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Superradiantly unstable ultralight particles around a classical rotating black hole (BH) can form an
exponentially growing bosonic cloud, which have been shown to provide an astrophysical probe to detect
ultralight particles and constrain their mass. However, the classical BH picture has been questioned, and
different theoretical alternatives have been proposed. Exotic compact objects (ECOs) are horizonless
alternatives to BHs featuring a reflective surface (with a reflectivity K) in place of the event horizon. In this
work, we study superradiant instabilities around ECOs, particularly focusing on the influence of the
boundary reflection. We calculate the growth rate of superradiant instabilities around ECOs and show that
the result can be related to the BH case by a correction factor gK, for which we find an explicit analytical
expression and a clear physical interpretation. Additionally, we consider the time evolution of superradiant
instabilities and find that the boundary reflection can either shorten or prolong the growth timescale. As a
result, the boundary reflection alters the superradiance exclusion region on the Regge plane, potentially
affecting constraints on the mass of ultralight particles. For a mildly reflective surface (jKj ≲ 0.5), the
exclusion region is not substantially changed, while significant effects from the boundary reflection can
occur for an extreme reflectivity (jKj ≳ 0.9).
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I. INTRODUCTION

Ultralight bosons have been proposed by different
theories as elementary particles beyond the Standard
Model of particle physics. Examples include (i) the
QCD axion, introduced to solve the strong charge-parity
problem [1–3], (ii) a plenitude of axionlike particles
(ALPs), predicted by the string theory and called an
“axiverse” [4,5], and (iii) dark photons [6]. These ultra-
light bosons, which would naturally couple weakly to
baryonic matter, have been shown to be promising dark
matter candidates [7–9].
In addition to some ground-based experiments (see, e.g.,

Refs. [9,10]), astrophysical environments, such as the
vicinity of black holes (BHs), also provide natural test
beds for detecting ultralight particles. This relies on a
mechanism called BH superradiance (for a comprehensive
review, see Ref. [11]). Consider a field of ultralight particles
with mass μ, located near a rotating BH. When the
Compton wavelength of the particle is comparable to the
horizon radius of the BH, the particle field can form
quasibound states around the BH and extract energy and

angular momentum effectively from the BH if the follow-
ing superradiance condition is satisfied:

ωR <
ma

2Mrþ
; ð1Þ

where ωR is the real part of the frequency of the massive
field, which is typically close to the mass μ of the ultralight
particle; m is the magnetic quantum number; and a;M; rþ
are the spin, mass, and horizon radius of the BH, respec-
tively. An intuitive understanding of this condition is that
superradiance occurs whenever the angular velocity of the
field, ωR=m, is less than that of the spacetime a=2Mrþ.
When the superradiance condition is met, the bosonic
field can turn unstable as more and more particles are
produced from the extracted energy and angular momen-
tum. These particles remain bounded to the BH by gravity
and form an exponentially growing bosonic cloud. This
phenomenon is the so-called superradiant instability.
Superradiant instabilities of BHs have been thoroughly
studied using perturbation theory but also numerical rela-
tivity, with studies including the computation of the unstable
eigenfrequencies [12–23], linear and nonlinear time evolu-
tions of the instability [24–27], the understanding of non-
linear effects such as the “bosenova” or scalar emission
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induced by self-interactions [28–31], and the computation
of gravitational wave (GW) emission by the bosonic
cloud [26,32–38]. In particular, it has been shown that
superradiant instabilities can spin down rotating BHs and
leave exclusion regions on the BH spin-mass plane (Regge
plane). Since these regions are related to themass of ultralight
particles, they can be used to constrain the latter through
the measurement of the spin and mass of astrophysical
BHs [5,26,33,39,40].
In this paper, we shall not restrict our discussion to BHs.

Classical BHs, namely, Kerr BHs, as a solution of Einstein’s
general relativity (GR), have singularities at r ¼ 0, which are
hidden within event horizons. However, this classical BH
picture leads to puzzles [41], for example, the information
paradox of evaporating BHs [42,43]. In different contexts,
including some quantum gravity candidates, exotic compact
objects (ECOs) as horizonless alternatives to classical BHs,
have been proposed and studied. Examples include fuzzballs
in string theory [44,45], boson stars and oscillations [46],
gravitational condensate stars, i.e., gravastars [47] and
wormholes [48,49]. A more comprehensive list of proposed
ECOs can be found in Refs. [41,50].
ECOs have also been dubbed as “BH mimickers” [51].

They have no event horizon, and their surfaces are
reflective, in contrast with the BH event horizon which
only allows particles and waves to fall inwards. In a simple
phenomenological model, widely used in the literature,
one can assume the presence of a boundary at r0 ≳ rþ,
with a reflectivity K, while the external spacetime is still
described by the usual Kerr geometry. The modified inner
boundary condition may result in colorful phenomenology,
including modified quasinormal modes (QNMs) [52–55],
ergoregion instabilities [52,54–57], and GW “echo” signals
[41,50,58,59], to name a few examples. Although there is
no definite proof of the existence of BH horizons [52],
the advent of GW detection and the improvements in its
precision may provide a unique opportunity to probe
physics at the near-horizon scale and constrain to very
high precision the existence of a reflecting surface (see
Refs. [41,60] for recent reviews).
Recently, superradiant instabilities of ultralight particles

around ECOs, have also been studied by Guo et al. [61,62].
In particular, a first effort was made in Ref. [61] in
investigating massive scalar perturbations with a modified
boundary condition, using a purely analytic approach in the
nonrelativistic regime, where α≡ μM ≪ 1, where again μ
and M are the masses of the bosonic field and the BH,
respectively. The goal of this paper is to study this subject
in more detail and, for the first time, explicitly show how
the boundary reflection influences the growth of massive
scalar perturbations around ECOs.
This paper is organized as follows. In Sec. II, we derive

the equations of motion for massive scalar perturbations
and specify the boundary conditions. At the end of that

section, a discussion can be found regarding the difference
in the boundary conditions set by Guo et al. [61] and by us.
In Sec. III we solve the eigenvalue problem. We first
introduce our analytic method, from which we obtain our
key result, the correction factor gK [see Eq. (36) below]. We
also calculate the eigenfrequencies using a semianalytic
method and a continued fraction method, followed by a
comparison between different methods. The physical
meaning of the correction factor gK is investigated in
Sec. IV by making use of the energy-momentum con-
servation. Section V is devoted to a discussion on the time
evolution of superradiant instabilities around ECOs, with a
particular focus on the influence of the boundary reflection.
Section VI discusses the implications of the possible
boundary reflection for the constraints on the ultralight
particle mass. Our summary and conclusion can be found in
Sec. VII. In this work, we use the ð−;þ;þ;þÞ convention
and set G ¼ c ¼ ℏ ¼ 1.

