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The study of strange quark matter within the framework of the density-dependent MIT bag model using
the grand canonical ensemble is thermodynamically inconsistent. In this work, it is shown that if the
medium effects are incorporated through a density-dependent bag pressure in the grand canonical
ensemble, then the Euler relation is violated. If Euler relation is used then the minimum of energy per
baryon does not occur at zero pressure. In order to overcome this inconsistency, we propose the medium
effect of the strange quark matter in the form of chemical potential dependent bag pressure in the grand
canonical ensemble. The density dependent bag pressure which has been used in the grand canonical
ensemble so far can, however, be used in the canonical ensemble without violating the laws of
thermodynamics. These prescriptions will obey the Euler relation as well as the minimum energy per
baryon will coincide with the zero of pressure and hence can be considered to be self-consistent. These
equations of state in the grand canonical ensemble can be further used to construct the mass-radius and
other structural properties of the strange quark stars as well as hybrid stars. In our present work we have
calculated the mass radius diagram of strange stars only using this formalism.

DOI: 10.1103/PhysRevD.108.103028

I. INTRODUCTION

The study of the characteristics of the strongly interact-
ing dense matter inside neutron stars (NSs) [1–7] is a topic
of contemporary interest [8–10]. It is believed that quark
matter can exist inside the NS [11]. The first-principles
methods however cannot be used for describing quark
matter at densities relevant inside stellar cores because of
the sign problem in lattice Monte Carlo simulations at
nonzero chemical potentials [12] and that perturbative
QCD being only effective [13] at significantly higher
densities. There have been various efforts to incorporate
nonperturbative effects in increasingly sophisticated mod-
els since perturbative QCD is insufficient for addressing the
quark matter EoS. Various phenomenological models have
been used to study quark matter recently, e.g., MIT bag
model [14], quark mass density-dependent model [15–18],
the Richard potential model [19], NJL model [20–28], the
perturbation model [29], the field correlator method [30],
the quark-cluster model [31], and many other models.
These models, to some extent, have their origin in the
free-particle system. Strange quark matter (SQM)
plays an important role in many interesting fields for
example hot and dense matter in heavy ion collision, the
structure of compact stars etc. Ever since W. H. Witten

suggested [32–34] that the SQMwould be absolutely stable
even at absolute zero temperature, there has been a lot of
interest in studying it.
We consider the simple MIT bag model [14,35] for

studying strange quark matter which is a bulk matter phase
with u, d, and s quarks in chemical equilibrium along with a
minor fraction of electrons. The bag constant (B) is added
to the thermodynamical potential of the free fermion
system in order to reflect the quark confinement. The
bag pressure B is actually the energy density difference
between the perturbative vacuum and the true vacuum
[36,37] and is often considered to be constant in literature.
Quark matter does not become asymptotically free immedi-
ately during or after the phase transition in contrary to the
MIT bag model’s a priori assumption that quarks are free
inside the bag. In order to overcome this problem, Raha
et al. [38] introduced the medium effects via quark mass
with a density-dependent quark mass model. A similar
effect can be incorporated in the bag model through a
density-dependent bag pressure. It is well-known that the
quarks at high densities, relevant to neutron stars or hybrid
star cores, prefer asymptotic freedom [36,37]. This fact
justifies that the bag pressure be density dependent rather
than being a constant. There are several studies on hybrid
stars with density-dependent bag models [39–41].
Therefore in the present work, we consider the similar
medium dependence of the bag pressure via density. For the
strange quark stars(SQS), the Bodmer-Witten conjecture
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states that the absolute stability of SQM is determined in
terms of matter-energy per baryon ε=ρB at zero pressure
being smaller than that of 56Fe nucleus [32–34]. From the
rules of thermodynamics, pressure is given by

P ¼ ρ2
∂

∂ρ

�
ε

ρ

�
ð1Þ

According to the relation Eq. (1) minimum of ε
ρ should

occur at zero pressure. A recent study [42] of SQM using a
density-dependent quark mass model solves the inconsis-
tency problem of this model by using canonical ensemble
formalism. With this formalism ðερÞmin occur exactly at zero
pressure point and also the equation of state is generated via
Euler relation.

