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The stability of hybrid stars with first-order phase transitions as determined by calculating fundamental
radial oscillation modes is known to differ from the predictions of the widely used Bardeen-Thorne-Meltzer
criterion. We consider the effects of out-of-chemical-equilibrium physics on the radial modes and hence
stability of these objects. For a barotropic equation of state, this is done by allowing the adiabatic sound
speed to differ from the equilibrium sound speed. We show that doing so extends the stable branches of
stellar models, allowing stars with rapid phase transitions to support stable higher-order stellar multiplets
similarly to stars with multiple slow phase transitions. We also derive a new junction condition to impose
on the oscillation modes at the phase transition. Termed the reactive condition, it is physically motivated,
consistent with the generalized junction conditions between two phases, and has the common rapid and
slow conditions as limiting cases. Unlike the two common cases, it can only be applied to nonbarotropic
stars. We apply this junction condition to hybrid stellar models generated using a two-phase equation of
state consisting of nuclear matter with unpaired quark matter at high densities joined by a first-order phase
transition and show that, like in the slow limiting case, stars that are classically unstable are stabilized by a
finite chemical reaction speed.
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I. INTRODUCTION

Understanding the equation of state (EOS) of dense
matter is a fundamental outstanding goal in both nuclear
physics and astrophysics. One important question to
improving this understanding is the nature of the phase
transition between nuclear matter and deconfined quark
matter. Quark deconfinement may occur via a first-order
phase transition with a density discontinuity [1,2], a
second-order transition from nuclear matter to quarkyonic
matter [3,4], or a smooth hadron-quark crossover [5–7].
Different quark phases may also exist, including color
superconducting phases [8], with associated phase transi-
tions between them.
Neutron stars are the principal astrophysics laboratory

for studying matter at densities where the transition from
hadronic to quark matter may occur, with stars containing
quark matter cores termed hybrid stars. The presence of a
first-order phase transition in the dense matter EOS is of
particular interest for its effect on the masses and radii of
hybrid stars, since it is required for the existence of twin
stars [9–19]. These are compact stars with identical
gravitational masses but different radii and internal com-
positions. Additional first-order phase transitions in the
dense matter EOS can give rise to higher-order stellar
multiplets with identical masses but different radii. In the

case of only classically stable stars—those with mass
increasing as a function of central density ∂M=∂ρc > 0—
triplet stars have been proposed [20]. However, the presence
of the phase transition modifies the definition of stellar
stability away from the Bardeen-Thorne-Meltzer (BTM)
criterion [21,22], part of which is that ∂M=∂ρc > 0.
Taking this into account, numerous authors have demon-
strated the existenceof slow stable stars [23–25]. These allow
for manymore pairs of twin stars consisting of a BTM-stable
star plus a slow stable star. Gonçalves and Lazzari [26]
extended the study of slow stable stars to EOSs with two-
phase transitions, while Rau and Sedrakian [27] applied
similar EOSs which supported classical twin and triplet stars
to demonstrate the possible existence of higher-order slow-
stable stellarmultiplets—up to six starswith identicalmasses
but different radii.
Determining whether slow stable stars exist given an

EOS requires computing the normal modes of oscillation of
the star, specifically their fundamental (nodeless) radial
modes. If the EOS has first-order phase transitions, junction
conditions are needed to describe how the perturbation
of the stellar fluid changes across the density discontinuity
[28,29]. The most common junction conditions are the
rapid and slow junction conditions. Physically, these
correspond to cases where the rate of the phase transition
is much faster or slower than the oscillation period, such
that a fluid element perturbed across the equilibrium phase
boundary will either instantaneously undergo a phase*prau@uw.edu
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transition or will retain its phase indefinitely. Stars with
only a rapid phase transition have identical stability
properties to those determined by the BTM stability
criterion, while stars with a slow phase transition do not
obey this criterion in its usual form and hence may permit
stable stars which would be deemed unstable according to
the BTM criterion [30].
Most studies of stability of hybrid stars with first-order

phase transitions have made the simplifying assumption that
the stellar fluid is always in chemical equilibrium. Since
chemical equilibrium is restored throughweak interactions in
the bulk of the star, and the rates for these interactions are
much slower than typical oscillation periods at usual temper-
atures for all but the youngest neutron stars, this approxi-
mation should be reexamined. Additionally, the rapid and
slowphase transitions andcorresponding junction conditions
are purely limiting cases, and alternative conditions require
considering out-of-chemical equilibrium effects. In this
paper, we consider the stability of hybrid stars including
nonequilibrium effects in both the bulk and at the phase
transition. In the bulk, our work generalizes studies of white
dwarfs [32] and neutron stars [33] without strong first-order
phase transitions. At the phase transition, we introduce a
novel junction condition termed the reactive condition,
showing that it generally stabilizes stars that are unstable
according to theBTMcriterion, but does notmerely replicate
the slow phase transition results. In fact, it interpolates
between the slow and rapid phase transition cases, but unlike
the interpolatingmodel developed inRau and Sedrakian [27]
(henceforth RS23), it is physically motivated and consistent
with the generalized junction conditions introduced by
Karlovini et al. [34].
In Sec. II we review the calculation of radial modes of

general-relativistic stars, how this is used to determine stellar
stability, and discuss how nonequilibrium effects modify
this calculation. The main result of this paper, the reactive
junction condition, is derived in Sec. II B. Section III
describes the equations of state used to generate stellar
models whose stability is examinedwhen out-of-equilibrium
effects are included. Section IV discusses the fundamental
radial mode calculation with out-of-equilibrium effects and
how these effects change the stability of stars with first-order
phase transitions.We also discuss how the reactionmode, the
radial mode which has no corresponding mode in the single-
phase star, is modified using the new junction condition. Our
results are reviewed in Sec. V. We work in units where
c ¼ G ¼ ℏ ¼ 1.