II. BOSONIC CLOUD AROUND AN ECO

We consider massive scalar perturbations in the follow-
ing spacetime background: we assume that the geometry
outside of the ECO is described by the Kerr metric, with the
line element in Boyer-Lindquist coordinates,

ds2 ¼ −
�
1 −

2Mr
ρ2

�
dt2 þ ρ2

Δ
dr2 −

4Mr
ρ2

a sin2 θdϕdt

þ ρ2dθ2 þ
�
ðr2 þ a2Þ sin2 θ þ 2Mr

ρ2
a2 sin4 θ

�
dϕ2;

ð2Þ

where a ¼ J=M is the spin angular momentum normalized
by the mass of the ECO, ρ2 ≡ r2 þ a2cos2θ, and
Δ≡ r2 − 2Mrþ a2. For a Kerr BH, the event horizon
and the Cauchy horizon are located at rþ ¼ M þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
and r− ¼ M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, respectively; rþ is

normally taken to be the inner boundary in the study of
superradiant instabilities, with a purely ingoing boundary
condition [13,17,21]. However, for an ECO, we replace the
event horizon with a reflective surface located at
r0 ¼ rþð1þ ϵÞ, where ϵ ≪ 1. This surface reflects a portion
of the ingoing wave, parametrized by the reflectivity K.
In a curved spacetime, a test scalar field with mass μ

satisfies the Klein-Gordon equation,

ð∇ν∇ν − μ2ÞΨ ¼ 0: ð3Þ

To study characteristic modes of the perturbation field, we
separate variables as follows:

Ψðt; r; θ;ϕÞ ¼ e−iωteimϕRlmðrÞSlmðθÞ; ð4Þ
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where ω∈C is the complex eigenfrequency, and the integers l ≥ 0; m∈ ½−l; l� are the angular and magnetic quantum
numbers, respectively. Expanding the Klein-Gordon equation in a Kerr metric background, we obtain the following
equations of motion:

d
dr

�
Δ
dRlm

dr

�
þ
�
ω2ðr2 þ a2Þ2 − 4Mamωrþm2a2

Δ
− ðω2a2 þ μ2r2 þ ΛlmÞ

�
RlmðrÞ ¼ 0; ð5Þ

1

sin θ
d
dθ

�
sin θ

dSlm
dθ

�
þ
�
a2ðω2 − μ2Þcos2θ − m2

sin2θ
þ Λlm

�
SlmðθÞ ¼ 0; ð6Þ

where ω and Λlm are the eigenvalues to be solved. The
eigenfunctions Slm of Eq. (6) are a series of spin-weighted
spheroidal harmonics labeled by l and m, with the
eigenvalues Λlm¼lðlþ1ÞþO½a2ðμ2−ω2Þ�; see Ref. [63]
for an analytical expansion of Λlm in terms of a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

p
.

Here, we introduce a complex number l0 to denote Λlm as

Λlm ¼ l0ðl0 þ 1Þ: ð7Þ

When ω ≈ μ and α ¼ μM ≪ 1 are satisfied, l0 is very close
to the augular quantum number l. Therefore, in Eq. (5), Λlm
can be treated as a known number and only the eigenfre-
quency ω needs to be found.
In order to find ω from Eq. (5), we also need to impose

appropriate boundary conditions. When r → ∞, we take
the decaying solution of Rlm [17],

lim
r→∞

RlmðrÞ ∼ r−1þð2ω2−μ2ÞM=κe−κr; ð8Þ

where

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

q
; Re κ > 0: ð9Þ

When investigating the behavior of Rlm near the inner
boundary r0, it is useful to introduce the tortoise coordinate,

r� ¼
Z

r2 þ a2

Δ
dr

¼ rþ 2Mrþ
rþ − r−

ln jr − rþj −
2Mr−
rþ − r−

ln jr − r−j; ð10Þ

and define

Y ¼ ðr2 þ a2Þ1=2RlmðrÞ: ð11Þ

The location of the boundary can be expressed in the
tortoise coordinate, r�0 ¼ r�ðr0Þ. Then the radial equa-
tion (5) can be rewritten in the standard form of a wave
equation d2Y=dr�2 þ VY ¼ 0, where the effective potential
reads

VðrÞ¼−
Δð2Mr3þa2r2−4Ma2rþa4Þ

ðr2þa2Þ4

−
Δðμ2r2þa2ω2−2maωþΛlmÞ

ðr2þa2Þ2 þ
�
ω−

ma
r2þa2

�
2

:

ð12Þ

Since r0 ≈ rþ, when r → r0 we have Δ ≈ 0, and there-
fore, in this limit, the two independent solutions of Y are
e�iðω−ωcÞΔr� , where Δr� ¼ r� − r�0, and

ωc ¼
ma

r2þ þ a2
: ð13Þ

For an ECO, the wave function near r0 should be a
superposition of ingoing and outgoing waves [64],

lim
Δr�→0

Y ∼ e−iðω−ωcÞΔr� þKeiðω−ωcÞΔr� ; ð14Þ

where K is the boundary reflectivity; jKj denotes the
proportion of the incident wave reflected at r0, and
argðKÞ is the phase shift.
Note that the inner boundary condition (14) in our

treatment differs from Eq. (27) in Ref. [61]. In the latter,
they wrote e−iðω−ωcÞr� þRðωÞeiðω−ωcÞr� and the location r�0
of the reflective surface is not explicitly specified. Their
definition is related to ours by RðωÞ ¼ Ke−2iðω−ωcÞr�0.
With our definition, the physical meaning of the reflectivity
K is clearer. At the reflective boundary, we have Δr� ¼ 0,
and the amplitudes of the ingoing and outgoing waves
at the reflective boundary are 1 and K, respectively, up
to a common constant. This means that jKj is simply the
reflected proportion, and jKj ¼ 1 represents a “perfect
reflection,” up to a phase shift if K is complex.
Finally, the radial equation (5), together with Eqs. (8) and

