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The accuracy of Bayesian inference can be negatively affected by the use of inaccurate forward models.
In the case of gravitational-wave inference, accurate but computationally expensive waveform models are
sometimes substituted with faster but approximate ones. The model error introduced by this substitution
can be mitigated in various ways, one of which is by interpolating and marginalizing over the error using
Gaussian-process regression. However, the use of Gaussian-process regression is limited by the curse of
dimensionality, which makes it less effective for analyzing higher-dimensional parameter spaces and longer
signal durations. In this work, to address this limitation, we focus on gravitational-wave signals from
extreme-mass-ratio inspirals as an example, and propose several significant improvements to the base
method: an improved prescription for constructing the training set, graphics processing units-accelerated
training algorithms, and a new likelihood that better adapts the base method to the presence of detector
noise. Our results suggest that the new method is more viable for the analysis of realistic gravitational-wave
data.
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I. INTRODUCTION

The field of gravitational-wave (GW) astronomy has
witnessed remarkable progress so far, with the detection
of approximately 90 compact binary coalescences (stellar-
mass binary mergers) by the LIGO-Virgo-KAGRA Colla-
boration [1,2]. Future space-basedGWdetectors operating in
the millihertz frequency band, namely LISA [3], TianQin
[4,5], and Taiji [6], will lead to the discovery of new kinds
of sources such as binary white dwarfs [7,8], massive
binary black-hole mergers [9,10], stellar-mass binary inspi-
rals [11,12], and extreme-mass-ratio inspirals (EMRIs)
[13–17]. Gravitational waves generated by all of these
extreme astronomical events carry unique information,
providing novel insights into the physics and astronomy
of such phenomena.
To achieve scientific goals in GW astronomy, it is

essential to identify and characterize GW signals within

a noisy data stream.The characterizationprocess involves the
inference of astrophysical parameters based on a certain
GW source model. The accuracy of parameter estimation
is constrained by two factors: the statistical error caused
by the noise and the theoretical error due to the use of an
inaccurate waveform model. It is known that, for both
ground-based [18] and space-based GW detectors [19],
the statistical error decreases as the signal-to-noise ratio
(SNR) increases, while the theoretical error remains
constant; this may lead to the exclusion of the true
parameter values with high statistical significance.
In GW data analysis, the deliberate incurrence of

theoretical error is a common scenario, as it occurs
whenever fast approximate models are used in lieu of
more accurate but computationally costly models/simula-
tions (e.g., waveforms from numerical-relativity simula-
tions [20,21]). To account for the presence of (known)
theoretical error, Gaussian-process regression (GPR)
[22,23], a machine-learning technique, has been proposed
as a method for interpolating and marginalizing over
such an error [24]. The method fits a Gaussian process to*alvincjk@nus.edu.sg
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a small set of precomputedwaveformdifferences between an
accurate fiducial model and an approximate one. This
process then serves as a prior distribution for the waveform
difference, and can be marginalized over in the standard
Bayesian likelihood with the approximate model. The GPR
marginalized likelihood, which is informed by accurate
waveforms, corrects the search under approximate templates
and accounts for any residual model inaccuracy with (gen-
erally) more conservative error estimates. This method has
since been applied in follow-up studies [25–28].
Previous research has demonstrated the potential of

the GPR marginalized-likelihood method to mitigate
theoretical error in low-dimensional cases [24,25,28].
However, the curse of dimensionality is a major chal-
lenge that hinders the use of GPR even in general
applications. The number of training points required to
cover a parameter space typically increases exponentially
with its dimensionality, while the computational com-
plexity of GPR increases cubically with the size of the
training set. In the marginalized-likelihood method, this
not only slows down the offline training phase but also
the online evaluation phase, negating the speed advantage
of using approximate templates.
In this study, we propose multiple improvements to the

base GPR method that better adapt it to high-dimensional
cases; the most notable is the use of Fisher-information-
based Latin hypercube sampling (LHS) to generate a more
informative training set with fewer points. We illustrate
the efficacy of our approach by applying it to EMRI
parameter estimation with a representative “accurate”
signal model [29] and an artificially constructed “approxi-
mate” template model. Even though accurate next-
generation EMRI models [30–32] will not be significantly
more costly than existing approximate ones (due to recent
computational developments [29,33,34]), we choose
EMRIs as our example here because the intrinsic informa-
tion content and computational complexity of their wave-
forms epitomize most of the difficulties that inhibit the use
of the base GPR method.
The remainder of the paper is organized as follows.

