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An ultralight axion like particle (ALP) can mediate a macroscopic force with long-range monopole-
dipole interactions between the Earth and the Sun, if the Earth is treated as a polarized source. Because of
the geomagnetic field, there exists an estimated 1042 polarized electrons within the Earth. These electrons,
in a polarized state, can interact with the unpolarized nucleons in the Sun, giving rise to a monopole-dipole
potential between the Sun-Earth system. This phenomenon ultimately influences the trajectories of light
and celestial bodies, resulting in observable effects such as gravitational light bending, Shapiro time delay,
and perihelion precession of planets. We investigate two scenarios for constraining the monopole-dipole
coupling strength. In the first scenario, we establish a constraint on the monopole-dipole strength based on
a single astrophysical observation for the first time, treating the Earth as a source of polarized electrons.
The perihelion precession of Earth sets an upper limit on the monopole-dipole coupling strength as
gSgP ≲ 1.75 × 10−16 for the ALP of massma ≲ 1.35 × 10−18 eV. This bound surpasses the limits obtained
from gravitational light bending and Shapiro time delay. In the second scenario, constraints on monopole-
monopole coupling strength gSð≲3.51 × 10−25Þ arise from the perihelion precession of the planet Mars,
while the limit on dipole-dipole coupling strength gPð≲1.6 × 10−13Þ is taken from the measurement of the
tip of the red giant branch in ω Centauri using Gaia DR2 data. Together, they yield a hybrid constraint on
the monopole-dipole coupling strength as gSgP ≲ 5.61 × 10−38. Our hybrid bound is 3 orders of magnitude
more stringent than the Eöt-Wash experiment and 1 order of magnitude stronger than the current hybrid
ðLabÞNS × ðAstroÞeP limit.
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I. INTRODUCTION

Ultralight pseudoscalar bosons such as axion like par-
ticles (ALPs) can mediate a long-range macroscopic force
between two objects if the mass of the ALP is smaller than
the inverse distance between the two bodies [1]. Unlike
quantum chromodynamics (QCD) axions [2–5], the ALPs
are generated by string compactifications [6]. The mass of
the ALP and its symmetry breaking scale are independent
of each other. These ultralight bosons couple very weakly
with the Standard Model (SM) particles and hence, it is
extremely challenging to search these particles in direct
detection experiments. Nevertheless, many ongoing and
future experiments are built to probe these particles. Several
laboratories, astrophysical, and cosmological constraints on

the mass and decay constant of QCD axions and ALPs are
discussed in [7–30]. Ultralight ALPs can also be a
promising candidate for dark matter (DM) [31–33]. The
mass of the ALP can be as small as 10−22 eV and
the corresponding de Broglie wavelength is of the order
of the size of a dwarf galaxy ð1–2 kpcÞ [34,35]. Therefore,
the ultralight particle DM behaves as a wave. Such wave
DM can solve the longstanding core-cusp problem [36–38]
and evade the DM direct detection constraints [39–41].
Therefore, there is significant phenomenological impor-
tance in the search for these particles and in obtaining
constraints on ALP parameters.
The mediation of ALP between two fermion currents can

give rise to long-range macroscopic forces. ALP can
interact with fermions through either a spin-dependent
pseudoscalar coupling ðψ̄γ5ψaÞ or a spin-independent
scalar coupling ðψ̄ψaÞ, where ψ represents the fermion
field and a denotes the axion field. The spin-independent
scalar current-current interaction and the spin-dependent
pseudoscalar current-current interaction, mediated by the
exchange of a single ALP, lead to the conventional
monopole-monopole and dipole-dipole potentials, respec-
tively. However, if ALP couples with fermion currents
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through a scalar coupling at one vertex and a pseudoscalar
coupling at another vertex, it can mediate a long-range
monopole-dipole potential. Monopole-dipole forces can
also be generated by an ultralight spin 1 boson mediation
which can come from a new U(1) symmetry breaking.
This scenario has been extensively studied in the context of
supersymmetry and grand unified theories [42,43]. The
monopole-monopole, and dipole-dipole forces are parity
(P) and time reversal (T) conserving. However, the search
for monopole-dipole force is interesting as it can violate P
and T.
The Feynman diagram for an axion mediated monopole-

dipole potential between polarized electron current and
unpolarized nucleonic current is shown in Fig. 1. The
expression of the monopole-dipole potential mediated
by ultralight ALP between two fermion currents is given
by [1,44]

