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The interconversion of axionlike particles (ALPs) and photons in magnetized astrophysical environ-
ments provides a promising route to search for ALPs. The strongest limits to date on light ALPs use galaxy
clusters as ALP-photon converters. However, such studies traditionally rely on simple models of the cluster
magnetic fields, with the state-of-the-art being Gaussian random fields (GRFs). We present the first
systematic study of ALP-photon conversion in more realistic, turbulent fields from dedicated magneto-
hydrodynamic (MHD) simulations, which we compare with GRFmodels. For GRFs, we analytically derive
the distribution of conversion ratios at fixed energy and find that it follows an exponential law. We find that
the MHD models agree with the exponential law for typical, small-amplitude mixings but exhibit distinctly
heavy tails for rare and large mixings. We explain how non-Gaussian features, e.g., coherent structures and
local spikes in the MHD magnetic field, are responsible for the heavy tail. Our results suggest that limits
placed on ALPs using GRFs are robust.
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I. INTRODUCTION

Axionlike particles (ALPs) are ubiquitous in extensions
of the Standard Model of particle physics [1–6] and
provides an increasingly popular candidate for dark matter
[7–9]. ALPs and photons can interconvert in background
magnetic fields through the interaction [10,11]

L ¼ −
gaγ
4

aF̃μνFμν; ð1Þ

wherea is theALP field, gaγ is theALP-photon coupling,Fμν

is the electromagnetic tensor, and F̃μν ¼ 1
2
ϵμνρσFρσ is its

dual. Laboratory searches based on this interaction include
light-shining-through-the-wall experiments, “helioscopes”

that are sensitive to solar ALPs, and dark matter “halo-
scopes,” see Refs. [12–14] for reviews. Moreover, comple-
mentary astrophysical searches for ALP-photonmixing have
proven exceptionally powerful and have led to some of the
strongest limits on gaγ , as we now discuss.
The strength of the ALP-photon mixing grows with the

magnitude of the magnetic field and the size of the
magnetized region. Galaxy clusters are both magnetized
(with μG field strengths) and large (spanning hundreds of
kiloparsecs), and are known to be efficient ALP-photon
converters; a significant fraction of high-energy photons
travelling through a cluster could emerge as ALPs, and vice
versa. It follows that the high-energy photon spectra of a
bright active galactic nucleus (AGN) located within or
behind a galaxy cluster would be distorted by ALP-photon
conversions, which makes it possible to use x-ray and
gamma-ray satellites to search for ALPs. For example,
precision x-ray spectrometry of the cluster-hosted quasar
H1821þ 643 limits the amplitude of possible ALP-
induced distortions to the ≲2.5% level, which implies
strong constraints on ALP theories [15]. A comparable
precision has been reached for the AGN NGC1275 at the
center of the Perseus cluster [16], and the several similar
studies have been performed in the x-ray and gamma-ray
ranges [17–49].
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A critical step in translating the absence of spectral
distortions into limits on ALPs is the modeling of the
cluster magnetic field. For some clusters, Faraday rotation
measure studies constrain key properties of the magnetic
field, but the detailed spectral shape of the ALP-photon
conversion ratio is given by the full spatial autocorrelation
function of the magnetic field [50], which is not observa-
tionally accessible. The magnetic field must therefore be
treated as a nuisance parameter to be marginalized over in
the statistical analysis. Traditionally, rather simple models
for the cluster magnetic field have been used in the
literature, e.g., by taking the field to be constant within
a series of cells along the direction of propagation (i.e., cell
models), or by using divergence-free Gaussian random
fields (GRFs). Recent studies have found the predictions to
be rather robust to the choice of model [40]. Still, it is
important to note that these simple magnetic field models
differ significantly from more realistic models found by
solving the dynamical magnetohydrodynamic (MHD)
equations of motion. In particular, MHD simulations of
turbulent plasmas exhibit coherent magnetic structures on
moderately large scales, which have no counterpart for
GRF or cell-model fields. This prompts the question: can
the predictions of the simpler models be trusted, given their
lack of coherent structure?.
This paper presents the first systematic study of ALP-

photon conversion in MHD models of cluster magnetic
fields (see also Ref. [51] for a similar study with ENZO
code). We carefully analyze the predicted distributions of
ALP-photon conversion ratios and compare them to those
of similar GRFmodels. Importantly, we find that the typical
predictions are in excellent agreement between the MHD
and GRF models, but that the distributions differ signifi-
cantly for rare fluctuations. While the fluctuations to large
conversion ratios are exponentially suppressed in GRF
models, the MHD models predict distinctly heavy tails.
We establish the origin of the heavy tails to be coherent
structures with large amplitude magnetic fields, which
reflect the non-Gaussianity of the MHD field. By contrast,
we find the helicity of the magnetic field to be unimportant
for the conversion ratio.
In Sec. II we summarise the formalism of ALP-photon

conversions in the perturbative regime. In Sec. III we
discuss how MHD simulations model the environment
encountered in galaxy clusters. In the literature, these
turbulent magnetic fields are modeled with simplified
GRF models, discussed in Sec. IV. In Sec. V we compare
the results obtained for ALP-photon conversions in these
different magentic field models and conclude.

II. ALP-PHOTON OSCILLATIONS

The linearized, classical field equations of electromag-
netism and relativistic ALPs is given by a Schrödinger-like
equation [11],

i
d
dz

ΨðzÞ ¼ HΨðzÞ; ð2Þ

where z denotes the spatial coordinate along the direction
of propagation. The components of the three-level “state
vector” ΨðzÞ ¼ ðAx; Ay; aÞT consists of the transverse
components of the vector potential, i.e., “photon,” and
the ALP field. In the presence of a background magnetic
field, BðxÞ, the ALP-photon interaction of Eq. (1) induces
off-diagonal elements that mix the ALP with the photons,

