. One
possible explanation for this pattern is that all particles
in 2D MCEQ travel exactly the same distance to reach a
specific depth, including those that deflect by as much as
20–30° from the primary axis. However, muons with such
large deflection angles naturally travel longer distances
than those at 0°, introducing a factor of 1= cos θ increase in
the integration step length. This means that muons with

large deflections from the primary direction must lose more
energy than currently modeled in 2D MCEQ and migrate
from the energy bins shown in Fig. 3 to the bins of lower
energy. Qualitatively, this explains why CORSIKA could
have fewer muons at large angles. However, since the
amount of energy lost is directly proportional to the
distance traveled (ΔE ≃ hdEdXiΔX), any discrepancies related
to the energy loss are expected to accumulate with distance.
This shows to a small degree in Fig. 3, where the tilt in

FIG. 3. Angular distributions of atmospheric leptons in a proton-induced air shower (E0 ¼ 100 GeV, θ0 ¼ 30°), as computed
numerically in 2D MCEQ (solid lines) and simulated in the CORSIKA Monte Carlo (filled histograms with error bars). The angle θ on the x
axis is the angle a given secondary makes with the direction of the primary proton. The different colors correspond to the different
energy bands, and the bottom subpanel in each plot shows the ratio of CORSIKA (“C”) to MCEQ (“M”).
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the CORSIKA-to-MCEQ ratio of the muon angular densities
develops mildly as a function of altitude. While we
cannot definitively connect the angle-dependent discrep-
ancy between 2D MCEQ and CORSIKA with the simplified
treatment of the angle-dependent propagation step length
in 2D MCEQ, the latter remains a relevant feature to be
implemented in future iterations of the MCEQ code. At
present, we point out that the 2D MCEQ angular densities
still provide a very good overall representation of the
CORSIKA angular distributions, which can be seen from
the agreement of the distribution moments (hθi and hθ2i)
in Fig. 4. The subdegree level of difference observed in
the angular distribution moments will not be possible
to resolve under any realistic experimental resolution at
GeV-scale energies, implying a negligible impact on
experimental analyses.
While the main objective of the 2D MCEQ code is to

evolve angular distributions of the secondaries in addition
to the energy spectra already provided by 1D MCEQ, we
compare the energy spectra from 2D MCEQ to those from
CORSIKA to provide further validation to our approach.
To obtain the energy spectra from 2D MCEQ, we extract
the κ ¼ 0 mode from the Hankel-space solutions, which
is equivalent to the angle-integrated particle densities as
per Sec. III B. As seen in Fig. 5, the spectra from MCEQ

and CORSIKA agree within a few % in the 110 GeV
region, which is the main energy range of interest in
this study. Above 10 GeV, the difference between the
two codes grows as a function of energy, reaching ∼20%
at the maximum neutrino energies available from
100 GeV primary showers. The energy dependence of
the CORSIKA-to-MCEQ ratio could point to the difference
in the treatment of hadronic interactions, e.g. the hadron

yields between the different URQMD model versions.
The same level of agreement is observed when the
primaries have power law-like spectra, as demonstrated
in Figs. 12 and 13 in Appendix C.
For shower inclinations less than 60°, our tests demon-

strate the same level of agreement as in Figs. 3 and 5. In
Figs. 14 and 15 in Appendix D, a comparison between 2D
MCEQ and CORSIKA is further presented for highly inclined
showers (80°), revealing up to 25% differences in the
angular distributions at large angles of deflection from the
primary particle axis. While it is possible that the different
implementations of muon energy losses or muon propa-
gation geometries are contributing to the observed mis-
match, the precise impact of these factors has not been
quantified in this study. However, we emphasize that the
level of agreement of the angular distributions and spectra
in the 110 GeV energy region is still satisfactory even for
highly inclined showers, and the mild angle-dependent
discrepancy observed for single-primary showers will be
smeared out by the integration of the secondary particle
fluxes across the full sky.
Finally, we note that both the 2D MCEQ solutions and

the CORSIKA Monte Carlo outputs are subject to system-
atic uncertainties due to the choice of the hadronic
interaction model used to describe the particle yields
in the hadron-nucleus inelastic collisions. For the energy
spectra and angular distributions of the low-energy
leptons, the choice of the low-energy hadronic interaction
model (Eprimary ≤ 150 GeV) has the largest impact. We
test two hadronic interaction models internally within 2D
MCEQ in Figs. 16 and 17 in Appendix E, finding up to
20% differences between the models at lepton energies
below 10 GeV.