II. OUT-OF-EQUILIBRIUM PHYSICS AND
RADIAL OSCILLATION MODES

Computing the radial oscillation modes of nonrotating
stars in general relativity (see, e.g., [32,35,36]) requires first
computing equilibrium stellar models for a given equation
of state by solving the Tolman-Oppenheimer-Volkoff
(TOV) equation. The normal modes are then found by

solving two coupled first-order differential equations in the
dimensionless Lagrangian displacement field ξ and the
Lagrangian pressure perturbation ΔP, for which the angu-
lar frequency squared of the oscillation modes ω2 is an
eigenvalue. This is a Sturm-Liouville problem, so stability
is guaranteed if the fundamental (nodeless) mode has
positive eigenvalue: ω2

0 > 0.
The oscillation mode equations are [32,36]

dξ
dr

¼
�
dν
dr

−
3

r

�
ξ −

ΔP
rΓP

; ð1Þ

dΔP
dr

¼
�
e2λðω2e−2ν − 8πPÞ þ dν

dr

�
4

r
þ dν

dr

��
ðρþ PÞrξ

−
�
dν
dr

þ 4πðρþ PÞre2λ
�
ΔP; ð2Þ

where P, ρ and Γ are the pressure, energy density and
polytropic index [37] of the equilibrium background star
and r is the radial coordinate. ν and λ are radial functions
appearing in the metric tensor of the background star,
whose first fundamental form is

ds2 ¼ −e2νðrÞdt2 þ e2λðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð3Þ

The formalism to compute the radial normal modes of a
general relativistic star is identical to that presented in
RS23: Eqs. (1) and (2) are solved subject to the boundary
conditions

ΔPðr ¼ 0Þ ¼ −3ΓPξðr ¼ 0Þ; ð4Þ

ΔPðr ¼ RÞ ¼ 0; ð5Þ

where R is the outer radius of the star. ξ is only determined
up to an overall normalization factor; we take the conven-
tional ξðr ¼ 0Þ ¼ 1.
At a density discontinuity at a first-order phase tran-

sition, junction conditions relating the values of ξ and ΔP
across the discontinuity must be imposed. Karlovini et al.
[34] found that the most general junction conditions are

½ξ − F �þ− ¼ 0; ð6aÞ

½ðρþ PÞF �þ− ¼ 0; ð6bÞ

½ΔP�þ− ¼ 0; ð6cÞ

where

F ¼ ΔF
r

�
dF
dr

�
−1
; ð7Þ

for a function F ¼ FðrÞ which defines the phase boundary.
The subscripts refer to the high/low density ends of the
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phase transition. The simplest cases of junction condi-
tions are the rapid and slow cases, corresponding to
choosing F ¼ P or ΔF ¼ 0, respectively. When employ-
ing the rapid junction conditions in fundamental mode
calculations, the stability as determined from ω2

0 > 0

matches what is found using the BTM criterion. When
the slow junction conditions are used, stars which are
unstable according to the BTM criterion can be stable—
these are the “slow stable” stars.

A. Polytropic index vs adiabatic index

The first out-of-equilibrium effect to consider is the
distinction between the polytropic index of the fluid Γ
and the adiabatic index of the perturbation Γ1. These are
defined by

Γ ¼ ρþ P
P

dP
dρ

; Γ1 ≡ ρþ P
P

∂P
∂ρ

����
s;fYig

; ð8Þ

where the variables held constant during partial differ-
entiation are entropy per particle s and chemical species
fractions Yi. We work at zero temperature, so s ¼ 0 and
only the Yi are relevant. The derivation of Eq. (1) has
assumed that the fluid elements are always in chemical
equilibrium with their surroundings and hence the
Lagrangian perturbations of P and ρ are related by

ΔP ¼ ΓP
ρþ P

Δρ; ð9Þ

hence why Eq. (1) depends on Γ. If we do not assume that
the fluid elements are always in chemical equilibrium with
the background, we instead have

ΔP ¼ Γ1P
ρþ P

Δρþ P
X
i

βYi
ΔYi; ð10Þ

where

βYi
≡ ∂ lnP

∂Yi

����
ρ;Yj≠Yi

: ð11Þ

The standard assumption is that the Lagrangian perturba-
tions of the species fractions are zero ΔYi ¼ 0, which
corresponds to the chemical composition of fluid elements
being fixed. In this case, Γ in Eq. (1) is replaced with Γ1.
The r ¼ 0 boundary condition is also changed, with Γ in
Eq. (4) being replaced by Γ1.
The use of the polytropic index instead of the adiabatic

index is the default assumption if the EOS used to generate
the equilibrium stellar models is barotropic P ¼ PðρÞ. This
assumption is made by most papers which have studied
stability of hybrid stars with first-order phase transitions
[23–27], with the justification that Γ and Γ1 differ by≲15%

in the relevant range of densities in the nuclear phase [38].
However, in single-phase compact stars allowing the stars
to be out of equilibrium changes the stability compared to
the assumption of chemical equilibrium [32,33], allowing
some BTM-unstable stars to be stable. The effect of Γ1 ≠ Γ
has not been examined in hybrid stars with strong first-
order phase transitions prior to this work.
Given a barotropic EOS, taking Γ1 ≠ Γ is the only way

to model out-of-equilibrium effects. The allowed values of
Γ1 are limited by causality and the Ledoux criterion for
convective stability [39]. Since Γ1 and Γ are related
to the adiabatic sound speed cs and equilibrium sound
speed ceq by

c2s ≡ PΓ1

ρþ P
; c2eq ≡ PΓ

ρþ P
; ð12Þ

causality cs; ceq < 1 and the Ledoux criterion require that
anywhere in the star

Γ ≤ Γ1 ≤ 1þ ρ

P
: ð13Þ

B. The reactive junction condition

Out-of-equilibrium effects beyond taking Γ1 ≠ Γ require
using a nonbarotropic equation of state, which also allows
for a new junction condition instead of the rapid and slow
cases. RS23 posed the question of whether alternative
choices of F in Eq. (7) could change the stability of hybrid
stars with first-order phase transitions compared to that
exhibited for the rapid and slow cases. They specifically
considered an intermediate speed phase transition with
junction conditions