VðrÞ ¼ gPgS
4πme

ðs1:r̂Þ
�
ma

r
þ 1

r2

�
e−mar; ð1Þ

where we consider that ALP with mass ma is coupled with
the polarized electron by a pseudoscalar coupling with
strength gP and the ALP is also coupled with unpolarized
nucleon by a scalar coupling with strength gS. Here, me is
the mass of the electron, and s1 is the electron’s spin vector.
The term s1:r̂ violates P and T symmetries. The derivation
of Eq. (1) is given in Appendix A. We have also discussed
the case where the ALP has scalar couplings with nucleons
in the Sun and the Earth.
There exist several experiments dedicated to the search

for parity and time reversal violating monopole-dipole
potentials [45–49]. Such potential can be constrained from
the torsion balance method using polarized electrons in the
torsion pendulum and unpolarized nucleons in the Earth or
in the Sun [50]. The bound on gSgP obtained from this
laboratory experiment is most sensitive for the axions of
mass ma ≲ 10−14 eV. The QUAX-gSgP [46,51] experi-
ment obtains a lab-lab bound on gSgP for the mass of
the axion 5 × 10−7 eV≲ma ≲ 10−5 eV. An experiment

like ARIADNE is made to search for monopole-dipole
potential using a laser polarized 3He and a rotating tungsten
source mass [52]. This lab-lab gSgP bound is valid for
axions of mass 1 μeV≲ma ≲ 6 meV. In [53], polarized
ultracold neutron spins and unpolarized nucleons are used
to constrain such potential. This lab-lab experiment can
probe axions of mass 1 meV≲ma ≲ 0.1 eV. There are
other laboratory experiments like SMILE ðma ≲ 10−10 eVÞ
[54], NIST ðma ≲ 10−14 eVÞ [55], J-PARC muon g − 2

(ma ≲ 3 × 10−14 eV) [56], Washington ð10 μeV≲ma ≲
10 meVÞ [57,58], and magnon based axion dark matter
search ðma ≲ 10−5 eVÞ [59,60] which obtain bounds on
monopole-dipole interaction. The cooling of red giants and
white dwarfs puts a constraint on gP ≲ 1.6 × 10−13 [61] and
the constraint on gS obtained from the energy loss of
globular cluster stars is gS ≲ 1.1 × 10−12 [62]. Multiplying
these two numbers, one can obtain the bound on monopole-
dipole coupling as gSgP ≲ 10−25 forma ≲ 10 keV. The lab-
astro bound on gSgP is obtained from two independent
experimental bounds and the bound is sensitive for
ma ≲ 10−18 eV. The astro-astro gSgP bound also considers
two separate observations.
So far there is no single astrophysical phenomenon

that can directly constrain the monopole-dipole interaction.
The most stringent bound on monopole-dipole interaction
is claimed by combining the best experimental bound on
scalar interaction multiplied by the best astrophysical
bound from stellar energy loss on the pseudoscalar inter-
action. It is also highlighted by the authors of [45] that in
several scenarios these hybrid bounds could be overly
stringent leading to a premature abandoning of the axions
as an attractive theoretical prospect. There is a lack of a
complete astrophysical probe of monopole-dipole potential
as most of the astrophysical objects are considered to be
unpolarized. Even if a polarized astrophysical object is
considered, its degree of polarization is not known
precisely.
In this paper, we consider the Earth as a polarized source

and there are about 1042 number of polarized electrons in
Earth due to the presence of Earth’s geomagnetic field [63].
Here, the Earth is treated as a polarized source and the Sun
is treated as an unpolarized object. The ALP has a
pseudoscalar coupling with the electrons in the Earth
and scalar coupling with the nucleons in the Sun. This
can give rise to an axion mediated monopole-dipole
potential for the Earth-Sun system. This axion mediated
monopole-dipole potential can affect the geodesic of light
and Earth. We obtain constraints on monopole-dipole
interaction strength in this pure astrophysical scenario
from the perihelion precession of Earth, gravitational light
bending, and Shapiro time delay. The bounds on the
monopole-dipole coupling obtained from these gravity
tests are strictly valid for the range of the force greater
than the Earth-Sun distance which corresponds to the mass
of the axion ðmaÞ ≲ 10−18 eV.

FIG. 1. Feynman diagram of e−N scattering mediated by a
pseudoscalar ALP. Here, the electrons are polarized and the
nucleons are unpolarized.