(14), defines an eigenvalue problem. This will be solved in
the following where we will compute the complex eigen-
frequencies ω ¼ ωR þ iωI , where the real part ωR denotes
the energy level of the bosonic cloud and the imaginary part
ωI represents the growth rate of the superradiant instability.
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III. GROWTH RATE OF SUPERRADIANT
INSTABILITY

A. Analytic method

In the “nonrelativistic” regime α ¼ μM ≪ 1, we have
ω ≈ μ and can solve Eq. (5) using matched asymptotic
expansions. This approach, found by Detweiler [13], has
been used to study superradiant instabilities around BHs
[14,18,21,22] and was recently extended by Guo et al. [61]
to account for a boundary reflection. Here, we further
develop it with an ECO boundary condition. This can be
done by solving the radial equation in the “far” and “near”
regions, respectively, and matching the two solutions in the
“overlap” region.
In the far region where r ≫ M, to leading order in α,

Eq. (5) can be written as

d2ðrRÞ
dr2

þ
�
ðω2−μ2Þþ2Mμ2

r
−
l0ðl0 þ1Þ

r2

�
ðrRÞ¼ 0; ð15Þ

where we have dropped subscripts (l, m) for notation
simplicity. Following Detweiler [13], we define

ν¼Mμ2=κ; ð16Þ

where κ was defined in Eq. (9). Then the solution to
Eq. (15) with the decaying boundary condition at infinity
reads

RfarðrÞ¼ ð2κrÞl0 e−κrUðl0 þ1−ν;2l0 þ2;2κrÞ; ð17Þ

where Uða; b; c; xÞ is the Tricomi confluent hypergeomet-
ric function with respect to x. If l0 þ 1 − ν ¼ −n is an
integer, Uða; b; c; xÞ reduces to a polynomial, which, in
quantum mechanics, corresponds to eigenstates of hydro-
gen atoms, with n ¼ 0; 1; 2… being the radial quantum
number. However, since the inner boundary condition is
different from that of hydrogen atoms, we must introduce a
small deviation δν∈C, via

ν¼ l0 þnþ1þδν; ð18Þ

and the eigenfrequency is

ω ¼ μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

α2

ν2

s
¼ ωR þ iωI: ð19Þ

The latter equation is derived from the definition of ν in
Eq. (16) directly.
We now explore the solution of RðrÞ in the near region

r ∼ r0. Here, we introduce a dimensionless distance,

z≡ r − rþ
rþ − r−

; ð20Þ

and the location of the inner boundary is

z0≡ r0− rþ
rþ−r−

: ð21Þ

Then, to leading order in α, Eq. (5) can be written as

zðzþ 1Þ d
dz

�
zðzþ 1Þ dR

dz

�
þ VðzÞR ¼ 0; ð22Þ

where1

VðzÞ ¼ p2 − l0ðl0 þ 1Þzðzþ 1Þ; ð23Þ

p ¼ 2Mrþðω − ωcÞ
rþ − r−

; ð24Þ

and ωc is defined in Eq. (13). The solution is

RnearðzÞ¼
�

z
zþ1

�
−ip

Gð−l0; l0 þ1;1þ2ip;zþ1Þ; ð25Þ

where Gða; b; c; xÞ is any solution to the hypergeometric
equation with respect to x. There are two independent
solutions [65],2

u3 ¼ ð−zÞl0 2F1ð−l0;−l0 þ 2ip;−2l0;−z−1Þ;
u4 ¼ ð−zÞ−l0−1 2F1ðl0 þ 1; l0 þ 1þ 2ip; 2l0 þ 2;−z−1Þ;

ð26Þ

where 2F1 is the hypergeometric function. With these two
solutions, Rnear can be written as

Rnear ¼
�

z
1þ z

�
−ip

ðb3u3 þ b4u4Þ: ð27Þ

The ratio of the coefficients b3, b4 is determined by the
inner boundary condition (14). Details are provided in the
Appendix, and the result is

1Our definition of p differs from P in Detweiler [13] by a
minus sign.

2In Ref. [13], the term corresponding to 2l0 þ 2 is incorrectly
written as 2lþ 1.
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b4
b3

¼ −
Γð−2l0ÞΓðl0 þ 1Þ
Γð−l0ÞΓð2l0 þ 2Þ

Kz−2ip0 Γð2ipþ 1ÞΓðl0 − 2ipþ 1Þ − Γð1 − 2ipÞΓðl0 þ 2ipþ 1Þ
Kz−2ip0 Γð2ipþ 1ÞΓð−l0 − 2ipÞ − Γð1 − 2ipÞΓð2ip − l0Þ : ð28Þ

Let us note that, to obtain Eq. (22), besides α ≪ 1, we
have implicitly assumed two additional conditions by
neglecting terms at higher orders in α,3 namely,

α2ð1 − ωc=ωÞ ≪ lðlþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2=M2

q
; ð29Þ

z ≪ min ðl2=α2; l=αÞ: ð30Þ

The former condition may not be satisfied even for α ≪ 1 if
the spin is extreme a=M ∼ 1, requiring the inclusion of the
next-to-leading order correction for highly spinning BHs
[22]. Here, we do not include this correction for simplicity.
The latter condition gives the regime of validity of the near
region solution (27).
The far region with r ≫ M and the near region with

z ≪ min ðl2=α2; l=αÞ have an overlap when α is small
enough, and thus, the two solutions can be matched.
First, one can expand the far region solution in the small-

r limit, keeping only dominant terms,

RfarðrÞ¼ ð−1ÞnΓð2l
0 þ2þnÞ

Γð2l0 þ2Þ ð2κrÞl0

þ ð−1Þnþ1δνΓð2l0 þ1ÞΓðnþ1Þð2κrÞ−l0−1; ð31Þ

where κr ≪ 1 and jδνj ≪ 1. Also, the large-r limit of the
near region solution is