½ΔP�þ− ¼ 0;

�
ξ − α

ΔP
r

�
dP
dr

�
−1
�þ
−
¼ 0; ð14Þ

where the value of 0 ≤ α ≤ 1 is varied. The slow and rapid
conversion rate junction conditions are recovered when
α ¼ 0 andα ¼ 1, respectively. For generalα these conditions
do not satisfy Eqs. (6a)–(6c), an obvious weakness of this
choice. However, RS23 also pointed out that for a barotropic
EOS P ¼ PðρÞ, F can only be a function of P or r, and any
attempt to write F as a more complicated function of P will
give F that is equal to the rapid conversion case.
The obvious next step to obtain a more realistic junction

condition intermediate is to allow the perturbed fluid
elements to be out of chemical equilibrium. For concrete-
ness, we consider an EOS which can be described as a
function of ρ and two chemical species fractions X and Y.
The EOS has a single phase transition at some density,
below which we assume that Y ¼ 0 and P ¼ Pðρ; XÞ, and
above which X ¼ 0 and P ¼ Pðρ; YÞ. This allows us to take
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F ¼ Y as the definition of the phase boundary, since it
drops to zero here, and hence

F ¼ ΔY
r

�
dY
dr

�
−1
: ð15Þ

Combining Eqs. (6a) and (6b) to eliminate F−, we obtain a
junction condition for ξ:

½ξ�þ− ¼ Fþ
�
ρþ − ρ−

ρ− þ P

�
: ð16Þ

This and Eq. (6c) form a new set of junction conditions, but
we still need to specifyΔY, which if taken to be zero simply
recovers the slow junction condition.
How does allowing the perturbed fluid elements to be out

of chemical equilibrium modify Eqs. (1) and (2)? In the
high-density phase with P ¼ Pðρ; YÞ, combining Eq. (10)
with

Δρ ¼ −ðρþ PÞ 1
r2

d
dr

ðr3ξÞ − dP
dr

rξ; ð17Þ

and not assuming ΔY ¼ 0, we find that Eq. (1) is
replaced by

dξ
dr

¼
�
dν
dr

−
3

r

�
ξ −

ΔP
rΓ1P

þ βY
rΓ1

ΔY: ð18Þ

Compared to Eq. (1), Eq. (18) replaces the equilibrium
value of Γ with the adiabatic index Γ1, and includes an
additional term ∝ ΔY. In general, there will be a term of
this form for each chemical species fraction in a given
phase of matter.
Similar to Eq. (10), for the Eulerian perturbation of ρ,

using δY ¼ ΔY − rξðdY=drÞ for purely radial motion,

δP ¼ Γ1P
ρþ P

δρþ ξPβY
dY
dr

− PβYΔY: ð19Þ

Using this in the derivation of the normal mode equation for
dΔP=dr in e.g., [35], we obtain

dΔP
dr

¼
�
e2λðω2e−2ν − 8πPÞ þ dν

dr

�
4

r
þ dν

dr

�

−
βY
2Γ1

dν
dr

dY
dr

�
ðρþ PÞrξ

−
�
dν
dr

þ 4πðρþ PÞre2λ
�
ΔP: ð20Þ

We see that compared to Eq. (2) of RS23 there is an
additional term in the coefficient of ξ proportional to the
gradient of Y, and that this term should be included even
when ΔY ¼ 0. This term is proportional to the Brunt-
Väisälä frequency squared N2 term that appears in the

nonradial oscillation mode equations [40], and could be
included instead by replacing ω2 with ω2 − N2 in the first
term on the right-hand side of Eq. (20). However, no purely
radial gmodes exist, and the effect of this term is to shift the
radial mode frequencies.
Starting with the equation for total baryon conservation

∇μn
μ
b ¼ 0 for baryon four-current nμb, and assuming that we

can write similar equations for the different fluid species in
each phase, we obtain an equation describing the evolution
of the chemical fractions. For fraction Y, this is

e−ν=2γðjvrjÞ
�
∂Y
∂t

þ vr
∂Y
∂r

�
¼ γY

nb
; ð21Þ

where γY is the volumetric creation rate of the particles
with chemical fraction Y, γðjvrjÞ is the Lorentz factor and
vr is the radial velocity (assuming radial motion only) of
the fluid. nb is the baryon number density. Taking the
Lagrangian perturbation of this and retaining only terms to
lowest order in the velocity gives

e−ν=2
∂ΔY
∂t

¼ γY
n2b

ðQb − 1ÞΔnb þ
γY
nb

QYΔY; ð22Þ

where

Qb ≡ ∂ ln γY
∂ ln nb

; QY ≡ ∂ ln γY
∂Y

: ð23Þ

Assuming harmonic time dependence ΔY ∝ e−iωt where ω
is the oscillation angular frequency, this equation can be
rearranged as

ΔY ¼ γYð1 −QbÞðγYQY − iωe−ν=2nbÞ
ðγYQYÞ2 þ ω2e−νn2b

Δnb
nb

: ð24Þ

In the limit that the reactions are much faster than the
oscillation period, we can take ω → 0 in Eq. (24) and
obtain