H ¼

0
B@

Δγ 0 Δaγx

0 Δγ Δaγy

Δaγx Δaγy Δa

1
CA; ð3Þ

where Δaγi ¼ gaγBi=2 for i ¼ x, y, Δγ ¼ −
ω2
pl

2ω and

Δa ¼ − m2
a

2ω. We have neglected Faraday rotation and the
QED birefringence effect, which are both negligible at
x-ray energies.
Due to the mixing by Δaγi, a photon beam of energy ω

that is linearly polarized along the i-direction loses a
fraction of PaγiðωÞ of its flux into ALPs, where Paγi
denotes the “quantum mechanical” conversion probability
calculated from Eq. (2). Throughout this paper, we refer to
Paγ as the conversion ratio. In the bulk of this paper, we
focus on the most instructive, “massive” regime where
ma ≫ ωpl, but the general conclusions hold for arbitrary
ALP masses (see Appendix C). This is not surprising, given
that the mixing of ALPs and photons in an environment
with constant plasma frequency is formally identical to the
massive regime, and that the mixing for varying plasma
frequencies results in well-understood, and typically mild,
modifications to the calculations.
Throughout this paper, we will be interested in the small

mixing regime where this problem can be solved perturba-
tively in gaγ [11], resulting in the leading-order transition
amplitude

iAγi→a ¼
gaγ
2

Z
L=2

−L=2
dzBiðzẑÞe−iηaz ≡ gaγ

2
B̃iðηaÞ; ð4Þ

where

ηa ¼ −Δa ¼ 0.078 kpc−1
�

ma

10−12 eV

�
2
�
keV
ω

�
ð5Þ

and where, without loss of generality, the trajectory goes
through the origin of the coordinate system. We discuss the
conversion ratio for unpolarized fluxes in Appendix E.
Clearly, as L → ∞, the perturbative amplitude is the one-
dimensional Fourier transform of the relevant component
of the magnetic field along the z-direction, evaluated at the
conjugate “momentum” ηa. It follows that the conversion
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ratio is given by the one-dimensional power spectrum of the
magnetic field,

PaγiðηaÞ ¼
g2aγ
4

jB̃iðηaÞj2; ð6Þ

and can also be expressed as the Fourier transform of the
real-space magnetic autocorrelation function [50]. The
Fourier representation makes it possible to efficiently
evaluate the conversion ratio using celebrated numerical
methods such as the fast Fourier transform [15,40,50].
Moreover, Eq. (6) immediately suggests a subtle concep-
tual question. Extended magnetic structures rely on phase
coherence, and disappear when the phases of the Fourier
components are randomized.1 The conversion ratio is only
a function of the norm of B̃i, so is Paγi independent of
coherent structures? The answer to this question is no,
as we will now explicitly demonstrate by comparing the
predictions of magnetic field models from three-dimensional
MHD simulations to GRF models.

III. MHD MODELS OF THE MAGNETIC FIELD

The intracluster medium (ICM) is a dilute, magnetized
plasma with tangled structures on few-kiloparsec scales, as
is evident from radio and x-ray observations. The ICM is
near local hydrostatic equilibrium and is characterized by a
very high magnetic Reynolds number (∼1030) and signifi-
cant MHD turbulence. The magnetic field is thought to be
generated through gas motions by a dynamo process,
driven by a variety of internal and external processes such
as magnetothermal instabilities [53–55], jet activity from
the central AGN resulting in ICM shocks and cavities [56],
turbulent wakes of individual galaxies [57–59], and spo-
radic cluster mergers [60,61].
To analyze ALP-photon conversion in dynamically

generated magnetic fields, we perform state-of-the-art
MHD simulations using the PENCIL CODE [62] in a box
of size L3 ¼ ð200 kpcÞ3 with 5123 mesh points. The
turbulence is assumed to be driven through some external
volume forcing, which we model as random sinusoidal
waves that are δ-correlated in time, i.e., the forcing function
changes at each time step. The wave vectors are taken from
a shell of finite thickness and radius kf , which we chose to
be close to the smallest wave number of the computational
domain k1 ≡ 2π=L. This results in turbulence at a moderate
magnetic Reynolds number that is as large as possible for
the given numerical resolution. The ratio of viscosity to
magnetic diffusivity is 20. We ignore the density stratifi-
cation and just consider an isothermal gas with constant
sound speed. The simulated magnetic fields do not decrease
with radius, as is expected in galaxy clusters, and should
not be interpreted as fully realistic models. Rather, the

MHD models exhibit turbulence and structure, as are
expected in real galaxy clusters, and allow us to test the
robustness of the ALP theory predictions.
We initialize the simulations with a weak seed magnetic

field. After about 50 turnover times (urmskft ¼ 10 where
urms is the rms velocity), the magnetic field begins to grow
exponentially. During this phase, the magnetic field is
highly non-Gaussian, but the field strength is still weak. To
assess the consequences of such a highly non-Gaussian
field, we consider a scaled version of this magnetic field,
referred to as RunK, because the dynamo is kinematic, i.e.,
unaffected by magnetic feedback.
When the magnetic energy density reaches values

comparable to the kinetic energy density, the Lorentz force
begins to affect the turbulence and leads to a saturation of
the dynamo. We refer to this state as Run S. The magnetic
field is then still non-Gaussian, but the kurtosis is smaller
than during the kinematic stage. The density also becomes
more strongly affected by the magnetic field. In both runs,
the turbulence is isotropic on large length scales to a good
approximation (see Appendix F).
To study the properties of ALP-photon conversion in

the MHD magnetic fields, we consider the ensemble of
trajectories defined by straight lines in the z-direction
through the simulation volume. The corresponding ensem-
ble of conversion ratios is then defined by solving Eq. (2)
along each trajectory for a range of energies. In practice,
this procedure is drastically simplified by the perturbative
formalism, as the relevant predictions can be efficiently
extracted from the one-dimensional power spectrum of the
magnetic field, cf. Eq. (6). This way, RunsK and S result in
two distinct statistical distributions of conversion ratios,
which we now compare with the predictions of GRF
models.