RnearðrÞ ¼ b3

�
−r

rþ − r−

�
l0

þ b4

�
−r

rþ − r−

�
−l0−1

: ð32Þ

The two expansions should be linearly dependent, which
determines δν and ω.
When doing the calculation, we make use of the fact that

l0 ≈ l so only l appears in the final results. However, the
factor Γð−2l0Þ=Γð−l0Þ needs to be treated with care. As in
Ref. [22], we take the limit l0 → l, and it becomes

lim
l0→l

Γð−2l0Þ
Γð−l0Þ ¼ lim

ϵ→0

Γð−2l − 2ϵÞ
Γð−l − ϵÞ ¼ ð−1Þl

2

Γðlþ 1Þ
Γð2lþ 1Þ : ð33Þ

We also take into account that jδνj ≪ 1, which allows us to
obtain ω with a Taylor expansion. Finally, we obtain

MωR ¼ α

�
1 −

α2

2ðlþ nþ 1Þ2
�
; ð34Þ

MωI ¼ gKα4lþ5

�
ma
2M

− ωRrþ

�
24lþ2ð2lþ nþ 1Þ!
ðlþ nþ 1Þ2lþ4n!

�
l!

ð2lþ 1Þ!ð2lÞ!
�
2 Yl
j¼1

�
j2
�
1 −

a2

M2

�
þ
�
2rþωR −

ma
M

�
2
�
; ð35Þ

where we have defined

gK ¼ 1 − jKj2
1þ jKj2 þ 2ReðA2z−2ip0 KÞ=jAj2 ; ð36Þ

where A≡Q
l
j¼1ðj − 2ipÞ with p defined in Eq. (24).

Equation (36) is our key result. The most important
feature of our analytic result is that the growth rate MωI
when including a (partially) reflective boundary condition
differs from that of the BH case only by the factor gK. This
factor does not alter the superradiance condition (1),
namely that when ωR < ma=2Mrþ, the scalar field extracts
energy and angular momentum from the ECO, growing
exponentially.

When K ¼ 0, we have gK ¼ 1, and the growth rate
recovers the BH case, which was found by Detweiler [13]
(except for a 1=2 factor4) and other studies (see, e.g.,
Ref. [21]). The factor gK hence represents the correction
introduced by the boundary reflection. The denominator of
this factor can be written as

1þ jKj2 þ 2jKj cosφ; ð37Þ

where φ≡2
P

l
j¼1 arctanð−2p=jÞ−2p lnz0þ argK. When

p changes, the denominator oscillates between ð1 − jKjÞ2
and ð1þ jKjÞ2. Therefore, we have

3These two conditions are found by comparing the dominant
term p2 − Λlmzðzþ 1Þ with subdorminant terms at Oðα2Þ in the
full expression of VðzÞ, which was given in Ref. [22].

4Our result (35), when gK ¼ 1, turns out to be the half of the
growth rate obtained in Ref. [13]. This could be explained by a
missing 1=2 factor that should have been on the right-hand side of
Eq. (23) in Ref. [13], possibly stemming from an inappropriate
treatment of Γð−2l0Þ=Γð−l0Þ. This 1=2 factor is also discussed in
Refs. [18,22]. As a comparison, our result agrees with Eq. (2.32)
of Ref. [21].
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1 − jKj
1þ jKj ≤ gK ≤

1þ jKj
1 − jKj : ð38Þ

The value of z0 will influence the (quasi)period of the
oscillation. For example, when z0 is small enough so that
−2p ln z0 is the dominant term in φ, the change in p that
accounts for a full oscillation cycle is ∼π=j ln z0j. In this
paper, wewill illustrate results obtained with z0 ¼ 10−5, and
smaller values of z0 will result in denser oscillatory patterns.
The physical meaning of gK will be discussed in Sec. IV.

B. Semianalytic method

The above method can yield an analytic result and clearly
show how the boundary reflection changes the growth rate.
However, to get more accurate results, the following semi-
analytic method may be adopted, which was also used in
Ref. [5] and similar to the method used in Ref. [66]. In the
matching procedure presented above, only terms propor-
tional to rl

0
and r−l

0−1 were considered. Therefore, a natural
improvement to this scheme is to compute Eqs. (17) and (27)
numerically and match the two at a point rmatch in the
overlapping region, via�

Rnear
dRfar

dr
− Rfar

dRnear

dr

�����
r¼rmatch

¼ 0: ð39Þ

Since Eqs. (17) and (27) are both approximate solutions, one
should find nonzero residuals after plugging them into the
original radial equation (5). The point rmatch is chosen such
that relative residuals of the two solutions are equal or closest.
This approach makes use of the analytic solutions, Rfar and
Rnear, but matches them numerically. Therefore, the method
is semianalytic.
In Fig. 1, we perform a comparison of the growth rates

calculated with different methods. We first consider the
case of K ¼ 0, which corresponds to the purely ingoing
boundary condition for a BH. In this case, other than the
analytic method and the semianalytic method explained
above, the growth rate ωI can also be calculated using the
continued fraction method [17], which serves as a con-
sistency check here. For our choice of parameters, the
analytic results agree very well with the continued fraction
results in the regime α ≪ 1, but the discrepancy quickly
increases for a larger α. However, the semianalytic method
always yields a result close to that of the continued fraction
method for the full range of α considered, with a relative
error less than 50%.
When K ≠ 0, the continued fraction method by Dolan

[17] cannot be used, because the inner boundary condition
is no longer purely ingoing. In this case, in order to relate
the semianalytic results for ECOs to those for BHs, we also
show a third curve in dashed purple in each of the last two