ΔY ≈ −
Qb − 1

QYs

Δnb
nb

≡ −Z
Δnb
nb

; ð25Þ

where Z is a parameter characterizing the rate of restoration
of equilibrium. It can in principle be calculated given a
microscopically computed γY . Not making the assumption
ω → 0 in Eq. (24) gives rise to dissipation in the form of
bulk viscosity, which makes the ω values complex and
violates the assumptions of Sturm-Liouville theory [41].
The weak reactions that restore equilibrium in the bulk of

the star are much slower than a typical oscillation period
except at very high temperatures [42]. Hence, we can take
ΔY ≈ 0 in the bulk of the star to very good approximation,
and can ignore the ΔY term in Eqs. (18) and (20). But the
reactions that occur at the phase transition, including quark
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(de)confinement, could be faster than the oscillation period.
So we should retain ΔY near the phase transition. For a
nuclear matter to deconfined quark matter phase transition,
Y is the strange quark fraction, which is zero in nuclear
matter and nonzero in quark matter.
Combining Eqs. (10) and (25), and

Δρ
ρþ P

¼ Δnb
nb

; ð26Þ

we obtain

ΔY ¼ −
Z

Γ1 − βYs
Z
ΔP
P

: ð27Þ

Inserting this into Eq. (15) and then eliminating Fþ from
Eq. (16) gives

½ξ�þ− ¼ −Z
Γþ
1 − βþY Z

ΔP
rP

�
dY
dr

�
−1

þ

�
ρ− − ρþ

ρ− þ P

�
: ð28Þ

We have used that ΔP, P and r are continuous across the
junction. This equation and Eq. (6c) form a new set of
junction conditions, which we term the reactive conditions.
The reactive junction conditions are a physically moti-

vated set of junction conditions that are consistent with the
generalized junction conditions Eqs. (6a)–(6c) and which
interpolate between the rapid and slow conditions. First, in
the limit Z → 0, Eq. (28) clearly reduces to ½ξ�þ− ¼ 0, the
junction condition for ξ in the slow case. To recover the
rapid case, we note that

dP
dr

¼ Γ1P
nb

dnb
dr

þ PβY
dY
dr

¼ P
�
Γ1

�
dY

d ln nb

�
−1

þ βY

�
dY
dr

: ð29Þ

Using this to eliminate βY from Eq. (28) gives

½ξ�þ− ¼
−Z ΔP

rP

�
ρ−−ρþ
ρ−þP

�

Γþ
1

�
1þ Z

�
dY

d ln nb

�
−1

þ

��
dY
dr

�
þ
− Z

�
d lnP
dr

�
þ

:

In the case Z → −ðdY=d ln nbÞþ, Eq. (28) becomes

½ξ�þ− ¼ ΔP
r

�
dP
dr

�
−1

þ

�
1 −

ρþ þ P
ρ− þ P

�

¼ ΔP
r

ðρþ þ PÞ
�
dP
dr

�
−1

þ

�
1

ρþ þ P
−

1

ρ− þ P

�

¼
�
ΔP
r

�
dP
dr

�
−1
�þ
−
;

which is the junction condition on ξ in the rapid case [the
second equation in Eq. (14) with α ¼ 1]. To show this we
used from the TOV equation that

1

ρþ P
dP
dr

¼ −
mþ 4πr3P
r2ð1 − 2m=rÞ ð30Þ

is continuous across the phase transition because P, r and
the enclosed mass m ¼ mðrÞ are continuous across the
phase transition. Z ¼ −ðdY=d ln nbÞþ being the rapid limit
is expected because this says that the relation between the
perturbations of Y and nb as given by Eq. (25) is identical to
its value in chemical equilibrium, and the rapid case
assumes that the fluid elements are always in chemical
equilibrium.
The range of physically meaningful values of Z is

−ðdY=d ln nbÞþ ≤ Z ≤ 0. This is because as the reaction
rate increases, Z decreases from 0 to −ðdY=d ln nbÞþ.
Z > 0 would correspond to a slower reaction rate than
infinitely slow and is unphysical, and Z < −ðdY=d ln nbÞþ
would be a faster reaction rate than infinitely fast. We note
that permitting small values of Z which imply slow phase-
changing reactions is inconsistent with the assumption that
underlined the derivation of the reactive junction condi-
tions. However, we will see that values of Z within the
same order of magnitude as the rapid-case recovering
Z ¼ −ðdY=d ln nbÞþ still give rise to fundamentally differ-
ent behavior than the rapid case and stabilize stars similar to
what occurs in the slow case.
In deriving Eq. (28), we take a linear combination of

Eqs. (6a) and (6b) to eliminate F−. This is not a unique
choice and we could alternatively eliminate Fþ from the
equations, which would give a similar boundary condition
to Eq. (28) but one which depends on a chemical species
fraction and its gradient on the lower density side of the
phase transition. This boundary condition would depend on
a different parameter characterizing the equilibration rate in
the low density phase which we call Z−, and the physically
allowed range of Z− would be different from the allowed
range of Z. If we choose to satisfy Eqs. (6a) and (6b)
independently, the value of either Z− or Z would be
constrained, leaving the other as a free parameter (which
should in principle be a quantity that can be computed).
That Z and Z− must be related to each other this way is not
surprising since the restoration of equilibrium involves
reactions depending on the chemical species fractions on
both sides of the transition.