TANMAY KUMAR PODDAR and DEBASHIS PACHHAR PHYS. REV. D 108, 103024 (2023)

103024-2



We also consider the axion mediated monopole-
monopole potential between the unpolarized nucleons in
the Earth and the Sun that can similarly affect the perihelion
precession of planets, gravitational light bending, and
Shapiro time delay. We obtain constraints on monopole
coupling from these tests of gravity. We also obtain
constraints on dipole coupling from the excessive energy
loss of the red giant branch. Multiplying these two
couplings obtained from two different astrophysical obser-
vations, we obtain combined constraints on monopole-
dipole coupling strength.
The paper is organized as follows. In Sec. II, we discuss

how the Earth can be treated as a polarized source. In
Sec. III we obtain the contribution of monopole dipole
potential in perihelion precession of planets, gravitational
light bending, and Shapiro time delay. We also obtain
bounds on monopole-dipole strength from these tests of
gravity with single astrophysical observation. In Sec. IV,
we obtain constraints on monopole-dipole coupling
strength from two different astrophysical observations.
Finally, in Sec. V we conclude and discuss our results.
We use the natural system of units (c ¼ ℏ ¼ 1, where c

is the speed of light and ℏ is the reduced Planck constant)
in our paper. We also choose Newton’s gravitational
constant G ¼ 1.

II. EARTH AS A POLARIZED SOURCE

Recently, a long-range dipole-dipole interaction arising
between two spin polarized bodies is studied where the
authors have considered the Earth as a source of spin
polarized electrons [63]. In the presence of the geomagnetic
field, some of the electrons in paramagnetic minerals within
the Earth acquire a small spin polarization. The magnitude
and direction of the induced geoelectron spins depend on
the Earth’s material composition, geomagnetic field and
temperature profile [64]. The core of the Earth is mostly
made of an Fe-Ni alloy which does not contain any
unpaired electron spins due to high pressure and temper-
ature [65,66]. Hence, the Earth’s core does not make any
contribution to its polarization. The dominant contribution
to the polarization comes from Fe, the most abundant
transition metal in various oxides and silicates in the Earth’s
mantle and crust. Other major rock forming elements like
Mg, Si, Al, and O have a negligible contribution to the
Earth’s polarization due to their closed electron shells. In
[63], the electron spin density as a function of depth and all
the mineral proportions in Earth’s crust and mantle are
mentioned very accurately. It is found that the unpaired
electron density around 104 km depth is about 1022=cm3.
Hence, the total unpaired electron spins inside the Earth
will be Ne ∼ 1022 × 1027 ¼ 1049. Most of the unpaired
electrons exist in the Fe2þ state with a total spin s ¼ 2, the
so-called HS state. When the spin-1

2
electron in HS Fe2þ

interacts with the external geomagnetic field, the spins
become polarized and the polarization fraction becomes

α ¼ 2μBB
kT , where the electron Bohr magneton is

μB ¼ e
2me

¼ 2.94 × 10−7 eV−1, k is the Boltzmann con-
stant, B ∼ 1 G is the Earth’s magnetic field in the mantle,
and T ∼ 2000 K is the temperature. Hence, we can obtain
the polarization fraction as α ∼ 10−7. Therefore, the total
polarized electron spins in Earth is Ne × α ∼ 1049 ×
10−7 ¼ 1042. The value of α due to the Earth’s magnetic
field is much larger than the accidental polarization,
estimated as αaccidental ∼ 1ffiffiffiffi

Ne
p ∼ 10−25. These spin polarized

geoelectrons can induce a net polarization due to the
Earth’s magnetic field which can generate an axion
mediated monopole-dipole potential for the Earth-Sun
system. Such an interaction can affect the perihelion
precession of the Earth, gravitational light bending, and
Shapiro time delay. However, the contribution of monop-
ole-dipole potential for these observations is limited to be
no larger than the measurement uncertainty. In Fig. 2 we
obtain the Feynman diagram for e−N scattering mediated
by ultralight ALP for the Earth-Sun system. The ALP is
coupled with the electrons in the Earth by a pseudoscalar
coupling. The ALP is also coupled with unpolarized
nucleons in the Sun by a scalar coupling. In the following,
we obtain the contribution of monopole-dipole potential
from the measurements of perihelion precession of the
Earth, gravitational light bending, and Shapiro time delay.