FIG. 1. Comparison of different methods in calculating the
(dimensionless) superrandiance growth rate MωI . Growth rates
MωI of the fundamental mode (l ¼ m ¼ 1 and n ¼ 0), calculated
using the analytic method and the semianalytic method, are
shown for BHs (upper) and ECOs (middle and bottom), with
a=M ¼ 0.9 for the first two panels and μM ¼ 0.25 for the last.
For the BH case, we also present the result calculated using the
continued fraction method for comparison. For the ECO cases,
additionally, we multiply the semianalytic results for their
corresponding BHs by gK, and plot the resulting growth rates
with dashed purple curves.
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panels of Fig. 1. This curve was obtained by multiplying
the semianalytic results for BHs by gK. The striking point
is, it perfectly agrees with the semianalytic results for
ECOs, with a relative error less than 10−3. Therefore, even
though the correction factor gK was obtained using the fully
analytical approach in the regime α ≪ 1, it turns out to also
be applicable to the more accurate semianalytical results,
which is not limited to that regime.
In the last two panels of Fig. 1, the growth rate exhibits

oscillatory behaviors, introduced by the boundary reflec-
tion. In order to see how the value of the reflectivity
changes these oscillating patterns, in Fig. 2, we present the
growth rate for different K, calculated using the semi-
analytic method. It can be seen that for a larger jKj, the
curve shows sharper peaks with deeper valleys in between.
These new features can affect the time evolution of
superradiant instabilities and the ultralight particle mass
constraints. These will be investigated in Secs. V and VI;
but before that, we examine the physical origin of the
correction factor gK in the next section.

IV. PHYSICAL INTERPRETATION OF gK

Here, we try to understand Eq. (35) and the correction
factor gK by analyzing the energy-momentum conservation
at the ECO’s surface r ¼ r0. A similar analysis for BHs can
be found in Ref. [17].
A complex scalar field has a Lagrangian density

L ¼ 1
2
ð∂ρΨ∂ρΨ� þ μ2Ψ�ΨÞ, and an energy-momentum

tensor Tμν ¼ ∂
ðμΨ∂νÞΨ� − gμνL. Following Dolan [17],

we use the ingoing-Kerr coordinates x̃μ ¼ ðt̃; r; θ; ϕ̃Þ,
defined via

t̃ ¼ tþ αðrÞ; ϕ̃ ¼ ϕþ βðrÞ; ð40Þ

where

αðrÞ ¼ 2M
rþ − r−

ðrþ ln jr − rþj − r− ln jr − r−jÞ;

βðrÞ ¼ a
rþ − r−

ln

���� r − rþ
r − r−

����: ð41Þ

Hereafter, we add a tilde on top of quantities calculated in
this coordinate system. The contravariant metric tensor is

g̃μν ¼ 1

ρ2

0
BBB@

−ρ2 − 2Mr 2Mr 0 0

2Mr Δ 0 a

0 0 1 0

0 a 0 1=sin2θ

1
CCCA; ð42Þ

where ρ and Δ are the same as in Eq. (2). Note that our
convention differs from that of Dolan [17] by a minus sign.
In this case, the Klein-Gordon equation is separable using

Ψ̃ðt̃; r; θ; ϕ̃Þ ¼ e−iωt̃eimϕ̃SlmðθÞR̃lmðrÞ: ð43Þ

The spacetime has a Killing vector ∂t̃, and T̃0
μ is the

conserved energy flux. We consider the spacetime region V
that describes a time slice of the external space, satisfying
−Δt̃=2 < t̃ < Δt̃=2, r > r0, 0 ≤ θ < π, and 0 ≤ ϕ̃ < 2π.
Then the conservation law, ∇μT̃0

μ ¼ 0, together with
Gauss’s theorem, givesZ

∂V
T̃0

μñμ
ffiffiffiffiffi
jg̃j

p
d3S̃ ¼ 0; ð44Þ

where g̃≡ −ρ4 sin2 θ is the determinant of the covariant
metric g̃μν, and ñν is the normal one-form of ∂V. Here,
ñν ¼ �δ0ν for the hypersurfaces t̃ ¼ �Δt̃=2, and ñν ¼ δ1ν
for the hypersurface r ¼ r0. The hypersurface at spatial
infinity r → ∞ is not included because the energy flux is
zero there. When Δt̃ → 0, Eq. (44) yields the energy
conservation equation,

FIG. 2. Growth rate calculated using the semianalytic method, shown as functions of (left) the scalar mass parameter α and (right) the
ECO’s (dimensionless) spin a=M. The inner boundary is located at z0 ¼ 10−5. For the left panel, we take a=M ¼ 0.9 and plot the modes
ðl; m; nÞ ¼ ð1; 1; 0Þ, (2, 2, 0), and (3, 3, 0). For the right, we take μM ¼ 0.1, and only the mode ðl; m; nÞ ¼ ð1; 1; 0Þ is shown.
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∂

∂t̃

Z
3D

−T̃0
0ρ2 sin θ dr dθ dϕ̃ ¼

Z
2D

−T̃0
1ρ2 sin θ dθ dϕ̃;

ð45Þ

where the “3D” integration is done in the external space
(r > r0), and the “2D” integration on the surface r ¼ r0,
both at the fixed time t̃ ¼ 0.
In order to obtain the asymptotic behavior of R̃lm, we

compare Eqs. (4) and (43), and find that the radial function
in the ingoing-Kerr coordinates R̃lm and that in the Boyer-
Lindquist coordinates Rlm are related by

R̃lmðrÞ ¼ eiωαðrÞe−imβðrÞRlmðrÞ: ð46Þ

Therefore, when r → r0, the radial function R̃lm behaves as

R̃lm ∼ zipRlm ∼ zip · Clm½ðz=z0Þ−ip þKðz=z0Þip�; ð47Þ

where Clm is a constant. Since in our calculation, from
Eq. (17) to the subsequent matching procedure, the
absolute magnitude of the field is not specified, we call
Clm the “relative amplitude” of the field at the inner
boundary.5 In most cases, jClmj2 ≪ 1. Using the trans-
formed wave function Ψ̃ (43) and the asymptotic behavior
of R̃lm (47), direct calculation yields

−T̃0
1¼ωRðma−2MrþωRÞ

ρ20
jClmj2ð1− jKj2ÞjSðθÞj2; ð48Þ

which is the net energy flux going outwards at r0, defined
in the ingoing-Kerr coordinates. Calculating the 2D integral
in Eq. (45), we obtain

2ωI ¼ ωRð1 − jKj2Þ ðma − 2MrþωRÞjClmj2R
3D −T̃0

0ρ2 sin θ dr dθ dϕ̃
; ð49Þ

where the 2ωI term arises because T̃0
0 ∝ e2ωI t̃. The integral

in the denominator represents the total energy outside r0.
As long as jClmj2 ≪ 1, the integral mainly depends on the
far region solution RfarðrÞ and therefore, can be approx-
imately evaluated using a hydrogenic wave function in a
Newtonian potential. As a result, this integral has a very
weak dependence on a=M; z0, and K, and mainly depends
on l and n.
Equations (48) and (49) provide a way to understand the

physical meaning of gK in Eq. (36). First, let us consider the
overall suppression factor ð1 − jKj2Þ. This factor also
appears in Eq. (48), and its interpretation is straightforward:
the energy flows carried by the ingoing and outgoing
waves go on opposite directions, and thus, the net flux is
reduced when there is a (partially) reflecting surface. In
particular, when jKj ¼ 1, the two achieve a balance, and
thus, there is no net energy flux across r0, leading to a zero
growth/decay rate.6

The denominator of gK, which represents the oscillatory
behavior of ωI , is tightly related to the relative amplitude
Clm. To demonstrate this, in the left panel of Fig. 3, we
plot jClmj2 for K ¼ 0.8 (solid) and K ¼ 0 (dashed). For
classical BHs, jClmj2 changes very slowly with a. However,
in the presence of a boundary reflection, the change
becomes rapid. The oscillatory behavior of jClmj2 directly
leads to the oscillatory behavior of ωI via Eq. (49),
manifested as the oscillating denominator of gK, as shown
in the right panel of Fig. 3. The physical link between
the relative amplitude and the growth rate is also

FIG. 3. A comparison between jClmj2 and gK=ð1 − jKj2Þ. Solid lines are for an ECO with K ¼ 0.8 and z0 ¼ 10−5, while dashed lines
are their counterparts for a BH (K ¼ 0). We take μM ¼ 0.1 and consider the fundamental mode l ¼ m ¼ 1 and n ¼ 0. The relative
amplitude Clm is calculated using the analytic method.

5Strictly speaking, the value of the radial function Rlm at
r ¼ r0 is Clmð1þKÞ.

6Since the denominator in Eq. (36) ranges from ð1 − jKjÞ2 to
ð1þ jKjÞ2, one may wonder what if jKj ¼ 1 and both the
numerator and denominator are equal to zero. In this case,
gK → ∞. However, once the spin a decreases due to extraction
of the angular momentum, the denominator would be nonzero,
and gK stays at 0 thereafter.
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straightforward: with a larger jClmj2, the scalar field
extracts a larger energy flux (48) and thus, grows faster.
To sum up, in the analytical expression of gK (36), the

factor ð1 − jKjÞ2 can be understood as the counteraction of
outgoing and ingoing energy flows, and the oscillatory
behavior of the denominator comes from the change in the
scalar field’s (relative) density jClmj2 at r ¼ r0, which is
proportional to the amount of energy extracted there.

V. TIME EVOLUTION OF SUPERRADIANT
INSTABILITY

In this section, we consider the time evolution of
superradiant instabilities and investigate how it is influ-
enced by the boundary reflection.
Let us start by reviewing the case of a Kerr BH. If

initially there is a nonzero scalar field around a Kerr BH
(for example, arising from quantum fluctuations), as long
as the superradiance condition (1) is satisfied, the field will
extract energy and angular momentum from the BH. In this
case, more and more scalar particles are produced, the field
grows exponentially, and a bosonic cloud around the BH is
formed. For scalar fields, the time evolution of superradiant
instabilities around Kerr BHs has been investigated using
an adiabatic approximation in Ref. [26]. For the case of an
ECO, the superradiance condition is not changed. Similar
to its BH counterpart, a scalar field could grow and form a
bosonic cloud when the superradiance condition is satis-
fied. However, since the growth rate is changed by the
factor gK, one will anticipate some new features in the time
evolution.
To begin with, we present the equations governing the

adiabatic evolution of the instability. These equations are
essentially the same as in the case of a Kerr BH. First, since
the wave functionΨ grows as ∼eωI t, the number of particles
in the bosonic cloud grows as ∼e2ωI t. Therefore, the
superradiant energy extraction rate is

ĖSR ¼ 2ωIMcl; ð50Þ

where Mcl is the mass of the bosonic could. Since we are
mostly interested in the case where gas accretion is much
slower than the evolution of superradiant instabilities, we
will not take possible accretion processes onto the central
ECO into account.7 Then, the mass M and angular
momentum J of the ECO change according to

Ṁ ¼ −ĖSR; ð51Þ

J̇ ¼ −
m
ωR

ĖSR: ð52Þ

On the other hand, the mass of the bosonic cloud
changes as

Ṁcl ¼ ĖSR − ĖGW; ð53Þ

where ĖGW is the energy flux carried away by GWs emitted
by the cloud. In our study below, we only consider the
fundamental mode, l ¼ m ¼ 1 and n ¼ 0, for which we
can adopt the GW energy flux obtained in Ref. [26],

ĖGW ¼ 484þ 9π2

23040

�
M2

cl

M2

�
ðMμÞ14: ð54Þ

This equation, obtained for the case of BHs, is supposed
to be a good approximation still for the case of ECOs.
The reason is that the GWemission mostly comes from the
far region where jΨj2 is large, and the far region wave
functions in both the BH and the ECO cases are nearly
the same.
Using the parameters listed in Table I, we can calculate

the time evolution of superradiant instabilities. Here, the
initial mass of the bosonic cloud is taken to be the mass of a
particle, Mcl;0 ¼ μ. The results are plotted in Fig. 4 for
different values of reflectivity and scalar particle mass. We
found that the evolution can be roughly divided into three
stages.

Steady growth of the scalar field In the very beginning,
the mass of the cloud is so small (in fact for μ ¼
1 × 10−18 eV and M0 ¼ 107M⊙, we have Mcl;0=
M0 ∼ 10−91) that the superradiant extraction is negli-
gible. Therefore, the mass and spin of the ECO are
essentially unchanged for a long period, and conse-
quently, the growth rate ωI stays steady.