III. EQUATIONS OF STATE

A. Three-phase barotropic EOS

To study slow-stable stars with high-order stellar mul-
tiplets, RS23 used the three-phase, chemically equilibrated
(i.e, barotropic) EOS with constant equilibrium sound
speeds for the quark phases described in Ref. [20].
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The low-density nuclear phase is joined to two color-
superconducting quark phases (termed 2SC and CFL,
respectively) by the Maxwell construction with large
density discontinuities. We use one parametrization of this
EOS given in Table I to study the simplest nonequilibrium
effects on stability with a barotropic EOS. The definition of
the EOS parameters matches Alford and Sedrakian [20]
or RS23. This parametrization supports BTM-stable triplet
stars, and stellar masses up to 1.88M⊙, consistent with the
neutron star maximum mass constraints within 3σ con-
fidence intervals [43–50]. The EOS is plotted in Fig. 1.
The nonequilibrium effects are modeled by choosing

Γ1 ≠ Γ. Since the nuclear phase of the EOS is based on a
tabulated model, Γ here is derived from finite differencing
PðρÞ. For simplicity, we let Γ1 ¼ Γ in this region and
restrict our study of nonequilibrium effects to the two quark
phases. We do this by specifying constant values of c2s in
the two quark phases subject to Eq. (13), i.e., c2eq1 <c2s1< 1

and c2eq2 < c2s2 < 1. The different choices of the c2s values
we examine are listed in Table II.

B. Two-phase nonbarotropic EOS

When applying the reactive junction condition, an EOS
which includes information about chemical species frac-
tions must be used. For this purpose we use a composite
EOS with a single first-order phase transition between
nuclear matter and deconfined, unpaired, three-flavor quark
matter. The crust is taken from the DDME2 EOS [51],
which is joined continuously to the Zhao-Lattimer EOS
[52] in the form used in Ref. [53] for the nuclear (neutron-
proton-electron matter) phase, though we do not include
muons. The quark phase EOS is based on the vMIT model
as used in Refs. [52,53], but joined to the nuclear matter
phase using a Maxwell construction. We use the nuclear
phase parameters given by EOS XOA in Ref. [53]. Our
treatment of the quark matter phase differs somewhat from
the references and so is discussed in detail below. We also
describe the calculation of Γ1 and the βY .
In the quark matter phase, we start with a relativistic

mean-field model with pressure

P ¼
X
q

Pq þ Pe − Bþ 1

2
m2

VV
2; ð31Þ

where the Pq are the quark pressure contributions
q ¼ fu; d; sg, Pe is the electron pressure contribution, B
is the bag constant, and V is the vector meson field
with mass mV . We assume massless up and down quarks
mu ¼ md ¼ 0 and electronsme ¼ 0, and ignore muons. Pq

and Pe are

Pq ¼
μ�4q
4π2

; q ¼ u; d; ð32aÞ

Ps ¼
1

8π2

�
μ�sð2μ�2s − 5m2

sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�2s −m2

s

q

þ 3m4
s ln

�
μ�s þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�2s −m2

s

p
ms

��
; ð32bÞ

FIG. 1. Equations of state used in this paper: three-phase EOS
with nuclear phase and two quark phases with constant equilib-
rium sound speeds as described in Sec. III A (solid line), and the
two-phase EOS with nuclear plus quark phase as described in
Sec. III B (dashed line).

TABLE I. Parametrization for the nuclear plus two quark phase
EOS used in this paper. ρ1 and ρ2 are the energy densities at the
low end of the nuclear-2SC and 2SC-CFL phase transitions, P1 is
the pressure at the nuclear-2SC phase transition, Δρ1 and Δρ2 are
the energy density discontinuities of the nuclear-2SC and 2SC-
CFL phase transitions; all are given in MeV=fm3. c2eq1 and c2eq2
are the equilibrium sound speeds squared in the 2SC and CFL
quark phases in units of c2.

ρ1 P1 ρ2 Δρ1 Δρ2 c2eq1 c2eq2

420.7 77.7 774.1 263.6 168.3 0.75 0.95

TABLE II. Choices of constant adiabatic sound speeds squared
c2s in units of c2 for the 2SC phase (c2s1) and CFL phase (c2s2).
Note configuration 1 is equivalent to choosing c2s ¼ c2eq in both
phases.

Name c2s1 c2s2

1 0.75 0.95
2 0.8 0.95
3 0.9 0.95
4 0.8 1
5 0.9 1
6 1 1
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Pe ¼
μ4e

12π2
; ð32cÞ

for strange quark mass ms, electron chemical potential μe
and where

μ�q ¼ μq − gVV ð33Þ

is the effective chemical potential for each quark species for
vector meson coupling constant gV . μq is the bare quark
chemical potential. The number densities are then

nq ¼
∂P
∂μq

����
μ0q≠μq;V

¼ ∂P
∂μ�q

∂μ�q
∂μq

����
V

¼ μ�3q
π2

; q¼ u;d; ð34aÞ

ns ¼
ðμ�2s −m2

sÞ3=2
π2

; ð34bÞ

ne ¼
μ3e
3π2

: ð34cÞ

We determine the value of V by maximizing the pressure
with respect to it:

∂P
∂V

¼ 0 ¼
X
q

∂P
∂μ�q

∂μ�q
∂V

����
μq

þm2
VV ¼ −gV

X
q

nq þm2
VV:

ð35Þ

Since
P

q nq ¼ 3nb, in equilibrium we find

V ¼ 3

�
gV
m2

V

�
nb: ð36Þ

Electrical charge neutrality and weak equilibrium require
that

2

3
nu ¼

1

3
ðnd þ nsÞ þ ne: ð37aÞ

μu ¼ μd þ μe; ð37bÞ

μs ¼ μd: ð37cÞ

Requiring that Eqs. (37a)–(37c) hold simultaneously
allows us to calculate the chemical potentials and number
densities in equilibrium. The energy density ρ is

ρ ¼
X
i

∂P
∂μi

����
V
μi − P ¼

X
i

niμ�i þ neμe þ aVn2b − P; ð38Þ

where we have inserted Eq. (36) and defined

aV ≡
�
3gV
mV

�
2

: ð39Þ

The quark matter EOS parametrization is given in Table III.
We choose different parameters from those in Ref. [53]: this
difference arises from requiring the astrophysical constraint
of a 2M⊙ star be met while having a first-order phase
transition, whereas Ref. [53] considers a crossover phase
transition. The pressure PQ, energy density at the lower end
of phase transition ρQ, and energy density discontinuity
at the phase transition ΔρQ are also given in this Table.
This combined crust-nuclear-quark matter EOS supports a
> 2M⊙ hybrid star, and is plotted in Fig. 1. We have
checked that choosing EOS parameters such that there is no
stable hybrid star branch does not qualitatively change our
findings.
To compute the adiabatic index, we express P as a

function of ρ and the various particle species fractions. The
total baryon number density is given in terms of the quark
number densities by

nb ¼
1

3
ðnu þ nd þ nsÞ: ð40Þ

Define quark flavor fractions Yq ≡ nq=ð3nbÞ and
Ye ≡ ne=nb. Using 1 ¼ Yu þ Yd þ Ys and Eq. (37a),
we find

Yu ¼
1þ Ye

3
; Yd ¼

2 − Ye

3
− Ys; ð41Þ

which allows us to express all quark and electron number
densities in terms of nb, Ye and Ys only. Doing so, the
resulting adiabatic index is

Γ1 ¼
ρþ P
P

∂P
∂ρ

����
Ye;Ys

; ð42Þ

TABLE III. Parametrization of quark matter EOS used in this
paper, and properties of the resulting first-order phase transition
using the Maxwell construction between nuclear and quark
matter. ms is the strange quark mass, B is the bag constant,
aV is the vector meson coupling constant defined in Eq. (39), PQ

is the phase transition pressure, ρQ is the energy density at the
low-density end of the phase transition,ΔρQ is the energy density
discontinuity across the phase transition.ms, B and aV differ from
those values chosen in Ref. [53].

Parameter Value

ms 100 MeV
B ð190 MeVÞ4
aV 1.541 × 10−5 MeV−2

PQ 167.6 MeV=fm3

ρQ 627.2 MeV=fm3

ΔρQ 480.2 MeV=fm3
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where

∂P
∂ρ

����
Ye;Ys

¼ 1

μn

�
ð1þ YeÞnu

�
∂nu
∂μ�u

�
−1

þ ð2 − Ye − 3YsÞnd
�
∂nd
∂μ�d

�
−1

þ 3Ysns

�
∂ns
∂μ�s

�
−1

þ Yene

�
∂ne
∂μe

�
−1
�
þ aVnb

μn
;

ð43Þ

where μn ¼ μu þ 2μd is the neutron chemical potential
(note that the bare quark chemical potentials appear here).
The partial derivatives of the number densities are readily
computed from Eqs. (34a) and (34b). To compute βYs

and
βYe

we also need

∂P
∂Ys

����
ρ;Ye

¼ 3nb

�
ns

�
∂ns
∂μ�s

�
−1

− nd

�
∂nd
∂μ�d

�
−1
�
; ð44Þ

∂P
∂Ye

����
ρ;Ys

¼ nb

�
nu

�
∂nu
∂μ�u

�
−1

þ ne

�
∂ne
∂μe

�
−1

− nd

�
∂nd
∂μ�d

�
−1
�
:

ð45Þ

Equation (45) evaluates to zero for massless u and d quarks
and electrons in weak equilibrium. A similar procedure is
done for the nuclear phase, though with only one relevant
chemical species fraction, the proton fraction Y ¼ np=nb.
Because of the ∝ dY=dr term in Eq. (20), the chemical
fractions need to be computed in the entire background star
and not simply at the nuclear-quark phase transition as
needed to use the reactive junction condition.

IV. EFFECTS ON STELLAR STABILITY

A. Three-phase barotropic EOS

We solved Eqs. (1) and (2) subject to boundary con-
ditions Eqs. (4) and (5) and with Γ → Γ1 for stellar models
constructed with the EOS presented in Sec. III A. Slow and
rapid junction conditions as described following Eq. (7)
were imposed at the phase transitions. The calculation was
performed using the shooting method. Figures 2–5 show
the fundamental radial mode frequency f0 ¼ ω0=ð2πÞ as a
function of stellar central pressure Pc for this EOS and the
six different choices of c2s in Table II. The four different
permutations of slow and rapid junction conditions at the
two phase transitions are considered; the configurations
are referenced with the phase transition rate at the lower
density transition (nuclear-2SC) first. To show more detail
of the f0 curves, the f0 values within the nuclear phase are
only shown for the slow-slow and slow-rapid configura-
tions (Figs. 2 and 3). The slow-slow and slow-rapid
configurations both clearly support slow-stable quintuplets
consisting of three BTM-stable stars and two slow-stable

stars within the gray shaded band around M ¼ 1.77M⊙,
and two triplets consisting of two BTM-stable and one
slow-stable star at slightly higher and lower masses shaded
light blue. In chemical equilibrium (case 1), the rapid-slow

FIG. 2. Fundamental radial mode frequency f0 (left) and stellar
massM (right) as functions of central pressure Pc using the three-
phase barotropic EOS of Sec. III A with the slow-slow phase
transition configuration. f0 < 0 corresponds to an imaginary
(unstable) frequency. Nonequilibrium effects are included by
taking different adiabatic sound speed squared c2s than the
equilibrium sound speed squared c2eq. The different curves
correspond to the frequencies found for the choices of c2s
described in Table II. Solid vertical lines are placed at the central
pressures corresponding to the phase transitions (gray) and the
local maxima in M (indigo). The shaded gray horizontal band of
stellar masses supports quintuplet stars, while the shaded blue
bands support triplet stars. The phase in the center of the star is
labeled at the top of the plot, with the phases separated by the
vertical gray lines.