Section II A provides a brief overview of the marginalized-
likelihood method, while Sec. II B introduces the technique
of GPR in the context of waveform interpolation. The
training of the GPR model using a precomputed set of
waveform differences is discussed in Sec. II C, while
Sec. II D reviews the construction of the training set as
described in previous studies. These sections provide
important background information for understanding the
application of the GPR method in GW analysis.
In Sec. III, we describe and demonstrate our proposed

improvements to the base GPR method. We introduce a
parameter rescaling strategy in Sec. III A, and discuss the
new hyperparameters to be trained in Sec. III B. We also
compare the LHS training-set construction method to the
old method in Sec. III C, concluding that the former
contains more information than the latter with the same

density. We describe computational enhancements to train-
ing in Sec. III D. We present a new form of the GPR
marginalized likelihood that properly treats the presence of
detector noise in Sec. III E, and discuss an iterative
approach to the GPR method in Sec. III F. Our model is
tested on data with simulated detector noise in Sec. III G.
Finally, we summarize the new techniques implemented in
this work and propose possible computational strategies for
further extensions in Sec. IV.

II. BACKGROUND: THE BASE GPR METHOD

A. Marginalized likelihood

For a two-channel GW detector, the single source data
can be expressed as

xðtÞ ¼ sðtÞ þ nðtÞ; ð1Þ

where s≡ ðsI; sIIÞ is the source signal and n≡ ðnI; nIIÞ is
the detector noise. In the standard matched-filtering frame-
work, the data are compared against waveform templates
h≡ ðhI; hIIÞ that are parametrized by some astrophysical
parameters θ, while the detector noise is treated as a
Gaussian and stationary stochastic process.
The Bayesian likelihood of the source parameters is

thus [35]

L ∝ exp

�
−
1

2
hx − hjx − hi

�
; ð2Þ

where the noise-weighted inner product h·j·i on the space of
finite-length time series is given by

hajbi ¼ 4Re
XfN
f>0

df
X
χ¼I;II

ã�χðfÞb̃χðfÞ
Sn;χðfÞ

; ð3Þ

with overtildes denoting discrete Fourier transforms, fN
denoting the Nyquist frequency, and Sn;χ denoting the one-
sided power spectral density of the channel noise nχ . The
optimal SNR of a waveform template h is given in terms of
this inner product as

ffiffiffiffiffiffiffiffiffiffiffihhjhip
, while the overlap between

two templates is defined as hh1jh2i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i

p
.

If an accurate template model haccðθÞ is used for the
analysis, then the source signal s is well described by
the model at the actual parameter values θtrue, i.e.,
s ¼ hðθtrueÞ. The maximum-likelihood estimate θML does
not generally equal θtrue due to the presence of detector
noise, but the parameter error θϵ ¼ θML − θtrue is purely
statistical in nature as it arises only from n, and is thus fully
described by the posterior. On the other hand, if an
approximate template model happðθÞ is used for the
analysis, then the parameter error now contains an additional
contribution from the difference hϵ ¼ happ − hacc. For high-
SNR sources, this theoretical-error term may exceed the
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statistical uncertainties described by the posterior, and thus
become the limiting factor in obtaining accurate parameter
estimates [36].
The bias from theoretical error can be mitigated by

specifying a suitable prior probability distribution pðhϵÞ for
the waveform difference hϵ, then marginalizing over hϵ in
Eq. (2). This “marginalized likelihood” is given by

L ∝
Z
W
DhϵpðhϵÞLacc; ð4Þ

where Lacc is Eq. (2) with h ¼ hacc ¼ happ − hϵ, and W is
the space of waveform differences. In [24], Moore and
Gair proposed using GPR to define a Gaussian prior
distribution, thus allowing the above integral to be ana-
lytically approximated (since Lacc is also formally
Gaussian).