IV. GRF MODELS OF THE MAGNETIC FIELD

GRFs provide a convenient mathematical framework for
tailoring smooth magnetic fields with an arbitrary power
spectrum. GRF models have been used to study the proper-
ties of cluster magnetic fields based on Faraday rotations
[63,64], and have also been used inALP searches in the x-ray
and gamma-ray energy ranges [15,28,30,40,42,65,66]. In
this section,we analytically compute thedistributionofALP-
photon conversion ratios in GRF magnetic field models.
We consider photons that are linearly polarized along the

i-direction and propagate along an ensemble of rays in the
z-direction. The perturbative conversion ratio is given by
Eq. (6), and our goal in this section is to determine the
statistical distribution, fPðηaÞ, of Paγi at fixed ηa.
In order to isolate the intrinsic differences between

models from MHD and GRF, we compare magnetic field
models that have the same three-dimensional power spec-
trum.We denote the three-dimensional Fourier transform of
the magnetic field as1See, e.g., Figs. 18–21 of [52].
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B̂aðkÞ ¼
Z

d3xBaðxÞe−ik·x; ð7Þ

where the index a runs over all three spatial coordinates.
For a magnetic field that is statistically homogeneous and
isotropic, as our MHD and GRF magnetic field models, the
two-point correlation function is given by [63]

hB̂aðkÞB̂�
bðk0Þi

¼ δ3ðk−k0Þ
�
MNðkÞ

�
δab −

kakb
k2

�
− iϵabc

kc
k
HðkÞ

�
; ð8Þ

where MN and H respectively are the normal and helical
autocorrelation functions, following the conventions of
[67]. The three-dimensional power spectrum is given by
the trace of the autocorrelation tensor; P3DðkÞ ¼ 2MNðkÞ.
The autocorrelation of B̃i is then given by

hB̃iðηaÞB̃�
jðη0aÞi ¼ δðηa − η0aÞ½δijP1DðηaÞ þ iϵijzH1DðηaÞ�;

ð9Þ

where

P1DðηaÞ ¼
Z

dk⊥k⊥
2ð2πÞ3 P3D

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2a þ k2⊥

q ��
1 −

1

2

k2⊥
η2a þ k2⊥

�
;

H1DðηaÞ ¼
Z

dk⊥k⊥
ð2πÞ3 H

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2a þ k2⊥

q �
ηaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η2a þ k2⊥
p ; ð10Þ

where k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. The delta-function prefactor in

Eq. (9) arises in the L → ∞ limit of the expressions
sin½Lðηa − kÞ�=ð2πðηa − kÞÞ ≈ δðηa − kÞ for k ¼ kz; η0a.
For finite but large L and η ¼ η0, the factor δðηa − η0aÞ is
regulated to L=ð2πÞ. Clearly, helicity is unimportant for
the conversion ratio of linearly polarized photons (see
Appendix E).
The one-dimensional power spectrum P1D fully deter-

mines the statistical properties of the Gaussian magnetic
field, and thus also those of the conversion ratio. Following
the derivation in, e.g., Ref. [39], we determine the probability
density function (PDF), fPðηaÞ, of the random variable
PaγðηaÞ in the ensemble defined by the Gaussian magnetic
fields (see Appendix A for GRFs and Appendix B for the
non-Gaussian case). The resulting PDF takes a very simple,
exponential form,

fPaγðηaÞðpÞ ¼
e−p=p0

p0

; p0 ¼
g2aγ
4

L
2π

P1DðηaÞ: ð11Þ

This equation provides an ideal starting point to compare the
predictions of GRFs to those of MHD simulations; we
numerically extract the three-dimensional magnetic power
spectrum from the MHD runs, and use this in Eqs. (10) and
(11) to determine the semianalytical GRF prediction for fPaγ

at fixed ηa. We then compare this prediction with the
empirical distribution of conversion ratios calculated from
Eq. (6) for the ensemble of trajectories through the
MHD runs.

V. RESULTS AND CONCLUSIONS

Figure 1 shows a cross section of the magnetic field for
Run S in the left panel, the extracted power spectrum (P3D)
and the helicity (H) in the right panel, and a realization of a
GRF magnetic field with the same P3D in the central panel.
Clearly, fields are visually very different due to the

appearance of coherent structures in the MHD simulation.
For each run we used 5122 straight lines as photon paths to
calculate the conversion ratio using the perturbative for-
malism, cf. Eq. (6), which we checked to be in agreement
with a complete numerical solution (see Ref. [40,68]) at the
∼0.1% level in the relevant regime.2

Each row of Fig. 2 shows, for a fixed ηa, the PDF of
PaγðηaÞ in Run K (left column) and Run S (right column)
together with the analytical, GRF prediction from Eq. (11)
(black solid line). The red and blue points correspond to
different linear polarizations of the photon flux (i.e., i ¼ x, y).
The agreement between the red and blue histograms for
typical, small values of the probability is a reflection of the
approximate statistical isotropy of the MHD magnetic field.
All models agree well for the prediction of the small-

amplitude conversion ratios that are the most common, and
the MHD runs reproduce the exponential decay of the GRF
field. However, small-amplitude features in observational
photon spectra can be buried by systematic uncertainties
and measurement errors. For sufficiently large conversion
ratios, the predictions from MHD runs differ significantly
from the GRF predictions; for rare fluctuations, the MHD
distributions exhibit a spectral break followed by a dis-
tinctly heavy tail. Consequently, large conversion ratios are
more frequent in MHD models than in GRFs. We note that
the average conversion probability depends only on P3D
and is, therefore, the same for MHD and GRF models. This
explains the additional, fractionally small difference, vis-
ible in Fig. 2, between the GRF and MHD conversion ratios
at intermediate values of 4Paγ=g2aγ . We note that the
appearance of the heavy tails does not originate from poor
statistics, as is evident from the small error bars of the data
points in Fig. 2.
Unsurprisingly, the highly non-Gaussian magnetic field

from the kinematic phase of Run K results in the largest

2Nearby trajectories are separated by a distance smaller than
the coherence length of the magnetic field and cannot be regarded
as statistically independent. However, we have checked that the
predictions agree well with less densely sampled trajectories, and
do not expect this to significantly affect our results. In addition,
note that the chosen trajectories cross the entire simulation box
(of length 200 kpc), equispaced and sampled in the innermost
190 kpc of a box face to avoid boundary effects.
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deviations from the GRF predictions. In this case, a strong
deviation from the exponential law occurs in 1–5% of the
realizations for each of the sampled ηa. The distribution
from the saturated phase of Run S deviates from the GRF
predictions more strongly at low ηa (i.e., high energy).
The independence of Paγ on the phases of B̃, cf. Eq. (6),

ensures that the mean value, hPaγi, is fixed by the power
spectrum and is therefore the same for the MHD and GRF
models. However, the heavy tails are reflected in enhanced
higher moments of Paγ .
Quantitatively for a random variable μ with mean μ̄ and

variance σ2, we indicate the skewness as S ¼ hðμ − μ̄Þ3i=σ3
and the kurtosis as K ¼ hðμ − μ̄Þ4i=σ4. These quantities
are shown in each panel of Fig. 1 corresponding to the
conversion ratio PDFs. In most cases, both S and K are
significantly larger than the values for an exponential
distribution of the GRFs, S ¼ 2 and K ¼ 9.
There are two distinct non-Gaussian features that can

contribute to the physical origin of the heavy tails of fPðηaÞ:
the presence of extended coherent structures, and larger
amplitude peaks (spikes) of themagnetic field compared to a
GRF. In the context of TeV-scale ALP-photon conversion in
magnetic fields from cosmological simulations, Ref. [51]
suggested that coherent structures (alone) can explain heavy-
tailed distributions.We show that both effects contribute, see
AppendixD.However, in ourMHDsimulations, peaks of the
magnetic field tend to be located in coherent structures, and
we expect the effects to be correlated.
In many cases, the energy-dependent conversion ratio for

a single sightline is of direct observational interest. It goes
beyond the scope of this paper to discuss the effect of MHD
magnetic fields on the limits placed on ALPs as this would
require significantly extended modeling (e.g., of the, on
average, radially decreasing plasma frequency and mag-
netic field strength in a galaxy cluster) and data analysis
(using real data, e.g., from precision x-ray observations,
cf. [16]). However, in Appendix G, we construct sets of
mock x-ray observations and ask what is the probability
that a random line-of-sight taken from an MHD model is

“sufficiently different” from an analogous GRF realization.
In more detail, we consider a hypothetical point-like source
in a galaxy cluster and compare the energy-dependent
residuals obtained from MHD and GRF models after ALP-
photon interconversion. The (mock) observed photon
spectra are generated by multiplying a power-law spectrum,
representing the primary x-ray flux, by photon survival
probabilities calculated, respectively, with the MHD or
GRF models. The mock spectra are fitted by a power-law
and the statistical distribution of the residuals from the GRF
models is determined. We then use the Anderson-Darling
test statistic [69] to quantify the differences between the
MHD and GRF models. For 5–8% of the MHD spectra, we
can reject the null hypothesis that the residuals come from
the GRF distribution at 95% confidence level (CL); for the
vast majority of realizations, the Anderson-Darling statistic
does not suffice to distinguish MHD models from the GRF
distribution. This conclusion holds even for experiments
with high-energy resolution [∼OðeVÞ], like Chandra
diffraction grating observations or the future Athena mis-
sion [25,70,71]. It may be possible to improve the sensi-
tivity to MHD effects by designing dedicated statistical
tests, however, we expect GRF modeling to suffice for most
applications.
In conclusion, we have presented the first systematic

study of ALP-photon conversions in magnetic fields
obtained by turbulent MHD simulations and compared
the predictions to those of simpler GRF models with the
same power spectrum. We showed that the typical pre-
dictions agree between these models, even though the
non-Gaussian fields from MHD simulations result in
heavy-tailed distributions of conversion ratios, correspond-
ing to larger than expected oscillations in photon spectra
from sources embedded in galaxy clusters. This effect is
typically small for observables sensitive only to single
sightlines through a cluster, in which case the GRF
modeling is expected to be sufficient.
An important future direction is to study MHD models

of realistic cluster magnetic fields (including the radial

FIG. 1. Cross section of the magnetic field for (a) Run S and (b) a GRF model with same the power spectrum. The red regions
highlight locations with jBj > 3Brms. (c) Power and helicity spectra for Run S.
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decrease of the field strength), and to test the robustness of
published limits. Moreover, it would be interesting to
further develop our cluster MHD models by including,
e.g., anisotropic viscosity [72] and apply these to searches
for ALPs in observational x-ray data.
The source code used for the simulations of this study,

the PENCIL CODE, is freely available from Ref. [62]. The
simulation setups and the corresponding data along with

animations for Runs K and S are freely available
from Ref. [73].
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APPENDIX A: GAUSSIAN RANDOM FIELD

In this appendix, we briefly review how GRFs with a
given power spectrum can be explicitly generated, and how
the probability distribution of the conversion ratio is
derived. Since the conversion ratio is determined by the
one-dimensional Fourier transform, we consider a one-
dimensional lattice of 2N þ 1 points with spacing dz ¼
L=ð2N þ 1Þ along the direction of propagation. At each
lattice point, we generate independent, random numbers,
Wh, from a normal distribution with mean zero and unit
variance

fWh
ðwÞ ¼ e−

w2
2ffiffiffiffiffiffi
2π

p : ðA1Þ

The discrete Fourier transform of this white noise is
given by

W̃j ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N þ 1
p

XN
h¼−N

Whe
2πi
N jh: ðA2Þ

To construct a GRF with a given one-dimensional power
spectrum, P1DðηÞ, we define the Fourier transform of this
field as

B̃j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̃1DðηjÞ

q
W̃j; ðA3Þ

where ηj ¼ 2πjjj=ðNdzÞ and P̃1DðηjÞ ¼ ðL=2πÞP1DðηjÞ.
The components in Eq. (A3) directly determine the ALP-
photon conversion ratio

PaγðηjÞ ¼
g2aγ
4

jB̃jj2; ðA4Þ

and the statistical distribution of PaγðηjÞ (at fixed ηj) only
depends on the distribution of B̃j (at fixed j). The moments
of the conversion ratio are given by

hPaγðηjÞni ¼ n!

�
gaγ
2

�
2n
P̃1DðηjÞn: ðA5Þ

Given the moments, the characteristic function (the expect-
ation value of eitPaγðηjÞ) is easy to evaluate,

heitPaγðηjÞi ¼
Z

∞

0

dpfPaγðηjÞðpÞeitp

¼
X∞
n¼0

ðitÞn
n!

hP̃aγðηjÞni ¼
1

1 − itðgaγ
2
Þ2P̃1DðηjÞ

;

ðA6Þ
and the probability distribution of the perturbative conver-
sion ratio can be extracted by a simple Fourier transform,

fPaγðηaÞðpÞ ¼
e−p=p0

p0

; p0 ¼
g2aγ
4

P̃1DðηaÞ: ðA7Þ

APPENDIX B: NON-GAUSSIAN RANDOM FIELD

In this appendix, we construct an analytically tractable
example of a non-Gaussian magnetic field which we then
use to demonstrate how non-Gaussianity leads to heavy
tails for the ALP-photon conversion ratio. Non-Gaussian
fields can be constructed in many ways. Here, we follow
the approach of Ref. [74] and construct a non-Gaussian
random field through a nonlinear operation on a GRF. We
denote the Gaussian field by W̃j, defined as in Eq. (A2), and
take the non-Gaussian field to be given by

B̃j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̃1DðηjÞ

q
fϵðW̃jÞ; ðB1Þ

where, for j ¼ 1;…N,

fϵðW̃jÞ ¼
1

1þ ϵ2

2

ðW̃j þ ϵ ImðW̃jÞÞ: ðB2Þ

The j ¼ 0 mode is defined as fϵðW̃0Þ ¼ W̃0 and the
remaining, negative modes are fixed by the reality con-
dition for the magnetic field in real space B̃�

j ¼ B̃−j. We
now consider j > 0 unless explicitly stated otherwise. The

factor of
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

2

q
in Eq. (B2) ensures that the average

magnetic field does not depend on the parameter control-
ling the strength of the non-Gaussianity, ϵ. The real and
imaginary parts of the non-Gaussian field are explicitly
given by

ReðB̃jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̃1DðηjÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

2

q ðReðW̃jÞ þ ϵ ImðW̃jÞÞ;

ImðB̃jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̃1DðηjÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

2

q ImðW̃jÞ: ðB3Þ
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It is possible to derive the PDF of the non-Gaussian field B̃j

for an arbitrary power spectrum of W̃. In general, if n
random variables ξi follow a distribution fξðξ1;…ξnÞ, then
the new variables defined as ψ j ¼ gjðξ1;…; ξnÞ have the
following PDF

fψðψ1;…;ψnÞ ¼ fξðξ1;…; ξnÞ
���� det ∂g

∂ξ

����
−1

ξi¼g−1ðψ1;…;ψnÞ
:

ðB4Þ

From Eq. (B2), the inverse transformation is

ReðW̃jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

2

r
ReðB̃jÞ − ϵ ImðB̃jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P̃1DðηjÞ
q ;

ImðW̃jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

2

r
ImðB̃jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̃1DðηjÞ

q ; ðB5Þ

and the inverse Jacobian is

J−1 ¼ 1þ ϵ2

2

P̃1DðηjÞ
; ðB6Þ

then the PDF of B̃j is

fB̃j
¼ 1þ ϵ2

2

πP̃1DðηjÞ
exp

�
−
�
1þ ϵ2

2

� ðReðB̃jÞ − ϵ ImðB̃jÞÞ2 þ ImðB̃jÞ2
P̃1DðηjÞ

�
: ðB7Þ

Clearly, the Gaussian distribution is recovered as ϵ → 0. Given the PDF fB̃j
, we now calculate the probability distribution

for the conversion ratio, Paγ, by imposing the constraint that the probability is proportional to jB̃jj2

fPaγðηjÞðpÞ ¼
Z

db1db2fB̃j
ðb1; b2Þδðb21 þ b22 − pÞ

¼
Z ffiffiffi

p
p

− ffiffiffi
p

p db2

�
fB̃j

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
p − b22

q
; b2

�
þ fB̃j

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p − b22

q
; b2

��
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p − b22

p ; ðB8Þ

where p ¼ 4Paγ=g2aγP̃1DðηjÞ and b1, b2 respectively denote
the real and imaginary parts of B̃j. The resulting PDFs for the
non-Gaussian case with ϵ ¼ 1 and the Gaussian case with
ϵ ¼ 0 are shown in Fig. 3. The non-Gaussian magnetic field
produces a characteristic heavy tail, with increased support
for high conversion ratios. The heavy tail is reflected in the
higher moments of the distribution of PaγðηjÞ:

hPaγðηjÞi¼
�
g2aγ
4

�
P̃1DðηjÞ;

hPaγðηjÞ2i¼
�
g2aγ
4

�
2

P̃2
1DðηjÞ

�
3−

4

ð2þϵ2Þ2
�
;

hPaγðηjÞ3i¼3

�
g2aγ
4

�
3

P̃3
1DðηjÞ

�
5−

12

ð2þϵ2Þ2
�
;

hPaγðηjÞ4i¼3

�
g2aγ
4

�
4

P̃4
1DðηjÞ

�
35þ 48

ð2þϵ2Þ4−
120

ð2þϵ2Þ2
�
:

ðB9Þ

The mean of the conversion ratio is unchanged as the power
spectrum of the magnetic field is, by construction, the
same for the Gaussian and non-Gaussian magnetic fields.

However, the higher-order moment all increase for ϵ ≠ 0 due
to non-Gaussianities, which is indicative for the heavy-tailed
probability distribution.

FIG. 3. Probability distribution of the conversion ratio for fixed
values of gaγ and ηj in the case of a Gaussian field (blue line) and
the non-Gaussian model (red line). The analytical predictions of
Eqs. (A7) and (B8) are in excellent agreement with the numerical
simulation for 5 × 104 realizations, ηj ¼ 0.117 kpc−1, and a
magnetic field extended over 100 kpc.
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APPENDIX C: HEAVY TAILS FOR LIGHTER
AXIONS

In the bulk of this paper, we have considered the case of
ma > ωpl in which numerical simulations can be matched
by detailed analytical results. In this appendix, we extend
this discussion to the case of arbitrary ωplðzÞ=ma and show
that, also in this case, MHD magnetic fields lead to heavy-
tailed probability distributions.
The ALP-photon transition amplitude is, to leading order

in perturbation theory, given by [50,75]

iAγi→a ¼
gaγ
2

Z
∞

−∞
dzBiðzẑÞeiλϕðzÞ; ðC1Þ

where

ϕðzÞ ¼
Z

z

0

dz0
ω2
pl −m2

a

2
; ðC2Þ

and λ ¼ 1=ω. The function ϕðzÞ is not, in general, linear in
z, and is even nonmonotonous if there are “resonance
points” (i.e., level-crossings) where ωpl −ma changes sign
along the trajectory. We note that the amplitude can still be
expressed as a sum of Fourier transforms (of Bi=jϕ0j) and
efficient numerical evaluation is possible through methods
like the fast Fourier transform, though we will not use these
methods here. The new conceptual issue of this general
case is that regions where jϕ0j is small are expected to
contribute more to the amplitude than similar regions with
large ϕ0. Naively, one might expect that resonance points
give large contributions to the amplitude, and that the
amplitude would be rather insensitive to the magnetic
properties far away from the resonance points. If so,
non-Gaussian peaks of the magnetic field would only
contribute significantly if located at a resonance point,
which could lead to very different properties of the
distribution of the conversion ratio. We now show that
this intuition is not correct; resonant contributions are
typically small compared to the cumulative, nonresonant
contributions, and the heavy tails of the non-Gaussian
magnetic field persist also in this general case.
FromourMHD runs,we first extract the plasma frequency

as a function of position. The average plasma frequency
value for the two Runs is ω̄pl ¼ 6.59 × 10−12 eV, and
fluctuations around themean are small, indeedmuch smaller
than the expected range of the plasma frequency in a galaxy
cluster. We therefore rescale the fluctuations to an amplitude
of∼3ω̄pl around the meanvalue and choose to consider ALP
masses that have one or more resonance points within the
simulation box. We then calculate the conversion ratio as
described in the main text of this paper.
Figure 4 shows the conversion ratio as a function of z

along two trajectories within Run S. Each trajectory has
two resonance points where ωplðzÞ=ma ¼ 1. Clearly,

FIG. 4. Conversion ratio (solid lines) as function of the distance
along the z axis in Run S for two trajectories represented by the
two colours. The ALP mass isma ¼ 6.59 × 10−12 eV, the energy
ω ¼ 10 keV and the dashed lines show ωplðzÞ=ma. The gray line
indicates the resonance condition, ma ¼ ωpl.

FIG. 5. Histogram of the conversion ratio forma ¼ ω̄pl ¼ 6.59 × 10−12 eV extracted from RunsK and S for an initial photon flux that
is linearly polarized along the x (blue) and y (red) directions together with the analytical GRF prediction for the case of a constant plasma
frequency (black line). Here ω ¼ 10 keV. The error bars are obtained by assuming Poissonian fluctuations.
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around the resonance points, there is no significant increase
in the conversion ratio which, as in the massive case, is
determined by the properties of the magnetic field along the
entire trajectory. This result is consistent with the general
discussion in [50].
Figure 5 shows the numerical distribution of the con-

version ratio, Paγ , in the MHD runs with ma ¼ ω̄pl. The
solid lines indicate the analytical predictions for the same
ALP mass but considering the massive case (discussed in
the main text) where the plasma frequency is negligible.
The comparison of the analytical result (solid line) and the
numerical simulations (histograms) is therefore not rigor-
ous, but the appearance of heavy tails at large conversion
ratios is apparent in both figures. We checked that similar
results are obtained in case of very light ALPs, ma ≪ ωpl.
This indicates that the conclusions of this work hold over
the entire ALP parameter space.

APPENDIX D: ORIGIN OF THE HEAVY TAILS

In the following we discuss what are the reasons behind
the heavy tails of distributions of axion-photon conver-
sions. We identify two distinct non-Gaussian features of
MHD magnetic fields that might be at the origin of the
heavy tails of fPðηaÞ; large coherent structures, and larger
amplitude peaks (spikes) in the modulus of the magnetic
field. Figure 6 shows the empirical distributions fPðηÞ
obtained after masking regions with large coherent struc-
tures. Specifically, we have defined the magnetic length
scale as

LB ¼
���� dz
d ln jBj

����; ðD1Þ

where the derivative is taken along the direction of
propagation. We have then removed the contribution from
regions where LB > 5 kpc, resulting in the histograms in

the left panel of Fig. 6. The effect is a strong convergence of
the skewness and kurtosis towards the GRF prediction
(again, S ¼ 2 and K ¼ 9). To investigate the role of spikes
in B, we mask regions where the transverse components’
magnetic field is jB⊥j > 7 μG ∼ 2Brms and the present
the result in the right panel of Fig. 6. There is a drastic
reduction in the skewness and kurtosis, and the predictions
closely approximate those of the GRF. The cuts are chosen
in such a way that photons traverse a sufficiently large
region with non-vanishing magnetic field. Clearly, the
independence of Paγ on the phases of B̃ suffices to make
the expectation value of the conversion ratio independent of
MHD structure but does not guarantee that higher-order
correlation functions of Paγ are Gaussian, or that the full
PDF follows the exponential form.

APPENDIX E: UNPOLARIZED BEAMS AND
HELICITY

In this appendix, we discuss the observationally interest-
ing case of unpolarized photon fluxes. The relevant con-
version ratio is given by PγaðηaÞ ¼ 1

2
ðPγxaðηaÞ þ PγyaðηaÞÞ,

so that

PaγðηaÞ¼
1

2

g2aγ
4

Z
d2k⊥
ð2πÞ2

d2k0⊥
ð2πÞ2 ½Bxðηan̂þk⊥ÞB�

xðηan̂þk0⊥Þ

þByðηan̂þk⊥ÞB�
yðηan̂þk0⊥Þ�: ðE1Þ

Clearly, the expectation value of the unpolarized conversion
ratio is immediately determined by the corresponding
polarized conversion ratios. However, higher moments of
the unpolarized conversion ratio will involve cross-correla-
tors of B̂x and B̂y, which are nonvanishing in the presence of
helicity, cf. Eq. (E2). The first twomoments of the conversion
ratio are explicitly given by

FIG. 6. Histogram of the conversion ratio extracted from Run K of the MHD simulation (light red) for a linearly polarized initial
photon flux together with the analytical GRF prediction (black line). Here ηa ¼ 0.07 kpc−1. The red histogram obtained by: masking
regions where LB > 5 kpc (left panel); masking regions where jB⊥j > 7 μG (right panel). The error bars are obtained by assuming
Poissonian fluctuations.
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hPaγðηaÞi ¼
g2aγ
4

P̃1DðηaÞ;

hP2
aγðηaÞi ¼

3

2

�
gaγ
2

�
4

P̃1DðηaÞ2 þ
1

2

�
gaγ
2

�
4

f2HðηaÞ; ðE2Þ

where we defined

f2HðηaÞ ¼
�
L
2π

Z
dk⊥k⊥
ð2πÞ3

ηaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2a þ k2⊥

p Hðηa; k⊥Þ
�
2

: ðE3Þ

More generally, for GRFs the helicity always enters the
correlation functions through an even power of fH, and
hence gives non-negative contributions to higher moments,
and can contribute to heavy tails of the probability distribu-
tion of Paγ (cf. the non-Gaussian example of Appendix B).
For non-Gaussian fields, the situation is model dependent as
there are additional contributions involving powers offH and
correlators of an odd number ofmagnetic fields. However, as
we will now argue, in practice helicity tends to be negligible
for ALP-photon conversion also for MHD fields.
In general, the magnetic fields generated by small-scale

dynamowith non-helical forcing are nonhelical. To provide
a quantitative comparison for the role of helicity of the
magnetic field in Paγ , we consider a scenario where the
helicity spectrum (H) is proportional to the power spectrum
(MN ¼ P3D=2) and the ratio 2H=P3D is either 1 i.e., the
fully helical magnetic field case or 0.1. Figure 7 shows the
ratio f2H=3P

2
1D for these two cases. To estimate this ratio

we considered a 3D power spectrum given by [76]

P3Dðηa; k⊥Þ ¼
1

1þ ð kkpÞ11=3
; k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2a þ k2⊥

q
; ðE4Þ

where kp ¼ ð2π=10Þ kpc−1 is the wave number corre-
sponding to the peak of the spectrum. From Fig. 7, we
conclude that the impact of the helicity on the photon to

ALP conversion ratio is negligible unless the magnetic field
is fully helical and ηa > kp. In applications it means that it
is more important for low-ALP energy, where typically the
ALP-photon conversions are suppressed.

APPENDIX F: MAGNETOHYDRODYNAMIC
SIMULATIONS

In this appendix, we review details of the properties of
the MHD simulations. Magnetic fields in galaxy clusters
are thought to be generated through gas motions by a
dynamo process. The gas motions are turbulent, but their
driving is not well understood. Magnetothermal instabil-
ities have been studied in this context [53,55], and even the
driving by turbulent wakes of individual galaxies has been
discussed [57,58]. Turbulence could also be driven by
sporadic cluster mergers [60,61], but the turbulence would
be slowly decaying between such events.
The dynamo process itself is a generic phenomenon that

is mainly characterized by a large magnetic Prandtl number
[77]. This means that the magnetic diffusivity η is much
smaller than the kinematic viscosity ν. This is numerically
difficult to handle. In addition, the magnetic Reynolds
number is huge (of the order of 1030). This means that the
turbulent magnetic cascade extends down to very small
length scales. As a compromise, since the energy contained
in the smallest length scales becomes very weak, we
consider here turbulence at a moderate magnetic
Reynolds number that is as large as possible for a given
numerical resolution. The turbulence is assumed to be
driven through some external volume forcing as is com-
monly done in numerical simulations of homogeneous
turbulence. We also ignore the density stratification and just
consider an isothermal gas with constant sound speed.
As advertised above, we consider a dynamogenerated

magnetic field B driven by forced turbulence. We solve the
induction equation for the magnetic vector potential A with
B ¼ ∇ × A in the Weyl gauge, i.e.,

∂A
∂t

¼ u × B − ηJ: ðF1Þ

Here, we have adopted Gaussian Heaviside units where
J ¼ ∇ × B is the current density, and u is the velocity
which obeys the momentum equation,

Du
Dt

¼ −c2s∇ ln ϱþ f þ 1

ϱ
½J × Bþ ∇ · ð2ϱνSÞ�; ðF2Þ

where D=Dt ¼ ∂=∂tþ u · ∇ is the adjective time derivative,
Sij ¼ ð∂jui þ ∂iujÞ=2 − δij∇ · u=3 are the components of
the traceless rate-of-strain tensor S, f is the forcing
function, and ϱ is the density, which obeys the continuity
equation, written here as

FIG. 7. The ratio of f2H (contribution of magnetic helicity
spectrum to the ALP to photon conversion ratio square) to 3P̃2

1D
(contribution from transverse magnetic power spectrum) as a
function of ηa for different values of helicity fraction.
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D ln ϱ
Dt

¼ −∇ · u: ðF3Þ

We solve these equations in a periodic domain of size L3

with 5123 mesh points using the PENCIL CODE [62]. The
forcing function consists of random sinusoidal waves that
are δ-correlated in time, i.e., the forcing function changes at
each time step. The wave vectors are taken from a shell of
finite thickness and radius kf , which we chose to be close to
the smallest wave number of the computational domain
k1 ≡ 2π=L. The strength of the forcing function is arranged
such that the turbulent Mach number Ma ¼ urms=cs, where
urms is the rms velocity, is around unity or less. We define
the kinetic and magnetic Reynolds numbers as Re ¼
urms=νkf and ReM ¼ urms=ηkf , respectively, and the
Lundquist number as Lu ¼ vrms

A =ηkf , where vrms
A is the

rms value of the magnetic field in Alfvén velocity units,
vA ¼ B=

ffiffiffi
ϱ

p
. Assuming Kolmogorov scaling, our nominal

viscous and resistive cutoff wave numbers are kν ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωrms=ν

p
and kη ¼ kνðν=ηÞ−1=2, respectively, where ωrms

and ωrms
A are the rms values of the vorticities ∇ × u and

∇ × vA, respectively. The basic parameters of the models
are listed in Table I. We also quote the average of the
kurtosis of the three components of the magnetic field,
kurtBi ¼ hB4

i i=hB2
i i2 for i ¼ 1; 2; 3. For a Gaussian dis-

tributed field, hkurtBii ¼ 0.
We initialise the simulations with a weak seed magnetic

field. After about 50 turnover times (urmskft ¼ 10), the
magnetic field begins to grow exponentially. During this
phase, the magnetic field is highly non-Gaussian, but the
field strength is still weak. To assess the consequences of
such a highly non-Gaussian field, we consider a scaled
version of this magnetic field, referred to as Run K,
because the dynamo is kinematic, i.e., unaffected by
magnetic feedback.
When the magnetic energy density reaches values

comparable to the kinetic energy density, the Lorentz force
J × B begins to affect the turbulence and leads to a
saturation of the dynamo (Run S). The magnetic field is
then still non-Gaussian, but the kurtosis is smaller than
during the kinematic stage. The density also becomes more
strongly affected by the magnetic field. A cross section of
the magnetic field for Run S is shown in the left panel
of Fig. 1 and also for the case where magnetic fields are
considered to be GRF (middle panel) with the same power
spectrum as in Run S. The red regions in these slices
highlight locations with jBj > 3Brms. There are more such
regions in Run S compared to the GRF case, as is evident

from the figure. We explore the role of such regions in the
photon to ALP conversion probability in the later section.

APPENDIX G: SINGLE-SIGHTLINE STATISTICS

Most observational probes are directly sensitive only to
the magnetic field along a single sightline from the source
to the detector, but the heavy-tailed distribution we have
uncovered is evident in the statistical distribution of an
ensemble of sightlines, probed at fixed energy. It is natural
to expect that the large conversion probabilities of the
heavy tails correspond to large-amplitude oscillations in
energy-dependent photon spectra, and in this Appendix, we
demonstrate how this works for a mock x-ray observation.
We consider hypothetical x-ray observations of a bright,
power-law source in a galaxy cluster, observed by instru-
ments with energy resolutions comparable to current and
future experiments. We proceed as follows:

(i) We consider a source with intrinsic power-law
spectrum with index −2, and modulate these by
the energy-dependent conversion ratios calculated in
the MHD and GRF model. The observed photon
flux is tabulated as a function of the energy for a set
of energy-spacings, where a finer binning roughly
corresponds to an x-ray experiment with higher-
energy resolution. The final results are insensitive to
the value of the spectral index.

(ii) The resulting spectrum is fitted with a power law,
and the residuals are extracted.

(iii) For the GRF model, we determine the distribution of
the residuals by scanning 2,500 realizations.

(iv) For the residuals from eachMHD realization, we test
the null hypothesis that the residuals come from the
GRF distribution.

The resulting cumulative distribution function (CDF) of the
residuals for a GRF is shown in Fig. 8 (dashed lines) and

TABLE I. Parameters of each magnetic field model used.

Run Ma Re ReM Lu kν=k1 kη=k1 hkurtBii
K 0.12 75 1500 0 20 90 17.1
S 0.08 55 1100 910 17 72 5.8

FIG. 8. Comparison of the theoretical CDFs (dashed lines)
extracted from GRF models with the same power spectrum of
run K (black lines) and run S (red lines) models. This prediction
is compared with two CDFs extracted from the two MHD
models considered (solid lines). Here we used ΔE ¼ 4.7 eV,
ma ¼ 10−12 eV, and gaγ ¼ 5 × 10−13 GeV−1.
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compared with single realizations of each of the two MHD
models considered (solid lines). Intuitively, one may expect
more negative residuals for the MHD case compared to the
GRF model since the heavy tails give larger conversion
ratios and deeper “dips” in the observed spectrum. This
effect is indeed visible in Fig. 8, where the empirical
CDFs of the MHD realizations grow faster than the
GRF CDF.
We use the Anderson-Darling test to determine the

significance of the heavy tails for single-sightline spectra.
The Anderson-Darling test is a nonparametric statistical
test that can be used to compare a sample with a theoretical
model, to determine whether the sample is generated by
the theoretical underlying distribution. This test is more
sensitive to differences in the distributions’ tails than other
distributional equality tests, such as the Kolmogorov-
Smirnov test. This makes it particularly useful for detecting
differences in extreme values. Its nonparametric nature and
sensitivity to differences in the tails of the distributions
make it a valuable tool in this context. We determine the
distribution of the test statistic [69]

A2 ¼ −n −
1

n

Xn
i¼1

�
2i − 1

2n
lnðFðYiÞÞ þ lnð1 − FðYn−iþ1ÞÞ

�
;

ðG1Þ

where n is the sample size and Y is an ordered list of
residuals. This step allows us to determine the 95% CL for
the variable A2. These results are shown in Table II for
different values of the energy resolution and the two
magnetic field models considered. For illustrative purpose,
we show the distribution of the statistical test variable A2 in
Fig. 9, comparing the GRF case (red histograms) with run
K (blue histogram, left panel) and run S (blue histogram,
right panel). Slightly larger values of A2 are preferred by the
MHD models compared to the GRF case.
Note that we consider Ndiv bins, determining an equally

spaced grid in terms of Log10ω, in the 0.1–10 keV range in

which we calculate the simulated photon signal. The energy
resolution ΔE (first column of Table II) is the smallest
energy interval that we simulate.
The critical values in Table II are used to determine the

similarity between a MHD realization and the GRF
prediction. If the test statistic is outside the interval
determined by the critical values, the null hypothesis that
the MHD residuals come from the same distribution of the
GRF ones, is rejected. This comparison is performed over
2500 lines-of-sight for the MHD models. These lines-of-
sight are uniformly distributed in the innermost 190 kpc of

FIG. 9. Comparison of the distribution for the Anderson-Darling variable A2 for GRF models (red histograms) with the same power
spectrum of runK (blue histogram, left panel) and run S (blue histogram, right panel) models. The vertical black-dashed lines denote the
95% CL interval for the test variable. Here we used ΔE ¼ 4.7 eV, ma ¼ 10−12 eV, and gaγ ¼ 5 × 10−13 GeV−1.

TABLE II. Critical intervals for the stochastic variable A2 for
different energy resolutions. The first column refers to the energy
resolution that we use to simulate the detected signal. The 95% of
the GRF realizations give a value of A2 in the range in the second
and third columns of the table, referring to the two different MHD
models. Here the ALP parameters are ma ¼ 10−12 eV and
gaγ ¼ 5 × 10−13 GeV−1.

ΔEðeVÞ K S

58.5 0.23–3.93 0.24–4.59
9.6 0.45–15.75 0.48–19.03
4.7 0.78–30.71 0.84–37.43

TABLE III. Probability that a line-of-sight of an MHD model is
significantly different (as defined in the text) from the GRF case.
The first column refers to the energy resolution that we use to
simulate the detected signal, the second and third ones to the
probability for the two MHD models considered. Here the ALP
parameters are ma ¼ 10−12 eV and gaγ ¼ 5 × 10−13 GeV−1.

ΔEðeVÞ K (%) S (%)

58.5 8.3 5.7
9.6 7.9 4.8
4.7 8.0 4.9
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the simulation box and connect two opposite faces of
the box.
Finally, we count the number of times the hypothesis that

the residuals are extracted from the same distribution of the
GRF is rejected at the 95% CL. Therefore, we can estimate
the probability that a Paγ vs ω realization of an MHD run is
significantly different from the GRF case. These results are

shown in Table III. This analysis allows us to conclude that,
even with high energy resolution, only in the 5–8% of the
cases the observed line-of-sight differs significantly from
the predictions of a GRF model. This suggests that GRF
models of turbulent cluster magnetic fields suffice to
reliably determine the predictions for x-ray searches for
ALPs for observables probing a single sightline.
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