FIG. 3. Same as Fig. 2 except for a slow-rapid phase transition
configuration.
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configuration supports slow-stable quadruplet stars, while
the rapid-rapid configuration only supports triplet stars.
Figures 2–5 clearly show that increasing Γ1 above Γ

(increasing c2s above c2eq) expands the range of central
pressures for which f0 > 0 and the hybrid stars are stable.
This holds for all permutations of the junction conditions.
This is consistent with findings [32,33] for single-phase
stars which considered Γ1 ≠ Γ, where increasing Γ1 infini-
tesimally above Γ stabilizes stars that were BTM unstable.
The further above Γ that Γ1 is, the greater the range of
central pressures that are stabilized beyond those already
supporting a stable star using the fully equilibrated model.
One of the most noticeable effects, which is clear for all
permutations of the junction conditions, is that as Pc

increases, the influence of the CFL phase increases and
the f0 values converge into two nearly overlapping curves,
one for configurations 1–3 (c2s2 ¼ 0.95) and one for
configurations 4–6 (c2s2 ¼ 1).
The main effect of Γ1 ≠ Γ at lower Pc is expanding the

stable range of Pc to lower values than those corresponding
to the local minima inM, which allows the rapid-rapid and
rapid-slow configurations to also support a higher-order
stellar multiplet than the BTM-stable triplet stars like in the
slow-slow and slow-rapid cases. For this EOS, the rapid-
rapid and rapid-slow configurations with Γ1 ≠ Γ support an
additional stable star below the Pc ¼ 223 MeV=fm3 local
minimum in M, as shown in greater detail in Fig. 6.
However, the chosen values of c2s are unable to stabilize to
sufficiently low Pc below the Pc ¼ 110 MeV=fm3 local
minimum in M to support stars with masses in the
quintuplet band at Pc between this local minimum and
the Pc ¼ 82 MeV=fm3 local maximum in M. Thus the
rapid-rapid and rapid-slow configurations only support
stable quadruplet stars. The additional range of stable Pc

values above the local maximum in M at Pc ¼
148 MeV=fm3 does allow a separate stable triplet of stars
in the rapid-rapid configuration, matching a similar stable
triplet which is present for the other three configurations at
masses just above that for which the slow-slow and slow-
rapid configurations support quintuplet stars. These obser-
vations show that nonequilibrium effects can mimic the
slow-stabilization effects through extending the range of Pc
which correspond to stable objects, though the differences
in the ranges of Pc values stabilized by being out of
chemical equilibrium means that the different cases can still
be distinguished.

FIG. 4. Same as Fig. 2 except for a rapid-slow phase transition
configuration.

FIG. 5. Same as Fig. 2 except for a rapid-rapid phase transition
configuration.

FIG. 6. Same as Fig. 5 except enlarged to show detail around
the first two local maxima in M. The local minima in M are
indicated with vertical teal lines.
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B. Two-phase nonbarotropic EOS

When computing the fundamental radial modes of the
stars with the two-phase EOS, we solved Eqs. (18)–(20)
while imposing the boundary conditions Eqs. (4) and (5)
with Γ → Γ1. At the phase transition we imposed the slow,
rapid and reactive junction condition, with the latter given
by Eqs. (6c) and (28). In using Eq. (28) we took Y → Ys as
it is the species fraction which is zero below the transition
and nonzero above it. We considered the crust part of the
EOS as barotropic, setting Γ1 ¼ Γ and ignoring species
fraction gradients there.
The reactive junction condition required a value for

parameter Z. Since the physics of the deconfinement
transition is not fully understood, instead of computing
Z microphysically we choose different values for this
parameter within the range −ðdYs=d ln nbÞþ ≤ Z ≤ 0. A
typical value for ðdYs=d ln nbÞþ for our equation of state
is ≈ − 0.0097.
Figure 7 shows the fundamental radial mode frequency

f0 for the different choices of junction condition. This
clearly demonstrates that the rapid and slow cases are the
limiting cases of the reactive junction condition, which
interpolates between these two cases depending on the
value of Z. As was found in RS23 for the intermediate
junction condition [Eq. (14)] for 0 ≤ α < 1, any change of
Z away from −ðdYs=d ln nbÞþ results in a star with some
previously unstable central pressure being stabilized. In
this sense, the reactive junction condition is similar to the

slow case, even if a smaller range of central pressures in
the BTM-unstable range is stabilized compared to the
slow case.
Stars with a rapid phase transition will support a reaction

mode [29], a radial mode that does not correspond to a
mode of the single-phase star, resulting in a discontinuity in
the mode frequency for fixed radial node number. The
reaction mode is often, but not always, the fundamental
mode. When using the reactive junction condition, the case
Z ≠ 0 also supports a reaction mode. This is clearly shown
by examining Fig. 7 and noting the discontinuities in f0 at
the phase transition when the reactive junction condition is
imposed: this is most pronounced for Z ¼ −0.008;−0.006.
The fundamental modes are not the reaction mode for the
other values of Z, so for these values a higher-order
harmonic is the reaction mode.
To illustrate this point, in Fig. 8 we show the funda-

mental and first and second harmonic radial modes for the
reactive junction condition with different values of Z. The
plot is enlarged to central pressures shown in a close-up
view near the phase transition, and the results using the
rapid and slow junction conditions are also shown for
comparison. Note that f0 for the rapid junction condition

FIG. 7. Fundamental radial mode frequency f0 (left) and stellar
mass M (right) as functions of central pressure Pc for the
nonbarotropic nuclear plus quark matter EOS star. f0 < 0 corre-
sponds to an imaginary (unstable) frequency. Mode frequencies are
labeled by the junction conditions used: s for slow, r for rapid, and
Z for the reactive junction condition with the value of the Z
parameter used shown. The different values of −ðdYs=d lnnbÞþ ≤
Z ≤ 0 interpolate between the rapid and slow cases. A solid
vertical line indicates the central pressures corresponding to the
phase transition (gray), which occurs at almost the same central
pressure as that for the maximummass star. The phase in the center
of the star is labeled at the top of the plot.