B. Gaussian-process regression

In the GPR method, hϵ ∈W may be modeled as a
Gaussian process over the parameter space Θ:

hϵðθÞ ∼ GPðh̄ϵ; kÞ; ð5Þ

where h̄ϵ is the (vector-valued) mean of the process, and
kðθ; θ0Þ is the covariance function of the process. Then the
set of waveform differences fhϵðθiÞ∈Wji ¼ 1; 2;…; Ng
corresponding to a small training set of parameter points
fθi ∈Θji ¼ 1; 2;…; Ng has a Gaussian probability distri-
bution N ðh̄ϵ;KÞ on WN [28]:

pð½hϵðθiÞ�Þ ¼
1

ð2πÞN detK
exp

�
−
1

2
vTK−1v

�
; ð6Þ

where the covariance matrix K and waveform difference
vector v are expressed respectively by

½K�ij ¼ kðθi; θjÞ; ð7Þ

½v�i ¼ hϵðθiÞ − h̄ϵ: ð8Þ

Note that the normalization constant in Eq. (6) is the square
of its usual value for a multivariate Gaussian, due to the two
independent channels of the process. Also, v is a deliberate
abuse of notation to cast Eq. (6) in the familiar Gaussian
functional form; its components are themselves vectors in
W equipped with the inner product (3).
The quadratic form in Eq. (6) may be written as

vTK−1v ¼ trðK−1MÞ; ð9Þ

with

½M�ij ¼ ½vvT �ij ¼ hhϵðθiÞ − h̄ϵjhϵðθjÞ − h̄ϵi: ð10Þ

In [24] and follow-up work, the mean of the process
was taken to be the zero vector. Here we use a nonzero
but constant mean h̄ϵ, which is simply chosen to be
the mean of the training set of waveform differences
fhϵðθiÞji ¼ 1; 2;…; Ng; doing so improves the regression
performance at negligible computational cost. We also
remove from Eq. (10) the factor of γ that was introduced
in Eq. (15) of [28]. This quantity is defined as the
(empirical) ratio between the frequency-averaged power
spectral densities of the waveform differences and the
detector noise, and was added as a “fudge factor” to the
base method to prevent the estimate of statistical error from
being dominated by the GPR variance when the noise
realization is nonzero. Here, we treat the noise in a more
principled way by modifying the definition of the margin-
alized likelihood in the base method; see Sec. III E.
For any new parameter point θ, the enlarged set

fhϵðθiÞ; hϵðθÞg is again normally distributed with mean
h̄ϵ and the covariance matrix

K� ¼
�
K k�
kT� k��

�
; ð11Þ

where

½k��i ¼ kðθi; θÞ; k�� ¼ kðθ; θÞ: ð12Þ

Since fhϵðθiÞg is known, the conditional probability
distribution of hϵðθÞ given fhϵðθiÞg is also Gaussian:

pðhϵðθÞÞ ∝
1

σ2
exp

�
−
1

2

hhϵðθÞ − μjhϵðθÞ − μi
σ2

�
; ð13Þ

where μðθÞ and σ2ðθÞ are given respectively by

μ ¼ kT�K−1v þ h̄ϵ; ð14Þ

σ2 ¼ k�� − kT�K−1k�: ð15Þ

Note that K−1v in Eq. (14) and K−1 in Eq. (15) have
nothing to do with θ, and can thus be precomputed. The
GPR mean μðθÞ is essentially an interpolant for hϵðθÞ, with
associated (squared) error given by the GPR variance
σ2ðθÞ. We may thus define a new GPR-informed template
model as

hGPR ¼ happ − μ; ð16Þ

which approximates hacc sincehacc¼happ−hϵ. Equation (13)
also provides the prior forhϵ inEq. (4), which evaluates to the
GPR marginalized likelihood (of the base method):

L ∝
1

1þ σ2
exp

�
−
1

2

hx − hGPRjx − hGPRi
1þ σ2

�
: ð17Þ
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C. Training the Gaussian process

The waveform difference model (5) is specified by
the (fixed) mean of the training set and the covariance
function k; the latter depends on hyperparameters that are
determined by fitting the Gaussian process to the training
set. Previous studies in the GW field have demonstrated
that the GPR interpolant and the marginalized-likelihood
function exhibit consistent performance across various
common choices for k [25]. In this work, we use the
squared-exponential covariance function

kðθ; θ0Þ ¼ σ2f exp

�
−
1

2
τ2
�
; ð18Þ

with

τ2 ¼ gab½θ − θ0�a½θ − θ0�b; ð19Þ

where the hyperparameters consist only of an overall scale
factor σ2f and the (independent) components gab of some
constant parameter-space metric g on θ.
As the size of the training set grows, the covariance

matrix K tends to become ill-conditioned. However, it is
common practice to add noise to the training set, which
allows for some error in the GPR fit. We transform

½K�ij → ½K�ij þ σ2fσ
2
nδij; ð20Þ

where δij is the Kronecker delta, and the fractional noise
variance σ2n of training-set points is taken to be uniform
and fixed. The introduction of noise has the side effect
of reducing the condition number of K for more robust
numerical calculations. In this work, we use an empirically
determined value of σ2n ¼ 10−2 throughout.
The Gaussian process is fit to the training set by

maximizing (the logarithm of) Eq. (6) as a function of
the hyperparameters, i.e., the “hyperlikelihood” Z:

lnZ ¼ −
1

2
trðK−1MÞ − ln detKþ const: ð21Þ

Part of this maximization may be done analytically, as lnZ
with K ¼ σ2fK̂ is maximized over σ2f at

σ2f ¼ 1

2N
trðK̂−1MÞ: ð22Þ

Substituting Eq. (22) back into Eq. (21), we may instead
maximize the scale-invariant log-hyperlikelihood

lnZ ¼ −N ln trðK−1MÞ − ln detKþ const: ð23Þ

over the metric components only, which reduces the
dimensionality of the hyperparameter space by one.

D. Fisher-coordinate training grid

The waveform derivative ∂h and Fisher information
matrix Γ are defined respectively as

½∂h�a ¼
∂h
∂½θ�a ; ½Γ�ab ¼ h½∂h�aj½∂h�bi: ð24Þ

Let fðλi; v̂iÞg denote the eigensystem of Γ for the SNR-
normalized waveform difference, hϵ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffihhϵjhϵi
p

, evaluated
at some reference parameter point. One can then define a
new coordinate system centered on that reference point, by
taking the semiprincipal axes fλ−1=2i v̂ig of the associated
covariance hyperellipse as basis vectors. A local grid-based
training set may be constructed by uniformly placing points
on a grid defined by the basis vectors in these “Fisher
coordinates.” Previous research [28] has employed this
grid-based design.
The main challenge of using a grid-based training set is

the issue of scalability in high-dimensional parameter
spaces. In this study, we adopt an alternative sampling
method and compare it to the traditional grid-based training
set in Sec. III C. Subsequently, a training set utilizing the
alternative sampling method (within a hyperellipse) is
employed as our final model in Sec. III G.

III. IMPROVEMENTS AND RESULTS

As mentioned in Sec. I, we choose the example of an
EMRI signal to showcase our improvements to the base
GPR method, and to demonstrate the scalability of our
results to the typical length and complexity of EMRI
waveforms. Throughout this study, the fiducial model is
taken as the augmented analytic kludge [26,37] with 5PN-
adiabatic evolution [38,39] (5PN AAK), which is publicly
available as part of the Fast EMRI Waveforms software
package [29]. This choice is motivated not only by the
improved realism of the model relative to previous kludges,
but also by its computational efficiency (which provides
a tractable fiducial likelihood for comparison with the
marginalized likelihood).
To construct an approximate model, we artificially

modify the time evolution of the slowly evolving orbital
parameters ðp; e; YÞ (the quasi-Keplerian semilatus rectum,
eccentricity, and cosine of the inclination) by linearly inter-
polating between 5PN- and 4PN-adiabatic evolution [40]:

ṗ ¼ ð1 − cÞṗ5PN þ cṗ4PN; ð25Þ

ė ¼ ð1 − cÞė5PN þ cė4PN; ð26Þ

Ẏ ¼ ð1 − cÞẎ5PN þ cẎ4PN; ð27Þ

where c is a tunable quantity that is fixed to 0.0001 in this
study. (When c ¼ 0, the orbital evolution reduces to 5PN;
when c ¼ 1, it is equivalent to 4PN.) This construction
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allows for an approximate model that retains a physically
motivated dependence on the EMRI parameters, while
producing waveforms that have a controllable overlap with
those from the fiducial model.
In this work, an EMRI with redshifted component

masses ðμ;MÞtrue ¼ ð101; 106ÞM⊙, dimensionless spin
parameter strue ¼ 0.9, and initial orbital parameters
ðp0; e0; Y0Þtrue ¼ ð6.97; 0.1; 0.54Þ is considered as a
generic example source. Other source parameters are
chosen such that the fiducial signal and the approximate
signal have an overlap of 0.84. For simplicity, the long-
wavelength approximation for the LISA response [41],
h≡ ðhI; hIIÞ, is used instead of full time-delay inter-
ferometry [42–44]. The signal is six months long and
sampled at 0.2 Hz, while the source distance is adjusted
to yield a high but feasible SNR of 100. The GPR
marginalized likelihood Eq. (17) is used to estimate six
source parameters, ðμ;M; a; p0; e0; Y0Þtrue, assuming all
other parameters are known and fixed at their true values.
The first application of the base GPRmethod to EMRIs [28]
considered only up to a two-month-long signal and three
estimated parameters.
To decrease the computational expense involved in

initializing and evaluating the marginalized likelihood,
we employ a band-pass filter as done in [28]. This filter
is applied to restrict both the data and the templates to the
frequency range 3.3–8.3 mHz, outside of which little signal
information is present.

A. Rescaled Fisher coordinates

The construction of the training set is based on the Fisher
matrix Γ for the SNR-normalized waveform difference
rather than the Fisher matrix for the accurate waveform,
since the former more closely approximates the optimal
hyperparameter metric (which is SNR independent); see
Sec. III in [28] for a more detailed discussion. Thus for
SNR values > 1, the bulk of the likelihood is typically
comfortably contained within the span of the training set.
However, the covariance hyperellipses associated with both
matrices can occasionally still be comparable in scale,
especially in the minor directions (corresponding to the
largest Fisher eigenvalues). When sampling from the like-
lihood, the coverage of the training set might thus be
insufficient in these directions.
To address this, we adopt a strategy of rescaling the

basis vectors of the Fisher coordinates as fλ−1=2i v̂ig →

ffiλ−1=2i v̂ig, so as to boost the training-set coverage in the
minor directions. An appropriate choice of fi would
depend on the discrepancy between the covariance hyper-
ellipses for the waveform difference and the accurate
waveform (essentially, the former should be rescaled such
that it contains the latter). As this discrepancy is model and
signal specific, such a procedure is necessarily somewhat
ad hoc. In this study, we perform the rescaling by hand,
with the following empirically determined values:

f1 ¼ 8.0;

f2 ¼ 4.0;

f3 ¼ 2.0;

f4 ¼ 1.0;

f5 ¼ 0.5;

f6 ¼ 0.5; ð28Þ

where the index is sorted in order of decreasing eigenvalue
magnitude.
More explicitly, for a training set centered at

ðc1; c2; c3; c4; c5; c6Þ in the parameter coordinates, the
point ðx1; x2; x3; x4; x5; x6Þ in the rescaled Fisher coordi-
nates corresponds to

2
664
c1

..

.

c6

3
775þ ½ f1λ−1=21 v̂1 � � � f6λ

−1=2
6 v̂6 �

2
664
x1

..

.

x6

3
775 ð29Þ

in the parameter coordinates. To sum up, our rescaling
strategy ensures that the resulting training set sufficiently
covers the parameter region of interest, so as to avoid
inaccurate inference due to regression error.

B. Fisher-coordinate metric hyperparameters

The number of training hyperparameters required to
specify the covariance metric in Eq. (19) scales approx-
imately with the square of the parameter-space dimension-
ality, which again is a challenge to the scalability of GPR. A
common approach to mitigating this in many GPR appli-
cations is to use a diagonal metric. Here, we instead use the
Fisher matrix Γ to place constraints on the metric gab in
Eq. (19), since the former is a good approximation to the
optimal values for the latter. Specifically, given the unit
eigenvectors v̂i and eigenvalues λi of Γ, we demand that

gab ¼ ½ v̂1 … v̂6 �

2
6664

1
w2
1

λ1

. .
.

1
w2
6

λ6

3
7775

2
664
v̂1

..

.

v̂6

3
775
T

; ð30Þ

where now only the wi are trained hyperparameters.
Since σ2f is fixed by Eq. (22), the number of hyper-
parameters is simply the dimensionality of the parameter
space. Restricting the covariance function in this way has a
negligible impact on regression performance (relative to
training the full metric), while significantly reducing the
computational cost of training.
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C. Latin hypercube sampling

Although a grid-based construction of the training
set is simple to implement, it has a couple of important
drawbacks. The first one is that the entropy of a grid-
based training set is generally lower than that of a more
irregularly distributed training set with the same number
of points; i.e., it contains less information [45,46]. The
second drawback of using a grid-based training set
in higher dimensions is that a larger number of points
will lie in low-likelihood regions, since typical likeli-
hoods have a radial falloff in density from the maximum-
likelihood point.
To address the first drawback, we adopt LHS [47] as

an alternative method of choosing training points. This
technique allows a random placement of sample points
within a hypercube such that no two samples are aligned
(up to a regular partition of the hypercube) in any
coordinate direction. In two dimensions, this is equivalent
to the classic problem of placing nonattacking rooks on a
chess board. We adopt a maximum-distance design for
generating the Latin hypercube samples, as proposed by
[48]. This approach aims to maximize the distance between
all pairs of samples, while minimizing the number of pairs
that are separated by the same distance [49]. Thus it
prevents highly clustered sample regions, and ensures
a more homogeneous distribution of the samples. This
variant of LHS is implemented using the Surrogate
Modeling Toolbox [50].
In order to compare the performance of an LHS training

set against a grid-based training set in GPR, we construct
a Fisher-based grid of N ¼ 46 ¼ 4096 points centered
around the signal parameters θtrue (such that the grid spans
a six-dimensional hypercube of side-length 3 in the
rescaled Fisher coordinates), as well as an N-sample
LHS training set within the same region. The true source
parameters are not included in either set of points. From the
Gaussian assumption (6), the entropy of each training set is
given by

Hð½hϵðθiÞ�Þ ¼ −
Z

Dhϵpð½hϵðθiÞ�Þ lnpð½hϵðθiÞ�Þ

¼ −E½lnN ðh̄ϵ;KÞ�
¼ Nð1þ ln ð2πÞÞ þ ln detK: ð31Þ

Under the same initial hyperparameter values w1 ¼ … ¼
w6 ¼ 1, the entropy of the grid based is smaller than that of
the LHS training sets by 1651. The smaller entropy value
for the grid-based training set indicates that it contains less
information, which turns out to be insufficient for effective
training.
Although the hyperlikelihood for the grid-based training

set increases asymptotically toward some optimal value
during training, the Gaussian process fails to fit the wave-
form difference adequately, with the GPR error (15) at most

evaluation points of interest taking on its maximal value [σ2f
in Eq. (22)]. This is illustrated by the top plot in Fig. 1,
which shows how the GPR variance (normalized by σ2f) at
the true signal parameters fails to improve as training
proceeds. In contrast, the same plot for the LHS training set
tends toward a minimal value≪ 1, indicating that the set is
more optimal for regression while having the same span
and number of points as the grid-based training set.
As for the second drawback of using a grid-based

training set, the larger relative volume contained in the
“corners” of the hypercube leads to a larger proportion of
uninformative points in the set, which adds unnecessary
computational cost to both the training and evaluation of
the GPR model. To make this intuitive, consider a hyper-
sphere (representing the bulk of the likelihood density) that
is inscribed in a hypercube (representing the span of the
training grid), in d dimensions. When d ¼ 2, the volume
outside the hypersphere is 21% of the hypercube volume;
this rises to ≥ 92% when d ≥ 6.
To address this drawback, we implement a further

hyperspherical truncation of the LHS training set in our
final model (used in Sec. III G). In the rescaled Fisher
coordinates, the covariance hyperellipse associated with
the Fisher matrix is a hypersphere; we simply enlarge
this such that it is inscribed in the hypercube spanned
by the grid, and then remove all LHS points lying
outside the enlarged hypersphere. In this way, the
number of model evaluations in low-likelihood regions
is greatly reduced. Both the grid-based training set and
the truncated LHS training set are compared visually
in Fig. 2.

FIG. 1. The training evolution of (the logarithm of) the
normalized GPR variance σ2=σ2f , evaluated at the center of the
training region (the true parameters for the source).
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D. Computational acceleration of training

When training the Gaussian process, the cost of evalu-
ating the hyperlikelihood is dominated by the calculation of
K−1M at each iteration, especially for large N. The most
efficient way of computing this quantity is then (i) to solve
the linear systems of equationsKX ¼ M for X (instead of
inverting K), and (ii) to parallelize the calculation by
performing it on a graphics processing units (GPU). In
previous work [25,28], the gains from this approach were

marginal even for the largest considered training sets with
N ∼ 102. In this work, whereN ≳ 103, it becomes essential.
We use the conjugate gradient method [51] to solve for the
roots ofKX −M; this is an iterative technique that is better
suited to large N than previously employed methods such
as Cholesky decomposition. For a training set containing
4096 points, a single training iteration typically takes
around 3.5 seconds when evaluated on a GPU, and around
200 iterations in total to converge.

FIG. 2. Visualization of the grid-based training set in Sec. III C (4096 green points) and the hyperspherical truncation of the LHS
training set with the same span (1611 yellow points), both centered on the true parameters for the source (red point).
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GPUs can also be used to accelerate evaluation of
the trained model [now with fixed K, such that K−1v in
Eq. (14) andK−1 in Eq. (15) can be precomputed]. A single
evaluation of the GPR mean and variance takes around
0.01 s on a GPU, as compared to around 0.1 s on a CPU.
However, note that the marginalized likelihood requires
evaluation of the approximate waveform, which must also
be accelerated in order to gain the full benefit from the
Gaussian-process component of the model. In this work, as
the cost of waveform generation is the computational
bottleneck in the case of EMRIs, we do not implement
the sampling of likelihoods on a GPU.

E. Marginalized likelihood for nonzero noise

From standard noise properties, the expectation of the
logarithm of Eq. (17) is given (up to a constant) by

E½lnL� ¼ −
1

2

hs − hGPRjs − hGPRi þN
1þ σ2

þ ln

�
1

1þ σ2

�
;

ð32Þ

where N ≔ E½hnjni� is the expected noise power. It is the
interplay between N ≠ 0 and the size/variation of σ2 over
the signal space that is generally problematic for the
practical application of the GPR marginalized likelihood
with nonzero noise. Essentially, the profile of the likelihood
becomes driven by the variation of σ2 ifN is too large, and
it can even have a narrowed credible region that excludes
the true parameters to high significance.
This issue was recognized and addressed in [28],

although not explicitly described in that paper. There, σ2

was reduced by an overall factor of γ ≪ 1, with the value of
γ chosen empirically as the ratio between the typical power
of the waveform differences and the expected power of the
detector noise. This works simply because the GPR like-
lihood approaches the accurate likelihood as γ → 0, but it is
rather ad hoc and does not generally yield broadened
credible regions in the former.
We will instead redesign the GPR likelihood in a way

that aims to recover, for general noise realizations, its
behavior when N ¼ 0 (while reducing to the accurate
likelihood as σ2 → 0). It is straightforward to achieve this
when the likelihood is approximated by Eq. (32); one such
solution is simply

L ∝
1

1þ σ2
exp

�
−
1

2

hx− hGPRjx− hGPRi þN σ2

1þ σ2

�
: ð33Þ

Here, N needs to be estimated accurately because the
noise-corrected likelihood can still be quite sensitive to any
residual noise power near the maximum-likelihood point.
We propose an iterative method for estimating N (and for
refining inference) in the following section.

F. Iterative inference

When applying the GPR method to realistic inference,
the starting point is an estimate of the true source
parameters θtrue, so as to construct the training set in its
local vicinity. This estimate is most naturally obtained
through maximum likelihood or maximum a posteriori
estimation with the approximate waveform model (since
the accurate model is assumed to be computationally
intractable); we denote it by θapp. At this stage, a first
estimate of N is given by

N 1stGPR ¼ hx − happðθappÞjx − happðθappÞi: ð34Þ

Together with the training set centered on θapp and the
Gaussian process that is trained on this set, inference can
then be performed using the noise-corrected GPR like-
lihood (33), which we denote by L1stGPR.
Computation of the posterior under the first GPR model

yields a first maximum a posteriori estimate, which we
denote by θ1stGPR (σ2 taken as 0 in this optimization).
Depending on the distance between θ1stGPR and θtrue
(equivalently, the error in the approximate model), the first
GPR posterior may not be a sufficiently faithful approxi-
mation to the accurate posterior. In this case, another
iteration of inference may be performed by constructing
a second training set centered on θ1stGPR, retraining the
Gaussian process, and reestimating the noise as

