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Extreme mass ratio inspirals (EMRIs) are among the primary targets for the Laser Interferometer Space
Antenna (LISA). The extreme mass ratios of these systems result in relatively weak gravitational wave
signals, that can be individually resolved only for cosmologically nearby sources (up to z ≈ 2). The
incoherent piling up of the signal emitted by unresolved EMRIs generate a confusion noise, that can be
formally treated as a stochastic GW background (GWB). In this paper, we estimate the level of this
background considering a collection of astrophysically motivated EMRI models, spanning the range of
uncertainties affecting EMRI formation. To this end, we employed the innovative augmented analytic
kludge waveforms and used the full LISA response function. For each model, we compute the GWB SNR
and the number of resolvable sources. Compared to simplified computations of the EMRI signals from the
literature, we find that for a given model the GWB SNR is lower by a factor of ≈2 whereas the number of
resolvable sources drops by a factor of 3 to 5. Nonetheless, the vast majority of the models result in
potentially detectable GWB which can also significantly contribute to the overall LISA noise budget in the
1–10 mHz frequency range.
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I. INTRODUCTION

Galactic nuclei are among the densest structures in the
Universe, and it has been shown that they host a massive
black hole (MBH) in their center. At such high densities,
generally exceeding 106M⊙ pc−3, the high rate of strong
and weak gravitational encounters among stars and com-
pact objects (COs) efficiently redistribute their energy and
angular momentum, occasionally resulting in close encoun-
ters with the central MBH. From this stems a wide variety
of spectacular phenomena driven by extreme dynamics
such as stellar tidal disruptions [1], hypervelocity stars
ejection [2], relativistic captures of COs [3], and quasi-
periodic eruptions [4].
Specifically, when scattered on very low angular

momentum orbits, COs decouple from the influence of
the stellar environment and, together with the central
MBH, evolve as a relativistic binary approximately in
isolation. The energy of the binary is gradually released
through the emission of gravitational waves (GWs),
causing the inspirals of the CO onto the MBH.

Considering the enormous difference between the two
masses of the binary (typically 1–50M⊙ for the CO and
105–109M⊙ for the MBH), such events are called extreme
mass ratio inspirals (EMRIs), with mass ratio in the range
q ¼ μ=M ¼ 10−9–10−4, withM the mass of the MBH and
μ the mass of the CO. Several channels of EMRI
formation have been proposed, which modify the
process described above either by adding further physical
effects such as resonant relaxation and BH-BH scattering
events [3,5], or by invoking different formation proc-
esses, like binary tidal separation [6], captures of cores of
giants [7], massive star capture or production in accretion
discs [8].
The GW emitted by EMRIs is a primary target for the

forthcoming space mission LISA (Laser Interferometer
Space Antenna) [9]. The observatory consists of three space-
crafts forming an equilateral triangle with ∼2.5 × 106 km
armlength. Lasers will be sent both ways between each pair
of spacecrafts, and they will measure the phase changes
between the transmitted and the received beam, induced by
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the deformation of the spacetime due to the passing GW.
The LISA sensitivity will span the 0.1–100 mHz frequency
range, enabling the detection of GWs produced by different
kinds of events such as massive black hole binary (MBHB)
coalescences [10], galactic compact binaries (GCB) [11],
inspiraling stellar origin black hole (SOBH) binaries [12],
and EMRIs.
Due to their tiny mass ratio, EMRIs evolve slowly,

completing ∼104–106 cycles in LISA’s sensitive fre-
quency range before eventually plunging onto the central
MBH [13,14]. A large number of cycles allow measuring
the parameters of the binary with exquisitely high pre-
cision. Therefore, EMRIs are ideal sources to map MBH
spacetime [15,16], perform tests of general relativity [17],
and possibly detect the presence of gas around the central
MBH [18,19]. Measuring the properties of a population of
EMRI signals could additionally provide information on
the mass distribution of MBHs [20] and their host stellar
environment [5]. Concerning waveform modeling, the
large number of orbital cycles requires an extremely
faithful waveform, since even a tiny dephasing over
one cycle can jeopardize the correct signal recovery
through matched filtering [21]. Additionally, the vast
majority of EMRIs are not expected to be individually
detectable with LISA because they are too far away or too
far from the final plunge onto the MBH. Therefore,
thousands of EMRIs will be present in the LISA data
without reaching the “individual detection threshold”, and
their GW emission can pile up incoherently, forming a
confusion noise [22,23]. In the worst case scenario, this
stochastic gravitational wave background (GWB) could
even overcome the level of the anticipated instrumental
noise, possibly jeopardizing the detection of other
sources. This is, for example, the case with the collective
signal from unresolvable GCBs, which constitute the
primary astrophysical limitation for the LISA mission
in the frequency range ½0.2; 3� mHz. The GCB confusion
noise is expected to be highly anisotropic, unlike the
EMRIs one, and its amplitude in the LISA detector
fluctuates due to the satellite constellation motion. This
modulation makes this signal at least partially subtractable
from the LISA error budget when searching for an
underlying stochastic background.
Despite the characterization of GWB from EMRI being

essential for the fulfillment of the LISA goals, it has so far
raised little attention in the vast literature involving LISA.
The first estimation has been done by the pioneering work
of [24], which used basic piecewise approximations for
the inclination and eccentricity averaged GW signal from
unresolved EMRIs and considered early estimates of the
EMRI rates, in terms of a redshift independent MBH mass
function. Subsequently, [23] improved the estimate by
considering the EMRI populations of [25], but still
employing a straightforward waveform for the GW signal,
namely, a simplified version of the analytic kludge (AK)
used by [24].

In this study, we want to contribute by adding further
elements to make the estimate more credible. To provide a
realistic estimate, we couple the astrophysical motivated
model developed in [25] to the augmented analytic kludge
(AAK) [26] waveform, calibrated against the numerical
kludge (NK) model [27]. Most importantly, we perform the
first realistic injection of the collective distribution of
EMRI signals in LISA by directly computing the GW
response of the instrument in the time-delay interferometry
channels. We use the recursive algorithm developed in [28]
to subtract resolvable sources and estimate the residual
GWB level. Our approach not only ensures a better GWB
characterization, but it also contributes to the development
of tools for realistic signals injection into the LISA data
stream, which is critical for future investigations and for the
development of appropriate analysis pipelines in the con-
text of the LISA Consortium.
The plan of the paper is as follows. In Sec. II, we provide

all the technical aspects concerning the LISA sensitivity
curve and the TDI technique. In Sec. III, we briefly review
kludge waveforms used to model the GW signal from
EMRIs, highlighting their differences and justifying the
use of AAK. Section IV describes the astrophysical models
chosen to construct the EMRI populations and defines the
corresponding catalogs. Finally, Secs. V and VI are
dedicated respectively to presenting the results and to
drawing our final conclusions. Throughout the paper, we
adopt geometrical units G ¼ c ¼ 1.