FIG. 4. Comparison of the first (hθi, or the distribution mean) and the second (
ffiffiffiffiffiffiffiffiffi
hθ2i

p
, or the distribution width) moments of the

angular distributions of atmospheric leptons at the Earth’s surface as computed in CORSIKA (“C”) and MCEQ (“M”) for the same initial
conditions as in Fig. 3. The bottom panel shows the difference between the CORSIKA and the MCEQ estimates.
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VI. SUMMARY AND OUTLOOK

In this work, we have detailed the development and
application of 2D MCEQ, an extended version of the 1D
MCEQ software. The 2D MCEQ code provides an efficient
numerical approach to angular evolution of hadronic
cascades with broad particle physics applications—in
particular, in atmospheric lepton flux modeling. This tool
considers all crucial aspects of hadronic and leptonic
physics, such as inelastic interactions of hadrons with

atmospheric nuclei, decays of unstable particles, energy
losses, muon polarization, and muon multiple scattering.
Validation of 2D MCEQ was performed against the

standard Monte Carlo code, CORSIKA. The results dis-
play agreement within 1–10% for neutrino angular distri-
butions in air showers up to medium inclinations. Larger
differences between the two codes were observed in the
distribution tails (corresponding to large angles and high
energies).

FIG. 5. Energy spectra of atmospheric leptons in a proton-induced air shower (E0 ¼ 100 GeV, θ0 ¼ 30°), as computed numerically in
1MCEQ (solid lines) and simulated in the CORSIKA Monte Carlo (filled markers). Here, “MCEQ” corresponds to the κ ¼ 0 slice of the 2D
MCEQ solution. The bottom subpanel in each plot shows the ratio of CORSIKA (“C”) to MCEQ (“M”). The shaded gray band represents the
region where the MCEQ solution is numerically unstable (see the caption of Fig. 8 for details).
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Given the very high level of agreement with CORSIKA

and a significant computational superiority over the
Monte Carlo approach, 2D MCEQ provides a very appealing
option for atmospheric lepton flux calculations. The com-
putational cost of the 2D MCEQ calculations is between
several CPU-seconds for vertical showers and 1 CPU-
minute for the near-horizontal showers, compared to
multiple CPU-hours to gather sufficient statistics for
inclusive flux calculations via the Monte Carlo simulations.
Our tool therefore opens the pathway to fast exploration of
the systematic uncertainties on the angular distributions of
atmospheric leptons, including those associated with the
hadronic interaction models and the cosmic ray primary
flux. The 2D MCEQ code can further be utilized within
hybrid air-shower calculation frameworks, such as the
integration of CORSIKA and CONEX [64], with the added
feature of explicit angular dependence.
Future enhancements will involve the integration of

three-dimensional calculations, accounting for factors such
as the Earth’s spherical geometry, the initial angular
distribution of cosmic ray primaries, the geomagnetic
cutoff for these primaries, and the deflection of cascade
secondaries within the geomagnetic field.
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APPENDIX A: DETAILS OF THE MCEQ

MATRIX PRODUCTION

1. Event generation chain example

2. Hadronic model interpolation

The SIBYLL-2.3D and EPOS-LHC generators are the
common choice for the high-energy hadronic interaction
model in the air shower codes such as CORSIKA. They are
nominally valid down to the primary energies of Ethresh ¼
80 GeV [32]. At Eprimary < Ethresh, the URQMD or DPMJET-III

19.1 models are recommended. In our tests, the transition
threshold is lifted to Ethresh ¼ 150 GeV, where the low-
energy URQMD model is still valid [62,63]. To transition
between the two energy regimes, we run both “high” and
“low” energy models in CHROMO and interpolate across the
two energy bins adjacent to Ethresh (one on each side of
Ethresh). In this case, “linear spline” refers to the order-1
spline interpolation on the logarithmic MCEQ energy grid.
An example result of the interpolated angular distributions

of the secondary pions in the pþ 14N → πþ þ X� process
is shown in Fig. 6.