A spin-down phase of the ECO After about 200 e-folds,
the cloud has acquired a non-negligible mass
∼10−5M0, and the evolution starts to be discernible
in the figure. The cloud quickly extracts energy and
angular momentum from the ECO, until it reaches the
maximal mass ∼0.1M0. This stage lasts for about ten
e-folds, during which the spin of the ECO drops
quickly. Therefore, as implied in the right panel of
Fig. 2, the growth rate ωI shows an oscillatory pattern

TABLE I. Definition of parameters for the time evolution of
superradiant instabilities.

Parameter Definition

M0 Initial mass of the ECO
Mcl;0 Initial mass of the bosonic cloud
J0 Initial spin of the ECO
μ Mass of the ultralight scalar particle
z0 Location of the reflective boundary in Eq. (21)
K Reflectivity of the boundary surface

7See Ref. [26], where gas accretion is included in the evolution
equations for BHs.
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with time. As an obvious example, the growth for the
K ¼ 0.9 case in the upper panel of Fig. 4 is uneven
during this stage.

GW dissipation After the spin of the ECO drops to the
superradiant critical value, GWemission overtakes the
superradiant extraction, and therefore, the cloud starts
to dissipate gradually. GWs emitted by the cloud are
nearly monochromatic with an angular frequency
∼2ωR and a slowly decreasing amplitude [33,36,38].

In Fig. 4, we can see that for different K, the time the
cloud takes to accumulate to its maximal mass can vary.
This timescale is mainly determined by the first stage,
during which the growth rate ωI is essentially a constant.
The boundary reflection changes this timescale via the
correction factor gK in ωI . Since gK can be either larger or
less than 1, this timescale, compared to the BH case, can be
either shortened or prolonged by the boundary reflection, as
seen in the upper (shortened) and lower (prolonged) panels
of Fig. 4, respectively. The change in the growth timescale
implies that the boundary reflection may affect constraints
on the ultralight particle mass, which is the topic of the next
section.

VI. ASTROPHYSICAL CONSTRAINTS ON THE
MASS OF ULTRALIGHT BOSONS

In this section, we first review how superradiant insta-
bilities can be used to constrain the mass of ultralight
bosons, and then discuss the implications of the reflective
boundary condition if the assumed BH is in fact an ECO.

A. Ultralight particle mass constraints from BHs

Constraints on the mass of ultralight bosons have been
imposed considering BH superradiance, with measure-
ments of BHs’ spin and mass [5,33,39,40]. The basic idea
is that, if there exists an ultralight particle with mass μ, BHs
with high enough spins should suffer superradiant insta-
bilities and spin down. This results in an exclusion region
on the J −M plane (Regge plane), where J and M are
respectively the angular momentum and mass of BHs.
The location of this region is related to the mass of the
particle μ. Therefore, values of μ which create exclusion
regions that are incompatible with existing BH J −M
measurements should not be allowed.
To estimate the exclusion regions, one approach is to

compare the characteristic timescale of the bosonic cloud
evolution, τcloud, with the characteristic timescale associ-
ated to the BH’s astrophysical processes, τastro. For exam-
ple, for the case of binary BHs, Arvanitaki et al. [40]
compared the superradiance saturation timescale, namely
the time the cloud takes to accumulate to its maximal mass,
with the binary merger timescale. For the case of x-ray
binaries, Cardoso et al. [39] compared the instability
timescale, 1=ωI , with the durations over which two sources
show stable spin values. The typical astrophysical timescale
is also often chosen to be the accretion timescale of the
BH [5,18,34,67]. If τcloud ≪ τastro, the cloud could extract
energy and angular momentum effectively within an
astrophysical timescale, substantially spinning down the
BH. Another approach to find the exclusion regions is the
Monte Carlo method [26]. Starting with a particular ðJ;MÞ
combination, one can calculate the evolution of the system
and extract the final state of the BH at some specified time
tF. Doing this for a sample of randomly chosen initial
states, ðJi;MiÞ, and plotting the final states, ðJf;MfÞ, on
the Regge plane, one can find that a particular region is
hardly populated; see Fig. 3 in Ref. [26] for example.

B. Extension to the ECO case and
the role of boundary reflection

Previous mass constraints of ultralight particles were
obtained based on the assumption that the compact objects
are BHs, with an event horizon as the inner boundary.
However, it is worth studying how the change in the
boundary condition affects the mass constraints. Here, we
make a brief discussion on how the ECO boundary
condition alters the J −M exclusion regions, as well as
its implications for ultralight particle mass constraints.

FIG. 4. Time evolution of the mass of the bosonic cloud.
We take M0 ¼ 107M⊙, J0=M2

0 ¼ 0.9, z0 ¼ 10−5, and only
consider the fundamental mode with l ¼ m ¼ 1 and n ¼ 0.
We have used μ ¼ 1 × 10−18 eV and 2 × 10−18 eV for the upper
and lower panels, respectively, corresponding to μM ¼ 0.075 and
μM ¼ 0.15.

ZHOU, BRITO, MAI, and SHAO PHYS. REV. D 108, 103025 (2023)

103025-10



For simplicity, we adopt the first approach, i.e., compar-
ing timescales, to draw exclusion regions on the Regge
plane. Here, the astrophysical timescale is taken to be the
accretion timescale, τAcc, of the ECO. We assume that
the ECO is accreting at a rate fEddṀEdd, where ṀEdd is the
Eddington accretion rate, which is related to the Eddington
luminosity LEdd through the radiative efficiency η, via
ϵṀEddc2 ¼ LEdd ¼ 1.26 × 1031ðM=M⊙Þ J s−1. The factor
ϵ≡ η=ð1 − ηÞ arises because if a fraction η of the infalling
mass is converted to radiation, the accreted fraction reduces
to 1 − η. Here, we define the accretion timescale,

τAcc ≡ M
fEddṀEdd

¼ 4.5 × 107

fEdd

ϵ

0.1
yr; ð55Þ

where we shall typically take ϵ ¼ 0.1 [68,69].
If we consider a supermassive ECO with mass M ∼

106M⊙ and take the initial mass of the cloud to be the mass
of a single scalar particle μ ∼ 10−18 eV, it takes the cloud
about lnð0.1M=μÞ ∼ 205 e-folds to grow to0.1M. Therefore,
we define the fast-superradiance regime satisfying