III. PERIHELION PRECESSION,
GRAVITATIONAL LIGHT BENDING, AND

SHAPIRO TIME DELAY IN THE PRESENCE OF A
MONOPOLE-DIPOLE POTENTIAL

The success of Einstein’s general relativity (GR) theory
has been consolidated by the observation of the perihelion
precession of the Mercury planet. While orbiting around
the Sun, the perihelion position of the Mercury planet
shifts by a very small angle in each revolution. The
dominant contribution to the perihelion shift comes from
the gravitational effect of other solar bodies. There is also
a subdominant contribution on perihelion shift due to
the oblateness of the Sun and Lense-Thirring precession.
These nonrelativistic contributions are calculated based on
Newtonian mechanics which follows 1

r2 force law. How-
ever, there is about 42.9799 arcsecond=century [67,68]

FIG. 2. Feynman diagram of e−N scattering mediated by
ultralight ALP in the Earth-Sun system.
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mismatch from the observation after including all the
nonrelativistic effects in the measurement of perihelion
precession of Mercury. Einstein’s general relativistic cal-
culation of perihelion precession can completely resolve
this anomaly. Besides Mercury, all the other planets also
experience perihelion shifts. For example, the Earth has a
perihelion shift of 3.84 arcsecond=century due to GR
correction. Since, the Earth is taken as a polarized source,
there can be an axion mediated monopole-dipole potential
for the Earth-Sun system. This axion mediated long-range
potential can affect the geodesic of the Earth and contribute
to its perihelion precession measurements. However, the
contribution of monopole-dipole interaction should be
limited to be no larger than the measurement uncertainty
which is 10−4 arcsecond=century [69,70] for the Earth-Sun
system. Using the perturbative method, we analytically
obtain the contribution of monopole-dipole potential in
perihelion shift as (see Appendix B)

Δϕmonopole-dipole ≃
gSgPN1N2

2MDð1 − ϵ2ÞMPme

þ gSgPN1N2D2m3
að1 − ϵ2Þ

6MPMð1þ ϵÞme

þOððgSgPÞ2; m4
aÞ: ð2Þ

Using the values of the solar mass M¼ 1.11× 1057 GeV,
the Sun-Earth distanceD¼ 0.98 AU¼ 7.37× 1026 GeV−1,
the eccentricity of the Earth-Sun orbit ϵ ¼ 0.017, the mass
of the electron me ¼ 5.1 × 10−4 GeV, the mass of the
planet Earth MP ¼ 3.35 × 1051 GeV, the number of polar-
ized electrons in Earth N1 ¼ 1042, and the number of
unpolarized nucleons in the Sun N2 ¼ 1057, we obtain the
upper bound on monopole-dipole coupling as gSgP≲
1.75× 10−16 for mass of the axion ma≲ 1.35× 10−18 eV.
We obtain this bound by considering that the contribution
of monopole-dipole potential is limited to be no larger than
the perihelion precession measurement uncertainty.
Besides the perihelion precession of planets, gravita-

tional light bending is another test of Einstein’s GR theory
[71,72]. When a light ray from a distant pulsar comes to
Earth, then the presence of a massive object like the Sun
can distort the spacetime between the light source and the
Earth. The increased gravitational potential due to the
presence of the Sun decreases the speed of light and
the light bends. The amount of bending depends on the
mass of the gravitating object (Sun) and the impact
parameter. In 1915, Einstein first calculated the amount
of light bending due to the presence of the Sun based on the
equivalence principle. The calculated value of light bending
is 1.75 arcsecond which matches well with the experiment
to an uncertainty of 10−4 arcsecond [73]. The monopole
dipole potential of the Earth-Sun system can affect the
geodesic of light and contribute to the measurement of
gravitational light bending. The contribution of the

monopole-dipole potential should be limited to this uncer-
tainty. We perturbatively calculate the contribution of
monopole-dipole potential in gravitational light bending
as (see Appendix C)

Δϕmonopole-dipole ≃ −
2m3

ab3gSgPN1N2 ln 2
3MPL2 × 4πme

þ gSgPN1N2

MPL2 × 4πme

×
4M
b

−
m3

ab3gSgPN1N2

3MPL2 × 4πme
×
4M
b

þOððgSgPÞ2; m4
aÞ: ð3Þ

We use L2 ¼ MDð1 − ϵ2Þ, and the value of impact para-
meter b as the solar radius b ∼ R⊙ ¼ 6.96 × 108 m ¼
3.51 × 1024 GeV−1. The contribution of monopole-dipole
potential in the measurement of gravitational light bending
should be within the measurement uncertainty and we
obtain the bound on coupling as gSgP ≲ 4.25 × 10−9

for ma ≲ 1.35 × 10−18 eV.
We also obtain constraints on monopole-dipole inter-

action strength from the Shapiro time delay. When a radar
signal is sent from Earth to Venus and it reflects from Venus
to Earth, then in this round-trip, there is a time delay in
getting the signal compared to the expectation. In 1964,
Irwin Shapiro calculated the amount of time delay as
2 × 10−4 s [74,75] which agrees well with the experiment
to an uncertainty of 10−5 s [76]. This time delay occurs due
to the presence of strong gravitational potential near the
Sun. The presence of long-range monopole-dipole potential
can contribute to the Shapiro time delay. However, its
contribution should be within the measurement uncertainty.
We analytically calculate the contribution of monopole-
dipole potential in Shapiro time delay as (see Appendix D)