3. Muon production and propagation

Along with the generic hadronic cascade development,
the cascade equations need to account for muon-specific
phenomena—namely, muon polarization and muon multi-
ple scattering—for accurate GeV and sub-GeV neutrino
flux predictions. The implementation of these phenomena
in 2D MCEQ is outlined below.

a. Muon polarization

Most atmospheric muons are produced in the two-body
decays of π� and K�. In the rest frame of the decaying
mesons, the muons are completely polarized, i.e. have
their momenta perfectly aligned or antialigned with their
spin direction. This is a direct consequence of the angular
momentum conservation. For example, μ− always has a
negative helicity (projection of the muon spin onto its
momentum) in the π−=K− rest frame, since ν̄μ generated in
the same decay must necessarily be right-handed (i.e.,
have a positive helicity). A similar argument holds for μþ
and νμ, with the helicity assignments flipped. In the lab
frame, the μ− helicity in the two-body decay of a meson
M− reads [53]:

PðβM; θ�Þ ¼ 1

βμ
·
ð1 − rMÞ þ ð1þ rMÞ cos θ�βM
ð1þ rMÞ þ ð1 − rMÞ cos θ�βM

; ðA1Þ

FIG. 6. Angular density of the secondary pions obtained in the
pþ 14N → πþ þ X� process, as simulated in the URQMD (orange)
and the EPOS-LHC event generators. Assuming the threshold of
150 GeV in the low-/high-energy model transition, the protons in
the MCEQ energy bin centered at ∼140 GeV fall into the
“intermediate” energy regime, where we use a model linearly
interpolated between URQMD and EPOS-LHC.
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where rM ¼ ðmμ=mMÞ2, β is the Lorentz velocity factor
(βX ≡ vX=c), and θ� is the angle of the muon emission in
the decaying meson rest frame (defined e.g. with respect
to the z axis). For each individual muon, the helicity
defined in Eq. (A1) is a continuous quantity spanning the
range between −1…1. To simplify the solution of the
cascade equations, where the helicity expectation values
of the population of muons rather than the spin states of
individual muons are of interest, we switch to the helicity
basis, i.e. the basis of purely right-handed muons μ�R and
purely left-handed muons μ�L . Then, on average, the
probability of finding μ− in the right-/left-handed state is

PR;LðβM; θ�Þ ¼ 1

2
½1� PðβM; θ�Þ�; ðA2Þ

where “þ” corresponds to the right-handed state and “−” to
the left-handed state. For μþ, the correspondence between
the right-/left-handedness and the þ=− sign in Eq. (A2) is
flipped. In practice, to find the probabilities of the polarized
muon production, we let π� andK� decay at rest in PYTHIA

and select the two-body decay events. This immediately
gives us the muon emission angle θ� and, after boosting to
the lab frame, the velocity factors βμ and βM. Then, we
compute the probabilities of the right-/left-handedness
according to Eq. (A2) and assign the respective helicity
to each generated muon.We also keep track of the muon lab
frame energies and their emission angles with respect to the
primary meson boost axis. Finally, we fill in the “cubes” of
the polarized muon yield coefficients in the Hankel fre-
quency space as outlined before in Sec. IVA.
To compute and pre-histogram the neutrino yields in

the decays of polarized muons, we use the WHIZARD

Monte Carlo code [65,66], which can take the spin direction
of the parent muon as an input and sample from the
final three-particle phase space simultaneously. This is in
contrast with the analytical expressions for the daughter
lepton momenta in the polarized muon decay provided
in [53,67], which are given separately for each daughter
and marginalized over momenta of the other two decay
products. Thus, we prefer the WHIZARD Monte Carlo
approach for simplicity and efficiency of implementation.
For each of μ− and μþ decaying at rest, and each of the two
choices of spin configurations (ŝμ ¼ h0; 0;�1i),wegenerate
10,000,000 three-body decay events. We then boost the
daughter neutrinos to themuon energies corresponding to the
kinetic energy grid of MCEQ. This gives us the angular
distributions and the energy spectra of neutrinos originating
from the decays of the left-helical and the right-helical muon
states μ�L and μ�R . The superposition of the latter, as
prescribed by Eq. (A2), gives an accurate representation
of the muon population across the entire continuous range of
helicities accessible to the polarized muons via Eq. (A1).
This justifies the inclusion of only six muon species (μ�L , μ

�
R ,

as well as unpolarized muons μ� originating from the three-
body decays of K�) into the MCEQ cascade equations.

In Fig. 7, we show example angular distributions the
electron antineutrinos resulting from the μ− → νμ þ ν̄e þ e−

decay as computed in WHIZARD. For example, at Eμ ¼
5 GeV and Eν̄e ≤ 2 GeV, we find that both the shape of the
neutrino angular distributions and their normalization differs
depending on muon polarization. While [22,54] already
included the muon polarization effects in the one-dimen-
sional approximation via the analytical prescription of [53],
this simple example further illustrates the importance of the
muon polarization treatment for the two-dimensional solver.
In Figs. 8 and 9, we show the impact of the muon