II. LISA

A. Sensitivity

The definition of the sensitivity is closely related to the
SNR which for a deterministic source can be defined as

SNR2 ¼ 4Re

�Z
∞

0

df
h̃ðfÞh̃�ðfÞ
SnðfÞ

�
; ð1Þ

where we have introduced the one-sided noise power
spectral density (PSD) SnðfÞ and the signal h̃ðfÞ in the
frequency domain. The detector noise is described as a
stochastic variable nðtÞ, and the noise PSD is defined as

E½ñðfÞñðf0Þ� ¼ 1

2
δðf − f0ÞSnðfÞ ð2Þ

where E[…] is the expectation value, ñðfÞ is the Fourier
transform of nðtÞ, and δ is the Dirac delta distribution.
In the analysis, we adopt the noise model of ESA’s

science requirement document [29]. That noise model has
been approximated into two effective functions. The high-
frequency components are represented by the readout noise
SOMS, whereas the low-frequency components by the single
mass-acceleration noise Sacc. Each LISA spacecraft hosts
a test mass designed to follow geodesic motion only.
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However, LISA Pathfinder showed that they are not
perfectly free falling. External spurious forces push them
out of their geodesics, resulting in noninertial residual
accelerations, which are collected in Sacc. Instead, SOMS
collects all the optical metrology system noise entering via
power measurements at the photodetectors.
We highlight that [23], besides the sky-averaged sensi-

tivity for LISA, took also into account the confusion noise
generated by unresolved GCB (mostly white dwarf, WD,
binaries). That component has been added according to the
fitted formula obtained in [28]. Generally, the GCB
population produces a stochastic GWB that effectively
degrades the instrumental sensitivity at frequencies below
1 mHz. Here, we ignore the CGB GWB to produce robust
estimates that depend on the LISA noise only. Although
including the CGB GWB might affect the EMRI GWB
observability, the main contribution to the SNR of the latter
comes from f > 2 mHz, where the former should have a
minor impact.

B. Time-delay interferometry

The main source of noise for LISA will be laser
frequency noise. It is due to the frequency instability of
the onboard lasers. Ideally, a laser operates at a single
frequency with zero linewidth. In the real world, however, a
laser has a finite linewidth because of phase fluctuations,
which cause instantaneous frequency shifts away from the
central frequency. Equal-arm interferometer detectors can
observe GW by canceling the laser frequency fluctuations
affecting the light injected into their arms. This is done by
comparing phases of split beams propagated along the
equal arms of the detector. The laser frequency fluctuations
affecting the two beams undergo the same delay and cancel
out at the photodetector. However, for a not-equal arms
interferometer (as LISA) the exact cancellation of the laser
frequency fluctuations does not take place at the photo-
detector. For this reason, a postprocess technique has been
developed. The algorithm is called time-delay interferom-
etry (TDI), and it was first proposed by [30]. To understand
how TDI works, we have to introduce some notation.
Figure 1 represents the constellation of LISA schematically.
The spacecrafts are labeled 1, 2, 3, and they are oriented
clockwise. The separating distances are denoted as L1, L2,
L3, with Li being the opposite spacecraft, and we refer with
L0
i to the reverse path made by a photon. Primed or

unprimed indices refer to beams traveling clockwise or
counterclockwise, respectively. In the literature [31], we
can find the derivation of the link response ysrðt; k̂Þ from a
generic GW traveling along k̂, employing common approx-
imations such as the first-order expansion of wave propa-
gation time and assuming the spacecraft remains stationary
during this propagation period. ysr is indexed with two
numbers sr, where s is the index of the sender spacecraft,
and j is the index of the receiver spacecraft.

To study the response of each link (single arm) to the
GW signal, it is useful to introduce the delay operator Dl,

DlysrðtÞ ¼ ysrðt − LlÞ; ð3Þ

that we later express through its shorthand notation ysr;l.
The main idea of TDI is to add the delayed signals of

LISA together so that the laser frequency noise terms add
up to zero. This amounts to seeking data combinations that
cancel the laser frequency noise. There exist different
versions of TDI, corresponding to different levels of
accuracy of the LISA geometry taken into account. In this
work, we adopt the first generation of TDI, that is valid for
a static LISA constellation and does not account for
rotation and flexing. The first condition emphasizes that
all armlengths are constant in time, while the second
condition implies that the light travel time in one arm is
independent of the light propagation direction, meaning
that LiðtÞ ¼ Li and Li ¼ L0

i. A direct consequence is that
the delayed operators commute.
A possible realization of TDI defines three variables X,

Y, and Z, corresponding to pairwise Michelson-like inter-
ferometers. As an example, in Eq. (4) we report the
expression of the X channel in the first generation of
TDI, while Y and Z are obtained by cyclic permutation of
indices 1 → 2 → 3 → 1. XðtÞ can be visualized as the
difference of two sums of measurements, each correspond-
ing to a specific light path from the laser on board
spacecraft 1,

XðtÞ ¼ ½ðy31 þ y13;2Þ þ ðy21;22 þ y12;322Þ�
− ½ðy21 þ y12;3Þ þ ðy31;33 þ y13;233Þ�: ð4Þ

FIG. 1. Schematic LISA configuration. The image has been
taken from [32].
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The first square-bracket term in Eq. (4) represents a
light beam transmitted from spacecraft 1 and made to
bounce over spacecrafts 2 and 3. The second corresponds
to another beam also originating from the same laser
(equal laser frequency noise), but bouncing off spacecraft
3 first and then spacecraft 2. When they are recombined,
they will cancel the laser phase fluctuations exactly,
having both experienced the same total delay. Using
the new variables, one should extend the definition of
PSD in Eq. (2) as

E½ñiðfÞñ�jðf0Þ� ¼
1

2
δðf − f0ÞSn;ijðfÞ; ð5Þ

where Latin indices run over the different TDI variables.
Michelson combinations have highly correlated noises.
An uncorrelated set of TDI variables, A, E, T, can be
obtained from linear combinations of X, Y, Z, given
by [33]. We carry on the analysis considering this set of
variables.