FIG. 8. Radial mode frequency f for fundamental and first two
harmonic modes as a function of central pressure Pc for the
nuclear plus quark matter EOS star and the reactive junction
condition. Mode frequencies are labeled r (rapid junction con-
dition), s (slow junction condition) or the value of Z used with the
reactive junction condition, with solid, dashed and dot-dashed
lines for the fundamental, first harmonic and second harmonic
modes, respectively. Solid vertical lines are placed at the central
pressures corresponding to the phase transition (gray) and the
maximum mass (indigo). Note that some modes are nearly
overlapping.

PETER B. RAU and GABRIELA G. SALABEN PHYS. REV. D 108, 103035 (2023)

103035-10



does not become imaginary at exactly the maximum mass
because of the nonequilibrium effect Γ1 ≠ Γ, though the
range of Pc with decreasing stellar mass that corresponds to
stable stars is so small that it is only visible in this enlarged
plot and not in Fig. 7. The reaction mode is clearly the
fundamental mode for the rapid junction condition and
the reactive junction condition with Z ¼ −0.008, but it is
the first harmonic for the reactive junction condition with
Z ¼ −0.004 and the second harmonic for the reactive
junction condition with Z ¼ −0.001. Since the reaction
mode effectively slots into the usual mode spectrum and
pushes the other modes to higher frequency, this suggests
that in the slow limit the reaction mode is raised to an
infinitely high harmonic.
To clarify this point further, in Fig. 9 we plot the

frequencies of the fundamental and first three harmonic
modes as a function of Z for fixed Pc just above the phase
transition. The avoided crossings between the frequency
curves for constant radial node number n define the ranges
of Z for which the reaction mode is a particular mode.
For Z less than ≈ − 0.006, the value corresponding to the
avoided crossing between the n ¼ 0 and n ¼ 1 curves,
the fundamental mode is the reaction mode; for Z between
≈ − 0.0059 and ≈ − 0.0018, the avoided crossing between
the n ¼ 1 and n ¼ 2 curves, the first harmonic mode is the
reaction mode, etcetera.

V. CONCLUSION

We have studied the effects of nonequilibrium physics on
the stability of hybrid stars with first-order phase transitions.
In the first example, we used a three-phase barotropic EOS
with the two denser quark phases modeled using constant
equilibrium sound speeds. Here the out-of-equilibrium
physics was modeled by choosing values for the adiabatic
sound speed greater than the equilibrium sound speeds in the
quark phases. This results in stable hybrid stars over an
extended range of central pressures compared to the always-
equilibrated case, a result consistent with studies of out-of-
chemical equilibrium stability of white dwarfs and neutron
stars. This extended range of stability permits the existence of
higher-order stellar multiplets than those that are BTM stable
even in the case of rapid phase transitions, since stars with
central pressures below/above those corresponding to the
local minima/maxima of the stellar mass M are stabilized.
For the EOS we examined, this permitted stable quadruplet
stars with rapid phase transitions when the BTM criterion
would have predicted only stable triplet stars.
In the second part of this paper, we have introduced a

new junction condition to be applied when computing the
radial normal modes of a compact hybrid star with strong
first-order phase transitions. We have shown that this
reactive junction condition interpolates between the slow
and rapid junction conditions as limiting cases, but also
satisfies the generalized form of junction conditions for
radial oscillations of a relativistic star. It can only be applied
with an equation of state that does not assume chemical
equilibration and includes explicit chemical fraction
dependence. We chose a two-phase EOS with nuclear
and deconfined quark matter separated by a first-order
phase transition to apply this new junction condition. For
different values of parameter Z, which is a function of the
rate of particle creation (for our model, the strange quarks),
we showed that it interpolates between the slow and rapid
limiting cases, providing a more physically reasonable
junction condition. We also showed that the reaction mode
which appears in the radial mode spectrum when using the
rapid junction condition persists when using the reactive
junction condition, and becomes a higher harmonic as the
parameter Z is made smaller in magnitude (less negative).
Extensions of this work include the application of the

reactive junction condition to a hybrid star with multiple
phase transitions—it could not be applied to the three-phase
EOS we used in the first part of the paper because that EOS
assumed chemical equilibrium. The parameter Z appearing
in the reactive junction condition depends on the physics of
the deconfinement transition which we did not examine in
detail. Computing it microscopically and using this value
would allow a realistic determination of the stabilized range
of Pc for a given EOS. The physics of deconfinement could
thus be constrained via the observation of reactively stabi-
lized compact stars with lower masses and radii than those
observed for the maximum mass star.

FIG. 9. Radial mode frequency f for fundamental and first three
harmonic modes as a function of the parameter Z in the reactive
junction condition at Pc ¼ 167.604 MeV=fm3. Curves are la-
beled by the number of radial nodes: n ¼ 0 is the fundamental
mode, n ¼ 1 the first harmonic, etc. Z ¼ 0 is the slow junction
condition and Z ≈ −0.0097 is the rapid junction condition. The
avoided crossings between the curves define the ranges of Z for
which the different modes are the reaction mode; the harmonic
corresponding to the reaction mode in each range of Z defined by
vertical gray lines is indicated at the top (0th ¼ fundamental).
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