polarization on the energy spectra and angular distributions
of atmospheric neutrinos produced in a full proton-induced
air shower. In this example, the primary proton has a
fixed energy of 100 GeV and a 30° inclination. The neu-
trino fluxes with muon polarization enabled/disabled are
obtained via 2D MCEQ as the solutions to Eq. (15) at the sea
level. This corresponds to X ≈ 1196 g cm−2 in the US
Standard atmosphere [32]. We find that muon polarization
has the largest impact on the νe fluxes and energy spectra.
Assuming that all muons are unpolarized can lead to 10–
30% error in the νe spectrum normalization and the nearly
the same bias in the angular density. The spectrum and the
angular distribution of νμ are affected at the level of a few
percent; ν̄μ experience an up 10% effect growing toward
higher energies due to the energy-dependent πþ=π− and
μþ=μ− ratios. The muon normalizations and angular dis-
tributions remain unchanged as expected.

b. Muon multiple scattering

An additional effect modifying the muon angular dis-
tributions is their Coulomb scattering with atmospheric
nuclei, e.g. 14N or 16O. The effect of multiple scattering is
described by the Molière theory [61] if the number of

FIG. 7. Comparison of the ν̄e angular distributions with Eν̄e ≤
2 GeV in the decay of a 5 GeV muon for three muon polarization
cases: left-handed (yellow), right-handed (purple), and unpolar-
ized (red). The displayed events were generated with the
WHIZARD Monte Carlo code [65,66].
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scatters is large (≫ 20 across a layer of matter with a given
thickness), and by the Poissonian probability of scat-
tering with the Rutherford cross section if the number of
scatters is small [32,69]. We implement a Gaussian
approximation to the Molière formalism, which is one of
the multiple scattering handling options provided in the
CORSIKAMonte Carlo [32]. In the Gaussian approximation,
the probability P of a muon deflecting by the space
(unprojected) angle θ after traversing ΔX of the atmos-
pheric slant depth is defined as follows:

Pðθ;ΔXÞ ¼ 1

πθ2sΔX
· exp

�
−θ2

ΔXθ2s

�
; ðA3Þ

where θ2s ¼ 1
λs
ð Es
Eμ;labβμ

Þ2, Es¼0.021GeV, λs ¼ 37.7 g cm−2,
Eμ;lab is the total muon energy in the lab frame, and βμ—its
lab-frame Lorentz velocity factor [32,69,70]. In Fig. 10,
we show several representative angular densities com-
puted according to Eq. (A3). For illustration, we use
ΔX ¼ 1 g cm−2. In general, however, ΔX varies with X in
response to the longitudinal atmospheric density variations,
and the width of the muon multiple scattering kernel is
variable. While in just 1 g cm−2 the expected muon deflec-
tion is small (Oð0.1°Þ at GeV energies), this effect accumu-
lates with the slant depth and results in a noticeable shift of
the sea-level muon angular distribution, especially in hori-
zontal showers.

FIG. 8. Impact of muon polarization on the energy spectra of the sea-level atmospheric neutrino fluxes in a 100 GeV proton air shower
with 30° inclination. The dashed lines refer to the case of all atmospheric muons being treated as unpolarized. The solid lines correspond
to the muon polarization treatment as described in the main text of the present section. The shaded gray band represents the region where
the MCEQ solution is unstable due to the numerical implementation of the delta function-like initial condition on the discrete MCEQ
energy grid (see Ref. [68] for the discretization details).

FIG. 9. Impact of muon polarization on the angular distributions of the sea-level atmospheric neutrinos with Eν ≃ 2 GeV. The initial
conditions of the air shower are the same as in Fig. 8.
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To incorporate this additional convolution kernel into the
solution of Eq. (15), we need to Hankel-transform Eq. (A3).
In the Hankel frequency space, the muon multiple scatter-
ing kernel reads:

P̃ðκ;ΔXÞ ¼ exp

�
−κ2ΔXθ2s

4

�
; ðA4Þ

which is scaled so that the overall normalization of the
muon angular distribution (represented by the κ ¼ 0 mode)
remains unchanged. We can then directly multiply Eq. (A4)
by the Hankel amplitudes of the muon angular distributions
after each integration step ΔX. This way, the simplified
muon multiple scattering model becomes a natural part of
the matrix cascade equations. The treatment of multiple
scattering is identical for all of the muon species, i.e.
μ�L ; μ

�
R , and μ�.