III. REVIEW OF KLUDGE
WAVEFORM FAMILIES

We turn now to the description of the formalism
employed to model the inspiral of EMRIs. Since we are
dealing with a binary system of small mass ratio, the
gravitational waveform may be obtained accurately using
black hole perturbation theory, i.e., by treating the
secondary BH as a perturbation to a given black hole
background. In particular, one could calculate the gravi-
tational self-force by expanding the background metric in
terms of the mass ratio [34]. The extreme mass ratio also
guarantees that the orbital parameters change on a much
longer timescale than the orbital period. This implies that
the inspiral waveform could be approximated by “snap-
shot” waveforms, calculated by assuming that the small
object is moving along a geodesic. These snapshots are
constructed using the Teukolsky equation [35] which
describes the first-order change to the curvature tensor
of a black hole due to some perturbation. However,
Teukolsky-based waveforms are computationally expen-
sive to generate, as they require the numerical integration
of the Teukolsky equation and summation over a large
number of modes. These difficulties motivate the con-
struction of approximate families of waveforms that
capture the main features of the true signals, at a much
lower computational cost. One possible approach is to
construct post-Newtonian (PN)1 waveforms, which have
the advantage of being analytic and therefore very easy to
generate, but cannot fully capture the evolution close to
coalescence, where the v=c is Oð1Þ invalidating the series

expansion approach [36]. Another approach involves a
particular class of approximated waveform, which is
known as kludge, which we detail in this section. The
basic idea behind the kludges is to combine different
prescriptions for the orbital evolution and GW emission
(not necessarily in a self-consistent way). Essentially,
there exist three kinds of kludges: they are the AK, NK,
and AAK.
In general, the kludge class describes the inspiral of a

CO, treated as a point mass μ, around a Kerr MBH with
massM and spin a. The geometry of the system is depicted
in Fig. 2 and can be described by the following set of
parameters. The direction of the spin for the MBH is
represented by the unit vector S⃗, or alternatively, the angles
ðθK;ϕKÞ. Instead, L⃗ represents the direction of the CO’s
orbital angular momentum, and the angle between L⃗ and S⃗
is labeled as ι (inclination). There are two additional angles:
the azimuthal angle of L⃗ denoted with α, and the angle
between L⃗ × S⃗ and the direction to the pericenter of the CO
orbit marked as γ̃.
In general, the orbits of COs can be eccentric and

nonequatorial. In this context, e and p represent, respec-
tively, the eccentricity and the semilatus rectum, from
which we obtain the pericenter rp ¼ p=ð1þ eÞ and the
apocenter ra ¼ p=ð1 − eÞ. For the CO’s motion, ϕ is the
mean anomaly, and ν is the correspondent orbital fre-
quency. All these quantities have clear Keplerian meaning
for broad orbits; however, we continue using them also in
the ultrarelativistic regime close to the separatrix. Further
to the parameters describing the orbital motion, there are
also the sky location of the source ðθS;ϕSÞ in the SSB, and
the luminosity distance DL, computed directly from the

FIG. 2. Schematic representation of EMRI. M and μ are the
masses of the MBH and the CO, respectively. The spin S⃗ of the
MBH is parametrized by its magnitude S and the two angular
coordinates ðθK;ϕKÞ. L⃗ is orbital angular momentum; its
directions are parametrized with the angle ι between L⃗ and S⃗
and by an azimuthal angle α (not displayed). The angle γ̃ is the
(intrinsic) direction of pericenter, as measured with respect to
L⃗ × S⃗. Finally, p shows the geometrical interpretation of the
semilatus rectum.

1PN theory is a systematic approximation method solving the
Einstein field equations (and the equations of the motion for a
source) in the form of power series of the small parameter v=c.
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redshift z. Thus, to summarize, in the kludges family, 14
parameters are needed to describe the EMRI waveform:
fM; μ; a; p; e;ϕ; α; γ̃; ι; DL; θS;ϕS; θK;ϕKg. Actually, they
would be 17, also considering the spin of the secondary
object, but its effect on the dynamics and GW emission is
small, and it is irrelevant to our analysis.

A. Analytic kludge

The AK has been developed by Barack and Cutler [24].
It approximates the EMRI system as being, at any instant,
a Keplerian binary emitting a quadrupolar wave [37].
In this waveform, the orbital evolution is given by five
first-order ordinary differential equations of ðϕ; ν; γ̃; α; eÞ.
The equations combine several leading order contribu-
tions from PN (post-Newtonian) dynamics. For ν and e,
the expressions are accurate through 3.5PN γ̃, and α
equations are accurate through 2PN order. The PN
expressions are expressed by Eqs. (28)–(31) in [24].
The EMRI orbital elements are integrated between t ¼ 0
and the observed time Tobs. If the EMRI plunges during
the observation, the inspiral evolution has to be truncated,
and this can be done in two different ways. The first
consists of the “Schwarzschild” analytic kludge which
uses the last stable orbit for nonspinning MBH as a
proxy for the plunge. Alternatively, the “Kerr” analytic
kludge takes into account the MBH spin information,
identifying the last stable orbit defined by a Kerr
separatrix. The choice of different plunging conditions
defines how close to the MBH horizon we can approach
and, therefore, the bandwidth of the signal and its SNR.
The Schwarzschild version of AK underestimates signal’s
strength, while the Kerr version strongly overestimates
it as PN equations approximate poorly dynamics near
the horizon.
The AK waveform is very efficient from a computational

point of view, and for that reason, it is widely used to study
EMRIs. However, its poor accuracy does not allow us to
represent the expected signal.

B. Numerical kludge

The NK waveform has been developed by [27], and the
idea behind it is to combine the accurate particle
trajectory to an approximate expression for the GW
emission. The first step in constructing a NK waveform
is to compute the trajectory that the inspiraling body
follows in the Boyer-Lindquist coordinates of the Kerr
spacetime of the central black hole. Bound black hole
orbits (in the absence of GW radiation) admit four
constants of the motion, allowing us to rewrite the
geodesic equations as a system of first-order differential
equations. These four constants are the rest mass, the
energy E, the axial angular momentum Lz, and the Carter
constant Q [38]. The first-order equations can be written
in the following form:

dr
dτ

¼ �
ffiffiffiffiffiffi
Vr

p
;

dθ
dτ

¼ �
ffiffiffiffiffiffi
Vθ

p
;

dϕ
dτ

¼ Vϕ;

dt
dτ

¼ Vt: ð6Þ

Solutions of the geodesic equations [Eq. (6)] are uniquely
determined if we specify E, Lz, and Q and the initial
orbital position. Often these quantities are expressed in
terms of ðra; rp; θminÞ: from the roots of Vr we can
determine the periastron rp and the apoastron ra, and
following their definition, we arrive to compute the
semilatus rectum and the eccentricity. The angle θmin
is instead determined by the root with the smallest value
of Vθ (turning point). Exploiting Q and Lz, we can obtain
the inclination angle ι, as cos ι ¼ Lz=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qþ L2

z

p
. The

geodesic motion has to be augmented with a dissipation
due to GWs, which (in adiabatic approximation) is
described by orbit average changes on the orbital con-
stants. Then, Eq. (6) are integrated to obtain the trajectory
of the CO. Finally, the waveform can be obtained from
the inspiral trajectory using quadrupole (or quadrupole-
octupole) approximation as it were in the flat spacetime.
The NK waveform provides a good agreement with the

numerical Teukolsky-based waveform, thus superseding
the AK. The model, however, is computationally more
expensive since it requires the integration of the trajectory
both in phase and coordinate space.

C. Augmented analytic kludge

The AK model can be up to 15 times faster [39] than the
NK model at generating waveforms. This efficiency could
increase for longer integrations, but not at higher eccen-
tricity because more harmonics are needed in the AK
approximation. However, AK waveforms suffer, already at
the early-inspiral stage, from dephasing with respect to NK
waveforms due to the mismatched frequencies in the two
models. The AAK model was first introduced in [40] to
cure this issue. The AAK waveform uses information from
the NK model to improve the faithfulness of AK wave-
forms without significantly increasing their computational
cost. The main idea is to extend parameters of the AK
model beyond their physical meaning to match the frequen-
cies of NK waveforms. AAK generates a small section of
trajectory with NK, and then maps the AK trajectory to the
NK result and finds out the best-fit parameters. Let us give a
more detailed description of this procedure.
A bound geodesic orbit in Kerr spacetime is character-

ized by three fundamental frequencies Ωr;θ;ϕ for the
radial, polar, and azimuthal components of the motion.
These frequencies take a simple form, choosing a timelike
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parameter λ ¼ R
dτ=Σ (the so-called Mino time). Indeed,

the frequencies are given by

Ωr ¼
2π

ΛrΓ
;

Ωθ ¼
2π

ΛθΓ
;

Ωϕ ¼ lim
N→∞

1

N2ΛrΛθΓ

Z
NΛr

0

dλr

Z
NΛθ

0

Vϕdλθ; ð7Þ

where Λr;θ represent the radial and polar period, and Γ ¼
hdt=dλi the average rate (in analogy with the Lorentz
factor),

Λr ¼ 2

Z
ra

rp

drffiffiffiffiffiffi
Vr

p ;

Λθ ¼ 4

Z
π=2

θmin

dθ
Vθ

;

Γ ¼ lim
N→∞

1

N2ΛrΛθ

Z
NΛr

0

dλr

Z
NΛθ

0

Vtdλθ: ð8Þ

In terms of the fundamental frequencies, the periapsis
and Lense-Thirring precession rates are given by Ωpre ¼
Ωϕ − Ωr and ΩLT ¼ Ωϕ − Ωθ, respectively. We can intro-
duce for a BH with mass M the dimensional frequencies

ωr;θ;ϕ ¼ Ωr;θ;ϕ

2πM , which in the Newtonian limit tend to the
orbital frequency, i.e., forb ¼ ωr ¼ ωθ ¼ ωϕ. In this limit,
the periapsis and Lense-Thirring precession are zero, but in
AK they are introduced manually through the PN equation.
In particular, the precession frequency would be fpre ¼
γ̇ þ α̇ and Lense-Thirring frequency fLT ¼ α̇. Thus, we can
match the three frequencies in the AK and in the Kerr
formalism, producing an endomorphism over the AK
parameter space. Typically, the frequencies are expressed
in terms of ðM;a; pÞ, but also the set ðe; ι; pÞ can be used.
For example, given ðM; a; pÞ of a BH, the match between
frequencies is done by introducing the nonphysical values
ðM̃; ã; p̃Þ as

forb ¼ ϕ̇ðM̃; ã; p̃Þ ¼ ωrðM;a; pÞ;
fLT ¼ α̇ðM̃; ã; p̃Þ ¼ ωθðM; a; pÞ − ωϕðM; a; pÞ;
fpre ¼ γ̇ðM̃; ã; p̃Þ þ α̇ðM̃; ã; p̃Þ

¼ ωϕðM;a; pÞ − ωrðM; a; pÞ: ð9Þ

Substituting the parameters M̃; ã; p̃ with ðM; a; pÞ in the
AK model provides a correction of its frequencies along
the entire inspiral trajectory. Next, the waveform can be
generated using the AK framework with the improved
orbital motion.
An improved AAK model is implemented by [26] as a

part of the package FastEmriWaveform (FEW). The

“classic” AAK described above, builds a trajectory by
using the frequency evolution from the numerical kludge
and mapping it onto the frequency basis. The new improved
AAK, instead, computes directly the fundamental frequen-
cies exploiting a 5PN trajectory developed in [41]. Finally,
a fast method of plunge handling has been added to the
AAK implementation. In general, the CO plunges when its
orbit along the phase-space trajectory becomes unstable
(separatrix).
The separatrix depends upon three parameters (e, p, ι).

In the literature, orbits along the separatrix with e ¼ 0 are
referred to as the innermost stable spherical orbit (ISSO). If
ι ¼ 0, this orbit is usually called the innermost stable
circular orbit (ISCO) instead. In the FEW framework, the
trajectory has been computed until it reaches 0.1 of the
separatrix, computed numerically as shown in [42].
Noteworthy, another EMRI waveform has been embedded
in FEW; it is a fully relativistic waveform based on the
interpolated self-force calculations. However, this model
covers only nonspinning BHs.

IV. FROM EMRI POPULATION TO GWB

In order to provide astrophysical motivated estimates of
the GWB generated by a cosmic population of EMRIs, we
consider several models presented in [25], reported in
Table I for completeness.
The main idea behind the 12 different models was to

bracket the expected range of EMRI rates spanning the
wide range of uncertainties affecting EMRI formation,
including the cosmic evolution of the MBH mass func-
tion, the relation between MBH mass and density of the
surrounding stellar environment, the impact of core
scouring following galaxy mergers, and so on. For each
model, the distribution of cosmic EMRIs was built, and
mock catalogs were generated by Monte Carlo sampling
from the distribution. In particular, 10 Monte Carlo
realizations of the expected population of EMRIs plung-
ing within 1 year were generated. Put together, they
consist of a library which includes all EMRI events
occurring in the Universe during 10 years for each of
the 12 models. Every catalog provides the primary mass
M, the redshift of the event z, and MBH spin a of each
event. For the EMRIs, it has been considered a secondary
mass of 10M⊙ or 30M⊙ as shown in the table. The
expected event rate (number of sources per year) varies
across models from tens to tens of thousands. This large
range reflects the astrophysical uncertainties on the model
parameters, e.g., the choice of the number of direct
plunges or the MBH mass function. Full details about
the models can be found in [25]. The GW signal modeling
requires 14 parameters listed in Sec. III. For each EMRI
inside the catalogs, we associate the cosine of inclination
angle ι by drawing it randomly from a uniform distribution
between ½−1; 1� since we consider that EMRIs form in a
spherical bulge and not in a disklike structure. Note that ι
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spans in the interval ½0; π� and that prograde orbits are
associated for 0 ≤ ι ≤ π=2, while a retrograde orbit for
π=2 ≤ ι ≤ π. To determine the initial eccentricity and the
semilatus, we exploit [25], which has shown that, evolving
large samples of COs, the eccentricity distribution at
plunge is nearly flat in the range 0 < epl < 0.2. Then,
we use the same strategy adopted in [23]:

(i) For each event in the catalogs, we draw the eccen-
tricity at the last stable orbit ep in the range [0, 0.2].
Since we already know M and the spin a, we can
also estimate the radius at the last stable orbit.

(ii) We integrate the orbital elements of the event
backwards in time for Tback years (i.e., using the
orbit-averaged equations in [14]).

(iii) We draw Nback ¼ intðTback=10Þ points randomly in
the range ½0;Tback� in order to select different
evolutionary points of each EMRI. Here, the divi-
sion by 10 is made because, as we mentioned, we
collect 10 catalogs of EMRIs for every model, each
representing one year of observation. Tback is com-

puted as Tback ¼ 20
�

M
104M⊙

�
yr, because the time

taken to cover the same amount of gravitational radii
scales linearly with MBH mass. Thus, EMRIs with
low mass primarily emit in the LISA band only over
the last years of their inspiraling, while EMRIs with
larger MBH masses emit in the LISA band for much
longer prior to the plunge.

(iv) For each Nback, we collect the semimajor axis asm;0
and the eccentricity e0 at the corresponding back-
ward time. Following the definition of semilatus, we
compute it as p0 ¼ asm;0ð1 − e20Þ.

With this procedure, we are creating Nback copies of
each EMRI from the catalogs of [25] with same redshift,
masses, spin, and inclination angles. Nevertheless, the
procedure is not expected to introduce any bias in the
computation of the background because the catalogs
provide a smooth coverage of the relevant MBH mass
redshift and spin range.
Concerning the sky position ðθS;ϕSÞ and spin orienta-

tion ðθK;ϕKÞ, we assume that the corresponding unit
vectors are isotropically distributed on a sphere. Finally,
the three initial phases corresponding to the orbital phase,
the precession phase of the periapsis, and the precession
phase of the orbital plane (Lense-Thirring) are uniformly
distributed between 0 and 2π. To compute the waveform
with AAK, we convert them in terms of radial, polar, and
azimuthal phases ðΦr;0;Φθ;0;Φϕ;0Þ using the system ana-
logues to Eq. (9).

A. Definition of the catalog

After completing the list of parameters, we compute the
signal of each EMRI. Since we want to evaluate the power
spectrum of the unresolved GW background in the LISA
detector, we have to work in frequency domain using the
optimal combination of TDI described in Sec. II B.
However, the AAK code returns the signal in time domain.
To inject the signal in the detector, we therefore perform the
following steps:
(1) Computation of hþðtÞ; h×ðtÞ with AAKþ 5PN tra-

jectory, considering an observation time of 4 years
and a measuring cadence of 15 s.

(2) Computation of variables AðtÞ, EðtÞ, TðtÞ.

TABLE I. List of EMRI models taken from [25] and considered in this work. Column 1 defines the label of each model. For each
model the following quantities are specified: the MBH mass function (column 2), the MBH spin model (column 3), whether or not the
effect of cusp erosion is included (column 4), theM − σ relation (column 5), the ratio of plunges to EMRIs (column 6), the mass of the
COs (column 7), and the total EMRI merger rate (yr−1) up to z ¼ 4.5 (column8). In columns 9 and 10, the detected EMRI rate per year is
reported for two different variants of AK waveforms (AKS and AKK truncate the waveform, respectively, at Schwarzschild and Kerr
ISCO). The full definition and implementation of each ingredient entering the models can be found in [25].

Model
Mass

function
MBH
spin

Cusp
erosion M–σ relation Np

CO mass
[Modot] Total

EMRI rate [yr−1]
Detected (AKK)

Detected
(AKS)

M1 Barausse12 a98 yes Gultekin09 10 10 1600 294 189
M2 Barausse12 a98 yes KormendyHo13 10 10 1400 220 146
M3 Barausse12 a98 yes GrahamScott13 10 10 2770 809 440
M4 Barausse12 a98 yes Gultekin09 10 30 520 260 221
M5 Gair10 a98 no Gultekin09 10 10 140 47 15
M6 Barausse12 a98 no Gultekin09 10 10 2080 479 261
M7 Barausse12 a98 yes Gultekin09 0 10 15800 2712 1765
M8 Barausse12 a98 yes Gultekin09 100 10 180 35 24
M9 Barausse12 aflat yes Gultekin09 10 10 1530 217 177
M10 Barausse12 a0 yes Gultekin09 10 10 1520 188 188
M11 Gair10 a0 no Gultekin09 100 10 13 1 1
M12 Barausse12 a98 no Gultekin09 0 10 20000 4219 2279
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(3) Computation of Fourier transforms ÃðfÞ, ẼðfÞ,
T̃ðfÞ.

This procedure has a variable computational cost
depending on the initial parameters of the source. For
example, a source with high eccentricity e0 takes more time
because the number of harmonics needed in the compu-
tation is higher.
The whole procedure takes on average ∼120 seconds per

source, which is a non-negligible computational time, given
that the populations we built are composed of a number of
sources which spans from tens of thousands up to several
millions. For instance, model M12 counts almost 16 million
EMRIs, meaning the background evaluation would take
about 60 years on a single CPU. We, therefore, need to find
a strategy to speed up the process. A possibility is to select
only the sources that produce a significant contribution to
the GWB. For this purpose, we evaluate a preliminary SNR
for each EMRI exploiting the inclination-polarization
averaged version of the AK waveform, following the same
approach as in [23] and truncating the EMRI evolution at
the Schwarzschild last stable orbit considering 4 years of
observation time. Then, we introduce a cut in the pop-
ulation, removing all the sources below a chosen SNR
threshold. Finally, we compute what fraction of the total
SNR is lost due to the cut. We tried different cuts, and we
decided to fix the threshold to ρ ¼ 1, which allows
removing the greatest number of sources without losing
too much total SNR. After removing the weak sources, we
observe an SNR loss of ∼5% only (cf. columns 4 and 5 of
Table II). Figure 3 shows an example of this simplified
GWB computation for model M1 for different SNR cuts.
The selection affects the GWB mostly at f < 1 mHz,
where LISA starts to lose sensitivity. Conversely, where

the instrumental curve is closer to the EMRI GWB level,
the backgrounds are similar to each other.
The choice of the AAK waveform imposes two further

selection criteria: (i) a cut in eccentricity and (ii) a cut in
semilatus rectum. The number of harmonics needed to
construct the waveform, and consequently the computa-
tional cost, is a steep function of eccentricity. We verified
that for sources with eccentricity bigger than 0.9, the
waveform code does not terminate the computation, and
therefore, we cut from the catalog all sources with e0 > 0.9.
Moreover, we also remove the sources with initial semilatus
smaller than 10 since the global fit for the inspiral turns out
to be difficult for such tight EMRIs. The cut in semilatus
removes only ∼1% of the sources from the original
catalogs, as reported in the third column of Table III. To
summarize, the final EMRIs catalogs are composed by
sources with e0 < 0.9, p0 > 10 and individual SNR greater
than 1, calculated with a simplified AK waveform. It is
important to notice that cutting in eccentricity and the
semilatus rectum induced the loss of a significant part of the
original background information. As reported in column 6
of Table II, the final SNR, after taking into account this
further selection, is about 20%–30% lower compared to the
full population. Despite the number of removed EMRIs at
high eccentricity being larger, most of the signal loss is due
to the selection in the semilatus rectum. Indeed, we found
that the percentages of SNR lost due to semilatus selections
are greater than the other two, as seen in Table IV. Figure 4
represents the distribution of the sources in the plane
eccentricity/semilatus for model M1, even if we can find
a similar behavior in the other model. First, we observe that
e > 0.9 ∩ p < 10 ¼ ∅, and the two cuts are independent.

FIG. 3. Characteristic strain of the GWB generated for model
M1 listed in Table I. The colors refer to different SNR thresholds
for the EMRI included in the computation, as labeled in figure.
The gravitational signal has been computed using a simplified,
inclination-polarization averaged version of the AK waveform.

TABLE II. The effect of source selection. Columns 2 and 3 are
the initial and final number in the EMRIs catalogs before and
after the source selection process. Column 4 is the original SNR
of GWB calculated using the simplified version of the AK
waveform assuming 4 years of observation time. Column 5 is the
SNR after removing sources with SNR < 1. Column 6 is the final
SNR computed after removing also sources with e0 > 0.9 or
p0 < 10. The last column corresponds to the number of detected
EMRIs, defined as those with SNR > 20.

Model Ntot Nf SNRtot SNRρ>1 SNRf Detections

M1 1225158 31764 571 534 460 366
M2 580149 17030 434 418 352 386
M3 2030059 68100 1174 1121 839 1123
M4 43607 11166 960 926 750 1713
M5 1772409 44011 727 695 535 622
M6 396800 2486 48 44 27 35
M7 8218425 303348 4940 4748 3960 4619
M8 89010 3620 63 61 51 53
M9 872231 31356 501 480 419 426
M10 823589 30597 478 459 408 406
M11 34724 287 4.53 4.11 2.32 0
M12 16547658 394583 6475 6200 4553 5580
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The gradient of color shows that the p < 10 region hosts
multiple sources with single SNR between 10 and 20,
which, in principle, could contribute to increasing the final
background, whereas only low SNR sources are found
at e > 0.9.
Despite the above-mentioned caveats, we stress once

again the efficiency of this selection: we are able to
maintain almost 80% of the original signal just considering
on average 3% of the sources in the catalogs, making the
computation cost manageable.2

B. Background computation

Using the population described in the previous section,
we generate the AAK waveform for each EMRI, inject
them in the optimal LISA TDI variables, and analyze the
data directly on those TDI data streams. For each model,
we compute the initial background as the sum of all the
signals for both channels A and E (in the frequency
domain). We should remove the sources whose SNR
exceeds a set threshold to obtain the final confusion
noise. The detection threshold is adjusted for the different
source types, taking into account search and parameter
estimation studies. The Mock LISA Data Challenge
results suggest that EMRIs with SNR as low as ρ0 ¼ 20
could be identified [21]. The overall SNR for a single
source is computed from TDI data by taking the root of the
sum of the square SNRs in each TDI channel, as defined in
Eq. (1). However, in the presence of a GWB, the PSD in
each channel becomes SnðfÞ ¼ SinstrðfÞ þ SgwbðfÞ, taking
into account both the instrumental noise, SinstrðfÞ, and the
confusion noise, SgwbðfÞ. To solve this problem, we use
the iterative foreground stimation (IFE) algorithm, devel-
oped by [28], which can be used for characterizing a
background signal that originates from a combination of
different types of sources. IFE is based on an iterative
process to evaluate SnðfÞ, whose main steps are the
following:
(1) After generating the total signal, SgwbðfÞ, from the

full sample of sources, the code computes the SNR
of each source considering only the LISA instru-
mental noise. We call it SNR in isolation ρisoi .

(2) The code evaluates the new PSD, Sn;kðfÞ, as the sum
of SinstrðfÞ and the first estimation of SgwbðfÞ. Then,

FIG. 4. Distribution of EMRIs in the plane e-log10ðpÞ for
model M1. The color scale refers to the SNR of EMRIs computed
through the simplified AK waveform. Note that louder EMRIs
are generally characterized by smaller p0 rather being very
eccentric.

TABLE III. Percentage of EMRIs removed due to the selection
procedure aiming at speeding up the GWB evaluation. Column 2
refers to the sources subtracted with e0 > 0.9, while Column 3 is
the fraction of sources with p0 < 10.

Model %e>0.9 %p<10

M1 26.5 1.11
M2 30.3 0.92
M3 28.0 0.84
M4 26.8 1.08
M5 22.2 1.17
M6 10.3 1.56
M7 26.5 1.11
M8 28.1 1.12
M9 26.3 1.14
M10 26.8 1.07
M11 11.1 1.35
M12 21.6 1.15

TABLE IV. Percentage of SNR after different sources selec-
tions. Column 2 is the total percentage lost; column 3 is referred
to after removing the dimmest source with SNR < 1, while
columns 4 and 5 are, respectively,. the SNR after deleting sources
with p < 10 and e > 0.9.

Model %SNRtot %SNRρ %SNRp %SNRe

M1 20 7 11 2
M2 18 4 11 3
M3 28 5 19 4
M4 22 4 13 6
M5 26 4 18 4
M6 43 8 30 5
M7 20 4 11 5
M8 16 3 12 1
M9 16 4 9 3
M10 14 4 8 2
M11 49 9 39 1
M12 29 4 18 7

2Notice that the computational cost is still non-negligible.
Taking, for instance, M12, the computation of all its sources after
the selections requires almost one week exploiting 100 CPU.
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the algorithm computes the new SNR ρisoi , using
Sn;kðfÞ (k refers to the iteration number).

(3) If ρisoi > ρ0, the code subtracts the source from the
confusion noise SgwbðfÞ. Instead, if ρisoi < χρ0, the
program skips the computation of the SNR for that
source and adds it automatically to the final fore-
ground. Here, χ is a prefixed factor, typically smaller
than one.

(4) After subtracting the bright sources in the previous
step, the algorithm returns to step 2., estimating
Sn;kþ1ðfÞ and iteratively performing the same
procedure.

The iteration proceeds until there are no more sources with
ρisoi > ρ0 or alternatively when Sn;kþ1ðfÞ ∼ Sn;kðfÞ, within
a fractional tolerance limit. Typically, the algorithm
requires one to five iterations to converge. An illustration
of the procedure is represented in Fig. 5.

V. RESULTS

Combining the EMRI waveform modelization, the LISA
TDI, and the GWB computation, we evaluated the EMRI
background for the 12 catalogs as shown in Fig. 6. The
GWB curves for all models lie between the optimistic and
the pessimistic scenarios, which are models M12 and M11,
respectively. Uncertainties in the EMRI GWB estimate
span about 3 orders of magnitude, which is consistent with
the uncertainty in the EMRI rates reported by [25]. One
thing is noteworthy: part of the investigated models predicts
a GWB comparable to or higher than the LISA instrumental
noise, which therefore cannot be neglected when consid-
ering the detectability of other sources [23]. M12 and M7

overcome the LISA level, while M1, M3, M4, M5, M9, and
M10 are less than an order of magnitude apart from the
black line in the bucket, thus making a non-negligible
contribution to the total PSD.
To characterize each single GWB, we compute its SNR.

Since we are neglecting the T channel, the overall SNR is
just the square root of the sum in quadrature of the A and E
channels. The SNR of GWB in A and E TDI LISA channel
has been computed through [43,44]

SNRi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tobs

Z
∞

0

df

�
Sgwb;iðfÞ
Sn;iðfÞ

�
2

s
ð10Þ

where i can be A or E, and SGWB;i is the PSD due to the
GWB. Numbers are reported in Table V assuming 4 years
of data collection. For most models, the SNR of the

FIG. 5. Illustration of the procedure for estimating the unre-
solved GWB from EMRIs. This plot refers to M12, and it takes
four iterations for the algorithm to converge. The starting data are
represented in blue, while orange shows the result at the end of
the procedure. The final combined instrument plus median
confusion noise is represented in green.

FIG. 6. The GWB generated in the 12 different EMRI for-
mation scenarios represented in the TDI variables A (top panel)
and E (bottom panel). The black line is the LISA noise in the
correspondent channel.
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unresolved GWB is larger than 100, making the signal
easily detectable. The GWB produced by models M2,
M6, and M8 has a moderate SNR and might be hard to
detect, whereas model M11 does not produce an appreci-
able signal.

A. Comparison with the literature

We can perform a comparison between our results and
the findings of [23] by matching the SNRs shown in
Table V with those in the second last column of Table II.
The latter are computed following the same approach as
[23], but applying the same sources selection described in
Sec. IVA. We observe that our SNRs are lower with respect
to those of [23] by a factor between 2 and 4, depending on
the model. This difference may be due to some discrep-
ancies between the two approaches used to estimate the
EMRI GWB.
The first obvious reason can be ascribed to the choice of

the waveform. Indeed, we perform our computation using
the innovative AAK, which is more accurate (at the level
of the numerical kludge) with respect to the AK waveform,
used in [23]. As shown in Fig. 12 of [23], the AK model
captures the salient features of the waveform, but is less
precise in modeling the spectrum close to the final plunge,
because it overestimates the frequency of the last stable
orbit. This effect is enhanced when truncating the inspiral-
ing at Kerr separatrix (green line), but it is also present in
the Schwarzschild case. Thus, the excess power in the AK
signal at higher frequencies can possibly induce a boost in
the SNR. However, it is difficult to track this effect, since it
can vary source by source given the complexity of the
EMRIs signal.
A second cause contributing to the discrepancy can be

related to the computation of the SNR itself. Indeed, in our
study, the final SNRs are computed including in the noise
spectral density both the instrumental and the EMRIs

background component, unlike Table II (and [23]) where
the astrophysical noise has been neglected. Consequently,
the SNR can be lower since the noise level is higher.
Moreover, neglecting the EMRI GWB in the background
computation can lead to an incorrect subtraction of the
resolvable sources.
Finally, the GWB computation in [23] is based on the use

of inclination-polarization averaged fluxes, while we auto-
matically take into account the inclination of each indi-
vidual system with respect to the observation frame
injecting the signal in the TDI variables, which ultimately
makes our estimation more realistic.
In Table V, we also report the number of resolvable

sources which have been subtracted from the background
using the iterative algorithm. We compare our results to
the only other two estimates found in the literature, in
[23] and [25]. In the last column of Table II, we report the
EMRI detected in 4 years obtained with the same
procedure as in [23], but adjusted with respect to our
selection. Our detection rates are more than a factor of 3
smaller, except for M11, for which we confirm that no
EMRI can be resolved. As mentioned, this discrepancy is
twofold: (i) due to the AK waveform employed and on
whether it is truncated at the Kerr or Schwartzschild last
stable orbit, the truncation at the Kerr separatrix causes an
excess power at high frequencies compared to the AAK
waveform, inducing a boost in the SNR, and (ii) the
instrumental noise level assumed in [25] is about 1.5
lower (above 2–3 mHz) compared to the currently
adopted. In addition, some of the removed EMRIs,
especially those with p0 < 10, might be sufficiently loud
to be resolved (without affecting the GWB). Still, when
[23] add (in an approximate fashion) the corresponding
EMRI GWB to the LISA sensitivity curve, we find rates
of the same order (i.e., column labeled “AKSb” in Table II
of [23]).
Compared to numbers obtained by [25] and reported in

Table I, our detection rates are even lower. For example,
considering the optimistic case M12, the EMRI detection
rate reported in Table I is 4219 per year in the Kerr case and
2279 per year in the Schwartzschild case, while we obtain
only 891 detections in 4 years, i.e., only ≈200 events per
year. The difference can be ascribed to a number of causes:
the selection of the sources in our catalogs, the choice of the
waveform, and how the resolvable sources are subtracted,
as explained in the previous comparison with [23]. A direct
comparison with [25] is unfortunately not straightforward:
[25] considers catalogs of EMRIs plunging over 10 years
and computes SNR by considering only the last 2 years
before the plunge (integrating backwards in time). They
then divide the obtained numbers by 10 to get the detection
rates per year. This procedure implies that the EMRI
detection rate can somehow be independent of the mission
duration; however, as shown in [23], this does not seem to
be the case. The EMRI detection rate indeed depends

TABLE V. Number of resolvable sources and residual GWB
SNR for the investigated astrophysical models. The results have
been obtained considering 4 years of observation and using the
AAK waveform [26].

Model Detections SNRGWB

M1 139 180
M2 42 40
M3 346 441
M4 516 235
M5 188 252
M6 13 21
M7 724 980
M8 19 22
M9 108 160
M10 97 136
M11 0 1.44
M12 891 1146
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nonlinearly on the observation time, making any direct
comparison flawed.

VI. CONCLUSIONS AND OUTLOOK

In this study, we take another stride towards a compre-
hensive assessment of the stochastic GWB originating from
a population of EMRIs for LISA. Our approach entails
incorporating the entire LISA response and utilizing a
realistic gravitational waveform. Three main ingredients
have been combined to achieve the goal: the generation of
populations of EMRIs, the simulation of their GW signals,
and their injection in LISA data stream.
We first built the EMRI population from the astrophysical

models developed in [25], which include the most relevant
ingredients driving EMRI formation in the standard
relaxation-driven channel. Following the procedure devised
in [23], we constructed from thesemodels the corresponding
EMRI catalogs. To speed up the foreground computation,
we removed the sources contributing less to the final GWB
by putting a minimum threshold in the single SNR pre-
computed with a simplified, inclination-polarization aver-
aged version of the AK waveform. Additionally, we
removed sources with initial eccentricity exceeding 0.9
and semilatus smaller than 10 to avoid computational issues
connected to the choice of the waveform.
We simulated the GW waveform of each EMRI assum-

ing a 4 year mission and exploiting the innovative AAK
waveform. We injected the GW signals in LISA using full
TDI response. This technique combines the measurements
along each LISA link in order to remove the laser frequency
noise, which will be the dominant source of the noise.
Finally, we estimated the final GWB using an iterative
algorithm which removes the resolvable sources from the
background. We found that all the astrophysical models,
except for one (the pessimistic M11), result in a detectable
EMRI GWB, with SNRs accumulated in 4 years of
observation ranging from ≈20 up to > 1000, cf. Table V.
The background will act mainly in the range 10−3–10−2 Hz;
in particular, GWBs from optimistic models (such as M7
and M12) are loud enough to dominate over the LISA
instrumental noise in this frequency range. In the same
timespan, LISAwill allow the identification and characteri-
zation of several individual systems, up to≈1000 in themore
optimistic case (again, cf. Table V). We stress that since
we excluded sources with initial semilatus rectum smaller
than 10, which can contribute significantly to the signal,
the aforementioned numbers are likely underestimated.
Furthermore, given also the complexity of both the EMRI
and the procedure computation of the GWB, it is difficult to
quantify which ingredients contribute most to the discrep-
ancy with previous results in the literature.

Our findings have several practical consequences for the
forthcoming LISA mission. Specifically, EMRI GWB can
significantly contribute to the LISA noise level around the
sensitivity bucket, possibly jeopardizing the detectability of
other interesting sources in the LISAwindow. In particular,
the effect might be severe for two families of GWs sources
that are of paramount importance for the mission, namely,
the merger of massive black holes binaries seeds occurring
at high redshift and the stellar origin black holes binaries.
Because of their low mass and high redshift, seed binaries
will populate the bottom of the LISA sensitivity bucket,
overlapping with the EMRI GWB. SOBH binaries, instead,
can be grouped into two categories: slow inspirals and
multiband systems. The latter, which are perhaps the most
interesting, are observed at f > 0.01 Hz and should be
unaffected. Conversely, slow inspirals are mostly found at
f < 0.01 Hz, where the GWB is more prominent and can
greatly impact their SNR.
Finally, the EMRI GWB is not the only stochastic signal

expected to fall into the LISA frequency band. Other sources
of stochastic astrophysical foregrounds are anticipated to be
GCBs and extragalactic neutron star and SOBH binaries. In
our galaxy alone, it is estimated that there are roughly
250 million detached and 10 million interacting white dwarf
binaries [45]. The sensitivity of LISAwill allow the detection
of thousands of these binaries as individual sources. The
GWs from the other millions of binaries, especially below
1 mHz, will combine to form an unresolved background.
Unlike EMRIs, these sources are anisotropically distributed
in the sky and are concentrated in the disk of our Galaxy. As
LISA orbits the sun, its orientation will change continuously,
changing the antenna pattern of the detector and, conse-
quently, the directions along which the detector will be most
sensitive. The GW signals coming from the Galactic Plane,
hosting the vast majority of WD binaries, will therefore
fluctuate during a 1-year cycle, making the identification of
the WD noise easier. Conversely, extragalactic SOBH and
NS binaries will also be isotropically distributed, and their
resulting GWB will overlap significantly with the one
produced by EMRIs. The detection and characterization
of these astrophysical backgrounds is going to be challeng-
ing, and further studies and dedicated analysis pipeline
developments are needed in order to assess the potential
of LISA to identify and separate them from each other.
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