205 ln

�
M

106M⊙

10−18 eV
μ

�
τSR < τAcc; ð56Þ

where the superradiance e-fold timescale is τSR ≡ 1=ð2ωIÞ
since the cloud grows asMcl ∝ e2ωI t. In this regime, the cloud
will extract energy and angularmomentumeffectivelywithin
the accretion timescale. Therefore, it gives an exclusion
region on the Regge plane. BHs (K ¼ 0) or ECOs (K ≠ 0)
inside this region should spin down effectively and leave this
region within τAcc.
We calculated the growth rate ωI using the analytic

method. Exclusion regions defined in Eq. (56) are plotted in
Fig. 5 for different values of the boundary reflectivity K. It
is clear that the boundary reflection alters the shape of this
region and introduces small spiky features, which are more
pronounced as jKj increases. When K approaches extrem-
ity jKj → 1, the spikes are sharper, while the bulk part—the
part under the spikes, as illustrated in the figure for
K ¼ 0.99—shrinks inwards.
Our results may have some implications for the usual

method for constraining the scalar mass. When the reflec-
tivity is not too large, the alteration to the exclusion region
is insignificant. For example, in the K ¼ 0.5 case of Fig. 5,
compared with the K ¼ 0 case, for every value of J=M2,
the change in the value ofM on the boundary line is within
0.1 dex, which can be comparable to, say, the current
measurement errors. However, for K ¼ 0.99, the spikes are
distinct, and the shrinkage of the bulk region reaches
∼0.4 dex. Therefore, we expect that a mildly reflective
boundary, roughly jKj≲ 0.5, may not substantially influ-
ence the mass constraints of ultralight scalar particles, but
an extreme value of reflectivity, say, jKj≳ 0.9, could

introduce distinct spiky structures to the exclusion region,
with a considerable inward shrinkage of its bulk part.

VII. CONCLUSION

Exotic compact objects (ECOs) have been conceived as
alternatives to BHs. ECOs do not possess an event horizon,
and the inner boundary condition for scalar perturbations is
different from that of BHs. In this paper, we computed the
growth rate of superradiant instabilities assuming a modi-
fied inner boundary condition, parametrized by the location
of a reflective surface, z0, and its reflectivity, K. We solved
the eigenvalue problem analytically, using matched asymp-
totic expansions, and found the analytic expression of the
growth rate ωI . Our key result is that the growth rate of
superradiant instabilities around an ECO can be related to
the value in the BH case simply by a factor gK, whose
explicit expression is given in Eq. (36). For a better
accuracy, we also calculated the growth rate using a
semianalytic method. We found that the semianalytic
results in the ECO and BH cases can also be related by
the same factor gK, despite the fact that this factor was
obtained using a purely analytic treatment. Therefore, the
factor gK must have a clear physical meaning, which was
investigated, and we showed that it can be related to the
energy flux at the inner boundary.
Using an adiabatic approach, we also studied how the

superradiant instability of such ECOs would evolve. We
found that, starting from a single particle, the evolution can

FIG. 5. Exclusion regions, as defined in Eq. (56), for different
K. The red dashed line denotes where the superradiance condition
(1) is saturated. The vertical axis extends up to J=M2 ¼ 0.975,
above which the small spikes are much more crowded. We have
taken z0 ¼ 10−5 and μ ¼ 10−18 eV.
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be divided into three stages, namely (i) steady growth of
the scalar field, (ii) a spin-down phase of the ECO, and
(iii) GW dissipation. The time it takes for the cloud to reach
its maximal mass mainly depends on the duration of the
first stage and can be either shortened or prolonged by the
boundary reflection.
Finally, we discussed the implications for astrophysical

constraints on ultralight scalar fields. By comparing the
timescales of the cloud evolution and gas accretion, we
found the exclusion regions on the ECOs’ Regge plane.
Boundary reflection introduces spiky structures to the
exclusion region, and the effect is more pronounced for
larger reflectivities. As long as the reflectivity is not too
large, say jKj≲ 0.5, the alteration to the exclusion region
may not substantially influence the mass constraints of
ultralight scalars, but the effects of boundary reflection
could be significant for large reflectivity, e.g., jKj≳ 0.9.
At the end of this paper, we make a short comment on the

ECO model we adopted. Our work is based on the model in
which one truncates the Kerr spacetime at a radius r0 and
puts a spherical reflective boundary there with an isotropic
reflectivity K. Although widely used in literature (as
mentioned in the Introduction and references therein), this
model is only a simplified one. More realistic models may
consider deviation of the boundary shape from a sphere and
also anisotropic reflectivity, which is out of the scope of this
work and deserves future study.
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APPENDIX: DETERMINING THE RATIO b4=b3

When z → 0, we have

�
z

1þ z

�
−ip

u3 → f−3 z
−ip þ fþ3 z

ip; ðA1Þ

�
z

1þ z

�
−ip

u4 → f−4 z
−ip þ fþ4 z

ip; ðA2Þ

where

f−3 ¼ ð−1Þl0Γð−2l0ÞΓð2ipÞ
Γð−l0ÞΓð2ip − l0Þ ; ðA3Þ

fþ3 ¼ ð−1Þl0Γð−2l0ÞΓð−2ipÞ
Γð−l0ÞΓð−l0 − 2ipÞ ; ðA4Þ

f−4 ¼ ð−1Þ1−l0Γð2l0 þ 2ÞΓð2ipÞ
Γðl0 þ 1ÞΓðl0 þ 2ipþ 1Þ ; ðA5Þ

fþ4 ¼ ð−1Þ1−l0Γð2l0 þ 2ÞΓð−2ipÞ
Γðl0 þ 1ÞΓðl0 − 2ipþ 1Þ : ðA6Þ

The inner boundary condition (14) is equivalent to

lim
z→z0

Rnear ∼ ðz=z0Þ−ip þKðz=z0Þip: ðA7Þ

Considering the boundary condition and the asymptotic
behaviors of u3, u4, we can pin down the ratio b4=b3 via

b3f
þ
3 þ b4f

þ
4

b3f−3 þ b4f−4
¼ Kz−2ip0 ; ðA8Þ

and the result is presented in Eq. (28) in the main text.
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