In Fig. 11, we show the impact of the muon multiple
scattering on the sea-level muon angular distributions in a
proton-induced air shower, given the same initial condi-
tions as in Figs. 8 and 9. For a representative example, we
focus on the muons with Eμ ≃ 2 GeV (i.e., the parents of
OðGeVÞ electron and muon neutrinos). We find that the
cumulative effect of muon multiple scattering is a ∼1° shift
of the angular density peak, compared to the air shower
evolved without muon multiple scattering. We confirmed
that the “tilt” seen in the lower panel of Fig. 11 grows with
the distance traversed by the muons. The effect on the
neutrino angular distributions was, however, found to be
negligible, introducing at most Oð1%Þ bias at the sea level
if muon multiple scattering was not included in the cascade
equations.

APPENDIX B: COMPARISON OF THE
CONFIGURATION SETTINGS BETWEEN

CORSIKA AND MCEQ

The geomagnetic field and the respective curving of the
charged particle trajectories are not implemented in 2DMCEQ

at the time of writing. We therefore effectively disable
the geomagnetic field in CORSIKA by setting Bx ¼ Bz ¼
10−5 μT (CORSIKA requires jBj > 0). In addition, since the
2D MCEQ code currently excludes electromagnetic cascades,
we also disable the electromagnetic interactions in CORSIKA

by setting all electromagnetic flags (“ELMFLG”) to false.
While the choice of the hadronic models is matched between
CORSIKA in MCEQ, the switch between the low- and the
high-energy regimes means a sharp transition between
the two hadronic interaction models in CORSIKA and a
smooth interpolation between the models in 2D MCEQ (see
Appendix A 2 for details). Thus, when both energy regimes
are covered in a simulated case, small discrepancies between
the two codes are possible due to the different implementa-
tions of the low-energy/high-energy model transition. When
comparing the simulation outputs at the energies below
the transition threshold, one further has to be mindful of
the different low-energy model versions. We expect the
differences due to the low-/high-energy transition imple-
mentation and the internal model versions to be smaller than
due to a full change of the low-energy interaction model to a
different one, which is investigated in Appendix E.
In CORSIKA, the azimuthal angle of the primary

particle incidence is fixed at φ0 ¼ 0. The height of the

FIG. 10. Gaussian approximation of the muon deflection angles
due to their multiple scattering on atmospheric nuclei [see
Refs. [32,61,69] and Eq. (A3)]. The assumed slant depth
traversed by the muons is ΔX ¼ 1 g cm−2. As expected, lower-
energy muons (e.g. 1 GeV; yellow line) get deflected more than
the higher-energy muons (e.g., red and purple lines for 2 GeVand
5 GeV, respectively).

FIG. 11. Impact of muon multiple scattering on the angular
distributions of the sea-level atmospheric muons with
Eμ ≃ 2 GeV. The initial conditions of the air shower are the
same as in Fig. 8.
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first possible interaction of the proton with atmospheric
nuclei is set to 112.8 km in both MCEQ and CORSIKA.
The atmospheric density as a function of the slant depth
X is modeled according to the Linsley parametrization
of the US Standard atmosphere [32]. In MCEQ, the
average stopping power of the charged particles due
to ionization, bremsstrahlung and pair production is
taken from tables provided by the Particle Data

Group [18,22], whereas the energy derivative ∂

∂E is
approximated as a five-point stencil. In CORSIKA, the
average stopping power is calculated analytically via
the Bethe-Bloch prescription [69,71], and is directly
used to reduce the energy of the charged particles
between two propagation steps. The Gauss approxima-
tion is employed in both codes for muon angular
deflections due to multiple scattering.

APPENDIX C: MCEQ-CORSIKA BENCHMARKING FOR A POWER LAW COSMIC RAY SPECTRUM

FIG. 12. Angular distributions of atmospheric leptons in proton-induced air showers with a power law starting spectrum (see title).
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FIG. 13. Energy spectra of atmospheric leptons in proton-induced air showers with a power law starting spectrum (see title).
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APPENDIX D: MCEQ-CORSIKA BENCHMARKING FOR NEAR-HORIZONTAL SHOWERS

FIG. 14. Angular distributions of atmospheric leptons in a proton-induced air shower (E0 ¼ 100 GeV, θ0 ¼ 80°), as computed
numerically in 2D MCEQ (solid lines) and simulated in the CORSIKA Monte Carlo (filled histograms with error bars).

FIG. 15. Energy spectra of atmospheric leptons in a proton-induced air shower (E0 ¼ 100 GeV, θ0 ¼ 80°), as computed numerically
in 1D MCEQ (solid lines) and simulated in the CORSIKA Monte Carlo (filled markers).
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APPENDIX E: IMPACT OF THE LOW-ENERGY HADRONIC MODEL CHOICE
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