ε ¼ −Pþ
X

μiρi ð2Þ

Generally, for the calculation of the equation of state for
SQM, grand canonical ensemble formalism is used, If the
density-dependent bag pressure is used, then it is thermo-
dynamically inconsistent as it violates the Euler relation
Eq. (2) as described in detail in the formalism Sec. II.
Therefore we propose in this work to use the more
appropriate chemical potential-dependent bag pressure
instead of a density-dependent bag pressure in the grand
canonical ensemble. If we want to use a density-dependent
bag pressure we have to use a canonical ensemble where
the Euler relation is valid. Our main focus in this work is to
study the quark matter EoS in different ensembles with
different forms of bag pressure and thereby establish the
thermodynamic consistency. Once the EoS of strange quark
matter is ready, we have calculated the mass-radius diagram
of the strange star using the same.
This paper is organized as follows. In Sec. II we give the

detailed formalism of the equation of state in both ensem-
bles using both density-dependent and chemical potential-
dependent bag pressures. In Sec. III we show the numerical
results. Finally, we summarize in Sec. IV.

II. FORMALISM

In Ref. [42], the phenomenological density-dependent
quark mass model has been revisited and the thermody-
namical inconsistency has been resolved within the canoni-
cal ensemble formulation. This necessitates revisiting the
MIT bag Model as well where the same inconsistency is
expected when one incorporates the density-dependent bag
pressure in grand canonical formalism. The main motiva-
tion of this work is to remove this inconsistency and
reformulate the MIT bag model in a thermodynamically
consistent manner. The medium effects can be incorporated
through the bag pressure by introducing its dependence
on proper intensive parameter depending on the chosen
ensemble. In the canonical ensemble, the proper quantity is

the chemical potential whereas in the canonical ensemble
density is the appropriate intensive quantity.

A. Grand canonical

In the grand canonical ensemble (GE), the thermody-
namic potential depends on the chemical potential(μ),
volume (V), and temperature (T) and all the thermody-
namical quantities can be derived from the grand canonical
potential Ωðμ; V; TÞ. We are considering cold neutron star
which implies T ¼ 0.

(i) Density dependent bag pressure:
In grand canonical ensemble, pressure is defined as

P ¼ −
�
∂Ω
∂V

�
T;μ

ð3Þ

where Ω is the grand-potential, ΩGC ¼ Ω
V is grand-potential

per unit volume and N ¼ ρV. We can write Eq. (3) as

P ¼ −
�
∂ðΩGCVÞ
∂ðNρÞ

�
T;μ

¼ −ΩGC þ ρ

�
∂ΩGC

∂ρ

�
T;μ

ð4Þ

The density derivative term arises from the baryonic
density dependence of the grand potential (as we are taking
the bag pressure to be density dependent). The thermody-
namical potential for the quark matter in grand canonical
ensemble can be written as

ΩGC¼−
1

π2
X

f¼u;d;s

Z
kf

0

k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

f

q þBðρÞ¼
X

f¼u;d;s

ΩfþBðρÞ

ð5Þ

where Ωf is written as [35]

Ωf ¼ −
1

4π2

2
64μf ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2f −m2
f

q �
μ2f −

5

2
m2

f

�

þ 3

2
m4

f ln

2
64μf þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2f −m2

f

q
mf

3
75
3
75 ð6Þ

where Ωf represents the free quark matter grand potential.
The interactions and medium effects are taken care of by
the bag pressure BðρÞ [36,37]. Hence pressure in the grand
canonical ensemble with density dependence bag pressure
is as follows:

PGC ¼ −ΩGC þ ρ
∂BðρÞ
∂ρ

ð7Þ
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We consider two forms of the density dependence in the
bag pressure.

(i) Gaussian form [36,37]:

BðρÞ ¼ Bas þ ðB0 − BasÞe½−βρð
ρ
ρ0
Þ2� ð8Þ

Here B0 is the value of B at ρ ¼ 0, Bas is the value of B for
asymptotic values of ρ, βρ is a control parameter and ρ0 is
the saturation density.

(i) Hyperbolic form [41]:

BðρÞ ¼ Bas þ
B0

2

�
1 − tan h

�
ρ − ρ̄

Γρ

��
ð9Þ

Bas, B0, ρ̄, and Γρ are the free parameters in hyperbolic
form similarly.
The minimum of ε

ρ occurs at zero pressure if we use the
inverse Legendre transformation.