N 2ndGPR ¼ hx − haccðθ1stGPRÞjx − haccðθ1stGPRÞi: ð35Þ

Here we have used the accurate waveform model to
compute the second noise estimate, although we could
also have used h1stGPR instead. In realistic scenarios, such
an iterative usage of the GPR method for high-precision
inference is unlikely to take more than two iterations; if the
error in the approximate model is so large as to require this,
a more prudent approach in the first place would be to
improve the approximate model or construct better fits to
the accurate model.

G. Results

In this subsection, we present illustrative results for the
GPR method with all of the proposed improvements in
Secs. III A–III E, when applied to our example EMRI
signal with simulated LISA noise [52]. We assume a
flat prior in a suitably bounded region of parameter
space, and employ the Markov chain Monte Carlo sampler
emcee [53,54] to draw samples from the standard approxi-
mate likelihood Lapp, the standard accurate likelihood Lacc,
and the GPR marginalized likelihoods L. Note that the
accurate likelihood is assumed to be unavailable in the
actual scenarios to which the GPR likelihood might be
applied, but we include it here to showcase the efficacy of
the method.
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Figure 3 displays the GPR likelihood that is computed
in the first iteration described in Sec. III F, along with
the standard accurate and approximate likelihoods for
comparison. The approximate likelihood excludes the
true source parameters at more than 3-sigma significance.

On the other hand, the first GPR likelihood provides a
decent (but still slightly shifted) approximation to the
accurate likelihood, and agrees with the true parameters
to within 3-sigma. Finally, results from a second iteration
are presented in Fig. 4, where the second GPR likelihood

FIG. 3. Projected one- and two-dimensional plots comparing the accurate and approximate likelihoods to the first noise-corrected
marginalized likelihood (with a truncated LHS training set that is centered at the maximum-likelihood estimate of the approximate
waveform). The shown contour level is 3-sigma. The true source parameters are indicated by red dots.
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is seen to be almost perfectly consistent with the accurate
likelihood.

IV. CONCLUSION

This work improves the scalability of the GPR
marginalized-likelihood scheme for high-precision GW
inference [24,25,28], thus extending its potential applica-
tion to higher-dimensional parameter spaces and longer

signal durations (six intrinsic parameters and six-month-
long signals, in our EMRI example). Several significant
modifications have been made to the base GPR method
that was developed in previous work.
In Secs. III A–III D, various improvements to the train-

ing of the Gaussian process are described. These are (i) a
rescaling of the Fisher-informed training set that is better
adapted to highly correlated parameters, (ii) a Fisher-
informed constraint on the covariance metric such that

FIG. 4. Projected one- and two-dimensional plots comparing the accurate and approximate likelihoods to the second noise-corrected
marginalized likelihood (with a truncated LHS training set that is centered at the maximum-likelihood estimate of the first GPR model).
The shown contour level is 3-sigma. The true source parameters are indicated by red dots.
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the number of hyperparameters scales linearly rather than
quadratically with the parameter-space dimensionality,
(iii) the use of LHS and (Fisher-informed) hyperspherical
truncation to construct the training set, and (iv) computa-
tionally efficient training through the use of the conjugate
gradient method and GPU acceleration. These modifica-
tions boost the scalability of the GPR method by signifi-
cantly reducing the required density of the training set in a
given region of interest (such that it grows subexponentially
with the parameter-space dimensionality), and by greatly
accelerating the training process as well.
Sections III E and III F describe improvements to the

marginalized-likelihood method itself. We make a crucial
redefinition of the marginalized likelihood in order to
render it usable in realistic inference scenarios with non-
zero detector noise; this is done via an estimation of the
noise power by computing the data-template residual at
the maximum-likelihood parameters. We also propose an

iterative approach to using the GPR method, where the
training set and noise estimate are refined through (a single)
repetition. Finally, in Sec. III G, we implement all of the
above improvements to perform inference on an example
EMRI signal with simulated LISA noise, and to demon-
strate the viability of the GPR marginalized-likelihood
method for more realistic GW applications.
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