ΔTmonopole-dipole ≃
8M

MPr0E2

�
ma þ

1

r0

�
e−mar0

�
gSgPN1N2

4πme

�

−
4M

MPE2r20

�
gSgPN1N2

4πme

�

þOððgSgPÞ2; m2
a;M2Þ: ð4Þ

Using the Earth-Sun distance re ¼ D ¼ 1.46 × 1011 m ¼
7.37 × 1026 GeV−1, the Venus-Earth distance rv ¼ 1.08×
1011 m ¼ 5.47 × 1026 GeV−1, the solar radius r0 ¼ R⊙ ¼
6.96 × 108 m ¼ 3.51 × 1024 GeV−1, and E2 ≃ L2

r2
0

ð1 − 2M
r0
Þ,

we obtain the upper bound on coupling as gSgP ≲ 1.08 ×
10−4 for ma ≲ 1.35 × 10−18 eV. There is an extra multi-

plicative factor of exp½− maL2

M � in Eqs. (2)–(4) to incorporate
the exponential suppression due to the large value of axion
mass. In calculating the bounds on gSgP from the above
observations, we simply substitute M → GM. In Fig. 3 we
obtain numerically the bounds on monopole-dipole cou-
pling from perihelion precession of the Earth (red region),
gravitational light bending (blue region), and Shapiro time
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delay (purple region). The shaded regions are excluded. We
obtain a stronger bound on gSgP from perihelion precession
of the Earth as gSgP ≲ 1.75 × 10−16 for the axions of mass
ma ≲ 1.35 × 10−18 eV. This is the first bound on gSgP that
we obtain from a single astrophysical observation and for
ALPs of mass ma ≲Oð10−18Þ eV.

IV. CONSTRAINTS ON MONOPOLE-DIPOLE
COUPLING FROM TWO DIFFERENT
ASTROPHYSICAL OBSERVATIONS

In this section, we obtain constraints on monopole-
dipole coupling from two different astrophysical observa-
tions. In Fig. 4, we consider monopole-monopole coupling
of axions with unpolarized nucleons in the planet and the
Sun that can change the perihelion precession of planets,
gravitational light bending, and Shapiro time delay within
the measurement uncertainty. The potential due to axion
mediated nucleon-nucleon scattering in the Earth-planet
system is g2SN1N2

4πr e−mar, where N1 and N2 are the numbers
of nucleons in the Sun and the planet, respectively.
Hence, the perihelion shift due to the axion mediated
monopole-monopole potential between the Sun and the
planet is [77]

Δϕmonopole-monopole ≃
g2SN1N2m2

aD2ð1− ϵ2Þ
4MPðMþ g2SN1N2

4πMP
Þð1þ ϵÞ

þOðg3S;m3
aÞ;

ð5Þ

where MP is the mass of the planet, M is the mass of the
Sun, and D is the semimajor axis of the planetary orbit
with eccentricity ϵ. The contribution of axion mediated
monopole-monopole potential should be limited to be no
larger than the perihelion precession measurement uncer-
tainty. We obtain the stronger bound on gS for the planet
Mars [77] and its value is gS ≲ 3.51 × 10−25 for the mass of
the axion ma ≲ 1.35 × 10−18 eV.

The bending of light due to the axion mediated monop-
ole potential is [29]

Δϕmonopole-monopole ≃
g2SN1N2b
2πMPL2

ð1 − 0.347m2
ab2Þ

−
g2SN1N2Mm2

ab2

2πMPL2
þOðg3S; m3

aÞ: ð6Þ

We obtain the constraint on axion monopole coupling from
the gravitational light bending as gS ≲ 5.82 × 10−23 for the
axions of mass ma ≲ 1.35 × 10−18 eV.
Similarly, the contribution of axion mediated monopole

potential in Shapiro time delay is [29]

ΔTmonopole-monopole ≃ 2b0c0ð−1þ c0MÞðre þ rvÞ

þ b0c20
2

ðr2e þ r2vÞ þ 2b0 − 4c0Mb0

þ 2a0ðre þ rvÞ þ
b0
24

ð48
þ 36c20r

2
0½Eið−c0reÞ þ Eið−c0rvