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We study the impact of out-of-equilibrium, dissipative effects on the dynamics of inspiraling neutron
stars. We find that modeling dissipative processes (such as those from the stars internal effective fluid
viscosity) requires that one introduce a new tidal deformability parameter—the dissipative tidal
deformability—which modifies the phase of gravitational waves emitted during the inspiral phase of a
neutron star binary. We show that the dissipative tidal deformability corrects the gravitational-wave phase at
4 post-Newtonian order for quasicircular binaries. This correction receives a large finite-size enhancement
by the stellar compactness, analogous to the case of the tidal deformability. Moreover, the correction is not
degenerate with the time of coalescence, which also enters at 4 post-Newtonian order, because it contains a
logarithmic frequency-dependent contribution. Using a simple Fisher analysis, we show that physically
allowed values for the dissipative tidal deformability may be constrained by measurements of the phase
of emitted gravitational waves to roughly the same extent as the (electric-type, quadrupolar) tidal
deformability. Finally, we show that there are no out-of-equilibrium, dissipative corrections to the tidal
deformability itself. We conclude that there are at least two relevant tidal deformability parameters that can
be constrained with gravitational-wave phase measurements during the late inspiral of a neutron star binary:
one which characterizes the adiabatic tidal response of the star, and another which characterizes the
leading-order out-of-equilibrium, dissipative tidal response. These findings open a window to probe
dissipative processes in the interior of neutron stars with gravitational waves.

DOI: 10.1103/PhysRevD.108.103037

I. INTRODUCTION

A long-standing goal in astrophysics and nuclear particle
physics has been to determine the neutron star equation of
state [1–3], i.e., the relation between the pressure and the
energy density in the interior of a neutron star. The neutron
star equation of state affects a variety of macroscopic and, in
principle, observable properties of neutron stars, such as their
mass, radius, moment of inertia, and tidal deformability. The
latter is a measure of how much a star deforms in response to
an exterior tidal field induced, for example, by its companion
in a binary system (for a review see [4]). The tidal defor-
mations of stars in a binary affect their orbital evolution, and
therefore, these deformations become encoded in the emitted
gravitational waves [5–7]. The measurement of the tidal
deformability of neutron stars is challenging, as tidal correc-
tions enter the waveform at 5 post-Newtonian (PN) order1 [5].

Despite this, measurements by the LIGO-Virgo-KAGRA
collaboration have already begun to place the first mean-
ingful constraints on the tidal deformability, and thus, on
the equation of state of neutron stars with gravitational
waves [8–18].
The tidal deformability of a star is usually defined in

terms of its tidal Love number, which describes the linear
and adiabatic (or “prompt”) response of the star with
respect to an imposed external gravitational field [7,19–21].
Recently, extensions beyond this quasistatic response have
begun to be investigated. One such extension is the study of
“dynamical tides,”meant to represent f-mode-like harmonic
oscillations of a star, which may be excited very close to
merger [22–24].2 Here we consider a different extension
of the quasistatic tidal response of a star to an external
perturbation: the non-adiabatic, out-of-equilibrium, and
dissipative (or just dissipative for short) tidal response of
a neutron star. After reviewing an effective-field-theory
approach to define this quantity, we derive its impact on
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1A term in the mathematical representation of some quantity is

said to be of N PN order if it scales as ðv=cÞ2N relative to the
leading-order piece of that representation in a PN expansion; for a
review see [4].

2Even if the f-mode is not resonantly excited during the
inspiral, it may still bias the measurement of the tidal Love
number [25].
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the phase of gravitational waves emitted during late inspiral
but before the merger of a neutron star binary.
Before reviewing earlier work, we first outline how

dissipative effects impact the dynamics of two initially non-
spinning stars in a binary. The gravitational potential of one
star induces a tidal bulge in the other star, and the presence
of viscosity makes the bulge slightly lag the slowly
changing gravitational potential, as the two objects orbit
each other. This lag then torques the star, which causes it to
start spinning. This spinning motion requires energy and
angular momentum, which is extracted from the orbital
angular momentum of the system, thus accelerating the rate
of inspiral.
It is well known that these effects play an important role

in the tidal dynamics of giant stars and satellites (for
reviews see [26,27]). For giant stars, the effect of tidal
dissipation is so large that it ultimately locks the spins of
the objects in a binary system to the orbital frequency of the
binary. One of the first attempts at quantifying the impact of
dissipative effects on the gravitational-wave inspiral phase
of neutron star binaries was performed by Bildsten and
Cutler in [28]. In that work, the authors estimated how
viscosity would affect the binary through the process of
dissipative tidal spin up. Bildsten and Cutler found that the
dissipative (through viscous forces) timescale for momen-
tum transport across a neutron star would need to be of
the order of the light-crossing time of the star in order for
this effect to tidally lock the stars, and thus appreciably
affect the binary evolution.3 Such a short viscous transport
timescale would require values of shear/bulk viscosity that
are unphysically large, which led them to conclude that
viscous tidal spin up cannot be detected with gravitational-
wave observations. This conclusion (see also [29]) led to
the general expectation that viscous effects should be
unmeasurable during the inspiral.4

In this work, we revisit the calculation of tidal dissipation
in neutron star binaries. In our analysis, we consider a
general parametrization of the tidal response of a neutron
star that includes its leading-order dissipative response. We
ultimately find that, even in the absence of tidal locking,
dissipative effects enter the gravitational-wave phase of
quasicircular binaries at 4PN order. By itself, this result is
not new; tidal dissipative effects are known to appear at
4PN order in black hole binaries [31–33]. Unlike earlier
work though, we find that values of tidal dissipation much
smaller than those needed to tidally lock a neutron star
before merger could lead to an observable imprint on the
gravitational wave phase of neutron star binaries. This
essentially arises because the tidal dissipation parameter

that enters the phase receives a large finite-size enhance-
ment (analagous to the case for the tidal Love number).
We introduce a new “dissipative” tidal deformability

parameter that characterizes the leading-order viscous
correction to the gravitational-wave phase. This dissipative
tidal deformability parameter has yet to be self-consistently
calculated for relativistic stars. Nevertheless, we provide
an order-of-magnitude estimate of its value, which leads us
to conclude that physically allowed values of dissipative
(viscous) effects could potentially be constrained with
current gravitational-wave ground-based detectors. By
“physically allowed” values of dissipation, we mean values
of dissipation that are small enough that the average
timescale of dissipative momentum transport across the
star is less than the speed of light [28]. We note that many
different physical processes could in principle contribute to
the dissipative tidal deformability. The largest contributions
contributions for neutron stars are expected to arise from
Urca processes, which can lead to an effective bulk
viscosity for sufficiently cold star [34–36]. We perform a
preliminary Fisher analysis to estimate the ability to
constrain such mechanisms using advanced LIGO with a
GW170817 like event. We leave a more rigorous Bayesian
analysis to future work.
Finally, we show that there are no dissipative corrections

to the tidal Love number itself. Thus, the measurement of
two tidal deformability parameters—one which enters at
4PN and one which enters at 5PN in the gravitational-wave
phase—characterizes the dominant dissipative and equilib-
rium properties of matter at supranuclear densities inside
neutron stars.
The remainder of the paper presents the detailed deri-

vation that leads to the conclusions summarized above, and
is organized as follows. We introduce an effective point
particle action in Sec. II, where we show that out-of-
equilibrium effects enter the relativistic equations of motion
at 6.5PN order. We then specialize to the Newtonian
dynamics of two objects in Sec. III, where we derive the
Newtonian equations of motion, and then derive the
quadrupolar gravitational radiation emitted from the binary
within the adiabatic, quadrupolar approximation. In Sec. IV
we turn to the self-consistency of the approximations we
made in deriving the gravitational-wave phase in Sec. III
and present results from a Fisher analysis. In Sec. V, we
demonstrate that there are no out-of-equilibrium contribu-
tions to the tidal Love number. We conclude and point to
future research in Sec. VI. The appendices review our
notation, and include more details of the fluid models we
use in Sec. V. Our notation for fluid variables follows [37].

II. EFFECTIVE POINT PARTICLE DESCRIPTION
OF COMPACT OBJECTS AND NOTATION

In this section, we model the tidal interaction of a
compact binary system immersed in an external field using
a point-particle action [38]. In the effective field theory

3Earlier work on the tidal interactions of neutron star binaries
found similar results [29].

4We note that nonviscous/nondissipative effects can also spin-
up a neutron star as it orbits it companion, although these effect
are also expected to be too small to be measurable [30].
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description of extended objects, finite size effects are
accounted for via higher-derivative terms in the action
[39–41] (for a more recent review see [42]). To leading
order in derivatives, the effective point-particle action
reads [43]

S ¼
Z

dτ
�
−mc2 þQμν

ðEÞEμν þQμν
ðBÞBμν þ � � ��; ð1Þ

where τ is the proper time of the particle, Eμν ≡ Cμανβvαvβ

and Bμν ≡ 1
2
ϵμαβρCαβ

νσvρvσ are the electric and magnetic
parts of the Weyl tensor respectively,Qμν

ðE=BÞ are the object’s
electric/magnetic quadrupole moments, and vμ ≡ dxμ=dτ is
its four-velocity.
The response of the body to the external field can be

complicated and nonlinear. For weak enough tidal fields,
a simple, albeit phenomenological, way to model the
response is through a linear response function. For con-
creteness, we focus on the electric part of the Weyl tensor
and write

Qμν
ðEÞðτÞ ¼

Z
∞

−∞
dτ0ðF2Þμναβðτ − τ0ÞEαβðτ0Þ: ð2Þ

From here on we consider a homogeneous, retarded
transfer function

ðF2Þμναβðτ − τ0Þ ¼ δμαδνβΘðτ − τ0ÞF2ðτ − τ0Þ; ð3Þ

where Θðτ − τ0Þ is the step function. Matching the
internal dynamics of the compact object to its external
motion amounts to determining the response function
F2ðτ − τ0Þ [44].
We can simplify our parametrization of the linear response

function by using a separation of scales argument. If the
orbital timescale is much longer than the internal, dynamical
timescales of the star, we make a common assumption and
assert that the tidal response can be written as

Qμν
ðEÞðτÞ ¼ −λð0Þ2

X∞
n¼0

τðnÞ2

dn

dτn
EμνðτÞ: ð4Þ

This expansion implies that F2ðτ − τ0Þ is analytic in Fourier
space. That is, it is equivalent to F2ðωÞ taking the form
(cf. [44]),

F2ðωÞ ¼ −λ2
X∞
n¼0

τðnÞ2 ðiωÞn: ð5Þ

We note that λð0Þ2 has SI units of meter5 and τðdÞ2 has SI units
of secondsd.

The coefficients τðnÞ2 quantify the response of the quadru-
pole moment to the changes in the tidal field. We can set

τð0Þ2 ¼ 1 through a definition of λð0Þ2 , and we will do so for
the remainder of this article. Truncating the expansion of
the (electric) quadrupole moment to first order, we obtain

Qμν
ðEÞ ¼ −λð0Þ2 Eμν − λð0Þ2 τð1Þ2

d
dτ

Eμν þO
�
τð2Þ2

���� d
2Eμν

dτ2

����
�
: ð6Þ

We see that λð0Þ2 is proportional to the adiabatic tidal Love
number [20,21,45]. By contrast, the term proportional to

τð1Þ2 captures dissipative tidal effects, and introduces a time
delay between the value of Qμν and Eμν [46].

We now simplify notation by setting τð1Þ2 ¼ −τd and
discuss why this quantity captures the tidal delay. Viscous
effects are known to cause a time delay between the induced
quadrupole moment of a body and the time-dependent,
imposed gravitational field [46,47]. Assuming that the delay
time τd is roughly constant, we then have

Qμν
E ðτÞ ¼ −λð0Þ2 Eμνðτ − τdÞ: ð7Þ

Series expanding this expression in τd, we can iden-

tify τð1Þ2 ¼ −τd.
Before continuing, we compare our effective action

[Eq. (1)] with another model that is commonly used to
model “dynamical tides,” i.e., the impact of neutron star
oscillations on the orbital dynamics [23]. In this approach,
the point particle is modeled as a simple harmonic oscillator
that oscillates at the lowest (fundamental) frequency of the
star. Considering only the electric-type deformation of the
neutron star, the effective point particle Lagrangian in that
case reads (for quasi-Newtonian treatments see also [4,5])

LDT ¼ z
4λω2

f

�
c2

z2
dQðEÞ

μν

dτ

dQμν
ðEÞ

dτ
−ω2

fQ
ðEÞ
μν Q

μν
ðEÞ

�
−
z
2
EμνQ

μν
ðEÞ;

ð8Þ

where z2 ≡ vμvμ is the redshift factor, ωf is the lowest
oscillatory frequency of the star (the f-mode), and λ is a
constant. Varying the action and transforming to frequency
space, we can arrange the equation of motion for Qμν

ðEÞ
to read

Qμν
ðEÞ ¼ −

λ

1þ c2

z2
1
ω2
f

d2

dτ2
Eμν;

¼ −λ
X∞
n¼0

ð−1Þn
�

c2

z2ω2
f

d2

dτ2

�
n

Eμν: ð9Þ

We see that Eq. (9) takes the form of Eq. (4), with τðnÞ2 ¼ 0

if n is odd. We note that Eq. (8) does not take into account
dissipative effects, because the action is clearly time-
reversal invariant.
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Finally, we provide an estimate of the regime of the
validity of our model, represented through Eq. (6), for the
evolution of an object in a bound gravitational binary. We
replace d=dτ → 1=τsys, where τsys is a characteristic proper
timescale of the object’s motion. Later on, when carrying
out a more quantitative estimate, we will set τsys to be the
orbital period for binary motion. Following our above

discussion, we set τð1Þ2 to be equal to the characteristic tidal

lag timescale τd, and τð2Þ2 to be equal to the square of the
characteristic internal oscillatory proper timescale of the
object, τ2int ≈ ω−2

f . Inserting this into Eq. (4), we obtain
the inequalities

1 ≫
���� τdτsys

����; 1 ≫
�
τint
τsys

�
2

: ð10Þ

The expansion Eq. (4) is valid provided these inequalities
are satisfied.5 For a quasicircular binary orbit, this breaks
down only right before merger, when the characteristic time
lag timescale and the oscillatory timescale become com-
parable to each other and to the orbital period. We verify
this explicitly for one phenomenological parametrization
in Sec. IV B.

III. OUT-OF-EQUILIBRIUM EFFECTS ENTER
THE GRAVITATIONAL-WAVE PHASE

AT 4PN ORDER

In this section, we derive the leading-order contribution

to the gravitational-wave phase that depends on λð1Þ2 . We set
up our notation in Sec. III A, and in Sec. III B, we show that
the equations of motion for a point particle are modified at

6.5PN order by dissipative corrections arising from τð1Þ2 .
Despite this, we show in Sec. III C that the gravitational-
wave phase is affected by dissipative effects at 4PN order.
In short, this is because dissipative effects decrease the
Newtonian orbital energy of the binary, while the adiabatic
tidal Love numbers conserve the Newtonian orbital energy.

A. Notation

We label the two objects in the binary, and any physical
quantities associated with them, with the subscripts A and
B. We use the word “object” instead of “neutron star” or
“black hole,” to remain agnostic about the system in
question. The masses of the two objects are mA and mB,
the total mass is M ≡mA þmB, the reduced mass is

μ≡mAmB=M, and the symmetric mass ratio is
η≡ μ=M. The characteristic radii of the objects are RA
and RB, which could refer to the equatorial radius for a
neutron star or the areal radius for a black hole. We also
define the mass ratio by q ¼ mA=mB. The compactness of
body A is defined by

CA ≡ GmA

RAc2
: ð11Þ

The response coefficient λð0Þ2;A of object A is related to the
tidal Love number k2;A by

λð0Þ2;A ¼ 2

3
k2;AR5

A: ð12Þ

We define two dimensionless tidal deformabilities

ΛA ≡ λð0Þ2;Ac
10

ðGmAÞ5
¼ 2

3

k2;A
C5
A

; ð13aÞ

ΞA ≡ −
λð0Þ2;Aτ

ð1Þ
2;Ac

13

ðGmAÞ6
¼ 2

3

k2;A
C6
A

cτd;A
RA

: ð13bÞ

The parameter ΛA is the (electric-type, quadrupolar) tidal
deformability, and is sometimes denoted by λ̄A in the
gravitational-wave literature. We call ΞA the dissipative
tidal deformability. We also define two binary tidal
deformabilities

Λ̄≡ fðηÞΛA þ ΛB

2
þ gðηÞ ðΛA − ΛBÞ

2
; ð14aÞ

Ξ̄≡ f1ðηÞ
ΞA þ ΞB

2
þ g1ðηÞ

ΞA − ΞB

2
; ð14bÞ

where

fðηÞ ¼ 16

13
ð1þ 7η − 31η2Þ; ð15aÞ

gðηÞ ¼ −
16

13

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
ð1þ 9η − 11η2Þ; ð15bÞ

f1ðηÞ ¼ 8ð2η2 − 4ηþ 1Þ; ð15cÞ

f2ðηÞ ¼ −8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
ð1 − 2ηÞ: ð15dÞ

The binary tidal deformabilities Λ̄ [48,49] and Ξ̄ will
appear in the gravitational waveform instead of the indi-
vidual tidal deformabilities of each body. We work with
Cartesian coordinates ðct; x; y; zÞ. The indices ði; j;…Þ are
used to denote spatial coordinates only. We denote the
Newtonian quadrupolar moment of body A by IijA. Note that
IijA is the nonrelativistic limit of Qij

A . We occasionally

5We note that as τd and τint capture distinct physical effects
(τd describes purely dissipative effects, while τint is conservative),
we do not have the inequality jτd=τsysj ≫ ðτint=τsysÞ2. In effect,

if 1 ≫ ðτintτsys
Þ2 holds, then λð0Þ2 describes the leading-order

conservative response of the system; we are not near a resonance.
If 1 ≫ j τd

τsys
j holds, then we only need to expand to linear order in

d=dτ to describe the dissipative effects in the tidal response.
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denote time derivatives with an overhead dot. We use h� � �i
in index lists to denote the symmetric trace-free combina-
tion of tensorial indices.

B. Newtonian equations of motion

We work in the center-of-mass frame, where the equa-
tions of motion for a binary take on a simple form (for
a review, see [4]). To leading order in the multipolar
moments of objects A and B, the center-of-mass equations
of motion are

ai ¼ −
GM
r2

ni þ
GM
2

�
IhjkiA

mA
þ IhjkiB

mB

�
∂i∂j∂k

1

r
; ð16Þ

where ai ≡ ẍiA − ẍiB is the relative acceleration. Notice that
we have not included the spin of the objects in the equations
of motion; we discuss the validity of neglecting the spin
induced on each object due to tidal torquing in Sec. IVA.
The Newtonian, linear tidal response of body A is given

by the nonrelativistic limit of Eq. (6), namely

GIijA ≈
�
GmA

c2

�
5
�
ΛAE

ij
A −

GmA

c3
ΞAĖ

ij
A

�
; ð17Þ

where Eij
A is the quadrupolar tidal field felt by A, as caused

by B,

Eij
A ¼ −GmB∂

i
∂
j 1

r
¼ −

3GmB

r3
nhiji: ð18Þ

The time derivative of Eij
A is

Ėij
A ¼ 9GmB

r4
ṙnhiji −

3GmB

r3
ðṅinj þ niṅjÞ;

¼ 9GmB

r4

�
ṙnhiji −

2

3
ðvðinjÞ − ṙninjÞ

	
; ð19Þ

where we have used the relative velocity vi ≡ ẋiA − ẋiB, and
nhiji ≡ ninj − 1

3
δij. Note that Ėij

A is a symmetric trace-free
tensor because nivi ¼ ṙ. We conclude that the quadrupolar
moment of body A is

IijA ¼ 3mB

r3

�
GmA

c2

�
5
��

ΛA þ 3GmA

c3
ṙ
r
ΞA

�
nhiji

−
2GmA

c3
vðinjÞ − ṙninj

r
ΞA

	
; ð20Þ

with analogous expressions for object B.
With this in hand, we find that the center-of-mass

equations of motion are

aj ¼ −
GM
r2



nj þ 9G5

c10r5
�
mBm4

AΛA þ A ↔ B
�
nj

þ 9G6

c13r6
�
mBm5

AΞA þ A ↔ B
�ð2ṙnj þ vjÞ


; ð21Þ

and from this we can read off the relative PN order at which
tidal effects affect the equation of motion for a binary
system. As usual, we count every relative factor of
GM=ðrc2Þ (as compared to the leading order contribution)
as 1PN order, and a power of ṙ=c or vj=c as 1=2 PN
order [50]. From that counting, we see that the adiabatic
finite-size correction, ΛA, enters as a 5PN order correction
to the point-particle term ð−GM=r2Þnj. Similarly, the
contribution from ΞA appears as a 6.5PN order correction
(see also [43]). The fact that the leading-order finite size
effect is 5PN order smaller than the point particle con-
tribution is sometimes called the effacement principle [38].
We next determine the leading-order conserved energy

and the dissipation due to ΞA. First, we contract the center-
of-mass acceleration in Eq. (21) with μvi, and simplify to
obtain

d
dt

�
1

2
μvivi −

GμM
r

−
3G6μM
2c10r6

�
mBm4

AΛA þ A ↔ B
�	

¼ −
9G7μM
c13r8

�
mBm5

AΞA þ A ↔ B
��
2ṙ2 þ vivi

�
: ð22Þ

We reorganize this equation as

dEorb

dt
¼ F diss; ð23Þ

where we have defined

Eorb ≡ 1

2
μvivi −

GμM
r

−
3G6μM
2c10r6

�
mBm4

AΛA þmAm4
BΛB

�
;

ð24aÞ

F diss ≡ −
9G7μM
c13r8

�
mBm5

AΞA þmAm5
BΞB

��
2ṙ2 þ vivi

�
:

ð24bÞ

The quantity Eorb denotes the conserved orbital energy,
which includes the contributions from the point-particle

term and from λð0Þ2;A. The energy flux due to tidal lag is

represented by F diss. As τ
ð1Þ
2;A < 0 [see Eq. (7)], the orbital

energy decreases in time due to tidal dissipative effects for
nonspinning binaries. We emphasize that this correction is
present even when one ignores gravitational waves, i.e.,
even when one does not backreact the radiative losses in the
system due to gravitational wave emission.
We next restrict the above equations to quasicircular

orbits. Technically, circular orbit solutions to the above
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equations only exist when dissipation is set to zero. By
“quasicircular orbits,” we here mean those which deviate
from circular orbits adiabatically, such that dissipation can
be treated perturbatively. We therefore consider perturba-
tive solutions [5], where both the conservative (ΛA) and the
dissipative (ΞA) tidal coefficients are assumed to introduce
small deformations. With this in mind, we use the solution
ansatz

xi ¼ rðtÞ½cosφðtÞ; sinφðtÞ; 0�; ð25aÞ

rðtÞ ¼ r0 þ δrðtÞ; ð25bÞ

φðtÞ ¼ ω0tþ δφðtÞ: ð25cÞ

Here r0 and ω0 satisfy the equations of motion for a circular
orbit, and thus, ω2

0 ¼ GM=r30. The perturbative quantities
δr and δφ capture corrections to circular orbit to linear
order in ΛA and ΞA. Inserting Eq. (25) into Eq. (21), we
have

cosðωtÞ
�
9

�
c4

GM

�
mBm4

A

M5
ΛAγ

7
0 − 3

�
c3

GM

�
2

γ30δr

− 2cγ1=20

dδφ
dt

þ d2δr
dt2

þ A ↔ B

	

þ sinðωtÞ
�
−9

�
c4

GM

�
mBm5

A

M6
ΞAγ

17=2
0

− 2

�
c3

GM

�
γ3=20

dδr
dt

−
�
GM
c2

�
1

γ0

d2δφ
dt2

þ A ↔ B

	

þO
�
δr2; δφ2

� ¼ 0; ð26Þ

where

γ0 ≡ GM
r0c2

; ð27Þ

Solving Eq. (26) for δr and δφ, we obtain the particular
solutions

δr ¼ c1 þ 3

�
GM
c2

�
mBm4

A

M5
ΛAγ

4
0 − 18

mBm5
A

M6
ðctÞΞAγ

7
0

þ A ↔ B; ð28aÞ

δφ ¼ c2tþ
27

2

mBm5
A

M6

�
c3t
GM

�
2

ΞAγ
19=2
0 þ A ↔ B; ð28bÞ

where c1 and c2 are constants of integration that must be
related to each other by

3

�
c3

GM

�
2

γ30c1 þ 2cγ1=20 c2 ¼ 0 ð29Þ

for Eq. (26) to be satisfied. We must now make a choice
about these constants of integration. We choose to set
c1 ¼ c2 ¼ 0, which sets ω≡ dφ=dt ¼ ω0 at t ¼ 0. Said
another way, we choose the constants of integration such
that ω0 is not just equal to the point-particle contribution to
ω, but is also the initial angular frequency. Note that this
choice implies that γ0 ≠ γ ≡GM=ðrconsc2Þ, where rcons is
the conservative part of the orbital separation. With our
choices, we now have that these two γs are related by

γ ¼ γ0

�
1 − 3

mBm4
A

M5
ΛAγ

5
0

�
: ð30Þ

With these solutions in hand, we can now find the orbit-
averaged energy and dissipative flux. We insert the
conservative part of the solution to r and φ into the orbital
energy expression in Eq. (24a), and the tidal dissipative part
into Eq. (24b), to find

Eorb ¼ −
1

2
μc2γ0 þ

9γ60μc
2

2M5

�
mBm4

AΛA þmAm4
BΛB

�
;

ð31aÞ

F diss ¼ −
9 μc5γ90
GM7

�
mBm5

AΞA þmAm5
BΞB

�
: ð31bÞ

We define the orbital average of a quantity AðtÞ as

hAi ¼ F
Z

1
F

0

dtAðtÞ; ð32Þ

where F ¼ ω=ð2πÞ is the orbital frequency. We can now
orbit average the solutions given in Eq. (28) to obtain the
secular changes in the orbital elements over one orbit

�
dδr
dt

�
≈ −18

mBm5
A

M6
cΞAγ

7
0 þ A ↔ B; ð33aÞ

�
dω
dt

�
≈ 27

mBm5
A

M6

�
c3

GM

�
2

ΞAγ
19=2
0 þ A ↔ B: ð33bÞ

Tidal dissipation causes two initially nonspinning objects to
inspiral, hdr=dti < 0 and hdω=dti > 0. Had the two object
been rapidly spinning, with a rotational frequency greater
than the orbital frequency, spin-orbit coupling would
instead transfer spin angular momentum to the orbital
angular momentum, and we would have hdr=dti > 0
and hdω=dti < 0 [46].

C. Approximate gravitational-wave phase

Having computed the Newtonian equations of motion,
we can now compute the phase of the Fourier transform of
the gravitational waves emitted. Working in the stationary-
phase approximation, we have that [51]
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ΨðfÞ ¼ −2π
Z

f=2
τ0
�
2 −

f
F0

�
dF0; ð34Þ

where τ0 ¼ F0=Ḟ0 and where the gravitational-wave fre-
quency f satisfies the stationary-phase condition f ¼ 2F
(we consider an l ¼ 2mode). This expression can be recast
in a slightly simpler form. Doing so, one finds that [52]

d2Ψ
df2

¼ 2π

Ėtot

dEtot

df
: ð35Þ

For completeness, we provide a derivation of this result
in Appendix A. The total energy Etot ¼ Eorb is given in
Eq. (31a). In the adiabatic approximation, the rate of change
of the total energy can be related to the total energy flux via
the balance law

d
dt

Etot ¼ F tot: ð36Þ

For the binaries we consider, the total energy flux is
nothing but

F tot ¼ FGW þ F diss; ð37Þ

where FGW is the energy flux due to gravitational wave
emission and F diss is the energy flux due to tidal dis-
sipation, which we derived in Eq. (31b).
We use the quadrupole formula to determine the leading-

order energy flux due to gravitational waves (see [4] for a
recent review). To leading PN order, we have

FGW ¼ −
G
5c5

�d3IThiji
dt3

d3IThiji
dt3

�
; ð38Þ

where the total conservative quadrupole moment, ITij, is
(recall there is no summation of capital Latin indices)

ITij ¼ IAij þ IBij þ μxixj;

¼ −
G4

c10
�
ΛAm5

AE
A
ij þ A ↔ B

�þ μxixj: ð39Þ

Making use of Eqs. (20), (25), and (28), and expanding to
linear order in ΛA, we find that (cf. [5])

FGW ≈ −
32

5

c5

G
η2γ50

�
1þ 6

�
1þ 3

mB

mA

��
mA

M

�
5

ΛAγ
5
0

þ A ↔ B

	
: ð40Þ

We note that we have only included the adiabatic tidal
correction in calculating FGW; the contribution of ΞA is
captured entirely in the term F diss.

We now have all the tools needed to compute the Fourier
phase. Using Eq. (35) and PN expanding, we find

d2Ψ
df2

¼ 5π2

48

1

η

�
GM
c3

�
2

u−11=2
�
1 −

45

32

1

η

mBm5
A

M6
ΞAu8

− 6

�
1þ 12

mB

mA

��
mA

M

�
5

ΛAu10 þ A ↔ B

	
; ð41Þ

where we have introduced

u≡
�
GπMf
c3

�
1=3

; ð42Þ

and we have used that γ0 ¼ u2 in the stationary-phase
approximation. Integrating this twice and using Eq. (14),
we find

ΨðfÞ ¼ 3

128

1

η
u−5

�
1 −

75

32
Ξ̄u8 logðuÞ − 39

2
Λ̄u10

	

þ 2πft̄c − φc −
π

4
; ð43Þ

where we have redefined the coalescence time via

t̄c ¼ tc þ
75GMΞ̄
8192c3η

: ð44Þ

We see that Ξ̄ appears at 4PN relative order in the phase,
and that the presence of logðuÞ ensures that it is not
degenerate with the time of coalescence. Why do these
effects enter the gravitational-wave phase at 4PN order,
when out-of-equilibrium effects enter the orbital dynamics
at 6.5PN order [see Eq. (21) and Sec. II]? The key to the
answer of this question lies in Eq. (37). Within the adiabatic
approximation, the gravitational-wave phase depends on
both the derivative of the quasiadiabatic orbital energy Eorb
and on the dissipation F diss. The adiabatic tidal Love
numbers only enter E, while, by contrast, out-of-equilibrium
effects enter F diss.
The above conclusion, that viscous effects enter gravi-

tational wave observables at 4PN order, was first speculated
about in [35] through a “Fermi” (order-of-magnitude)
estimate. The authors there found a 4PN viscous correction
to the stress-energy tensor of a neutron star. Using this, the
authors estimated that such modifications would also enter
gravitational waves at 4PN order. While dissipative cor-
rections do enter the gravitational wave phase at 4PN, the
correction computed in [35] enter the phase at higher than
4PN order. This is because corrections to the stress-energy
tensor only provide local information in the rest frame
of the object in the binary system, and the microscopic
properties of a star (through their effects on the star’s
multipole moments) enter at higher PN order in the star’s
equations of motion [38]. We expect that lower PN order
corrections to a neutron star’s stress-energy tensor will
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largely determine the dissipative tidal deformability.
Finally, we note that the estimate in [35] additionally only
found a finite-size enhancement of compactness C−2 to
the gravitational wave phase, while we find a finite-size
enhancement of compactness C−6 [see Eqs. (13) and (43)].

IV. REGIME OF APPLICABILITY AND
DETECTION PLAUSIBILITY

Here we discuss the regime of applicability of our
derivation of the phasing formula Eq. (43). We additionally
outline how a constraint on the dissipative tidal deform-
ability ΞA could be mapped to a constraint on the effective
microphysical properties of the star, namely the effective
bulk and shear viscosities of the neutron star fluid.
To estimates the values Ξ can take one needs to calculate

the value of k2 and τd for different stellar models. These
have been computed for (Schwarzschild) black holes [53]
and giant stars [27]. For a Schwarzschild black hole of mass
M, k2 ¼ 0 and

k2τd ¼
GM
30c3

: ð45Þ

For giant stars the value of τd depends on the detailed
microphysical properties of the stellar model [26,27]. A
common parametrization of the tidal lag time for the linear
tidal response, which we adopt here, is

τð1Þ2;A ≡ −τd;A ≡ −
p2;AνARA

GmA
; ð46Þ

where p2;A is a dimensionless number and νA is an averaged
quantity which has the dimensions of kinematic viscosity

ν≡ hηi
hρi : ð47Þ

Here hηi is a volume average of the shear and bulk
viscosities of the fluid, and hρi is the average density of
the star. We emphasize that Eq. (46) is a phenomenological

parametrization of τð1Þ2;A, and that the coefficient p2;A is
currently unknown for realistic equation of state (EOS). For
relativistic polytropes,6 the values of p2 for bulk viscous
flow lie in the range 0.02–0.2 and for shear viscous flow
lie in the range 0.1–10. For the purposes of this paper, we
pick p2 ¼ 0.1 for bulk viscous flow and p2 ¼ 5 for shear
viscous flow. We emphasize that the invariant quantity
that appears in the waveform is the τd and we use these
values for p2 to see how large τd can be for a given value of
shear/bulk viscosity.
With the parametrization of Eq. (46), we now determine

the regime of applicability of the assumptions we made in

deriving the gravitational-wave phase formula of Eq. (43).
In particular, we assumed that the neutron stars were not
tidally locked. We first revisit and confirm the old result
that tidal locking would require unphysically large values
of the viscosity. For the sake of completeness we then show
that, if, for whatever reason, the bodies were tidally locked,
viscosity would affect the gravitational-wave phase at 2PN
order. This being said, one could only conclude a lower
bound for the viscosity if the stars are tidally locked, as the
effective viscosity does not explicitly enter the tidal locking
terms in the gravitational wave phase.
We next demonstrate that the dissipative timescale,

orbital timescale of the binary, and the characteristic
internal timescale of neutron stars satisfy the inequalities
given in Eq. (10) for values of viscosity that also satisfy the
no-tidal-locking condition. We conclude that our expansion
of the quadrupole to linear order in d=dt, Eq. (17), should
be accurate.7

Finally, we show that physically allowed values of
hζi; hηi (τd) could lead to an amount of dephasing com-
parable, and even larger than, the dephasing caused by the
adiabatic tidal Love number k2. We use a Fisher analysis
to show that there is a window of parameter space for
physically allowable values of τd that could be constrained
with future gravitational-wave observations, although more
work needs to be done to obtain precise theoretical
estimates for τd realistic EOS. Finally, in this section we
show that for values of the tidal lag that are larger than
τd > 21 μs, the effective dissipative tidal deformability
could be measurable with current ground-based gravita-
tional detectors.
Before continuing, we discuss the various estimates

for ν that have been proposed over time. In [35], the
effective bulk viscosity due to Urca processes in the star is
reported to be as large as ζ=ρ ∼ 1015 cm2=s during the late
inspiral (here ρ is the rest-mass energy density).8 This value
is much larger than the effective kinematic viscosity
predicted by microscopic calculations of the shear viscosity
of neutron stars, current estimates of which range from
ν ∼ 104–6 cm2=s [56].9

The molecular bulk viscosity of the star will likely be
many orders of magnitude larger than the molecular shear
viscosity of the star. Nevertheless, in principle there could
sizeable contributions to the neutron star shear viscosity
through the crust or “anomalous” viscosities. Estimates of
the shear viscosity of the neutron star crust [29,56] range

6We derive these quantities in an upcoming work [54].

7Higher order terms in d=dt in the expansion of Eq. (17) may
be required to accurately determine the tidal Love number; for
more discussion see [25]).

8More recent nuclear physics calculations suggest ζ=ρ could
locally reach values as high as 1017 cm2=s [55].

9We note that even if one consider earlier estimates of the
molecular shear viscosity of ν≲ 109 cm2=s [57], the upper end of
this range is still likely too small to make any measurable impact
on the gravitational wave phase.
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over ν ∼ 106–15 cm2=s.10 The turbulent “anomalous” vis-
cosities of neutron stars remain much less well understood,
although they play an important role in viscous properties
of main-sequence stars [58]. Determining the contribution
of turbulent effects will require a more detailed under-
standing of the interaction of driven mode solutions to the
neutron star, and is outside the scope of this work.

A. Tidal torquing and the regime of applicability
of the no-spin approximation

In our solution to the Newtonian equations of motion,
we neglected the dynamical effects of the tidal torquing of
the star due to the misalignment of the stars’ quadrupole
moment and the external gravitational field. Such tidal
torquing transfers orbital angular momentum to the stars,
which in turn affects the orbital dynamics. For a review of
these concepts in the purely Newtonian context, see [4].
Bildsten and Cutler [28] estimated the effects of tidal
torquing and locking on the dynamics of compact binaries,
and concluded that the effects would be marginal because
neutron stars could not tidally lock before merger. Here
we revisit their calculation, and estimate the PN order at
which the tidal spin up enters the gravitational-wave phase.
Ultimately we reach the same conclusion as those authors,
i.e. that the viscosity required to achieve tidal locking
before merger would exceed physically reasonable values
of that coupling.
We assume that object A is spinning with spin vector

SiA ¼ eiASA, where eiA is a unit vector and SA is the
magnitude of the spin vector. In the rest frame of object
A, the magnitude of the spin vector obeys the following
evolution equation [4]

dSA
dt

¼ −ϵijkeiI
hjpi
A ðEAÞkp: ð48Þ

Using Eq. (18) for Eij
A and Eq. (20) for IijA , we find

dSA
dt

¼ −
9G7m6

Am
2
B

c13r8
ΞAϵijkeivjxk: ð49Þ

We further assume that the stars are initially not spinning
and use Eq. (25) to set eiA ¼ ð0; 0; 1Þ. Note that as tidal
torquing spins up the stars in the orbital plane, the orbit
remains circular and there is no precession (for more
discussion and reviews, see [4,38,59]).
Using Eq. (25) for xi, and working to linear order in ΞA,

we find that

dSA
dt

≈
9Gm2

Bm
6
A

M6c
ΞAγ

6
0ΔωA; ð50Þ

where we defined ΔωA ≡ ω0 −ΩA to be the difference in
the orbital frequency ω0 and the star’s rotational frequency
ΩA. If we set SA ≈ ð2=5ÞmAR2

AΩA, (I ≈ ð2=5ÞmAR2
A is the

approximate moment of inertia of the star), we obtain a
differential equation for ΩA (compare to [46])

dΩA

dt
≈
45Gm2

Bm
5
A

2R2
AM

6c
ΞAγ

6
0ðω0 − ΩAÞ: ð51Þ

This gives us a characteristic tidal torquing timescale of

TA ≡ 2R2
AM

6c
45Gm2

Bm
5
A

1

ΞA
γ−60 ;

¼ 1

15

GM6

m2
Bm

3
Ac

4

RA

τd;A

C4
A

k2;A
γ−60 ;

≈ 2.3 × 103 s

�
M

3.2M⊙

�
6
�
1.6M⊙

mB

�
2
�
1.6M⊙

mA

�
2
�
0.1
k2;A

�

×

�
CA

0.196

�
4
�
0.1
p2;A

��
1014 cm2 s−1

hνi
��

0.072
γ0

�
6

:

ð52Þ

On the second line above, we have recast the characteristic
tidal torquing timescale in terms of the tidal Love number,

and the tidal dissipation timescale τd;A ¼ −τð1Þ2;A.
If the tidal torquing timescale is smaller than the time it

takes the binary to inspiral, then there is a chance for tidal
torquing to occur. To determine the leading gravitational-
wave phase effect due to tidal torquing, we only need to
consider the dissipation due to the emission of gravitational
waves. In this case, the orbital radius changes approxi-
mately as [60]

dr
dt

≈ −
64

5
η
G3M3

c5r3
; ð53Þ

which allows us to define the characteristic inspiral time-
scale

T insp ≡ 5

64

1

η

GM
c3

γ−40 ;

¼ 1.7 × 10−1
�
0.25
η

��
M

3.6M⊙

��
0.07
γ0

�
4

: ð54Þ

The ratio of the tidal locking time to the inspiral time is

10We caution that in effect the upper bound ν ∼ 1015 cm2=s
quoted in [29] is a theoretical in-principle upper bound for how
large the shear viscosity contribution of the crust could be; we are
unaware of detailed calculations of the crust effective shear
viscosity that give values this large.
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TA

T insp
¼ 64

75

GM3

cmBmAhνAi
C4
A

k2;Ap2;A
γ−20 ;

≈ 1.33× 104
�

M
3.2M⊙

�
3
�
1.6M⊙

mB

��
1.6M⊙

mA

�

×
�
1014 cm2 s−1

hνAi
��

0.1
p2;A

��
0.1
k2;A

��
0.07
γ0

�
2
�
CA

0.2

�
4

:

ð55Þ

When the torquing and inspiral timescales are comparable,
TA=T insp ∼ 1, the stars have enough time to, in principle,
become tidally locked. We see, however, that this is not
the case for typical values of the tidal Love number and the
p2;A dissipation coefficient for either the shear viscous case
p2 ∼ 5 or the bulk viscous case shown above.
We emphasize that Eq. (55), while derived using a

standard set of assumptions [28], provides only a rough
measure of when two stars could become tidally locked.
The quantities TA and T insp are characteristic timescales; we
may expect that the actual tidal locking and inspiral times
will be longer than TA and T insp by factors that we have not
computed. For example, we have fixed γ0 to be a constant
reference value (this reference value corresponds to an
orbital frequency of F ¼ 400 Hz, with M ¼ 3.2M⊙),
even thought it varies with time as the binary inspirals
to merger. A self-consistent calculation, that does not hold
γ0 fixed, and that takes into account the change in the
orbital frequency as angular momentum is transferred to the
two stars, is necessary to fully determine whether or not
tidal locking could feasibly happen before merger.
To understand what the maximum, physically reasonable

value that hνi could be [given the parametrization Eq. (46)],
we define the maximum viscosity that is consistent with a
volume averaged notion of causal momentum transport
across the star. We do so by realizing that the rate of
momentum diffusion can be no larger than the speed of
light for a fluid to respect causality. This then implies that

hνcausali≡ cR ¼ 3.6 × 1016 cm2 s−1
�

R
12 km

�
: ð56Þ

That is, volume-averaged, effective kinematic viscosities
that approach this value imply momentum diffusion across
the star that occur at around the speed of light. This is a larger
value than the (widely varying) estimates for the effective
kinematic viscosity of neutron stars. Given this, and that
γ0 ≪ 1, we conclude that neutron star binaries cannot tidally
synchronize before merger without exceeding the limit
Eq (56) [28] (see also [29] for a related discussion).
Finally, for the sake of completeness, we estimate the PN

order at which tidal locking would enter the gravitational
waveform if it were to be realized in nature. From Eq. (55)
tidal locking in principle could be important if the stars
were sufficiently noncompact, because the timescale

decays with the fourth power of compactness. For a tidally
locked star, the rotational frequency is equal to the orbital
frequency, so that its spin vector is

SA ≈ IAω; ð57Þ
where IA is the moment of inertia of the star. We consider
a quasicircular orbit of radius r0 and orbital frequency ω0.
The approximate Newtonian energy then is

Eorb ¼
1

2
μvivi −

GμM
r

þ 1

2
IAω2

0;

¼ −
1

2
μc2γ0

�
1 −

2

5

m2
A

MmB

1

C2
A
γ20

�
; ð58Þ

where again, as a leading-order estimate, we have approxi-
mated the neutron star moment of inertia as IA ≈
ð2=5ÞR2

AmA. We set the energy flux to be the leading-
order contribution from gravitational waves

F tot ¼ −
32

5

c5

G
η2γ50: ð59Þ

We then set γ0 ¼ u2, integrate Eq. (35) twice, and find that

ΨðfÞ ≈ 3

128

1

η
u−5

�
1 − 12

m2
A

MmB

1

C2
A
u4
	
þ 2πftc −Ψc −

π

4
:

ð60Þ
We see that tidal locking enters at 2PN relative order in the
gravitational-wave phase.11 This being said, we emphasize
that unphysically large values of viscosity are required for
neutron star binaries to be tidally locked. Moreover, even if
the effects of tidal locking could be measured, it would
provide only a lower bound on the viscosity of the star, as
the viscosity does not explicitly enter the gravitational-
wave phase at this PN order.

B. Applicability of our first-order truncation
of the tidal quadrupole

We now verify that the inequalities given in Eq. (10)
are satisfied for physically reasonable values of binary
neutron star parameters. We emphasize that in this section
we assume that out-of-equilibrium effects are driven
primarily by the effective kinematic viscosity of the star
[see Eq. (46)]. We set the stars’ internal timescale to be
τint ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3
A=ðGMAÞ

p
, which roughly corresponds to the

period of the f-mode of a neutron star [62], set τsys ¼ 2=f,
the orbital period of the binary, and, as before, we set
τd ¼ p2;AhνAiRA=ðGmAÞ [see Eq. (46)]. Inserting these
into Eq. (10), we find

11We note this is 0.5PN lower than the relative 2.5PN order at
which dissipative effects enter for black hole binaries with
arbitrary spin [31–33,61].
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τd
τsys

¼ p2;AhνAif
2c2CA

¼ 6.27 × 10−4
�
p2;A

0.1

�� hνAi
1014 cm2 s−1

�

×

�
0.2
CA

��
f

400 Hz

�
; ð61aÞ

τint
τsys

¼ GmAf

2c3C3=2
A

¼ 1.8 × 10−2
�

mA

1.6M⊙

��
f

400 Hz

�

×
�
0.2
CA

�
3=2

: ð61bÞ

Comparing the above estimates with Eq. (10), we see that
when p2;AhνAi≳ 1018 cm2 s−1, our approximation starts to
break down. We see that this is also in the regime in which
the tidal locking time scale starts approaching the time scale
of inspiral of Eq. (55). Given the unphysically large values
of viscosity required for tidal locking, we see from the
above equations that our approximation can be used safely
to describe the linear response of the quadrupole to the
external field in the inspiral.

C. Detection plausibility

To estimate the observational relevance of the viscosity
for gravitational-wave observations, we first estimate the
number of radians of “dephasing” that viscous corrections
could introduce to the gravitational-wave phase. From
Eqs. (13), (43), and (46), we have

ΔΨΞ ≈ −
75c

256GM2

�
m2

Ak2;AhνAip2;A

mBC6
A

þ A ↔ B

�

×
�
u3f logðufÞ þ f ↔ i

�
; ð62Þ

where the subscripts i=f stand for initial/final values. As
before, as a reference we consider an equal-mass neutron
star binary, mA ¼ mB and set fi ¼ 0 to obtain the maxi-
mum dephasing

ΔΨΞ ≈−9.41× 10−3
�
3.2M⊙

M

�
2
��

mA

1.6M⊙

�
2
�
1.6M⊙

mB

�

×

� hνAi
1014 cm2 s−1

��
k2;A
0.1

��
p2;A

0.1

��
0.2
CA

�
6

þA↔B

	

×

��
f

400 Hz
M

3.2M⊙

�
log

�
f

400 Hz
M

3.2M⊙

�	
:

ð63Þ

As a point of comparison, we can similarly estimate the
dephasing due to tidal Love numbers to be [5]

ΔΨΛ ≈ −
3

8ηM5

�
m5

Ak2;A
C5
A

�
1þ 12mB

mA

�
þ A ↔ B

�

×
�
u5f − f ↔ i

�
;

≈ −0.6
�
0.25
η

��
3.2M⊙

M

�
5
��

mA

1.6M⊙

�
5
�
k2;A
0.1

�

×

�
0.2
CA

�
5
�
1þ 12mB=mA

13

�
þ A ↔ B

	

×

��
f

400 Hz
M

3.2M⊙

�
5=2

	
: ð64Þ

The dephasing due to bulk viscous effects is smaller than
the dephasing due to the adiabatic tide. If one chooses
p2 ∼ 5 corresponding to the shear viscous case, then we see
that ΔΨΞ ∼ −0.47 and we see that this dephasing is
comparable to the case of the adiabatic tide.
Dephasing is not the full story, however, since parameter

degeneracies can greatly deteriorate our ability to extract
new physics from the waveform, especially when this new
physics enter at high PN order. Therefore, to better estimate
the measurability of Ξ̄, we now perform a simple Fisher
analysis [63,64], which should provide an upper bound
on measurement accuracy. We first quickly summarize
the basics of a Fisher analysis. Consider a signal model
parametrized by parameters Θa, where the Latin index
ranges over the waveform parameters only. The (square of
the) signal-to-noise ratio (SNR) is defined as

ρ2 ≡ 4

Z
fupper

flow

h̃ðfÞh̃�ðfÞ
SnðfÞ

df; ð65Þ

where h̃ðfÞ is the frequency domain waveform, a super-
script star stands for complex conjugation, and SnðfÞ is the
(one-sided) noise power spectral density of the detector.
We set flow ¼ 10 Hz and fupper ¼ min ðfISCO; fcontÞ, where
fISCO ¼ c3=ðG63=2πMÞ is the frequency at the innermost
stable circular orbit of a Schwarzschild black hole of mass
M, and fcont ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=ðR1 þ R2Þ3

p
=π is the frequency at

the point of contact of the two stars. In the limit of large
SNR and Gaussian, stationary noise, the probability that the
gravitational-wave data dðtÞ is characterized by the source
parameters Θa is approximately

pðΘjdÞ ≈ p0ðΘÞ exp
�
−
1

2
Γab

�
Θa − Θ̂a

��
Θb − Θ̂b

�	
; ð66Þ

where p0ðΘÞ is the prior probability, and Θ̂a is the
maximum of the Gaussian likelihood function. The
Fisher information matrix Γab is defined as

Γab ¼ 2

Z
∞

0

df
SnðfÞ

�
∂h̃ðfÞ
∂Θa

∂h̃�ðfÞ
∂Θb

þ ∂h̃ðfÞ
∂Θb

∂h̃�ðfÞ
∂Θa

�
: ð67Þ
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The inverse of the Fisher matrix is the variance-covariance
matrix,

Σab ≡ Γ−1
ab ; ð68Þ

whose diagonal elements provide the square of the 1σ
errors on the estimation of waveform parameters (no
summation on repeated indices here),

ΔΘa ¼
ffiffiffiffiffiffiffi
Σaa

p
: ð69Þ

If one uses assumes a Gaussian prior with a width of σΘ
in the analysis, then the Γab in the above formula is
replaced by

Γ̃ab ¼ Γab þ
1

σ2Θ
δab: ð70Þ

For our problem, the Fourier domain gravitational wave-
form can be modeled in the restricted post-Newtonian
approximation via

h̃ðfÞ ¼ Af−7=6eiΨðfÞ: ð71Þ

The phase can be separated into a point-particle piece, an
adiabatic tidal piece and a dissipative tidal piece [Eq. (43)]

Ψ ¼ Ψpp þΨΛ þ ΨΞ: ð72Þ

We include corrections up to 4.5PN order for the point
particle piece [65]

Ψpp ¼ −
π

4
− φc þ 2πftc þ

3

128ηu5

�X9
k¼0

αkuk
	
; ð73Þ

where the coefficients αk are given in [65]. The adiabatic
tidal contribution and the dissipative tidal contributions are
given, respectively, by [Eq. (43)]

ΨΛ ¼
�

−3
128ηu5

��
39

2
Λ̄u10 þOðu12Þ

	
; ð74aÞ

ΨΞ ¼
�

−3
128ηu5

��
75

32
Ξ̄u8 logðuÞ þOðu10Þ

	
: ð74bÞ

All of this implies that our waveform is parametrized by the
following parameters

Θa ¼ �
logðMÞ; logðηÞ; Λ̄; Ξ̄; tc;φc; logðAÞ�: ð75Þ

We perform our Fisher analysis by using the sensitivity
curves for advanced LIGO from [66]12 and fix the SNR

to ρ ¼ 100, a value corresponding to a GW170817 [67]
like event detected at design sensitivity. We setmA ¼ mB ¼
1.6M⊙, k2;A ¼ k2;B ¼ 0.1, tc ¼ 0, and φc ¼ 0; A is chosen
to set ρ ¼ 100. We set hτAi ¼ hτBi≡ hτi.
The results of our Fisher analysis are presented in Fig. 1,

which shows the accuracy to which various tidal parameters
can be measured as a function of the tidal lag parameter.
Since the effective adiabatic tidal deformability is inde-
pendent of τ, its measurability is independent of the
injected value of τ. However, the inclusion of the effective
dissipative tidal deformability increases the dimensionality
of the parameter space, therefore diluting the information
content of the signal and deteriorating our ability to
measure all parameters (including the adiabatic tidal ones).
Perhaps more importantly, we see that if the injected tidal
lag time is ≳21 μs, then one may be able to measure the
effective dissipative tidal deformability to better than 100%
precision. These measurement estimates of course scale
inversely with the SNR, and therefore, a louder signal
would be able to place a similarly stronger constraint,
enabling measurements of the effective dissipative tidal
deformability for even smaller values of the tidal lag
parameter. This simple analysis reveals that there is a
region in parameter space inside which one may be able to
start to place meaningful constraints on Ξ̄, although these
conclusions need to be confirmed with a full Bayesian
analysis, along with a self-consistent, relativistic calcula-
tion of p2;A=B with a realistic equation of state, to map the
constraints on Ξ̄ to constraints on the effective sources of
viscosities. For reference, using Eq. (46), a constraint on τd
can be mapped onto a constraint hνi. An upper bound of

FIG. 1. Measurement accuracy of the binary tidal deformabil-
ities for advanced LIGO with a fixed SNR of 100 for an equal
mass neutron star binary system. The x axis shows the injected
values of τ and where τA ¼ τB ≡ τ is the tidal lag time [see
Eq. (13)]. We see that the tidal lag deformability becomes
measurable if the kinematic viscosity is greater than
τd ≳ 21 μs. The presence of Ξ̄ in the waveform introduces
degeneracies, which increase the error on the measurement of
Δ logðΛ̄Þ by a factor of 6.

12https://dcc.ligo.org/LIGO-T1800044/public.
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τd ∼ 20 μs would translate to an upper bound hνi ∼ 3.7 ×
1016 cm2=s for the bulk viscous case (p2 ∼ 0.05) and
an upper bound of hνi ∼ 7.41 × 1014 cm2=s for the shear
viscous case (p2 ∼ 5). The upper bound on the bulk viscous
value approaches the limit set in Eq. (56). We expect that
3G detectors will be able to place more stringent constraints
on the bulk viscosity.

V. THERE ARE NO OUT-OF-EQUILIBRIUM
CORRECTIONS TO ADIABATIC
DEFORMATIONS OF STARS

We have shown that two sets of tidal deformability
coefficients, ΛA=B and ΞA=B, could have a roughly equal
impact on the gravitational-wave phase for a neutron star
binary, see Eqs. (63), (64). We have also argued that to
leading order, ΞA=B receives corrections due to the dis-
sipative aspects of the object’s composition. In Sec. VA,
we provide a general argument that that there are no
nonequilibrium/dissipative corrections to the tidal de-
formability ΛA=B, i.e., that there are no out-of-equilibrium
contributions to the tidal Love number. We additionally
show that other adiabatic tidal quantities, like the quad-
rupolar moment and moment of inertia of stars, are also
unaffected by viscous corrections.
To strengthen our general argument, in Secs. V B and

V C we explicitly show that the above results argument for
two specific hyperbolic models of relativistic fluids—the
Bemca-Disconzi-Noronha-Kovtun (BDNK) [68–71] and
Mueller-Israel-Stewart [72] fluid models—to supplement
our general analysis (we provide a quick review of the two
fluid models in Appendix B). We do this as in our general
argument, we assume that there are no large gradients in the
fluid solution. We focus on the BDNK and an Israel-
Stewart model as those modes have been shown to have a
locally well-posed initial value problem. While this in itself
is a somewhat restrictive assumption, we believe it is
reasonable, and that our arguments could be extended to
other fluid models as well, as we argue in Sec. V D.
The upshot of this section is that we can view the two sets

of tidal deformability coefficients, ΛA=B and ΞA=B, as para-
metrizing the leading equilibrium and out-of-equilibrium
properties of a neutron star, respectively. Moreover, out-of-
equilibrium effects do not affect the I-Love-Q relations,
which relate the relative values of the moment of inertia,
Love number, and quadrupole moment of neutron stars
[73–75]. We present our general argument for the absence
of out-of-equilibrium corrections to ΛA=B in Sec. VA, and
our more detailed argument in Secs. V B–VD. Readers
who are satisfied with our general argument may wish to
skip those sections.

A. General argument

Here we argue that on general, physical terms, there
should be no viscous corrections to tidal Love numbers, the

quadrupolar moment, and the moment of inertia of a star.
These quantities are computed from time-independent
solutions of the Einstein equations and the fluid equations
of motion [20,21,45,76]. We expect that time-independent
solutions to the fluid equations should be solutions in
thermal equilibrium, and we expect there to be no out-of-
equilibrium contributions to the solution of the equilibrium
Einstein equations. As out-of-equilibrium effects are cap-
tured by the viscous/heat coefficients in a fluid stress-
energy tensor, we conclude that those coefficients should
not contribute to the solutions of the tidal Love number,
quadrupole moment, and the moment of inertia for a star. In
particular, the solutions to those quantities are determined
entirely by the perfect fluid part of the fluid stress-energy
tensor.
We can slightly formalize this argument by showing that

if the second law of thermodynamics holds, the stress-
energy tensor for stationary solutions should reduce to
that of a perfect fluid under a relatively weak set of
assumptions [77–81]. We parametrize the fluid stress-
energy tensor as follows:

Tμν ¼ Euμuν þ PΔμν þQμuν þQνuμ − 2ησμν; ð76Þ

where uμ is the fluid four-vector, Δμν ≡ gμν þ uμuν=c2 is
the orthogonal projection to uμ, Qμ is the fluid heat vector
(which is orthogonal to uμ), σμν is the fluid shear tensor
(also orthogonal to uμ). We interpret E as the generalized
fluid energy density, P as the generalized fluid pressure,
and η as the shear viscosity coefficient. For a perfect fluid,
Qμ ¼ 0, σμν ¼ 0, E ¼ e=c2, and P ¼ p, where e is the
internal energy density and p is the fluid pressure. For more
discussion on our notation, see Appendix B.
The relativistic second law of thermodynamics is

∇μSμ ≥ 0; ð77Þ

where Sμ is the fluid entropy current [82]. We expect that
time-independent solutions to the fluid conservation equa-
tions should be equilibrium solutions, so that ∇μSμ ¼ 0.
A general requirement for relativistic fluid flow is that the
divergence of the entropy current should satisfy [69,82]

∇μSμ ¼
ζ

T
θ2 þ η

T
σμνσ

μν þ κ

T2
QμQμ þOð∂3Þ ≥ 0; ð78Þ

where ζ is the bulk viscosity, κ is the heat conductivity,
θ is the fluid expansion, and Oð∂3Þ refers to higher
derivative terms, which depend on the particular fluid
model under consideration. We note that σμνσ

μν ≥ 0,
QμQμ ≥ 0, ζ ≥ 0, η ≥ 0, and κ ≥ 0, so to leading order
in derivatives, ∇μSμ ≥ 0.
Fluid models can be viewed as long-wavelength effective

field theories [83]. From this point of view one should
demand that the second law holds to each order in the
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gradient expansion, and the breakdown of the second law at
any given order would then signal a breakdown of the fluid
effective field theory. Thus, assuming the fluid description
of the given solution holds, we can demand that the
following, stronger condition on the entropy current holds

∇μSμ ¼
ζ

T
θ2 þ η

T
σμνσ

μν þ κ

T2
QμQμ ≥ 0: ð79Þ

For equilibrium fluid solutions, one has that ∇μSμ ¼ 0, and
assuming that ζ > 0, η > 0, and κ > 0, this implies that
θ ¼ 0, σμν ¼ 0, and Qμ ¼ 0, as θ2, σμνσμν, and QμQμ are
positive definite quantities. Finally, if we assume that E and
P are, respectively, equal to e=c2 and p, plus terms that are
proportional to θ, σμν, and time gradients of e and p, then
the stress-energy tensor reduces to that of a perfect fluid for
equilibrium solutions (this holds for essentially all pro-
posed viscous, relativistic fluid models; for more discus-
sion see Appendix B). This completes our argument.
While this argument is physically plausible, discarding

higher derivative terms in the entropy relation of Eq. (78)
is somewhat unsatisfactory. This is because while fluid
models can be interpreted as providing a long-wavelength,
effective description of physical systems in near equilib-
rium, in practice it is common to find that steep gradients
form in solutions to fluid equations, as they form shocklike
solutions, where the widths of the shocks are regularized
by the size of the viscous/heat coefficients (for a review see
for example [37]). Physically, we do not expect shocklike
solutions to decrease the entropy, although it has not yet
been proven that any relativistic, hyperbolic extension
of the Navier-Stokes equations (that is, that incorporates
viscous effects) satisfies this property. Because of this, in
the next subsections, we explicitly show that the higher-
derivative corrections that appear in two different hyper-
bolic fluid models do not contribute to the tidal Love
number, the moment of inertia, and the quadrupole moment
(all equilibrium solutions) to the Einstein equations.

B. The quadrupole moment and the moment
of inertia of (slowly rotating) neutron stars

do not have viscous corrections

We first show there are no viscous corrections to the
quadrupole moment and moment of inertia of slowly
rotating neutron stars modeled as BDNK viscous fluids
(see Appendix B 1 for a quick review of BDNK fluids).
These are a class of hyperbolic, relativistic fluid models that
consistently include the effects of bulk viscosity, shear
viscosity, and heat conduction. We work in spherical polar
coordinates: e.g. xμ ¼ ðxt; xr; xϑ; xφÞ. In brief, we show
that with the decomposition of Eqs. (80) and (81), the
following holds:
(1) The quantities θ, σtt, σrr, σtφ, σrϑ, σϑϑ, σφφ, Qt, and

Qφ are all identically zero with a circular spacetime
ansatz [that is, with Eqs. (80), (81), and all scalar

quantities do not depend on t or φ]. Additionally
E ¼ e=c2 and P ¼ p, given that ansatz.

(2) The quantities σtr, σtϑ, σrφ, σϑφ, Qr, and Qϑ are
all zero because of the Einstein equations Gμν ¼
ð8πG=c4ÞTμν, given the circular spacetime ansatz.

From this, we conclude that the fluid stress-energy
tensor reduces to that of a perfect fluid for solutions to
the Einstein equations in circular spacetimes. As a circular
spacetime corresponds to the spacetimes used to compute
the quadrupole moment and moment of inertia for neutron
stars [76], we conclude that there are no viscous corrections
to those quantities. Below, we introduce the circular
spacetime ansatz and describe the above calculations in
more detail.
We start by showing that circular solutions to the BDNK

equations of motion reduce to those of a perfect fluid. A
circular spacetime is one that is stationary, axisymmetric,
and whose stress-energy tensor satisfies tμT ½ν

αtαφβ� ¼
φμT ½ν

αφ
αtβ� ¼ 0, where tμ and φμ are the timelike and

spacelike Killing vectors associated with stationarity and
axisymmetry, respectively (for reviews see [84,85]). More
intuitively, circular spacetimes are invariant under time
translation, they are axisymmetric, and they admit a
spacetime metric that does not depend on the azimuthal
direction φ. Restricting ourselves to asymptotically flat
spacetimes, we work in Hartle-Sharp coordinates in which
the line element takes the form [76,86]

gαβdxαdxβ ¼ −e−2ψðr;ϑÞdt2 þ e2λðr;ϑÞdr2 þ r2Aðr; ϑÞ2
×
�
dϑ2 þ sin2 ϑðdφ − ωðr;ϑÞdtÞ2�: ð80Þ

In these coordinates, the two Killing vectors are ∂t and ∂φ.
We assume the fluid velocity four-vector can be written as

uμ∂μ ¼ Uðr; ϑÞ½∂t þΩ∂φ�; ð81Þ

where Ω is the angular velocity of the fluid, which we
assume to be a constant. For perfect fluids, one can show
that the above equation must hold in circular spacetimes
due to the condition tμT ½ν

αtαφβ� ¼ 0 (e.g. [85]). For BDNK
fluids though, we have not been able to show that the fluid
vector of Eq. (81) follows from the above condition, since
uμ could potentially have nonzero r or ϑ components,
due to the presence of the heat vector Qμ and the shear
tensor. Instead, we view Eq. (81) as a reasonable, physical
assumption for the form of the fluid velocity.13 The metric

13If we assume the fluid is in thermal equilibrium, then βμ ≡
uμ=T must be a Killing vector [77–79,81]. Said another way, in
Eq. (81) we assume that there can be no radial fluid flux that
could be countered by the presence of a nonzero heat vector or
shear tensor. In this case, and assuming that the only Killing
vectors are ð∂tÞμ and ð∂φÞμ, we can then conclude that uμ takes the
form of Eq. (81).
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of Eq. (80) and the fluid vector ansatz of Eq. (81) encom-
pass, as special cases, the metrics used for computing the
moment of inertia and the quadrupole moment of static
neutron stars [77]. Finally, we assume all other fluid field
quantities (ρ, ϵ, p, μ, and T) are functions of r and ϑ only.
With these assumptions, we can now prove that the

expansion and the shear vanish. The computation of θ goes
as follows

θ ¼ 1ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi
−g

p
uμ
�
;

¼ 1ffiffiffiffiffiffi−gp ∂t

� ffiffiffiffiffiffi
−g

p
ut
�þ 1ffiffiffiffiffiffi−gp ∂φ

� ffiffiffiffiffiffi
−g

p
uφ

� ¼ 0: ð82Þ

The second line follows from Eq. (81). The last line follows
from the fact that all field quantities are functions only of r,
ϑ. Given that θ ¼ 0, the shear tensor simplifies to

σμν ¼ Δα
μΔβ

ν

�
∂ðαuβÞ − Γγ

αβuγ
�
: ð83Þ

From the Einstein equations and the stress-energy tensor
[Eq. (B1)], we have that

Δα
μΔβ

μGαβ ¼
8πG
c4

Δα
μΔβ

μTαβ ¼ −
16πG
c4

ησμν: ð84Þ

The ðt; rÞ, ðt; ϑÞ, ðr;φÞ, and ðϑ;φÞ components of
Δα

μΔβ
νGαβ are zero, which implies from the Einstein equa-

tions that σtr, σtϑ, σrφ, and σϑφ are all zero. The components
∂ðtutÞ, ∂ðtuφÞ, and ∂ðφuφÞ are zero as the components of uμ
only depend on r and ϑ. Since only ut and uφ are nonzero,
the following partial derivatives are also zero: ∂ðrurÞ, ∂ðruϑÞ,
and ∂ðϑuϑÞ. From the form of the metric Eq. (80), and fluid
four-velocity, Eq. (81), we find that Γγ

ttuγ, Γ
γ
tφuγ , Γ

γ
φφuγ ,

Γγ
rruγ, Γ

γ
rϑuγ , and Γγ

ϑϑuγ are all zero. This implies that the
remaining components of the shear are zero. Putting
everything together, we have

σμν ¼ 0: ð85Þ

Lastly, we turn to the heat vector. From the Einstein
equations and the stress-energy tensor of Eq. (B1), we have
that

uνGμ
ν ¼

8πG
c4

uνTμ
ν ¼ −

8πG
c4

ðEuμ þQμÞ: ð86Þ

The Einstein tensor components uμGr
μ and uμGϑ

μ are zero
for the metric of Eq. (80). From the Einstein equations and
ur ¼ 0 and uϑ ¼ 0 [from Eq. (81)], we see thatQr ¼ 0 and
Qϑ ¼ 0, which imply thatQr ¼ 0 andQϑ ¼ 0. To compute
Qt and Qφ, we consider the individual components of Qμ

[see Eq. (B3c)]. The only nonzero components of Δμ
ν that

contain a t and/or a φ index are Δt
t, Δt

φ, Δφ
t, and Δφ

φ:

Δt
t ¼ 1 −

�
e−2ψ þ r2A2ðΩ − ωÞω sin2 ϑ

�
U2; ð87aÞ

Δt
φ ¼ ðΩ − ωÞA2U2r2 sin2 ϑ; ð87bÞ

Δφ
t ¼ −

�
e−2ψ þ A2ðΩ − ωÞωr2 sin2 ϑ�ΩU2; ð87cÞ

Δφ
φ ¼ 1þ ðΩ − ωÞΩA2U2r2 sin2 ϑ: ð87dÞ

For any function fðr;ϑÞ, we have

Δμ
t∇μf ¼ 0; Δμ

φ∇μf ¼ 0; ð88Þ

Since p and μ=T are functions only of r and ϑ, we conclude
that their projected derivatives do not contribute to the t and
φ components of Qμ. One can also show that uμ∇μut ¼ 0

and uμ∇μuφ ¼ 0. From the definition for Qμ [Eq. (B3c)],
we conclude that Qt ¼ 0 and Qφ ¼ 0. Putting everything
together, we have that

Qμ ¼ 0: ð89Þ

From ϑ ¼ 0, σμν ¼ 0, and Qμ ¼ 0, we conclude that the
on-shell stress-energy tensor reduces to that of a perfect
fluid

Tμν ¼
e
c2

uμuν þ pΔμν: ð90Þ

The metric and fluid vectors of Eqs. (80) and (81) take the
standard form used in computations of the moment of
inertia and quadrupole moment of neutron stars [76].
Since the stress-energy tensor reduces to that of a perfect
fluid for this spacetime, one can see that, by following the
same steps as in [76] to derive the moment of inertia and
quadrupole, there are no viscous corrections to those two
quantities. Finally, we also note a special case of the above
results: there are no viscous corrections to static fluid
solutions. Namely, there are no viscous corrections to the
Tolman-Oppenheimer-Volkoff equations for static stars [87].

C. The (adiabatic) tidal Love number of static neutron
stars do not have viscous corrections

We next compute the (adiabatic) tidal Love numbers
for static neutron stars modeled as BDNK fluids (see
Appendix B 1 for a quick review of BDNK fluids). As we
discussed in Sec. II, the tidal Love numbers describe
the linear tidal response of a star when perturbed by a
stationary external gravitational field [20,21,45]. As we
discussed in Sec. III, in a neutron star binary, each star will
be perturbed by the gravitational field produced by its
companion, which will deform the star. While the gravi-
tational field will slowly change in the rest frame of the star,
the timescale of that change is slow compared to the
internal dynamical timescale of each star, so the leading-
order contribution to the stars’ tidal response is the
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adiabatic tidal Love number, provided the star is not
resonantly excited by its companions gravitational field
[cf. Eq. (9)]. Unless otherwise noted, in this section we
refer to adiabatic tidal Love numbers as just Love numbers
for brevity.
For static neutron stars, the Love numbers are classified

by how the imposed gravitational field transforms under
parity [20,21]. The axial Love numbers describe the linear
response to an odd-parity, external gravitational field, while
the polar Love numbers describe the linear response of
the star to an even-parity external gravitational field. While
only the even-parity quadrupolar Love number is large
enough to observably affect the dynamics of a neutron star
binary [20,21] with current detectors, we consider both the
axial and polar Love numbers here.
We denote background quantities with a (0) subscript

(e.g. gμνð0Þ is the background metric tensor), use δ to denote a

linear perturbation (e.g. δgμν is the linear perturbation of
the metric), and write the combinations of the background
and linear fields with no subscript/change (e.g. gμν ¼
gμνð0Þ þ δgμν). Following earlier work, we use the Regge-

Wheeler gauge for the linearized metric perturbation
[20,21,45]. Our notation for the spherical harmonics
follows [88], except that we put a bracket around the
vector/tensor spherical harmonics to distinguish the angular
numbers ðl; mÞ from the tensorial indices. We take the
background metric and fluid velocity to be given by
Eqs. (80) and (81), with A ¼ 1, ω ¼ 0, Ω ¼ 0, and ψ , λ,
and U are only functions of r:

ðgð0ÞÞμνdxμdxν ¼ −e−2ψðrÞdt2 þ e2λðrÞdr2

þ r2ðdϑ2 þ sin2ϑdφ2Þ; ð91aÞ

ðuð0ÞÞμ∂μ ¼ eψðrÞ∂t: ð91bÞ

This is a special case of a circular spacetime, so using the
results in Sec. V B, we conclude that there are no viscous
corrections to spacetimes of this form.

1. Axial Love numbers

We first consider the axial Love numbers. For axial
perturbations, the metric perturbation takes the form [21]14

δgαβdxαdxβ ¼ −2h0ðrÞ½Xm
l ðϑ;φÞ�BdtdxB; ð92aÞ

δuα∂α ¼ 0; ð92bÞ

where ½Xm
l �B are axial vector spherical harmonics. Axial

perturbations for all scalar quantities, such as the rest-mass
energy density ρ, are zero.
We can obtain the expressions for gμν and Tμν when the

angular number m ≠ 0 by rotating (along the azimuthal
direction) their solutions evaluated at m ¼ 0. (cf. [91]).
Setting m ¼ 0, we see that the axial spacetime of Eq. (92)
represents a special case of the circular metric of Eq. (80)
and the circular fluid four-velocity of Eq. (81), as the φ
dependence drops out of those quantities. We can then
make use of our results on circular spacetimes to conclude
that θ ¼ 0, σμν ¼ 0, andQμ ¼ 0. From this, we see that the
perturbed stress-energy tensor reduces to that of a perfect
fluid. We conclude that are no viscous corrections to the
axial Love numbers: they are purely determined by the
perfect fluid components of the stress-energy tensor.

2. Polar Love numbers

We next consider the polar Love numbers. The metric
and fluid velocity for polar perturbations take the form
[20,21,45]

δgαβdxαdxβ ¼ −
�
e−2ψðrÞH0ðrÞdt2 þ 2H1ðrÞdtdr

þ e2λðrÞH2ðrÞdr2 þ r2KðrÞΩABdϑAdϑB
�

× Ym
l ðϑ;φÞ; ð93aÞ

δuα∂α ¼ −
1

2
eψðrÞH0ðrÞYm

l ðϑ;φÞ∂t; ð93bÞ

where Ym
l is the scalar spherical harmonic and ΩAB is the

metric of the two-sphere. In addition, all scalar fluid
quantities, such as ρ, are linearly perturbed. For example,

δρ ¼ ρ1ðrÞYm
l ðϑ;φÞ: ð94Þ

Unlike the case for axial perturbations, even whenm ¼ 0
the metric has a nonzero ðt; rÞ component, so it does not
reduce to a circular metric. Instead, we consider a more
direct approach to show that the perturbed stress-energy
tensor reduces to that of a perfect fluid. As our derivation is
more involved than it is for the axial Love numbers, we first
outline its main steps:
(1) First, we show that the equations of motion for H0,

H2, and K remain unchanged from those of the
perfect fluid case.

(2) Next, we show that H1 must be zero outside the star,
it does not couple to any of the other metric variable,
and it does not affect the equations of motion for e,
p, uμ, or the metric variables H0, H2, and K.

(3) These results imply that the metric remains the same
as in the perfect fluid case outside the star, and the
master equation for δgtt is the same as for the perfect
fluid case. As the tidal Love numbers are defined
through the multiple expansion of δgtt in a buffer

14Our results still hold if we let δuα have a small axial
component, which is taken to zero for the calculation for the
axial Love number [89,90]. This is because for m ¼ 0 perturba-
tions, δuα only gains a nonzero φ component, and the equations
still reduce to the circular ansatz Eq. (81).
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zone far from the stellar surface and from the source
of the external field, we conclude the tidal Love
numbers remain unaffected by viscosity.

We now present each of these steps in more detail. By
inserting the values for gμν and uμ from Eqs. (93) and (92)
into the expressions for θ and σμν, one can show through
direct calculation that θ ¼ 0, σμν ¼ 0,Qt ¼ 0, andQφ ¼ 0.
While θ ¼ 0 and σμν for polar perturbations, the heat vector
components Qr and Qϑ generally remain nonzero (when
m ¼ 0, which, without losing generality, we keep to
simplify our discussion). Despite this, we can follow the
steps of [45] to derive a master equation for the metric
perturbation H0. Moreover, the master equation is unaf-
fected by the nonzero components of the perturbed heat
vector. To show this, we notice that, as all metric compo-
nents do not depend on time, θ ¼ 0, and only the t compo-
nent of δuμ is nonzero, we have that [see Eq. (B3a) and
Eq. (B3b)]

δE ¼ δe
c2

; ð95aÞ

δP ¼ δp: ð95bÞ

The only nonzero component of δΔμ
ν is

δΔt
r ¼ −e2ψH1: ð96Þ

Using that θ ¼ 0, δσμν ¼ 0, and Qð0Þμ ¼ 0, the perturbed
stress-energy tensor is then

δTμ
ν ¼

δe
c2

uμð0Þuð0Þν þ
eð0Þ
c2

�
δuμuð0Þν þ uμð0Þδuν

�
þ δpðΔð0ÞÞμν þ pð0ÞδΔμ

ν þ uμð0ÞδQν: ð97Þ

Putting everything together, we see that

δTt
t ¼ −

δe
c2

; ð98aÞ

δTr
r ¼ δTϑ

ϑ ¼ δTφ
φ ¼ δp; ð98bÞ

δTr
ϑ ¼ 0: ð98cÞ

The main result to notice is that these perturbed metric
components take the same form as they do for a perfect
fluid: the heat vector does not enter the equations, nor do
any other BDNK corrections. We then notice that even
though H1 is generally nonzero, it does not enter δGt

t,
δGr

r, δGϑ
ϑ, δGφ

φ, or δGr
ϑ. Ultimately, we find that only

the ðt; tÞ, ðr; rÞ, ðϑ; ϑÞ, and ðφ;φÞ components of the
Einstein equations enter the calculation of the polar tidal
Love number. From this we conclude that quantity receives
no viscous corrections. We provide more details of our
argument in Appendix C.

D. Extension of our results to other viscous fluid models

Looking back at Secs. V B and V C, we see that our
argument that the quadrupole moment, the moment of
inertia, and the adiabatic Love numbers are not affected by
viscosity in BDNK theories rests on the following obser-
vations about the computation of those quantities:
(1) The fluid expansion θ is identically zero.
(2) The shear tensor contains some components that

are identically zero. For the components that are
not identically zero, they can be shown to be
zero from the Einstein equations Δμ

αΔν
βGαβ ¼

−ð16πG=c4Þησμν, and from the fact that the Einstein
tensor is zero for those components.

(3) The componentsQt andQφ of the heat vector can be
shown to be identically zero.

(4) The generalized fluid energy and pressure reduce to
the energy density and pressure of a perfect fluid
when θ ¼ 0 and the fluid flow and spacetime are
time independent.

The first two requirements follow from kinematical argu-
ments and from the form of the Einstein equations. Only the
latter two requirements depend on the specific nature of the
fluid stress-energy tensor and the equations of motion.
We end this section by showing that these conditions

hold for an Israel-Stewart model that has been shown to be
causal and strongly hyperbolic (for a review of this model,
see Appendix B 2). For circular spacetimes uα∇αΠ ¼ 0,
while for polar perturbations uα∇αΠ ¼ 0. In both cases,
θ ¼ 0 as well, so Eq. (B12) reduces to

Πþ λΠ2 ¼ 0: ð99Þ

The smaller-in-magnitude solution to this is Π ¼ 0, which
implies that the stress-energy tensor reduces to that of a
perfect fluid. We conclude that there are no viscous
corrections to the quadrupole moment, moment of inertia,
or the adiabatic tidal Love numbers.

VI. CONCLUSIONS

In this article we have addressed the impact of tidal
dissipation on the dynamics of neutron star binaries. We
have shown that the dissipative tidal deformability enters at
4PN order in the gravitational-wave phase, one full PN
order lower than equilibrium effects enter through adiabatic
tidal deformability. Moreover, as for the conservative tidal
deformability, the dissipative tidal deformability receives a
large finite size correction, which makes it potentially
measurable or constrainable with current ground-based
gravitational-wave detectors. We additionally showed that
there are no out-of-equilibrium contributions to the tidal
Love number, the quadrupole moment, and the moment of
inertia of a neutron star. This implies that there are no
out-of-equilibrium contributions to the I-Love-Q relations
[73–75], and that the measurement of the two tidal
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deformability parameters (the equilibrium one and the new
viscous one) probe distinct physical processes inside a
neutron star.
This preliminary study opens up several avenues for

future work. First, we have not provided a complete
derivation of the numerical values that ΞA could take for a
star. This expression for ΞA [Eq. (13)] contains an unknown
parameter p2, the value of which needs to be computed
for realistic nuclear EOS to map a constraint on Ξ̄ to a
constraint on bulk or shear viscosity.
We have only provided a preliminary estimate of the

effects of ΞA on the gravitational-wave phase. Determining
how easily the size of out-of-equilibrium, dissipative effects
could be constrained/measured with current and future
gravitational-wave data will require a more detailed analy-
sis. A more thorough investigation of systematic effects in
the gravitational-wave phase is required to address the
robustness of the measurability of ΞA.
Continuing with potential systematic effects in measuring

ΞA, we have argued that higher-order derivative corrections
in the relation between the quadrupolar neutron-star
response and the imposed gravitational field, Eq. (4) are
much smaller than the leading two terms. While subleading
terms may be numerically smaller, they could still system-
atically bias measurements of ΛA and ΞA if not taken into
account. This has already been argued to be the case for
ΛA [25] for higher-order even-derivative contributions; it
would then be interesting to consider higher-order odd-
derivative corrections in the expansion Eq. (4), and deter-
mine their effect on measurement of ΞA.
Even if the effective kinematic viscosity of neutron star

matter is too small to be measured with gravitational waves,
determining an upper bound on that quantity (through an
upper bound on ΞA) may still lead to new astrophysically
relevant insights on the properties of neutron stars. For
example, an upper bound on the kinematic viscosity will
place a lower bound on the damping time of the f-mode
stellar oscillations, which play a leading role in the
dynamical tides of neutron stars [22,23]. An upper bound
on the kinematic viscosity will also inform estimates of the
damping time of other oscillation patterns of neutron stars
(e.g. the p- and g-modes [92,93]). Finally, we note that
there is a wide range of estimates for the relative impor-
tance of out-of-equilibrium effects during the inspiral
and merger of neutron stars [29,35,56,94,95]. Given this,
even a modest gravitational-wave constraint on ΞA may
inform work on the non-equilibrium nuclear physics of
neutron stars.
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APPENDIX A: DERIVATION OF THE
GRAVITATIONAL PHASE FORMULA

In this appendix, we provide a derivation of Eq. (35)
starting from Eq. (34). Let us first rewrite Eq. (34) as

ΨðfÞ ¼ 2πftðfÞ − 2ϕðfÞ; ðA1Þ

where

tðfÞ≡ tc þ
Z

f=2 1

Ḟ
dF;

¼ tc þ
Z

f=2 E0
totðFÞ
Ėtot

dF; ðA2Þ

and

ϕðfÞ≡ ϕc þ 2π

Z
f=2 F

Ḟ
dF;

¼ ϕc þ 2π

Z
f=2 E0

totðFÞ
Ėtot

FdF: ðA3Þ

Taking the f derivative of Eq. (A1) we get

Ψ0ðfÞ ¼ 2πtðfÞ þ 2πft0ðfÞ − 2ϕ0ðfÞ ¼ 2πtðfÞ; ðA4Þ

where the last two terms of the first equality cancel because
2πfðdt=dfÞ ¼ 2ðdϕ=dtÞðdt=dfÞ ¼ 2ϕ0. Taking the sec-
ond derivative and using Eq. (A2), we find Eq. (35), namely

d2Ψ
df2

¼ 2πt0ðfÞ ¼ π

Ėtot

dEtot

dF

����
F¼ f

2

¼ 2π

Ėtot

dEtot

df
: ðA5Þ

APPENDIX B: A BRIEF REVIEW
OF HYPERBOLIC RELATIVISTIC

FLUID THEORIES

A challenge to constructing relativistic, viscous fluid
models is that relativistic theories must be causal—the
speed of all fluid modes should be bounded by the speed
of light. Moreover (as with the Newtonian Navier-Stokes
equations) the equations of motion for the model should
have a well-posed initial value problem, which for causal
theories implies the equations must be strongly hyperbolic
[96]. The earliest proposals for a relativistic generalizations
of the Navier-Stokes equations were done by Eckart [97]
and Landau and Lifshitz [98]. The exact equations of
motion for these models are neither causal, nor do they
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admit stable equilibrium states [99,100], so they are not
seen as physically viable theories of viscous fluids.
An alternative approach to constructing relativistic,

viscous fluid models was pioneered by Müller (in the
nonrelativistic setting), Israel, and Stewart (in the relativ-
istic setting) [78,82,101,102]. These extended (thermody-
namic) models promote the fluid viscosity and heat
conduction terms to independent fields, which relax to
their physical values via auxiliary equations of motion (for
a review, see for example [37]). The linearization of Israel-
Stewart models about equilibrium states have been shown
to be causal and stable [103]. In the heavy-ion literature,
popular extensions of the original Israel-Stewart models
include the Denicol-Niemi-Molnar-Rischke (DNMR)
model [104] and the Baier-Romatschke-Son-Starinets-
Stephanov ((r)BRSSS) model [105]. Stability and hyper-
bolicity results for these latter two theories have been
shown to hold for special backgrounds (e.g. about thermal
equilibrium), but there are not yet any general proofs of
well-posedness for general solutions.
In the first-order approach, the fluid stress-energy tensor

is expanded to first order in gradients about the perfect fluid
model. From the effective field theory point of view [83],
first order models can be thought of as parametrizing the
leading order nonequilibrium corrections to the fluid stress-
energy tensor, in terms of a gradient expansion about a
perfect fluid background. Bemfica, Disconzi, Noronha, and
Kovtun first observed that [69,70] within the class of all
first-order fluid models, there is a subclass of models such
that the equations of motion are strongly hyperbolic, and
modally stable about thermal equilibrium. This subclass of
models are called BDNK fluids.

1. First order relativistic, viscous hydrodynamics

We first review the BDNK fluid model, as presently it is
the only relativistic, viscous fluid model that incorporates
the bulk viscosity, shear viscosity, and heat conduction
fluid coefficients, and has been shown to be causal and have
a locally well-posed initial value problem, even for non-
equilibrium fluid flows.
We first decompose the stress-energy tensor Tμν into

components parallel and perpendicular to the fluid four-
velocity uμ:

Tμν ¼ Euμuν þ PΔμν þ 2QðμuνÞ þ T μν: ðB1Þ

where Δμν ≡ gμν þ c−2uμuν is the projection tensor. We
also have uμQμ ¼ 0, uμT μν ¼ 0, and gμνT μν ¼ 0. For a
relativistic perfect fluid, E ¼ e, where e is the total energy
density, P ¼ p, where p is the pressure, and Qμ ¼ 0,
T μν ¼ 0. In the BDNK approach, one expands the quan-
tities E, P, Qμ, and T μν in a gradient expansion about
the equilibrium fluid quantities e, p, and the fugacity μ=T
(here μ is the chemical potential and T is the temperature).

Following BDN [106], who proved the strong hyperbol-
icity of the model, we restrict the fluid current to the Eckart
form

Jμ ¼ ρuμ; ðB2Þ

that is, we do not consider a gradient expansion of the
fluid four-current. Given this, the most general, nonredun-
dant expansion of the fluid variables is (our presentation
follows [107])

E ≡ e
c2

þ τϵ;1
c2

uα∇αϵþ
τϵ;2
c2

θ þ τϵ;3
c4

uα∇α

�
μ

T

�
; ðB3aÞ

P ≡ p − ζθ þ τp;1uα∇αϵþ τp;2θ þ
τp;3
c2

uα∇α

�
μ

T

�
;

ðB3bÞ

Qμ ≡ τQ;1

c2

�
aμ þ c2

ρh
Δμν∇νp

	
þ ρκT2

mbðeþpÞc2Δ
μα∇α

�
μ

T

�
;

ðB3cÞ

T μν ≡ −2ησμν; ðB3dÞ

wheremb denotes the baryon mass, ζ the bulk viscosity, η the
shear (dynamic) viscosity, and κ the thermal conductivity.
The expansion θ and the shear tensor σμν are defined by

θ≡∇μuμ; ðB4Þ

σμν ≡ ΔμγΔνδ∇½γuδ� −
1

3
ΔμνΔγδ∇γuδ: ðB5Þ

The functions τϵ;i; τp;i; τQ;1 are transport coefficients
which describe out-of-equilibrium contribution to the
generalized energy, the generalized pressure and the
heat flux vector. They were introduced in [69,70], and
provided they satisfy a set of inequalities, the equations of
motion ∇μTμν ¼ 0;∇μJμ ¼ 0 form a strongly hyperbolic
system of equations. To obtain the BDN parametrization
[69], we set

τϵ;1 ¼ ρτϵ; ðB6Þ

τϵ;2 ¼ pτϵ; ðB7Þ

τp;1 ¼ τp; ðB8Þ

τp;2 ¼ pτp; ðB9Þ

τQ;1 ¼ τQρh; ðB10Þ
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and the rest of the coefficients to zero. One obtains Eckart’s
fluid model if all of the τϵ;i, τp;i, and τQ;1 coefficients are set
to zero.

2. Israel-Stewart theory with bulk viscosity

In the (Müller-)Israel-Stewart approach to relativistic,
viscous fluid dynamics, the higher gradient corrections
in the fluid stress-energy tensor are promoted to their
own independent variables, which satisfy new equations of
motion [78,82,108].15 There are a wide variety of viscous
fluid models that apply the original ideas developed
by Israel and Stewart, including the DNMR [104] and
(r)BRSSS models [105] fluid models, which have been
extensively applied in modeling the aftermath of heavy-ion
collisions; for a recent review see [83]. Here we focus
on the only Israel-Stewart model that has been proven to
be strongly hyperbolic and causal for nonequilibrium,
dynamical solutions [72]. Moreover, this model was used
recently in [35] to estimate the PN order at which viscosity
would enter the waveform.
This particular variant of Israel-Stewart has the following

stress-energy tensor and fluid current vector [72]

Tμν ¼
e
c2

uμuν þ ðpþ ΠÞΔμν; ðB11aÞ

Jμ ¼ ρuμ: ðB11bÞ

Here Π is a new, auxiliary field. The equations of motion
are standard, ∇μTμν ¼ 0 and ∇μJμ, except for the addition
of a new equation of motion for Π

τΠuα∇αΠþ Πþ λΠ2 þ ζθ ¼ 0; ðB12Þ

where τΠ > 0 is new relaxation timescale, and λ ≥ 0 is a
new dimensionful constant. From the form of (B12), we see
that Π should be driven towards −ζθ for near-equilibrium
solutions.

APPENDIX C: STATIONARY POLAR
PERTURBATION OF THE EINSTEIN TENSOR

Here we explicitly show that the heat vectorQμ does not
enter in the calculation of the l ¼ 2 polar tidal Love
number, despite the fact that in principle the Qr compo-
nent could be nonzero. We note that the form of the
Einstein equations remain unchanged for l > 2, so our
argument holds for l > 2 as well. The Einstein tensor
components are

δGt
t

Y0
2

¼ 2

r2
K þ e−2λ

r
H0

2 þ
e−2λð−3þ rλ0Þ

r
K0

þ ð3þ e−2λ − 2e−2λrλ0Þ
r2

H2 − e−2λK00; ðC1Þ

δGr
r

Y0
2

¼ −
3

r2
H0 þ

2

r2
K þ e−2λ

r
H0

0 þ
e−2λð1 − 2rψ 0Þ

r2
H2

þ e−2λð−1þ rψ 0Þ
r

K0; ðC2Þ

δGϑ
ϑ − δGφ

φ

2ð½Y0
2�ϑϑ − ½Y0

2�φφÞ
¼ 1

4r2
H2 −

1

4r2
H0; ðC3Þ

δGϑ
ϑ þ δGφ

φ

2ð½Y0
2�ϑϑ þ ½Y0

2�φφÞ

¼ e−2λðrðλ0 þ ψ 0Þ − 2Þ
2r

K0 −
1

2
e−2λK00 −

3

2r2
H0

−
e−2λðrλ0 þ 2rψ 0 − 1Þ

2r
H0

0 þ
1

2
e−2λH00

0

þ ð2re−2λððrψ 0 − 1Þðλ0 þ ψ 0Þ − rψ 00Þ þ 3Þ
2r2

H2

−
e−2λðrψ 0 − 1Þ

2r
H0

2; ðC4Þ

δGr
ϑ

½Y0
2�ϑ

¼ −
1

2
e−2λH0

0 þ
1

2
e−2λK0 þ e−2λð−1þ rψ 0Þ

2r
H2

þ e−2λð1þ rψ 0Þ
2r

H0: ðC5Þ

In these expressions, we have factored out the depend-
ence on the scalar (Ym

2 ), polar vector (½Ym
2 �A), and polar

tensor (½Ym
2 �AB) spherical harmonics, where A indexes ϑ;φ.

Our notation for the spherical harmonics follows [88]. A
prime ( 0) denotes a derivative with respect to r.
These are precisely the quantities that entered in the

derivation of the master equation for H0 derived in [45],
which governs the polar tidal response of the star. We
next outline the derivation of the master equation. First,
using δTϑ

ϑ ¼ δTφ
φ, from Eq. (C3) we conclude that H2 ¼

H0 ≡H. As δTr
ϑ ¼ 0, Eq. (C5) relates H and H0 with K0.

One can next use δGϑ
ϑ þ δGφ

φ ¼ ð8πG=c4ÞðδTϑ
ϑ þ δTφ

φÞ ¼
ð8πG=c4Þδp to relate H to δp; see Eq. (C4). Finally, one
can eliminate the K in the tt [Eq. (C1)] and rr [Eq. (C2)]
components of the Einstein equations by subtracting them:
δGt

t − δGr
r ¼ ð8πG=c4ÞðδTt

t − δTr
rÞ. One can eliminate δe

by using the equation of state, which (ignoring the baryon
density ρ) is equal to eðpÞ, so δe ¼ ð∂e=∂pÞδp. The
dependence on δp can be removed Eq. (C4). At this point
one is left with an equation solely for H: the polar master

15Sometimes the Israel-Stewart class of models are known
as second-order models, to distinguish them from first-order
models such as the BDNK model, where no auxiliary fields are
added [69].
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equation, which we reproduce here for the quadrupole
(l ¼ 2) mode for completeness

1

r2
eψþλ d

dr

�
r2e−ψ−λ

dH
dr

�
þ
�
−2

d2ψ
dr2

− 2

�
dψ
dr

�
2

þ
�
−
7

r
þ 2

dλ
dr

�
dψ
dr

þ 3

r
dλ
dr

þ 1

r

�
dψ
dr

−
dλ
dr

�
∂e
∂p

−
6

r2
e2λ

	
H ¼ 0: ðC6Þ

We emphasize that this derivation made use of the tt, rr,
ϑϑ, φφ, and rϑ components of the perturbed equations of
motion, and did not rely on H1 being zero. As the tidal
response can be extracted from δgtt near spatial infinity
[5,45,109], (C6) completely determines the adiabatic polar
tidal Love number.

While H1 does not enter in the calculation of the Love
number, we show it is zero outside of the star. The nonzero
tensor components that contain H1 are

δGr
t

Y0
2

¼ −3
e−2λ

r2
H1; ðC7Þ

δGϑ
t

½Y0
2�ϑ

¼ −
eψ−λ

2r2
ðe−ψ−λH1Þ0: ðC8Þ

To complete our argument, we show that even if H1 is
nonzero inside the star, it must be zero outside of the star,
and thus it does not affect the asymptotic metric. Outside of
the star, Tμ

ν ¼ 0, so Gμ
ν ¼ 0. This implies δGr

t ¼ 0
outside of the star, and as Gr

t ∝ H1, we see that H1 ¼ 0
in the exterior of the star.
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