εGC ¼ ΩGC þ
X
i

μiρi ð10Þ

where ϵ is the energy density, μi is the chemical potential
for the ith particle and ρi is the density for the ith particle
but the Euler relation [Eq. (15)] is violated in this method.
ΩGC should be a function of μ but if bag pressure is taken to
be density-dependent, then that is also not respected. So to
avoid this kind of problem, we propose a proper thermo-
dynamic treatment, where the medium effect is introduced
via a chemical potential dependent bag pressure.

(i) Chemical potential dependent bag pressure:
We consider similar dependence of chemical potential in
the bag pressure via Gaussian and hyperbolic as in case of
density dependent B. The expression of B in the grand
canonical are as follows:

(i) Gaussian form:

BðμÞ ¼ Bas þ ðB0 − BasÞe½−βμð
μ
μ0
Þ2� ð11Þ

(ii) Hyperbolic form:

BðμÞ ¼ Bas þ
B0

2

�
1 − tan h

�
μ − μ̄

Γμ

��
: ð12Þ

Here we are using a chemical potential-dependent bag
pressure, so the derivative term in Eq. (4) will not arise.
Hence the pressure is

PGC ¼ −ΩGC: ð13Þ

The quark number densities are given by

ρf ¼ −
∂ΩGC

∂μf
¼ k3f

π2
−
∂BðμÞ
∂μf

: ð14Þ

The density of each flavor is modified due to the chemical
potential-dependent bag pressure. This proper thermody-
namical treatment where the thermodynamical potential in
grand canonical ensemble depends on chemical potential
and not density ensures that the Euler relation is respected
unlike the previous case.

εGC ¼ −PGC þ
X
f

μfρf ð15Þ

In the grand canonical ensemble, the energy from Eq. (15)
reads as

εGC ¼
X
f

 
1

4π2

"
ðμ2f −m2

fÞ
3
2μf −

3

2
m2

fμf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f −m2
f

q

þ 3

2
m4

f log

 
μf þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2f −m2

f

q
mf

!#!
þ BðμÞ

þ
X
f

�
μf

�
k3f
π2

−
∂BðμÞ
∂μf

��
: ð16Þ

B. Canonical

In the canonical ensemble, all the thermodynamical
quantities can be derived from the Helmholtz free energy
Fðρ; V; TÞ. At zero temperature (T ¼ 0)

Fðρ; VÞ ¼ U ¼ εV ð17Þ

where U is the total internal energy and ε is the internal
energy per unit volume. The Helmholtz free energy per unit
volume is given by

εC ¼
X

f¼u;d;s

3

π2

Z
kf

0

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

f

q
dkþ BðρÞ ð18Þ

where the medium effects is incorporated in bag pressure
by making it density dependent since density is the
appropriate intensive parameter in canonical ensemble.
We can rewrite the Eq. (18) as

εC ¼
X
f

 
3

4π2

"
k3f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2f þm2

f

q
þ 1

2
m2

fkf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2f þm2

f

q

−
1

2
m4

f log

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2f þm2

f

q
þ kf

mf

!#!
þ BðρÞ ð19Þ

Unlike the case of energy in grand canonical ensemble
Eq. (16), the expression for energy in canonical does not
have any derivative dependent term of bag pressure. As in
the case of grand canonical ensemble, here also two forms
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for the density dependence is being considered. Particle
number density is given by

ρf ¼ k3f
π2

ð20Þ

Total baryon no density is

ρ ¼ 1

3
ðρu þ ρd þ ρsÞ ð21Þ

The energy density at T ¼ 0 is ϵc ¼ F
V

εC ¼
X
f

ϵf þ BðρÞ ¼
X
f

Ff

V
þ FB

V
ð22Þ

where Ff is the free energy for the contribution for the free
fermions and FB is the free energy contribution from the
bag pressure.

PC ¼ −
∂F
∂V

¼ −
∂

∂V

�X
f

Ff þ FB

�
ð23Þ

Pressure in this ensemble is given by

PC ¼
�X

f

ρ2f
∂

∂ρf

�
ϵf
ρf

��
þ ρ2

∂

∂ρ

�
BðρÞ
ρ

�
ð24Þ

PC ¼
X
f

Pf þ Pbag ð25Þ

where,

Pf ¼
1

4π2

 
k3f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2f þm2

f

q
þ 1

2
m2

fkf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2f þm2

f

q

−
1

2
m4

f log

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2f þm2

f

q
þ kf

mf

!!
ð26Þ

Pbag ¼ −BðρÞ þ ρ
∂BðρÞ
∂ρ

: ð27Þ

Therefore pressure can be rewritten as

PC ¼ 1

π2
X

f¼u;d;s

Z
kf

0

k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

f

q − BðρÞ þ ρ
∂BðρÞ
∂ρ

: ð28Þ

Unlike the case of grand canonical Eq. (13), pressure here
has a derivative term of BðρÞ. The chemical potential is

μf ¼ ∂F
∂Nf

¼ ∂εf
∂ρf

þ ∂BðρÞ
∂ρf

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2f þm2

f

q
þ ∂BðρÞ

∂ρf
: ð29Þ

In this ensemble quark chemical potential is modified due
to the medium effects in MIT bag model through the
density dependence. A similar effect is observed in a grand
canonical ensemble where the density is modified due to
the chemical potential dependent bag pressure. This modi-
fied chemical potential satisfies the Euler relation thereby
establishing the validity of the method.

III. RESULTS

We focus on quark matter that might exist inside a NS.
For the SQM, we include electrons also and we have to
take into account the chemical equilibrium condition,

FIG. 1. Variation of energy per baryon with pressure using Euler relation and Inverse Legendre relation for Gaussian density-
dependent (left) and for hyperbolic density dependent bag (right) pressure.
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μd ¼ μu þ μe ¼ μs, the charge neutrality condition, 2
3
ρu −

1
3
ρd − 1

3
ρs − ρe ¼ 0 and baryon no density conservation

ρ ¼ 1
3
ðρu þ ρd þ ρsÞ. In our calculation, we take mu ¼

5.0 MeV, md ¼ 7.0 MeV, and ms ¼ 95.0 MeV [43].

A. Grand canonical ensemble

First, we study the thermodynamic stability condition for
the SQM in a grand canonical ensemble with density-
dependent bag pressure shown in Fig. 1. From Eq. (1), the
minimum of ε

ρ should occur at zero pressure. In Fig. 1 we
use both Gaussian and hyperbolic density-dependent bag
pressure. In Fig. 1 we see that if we use Euler relation
Eq. (15) then minimum of ε

ρ does not occur at zero pressure
but if inverse Legendre transformation Eq. (10) is used,
then minimum occurs at zero pressure but it violates the
rules of thermodynamics.

In order to establish thermodynamic consistency, we
propose a chemical potential-dependent bag pressure,
where self-consistent thermodynamic treatment is being
restored. We study the equation of state in a grand
canonical ensemble with both Gaussian and hyperbolic
chemical potential dependent bag pressure. For this, we
take B0 ¼ 100 MeV fm−3 and Bas ¼ 30 MeV fm−3, same
for both Gaussian and hyperbolic form. For Gaussian
βμ ¼ 1.0, μ0 ¼ 1000 MeV and for hyperbolic μ̄ ¼
800 MeV and Γμ ¼ 1000 MeV. In Fig. 2 upper panel,
variation of chemical potential with pressure and variation
of pressure with energy density is being displayed. We see
that the chemical potential has a similar kind of variation
with energy density both for the Gaussian and hyperbolic
case; the equation of state (pressure versus energy density)
also has a similar pattern for both forms of the bag pressure.
In the lower left panel, we show that the minimum of ε

ρ

FIG. 2. Equation of state and speed of sound in the grand canonical ensemble for Gaussian and hyperbolic chemical potential
dependent bag pressure, variation of chemical potential with pressure (upper left), variation of pressure with energy density (upper
right), variation of ε

ρ with pressure (lower left), and variation of speed of sound with pressure (lower right) with B0 ¼ 100 MeV fm−3,
Bas ¼ 30 MeV fm−3, βμ ¼ 1.0, μ0 ¼ 1000 MeV, Γμ ¼ 1000 MeV, μ̄ ¼ 800 MeV.
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exactly occurs at zero pressure which will not happen in the
case of density-dependent bag pressure obeying the Euler
relation. In the lower right panel, variation of the speed of
sound with pressure is shown; due to chemical potential
dependent bag pressure, C2

s varies with pressure and it
tends to 1

3
for higher values of pressure.

In Fig. 3, we show the variation of particle fraction
variation with density; the solid line represents the particle
fraction according to Eq. (14) and the dotted line represents
the particle fraction without taking the derivative of the bag
pressure as in right hand side of Eq. (14). Particle fraction is
modified due to the derivative term in the Eq. (14), and
since bag pressure varies with chemical potential, it reflects
in the particle fraction plot.
Bodmer-Witten conjecture [32–34] states that for SQM

to be stable and be the true ground state of matter the
stability is dictated by energy density per baryon, which is
regulated by bag pressure. The allowed range of the
different parameters (B0; Bas; βμ) in the μ dependent bag
pressure (Gaussian form) have been estimated as per
Bodmer-Witten conjecture as shown in Table I. The upper

limit of βμ is estimated for 2-flavor quark matter, when
ε
ρ ≥ 930 and lower limit of βμ is estimated for 3-flavor quark
matter, when ε

ρ ≤ 930. In a similar way, we can estimate the
stability range of the parameters in the hyperbolic bag
pressure which is not shown here for the sake of brevity.

B. Canonical ensemble

In the canonical ensemble, the medium effects are taken
into account through a density-dependent bag pressure.
This ensures thermodynamic consistency and validity of
Euler’s relation. For this, we take B0 ¼ 100 MeV fm−3 and
Bas ¼ 30 MeV fm−3, same for both Gaussian and hyper-
bolic form. For Gaussian βρ ¼ 0.1, ρ0 ¼ 0.152 fm−3 and
for hyperbolic ρ̄ ¼ 2ρ0 and Γρ ¼ 2.5ρ0. In Fig. 4 upper
panel shows the variation of chemical potential with
pressure and the variation of pressure with energy density.
It is observed that these two variations are similar and close
for the Gaussian and the hyperbolic types variation of the
density-dependent bag pressure. In the lower left panel, we
show that the minimum of ε

ρ exactly occurs at zero pressure
which will not happen in the case of density-dependent bag
pressure in grand canonical ensemble (Fig. 1) obeying the
Euler relation). Therefore if we want to use a density-
dependent medium effect, we have to use a canonical
approach. In the lower right panel, variation of the speed of
sound with pressure due to the density-dependent medium
effect is displayed. It is observed that C2

s tends to conformal
limit at higher pressure. The variation of C2

s at lower values
of pressure differs from that of the grand canonical since
energy [See Eqs. (16) and (19)] and pressure [See Eqs. (13)
and (28)] differs in both the ensembles.
In Fig. 5, the quark chemical potential variation with

baryonic chemical potential is being shown; here the solid
line represents the individual chemical potential of different

FIG. 3. Particle fraction in the grand canonical ensemble for Gaussian (left) and hyperbolic (right) chemical potential dependent bag
pressure.

TABLE I. μ dependent Gaussian bag pressure in grand canoni-
cal ensemble.

B0 ðMeV fm−3Þ Bas ðMeV fm−3Þ βμ

60 25 [0.0, 0.12]
100 50 [0.48, 2.33]
100 40 [0.37, 1.45]
100 30 [0.31, 1.11]
150 50 [1.30, 3.10]
150 40 [1.08, 2.15]
150 30 [0.93, 1.71]
200 50 [1.75, 3.60]
200 40 [1.50, 2.55]
200 30 [1.35, 2.10]
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FIG. 4. Equation of state and speed of sound in the canonical ensemble for Gaussian and hyperbolic density dependent bag pressure,
variation of chemical potential with pressure (upper left), variation of pressure with energy density (upper right), variation ε

ρ with
pressure (lower left), and variation speed of sound with pressure (lower right) with B0 ¼ 100 MeV fm−3, Bas ¼ 30 MeV fm−3,
βρ ¼ 0.1, ρ0 ¼ 0.152 fm−3, Γρ ¼ 2.5ρ0, ρ̄ ¼ 2ρ0.

FIG. 5. Quark chemical potential in the canonical ensemble for Gaussian (left) and hyperbolic (right) density dependent bag pressure.
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quarks (u,d,s), and the dotted line represents the same
chemical potential without taking the derivative of the bag
pressure term as shown in Eq. (29). At higher values of the
chemical potential, the bag pressure is almost constant,
therefore the derivative term Eq. (29) does not contribute
and hence the lines merge as seen in Fig. 5.
Following the same procedure as previously stated

in case of the grand canonical ensemble, the allowed
free parameters in the ρ dependent bag pressure
(Gaussian form) constrained by Bodmer-Witten conjecture
(B0; Bas; βρ) is estimated as shown in Table II. In a similar
way, we can estimate the stability limit of the parameters
following the hyperbolic bag pressure.

C. Mass-radius diagram

Exploring the inner structures of strange quark stars will
be simple once the EoS of strange quark matter is
calculated. Therefore we present mass-radius configuration

in Fig. 6. We use μ dependent bag pressure in the grand
canonical ensemble in both Gaussian and hyperbolic forms
and the chosen parameters are given in the left side of
Fig. 6. We have also used ρ dependent bag pressure in the
Canonical ensemble in both Gaussian and hyperbolic forms
and the chosen parameters are given on the right side of
Fig. 6. Different parameters of the MIT bag model used in
the mass-radius diagram are chosen such that they satisfy
the Bodmer-Witten conjecture [32] for stability of stars as
well as the recent astrophysical data that are shown in
Fig. 6. The calculated quark star configurations satisfy the
recently obtained constraint from the low-mass compact
object HESS J1731-347 and constraints on the mass and
radius of compact stars from GW170817. The maximum
mass constraint from PSR J0740þ 662 is satisfied for the μ
dependent hyperbolic case only, though it is dependent on
the parameter space. Our main focus in this work is the
proper thermodynamic treatment and stability; in future,
one can explore more on quark star and hybrid star
properties with chemical potential dependent BðμÞ (varying
the parameters) and compare those with different astro-
physical constraints.

IV. SUMMARY AND CONCLUSION

In this work, we have studied the medium effects of quark
matter through the bag pressure in the framework ofMIT bag
model. We demonstrate that if a density-dependent bag
pressure is used in the grand canonical ensemble, then in
the equation of state, either the Euler relation [Eq. (2)]
becomes invalid or the lowest energy per baryon does not
coincide with that of zero pressure. In order to overcome this
inconsistency in thermodynamics, we suggest that the
medium influence of SQM to be incorporated via density

FIG. 6. Mass-radius relationship of quark star with chemical potential dependent values of bag pressure for Gaussian form of BðμÞ and
hyperbolic form BðμÞ (left) and density dependent values of bag pressure for Gaussian form of BðρÞ and hyperbolic form BðρÞ.
Observational limits imposed from HESS J1731-347 [44] and the constraints on M-R plane prescribed from GW170817 [45] and PSR
J0740þ 6620 [2] are also compared.

TABLE II. ρ dependent Gaussian bag pressure in canonical
ensemble.

B0 ðMeV fm−3Þ Bas ðMeV fm−3Þ βρ

57 40 [0.0, 0.013]
100 50 [0.052, 0.59]
100 40 [0.041, 0.33]
100 30 [0.035, 0.23]
150 50 [0.113, 0.75]
150 40 [0.091, 0.44]
150 30 [0.077, 0.31]
200 50 [0.141, 0.85]
200 40 [0.115, 0.50]
200 30 [0.098, 0.36]
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or chemical potential dependent bag pressure depending on
the ensemble chosen. In other words, the intensive parameter
which addresses the medium effects should be ensemble
dependent. This work is one of the first to propose chemical
potential dependent bag pressure in grand canonical ensem-
ble. The self-consistency in thermodynamics is restored if
the chemical potential dependent bag parameter is used in
the grand canonical ensemble and density dependent in the
canonical ensemble. In the grand canonical ensemble,
density is modified due to chemical potential-dependent
bag pressure whereas in the canonical ensemble, chemical
potential is modified due to the density-dependent bag

pressure. The main ingredient of our study is the reformu-
lation of medium-dependent bag pressure according to the
choice of ensemble which solves the inconsistency problem
from thermodynamics point of view. Generally, for the
infinite matter system, grand canonical ensemble is used.
If one chooses to take the density-dependent medium effect,
then canonical is the appropriate ensemble. We have calcu-
lated the mass radius (M-R) of strange stars using this
thermodynamically consistent formalism.This can be further
explored for the study of the equation of state and different
structural properties of the strange stars and the hybrid stars
in future.
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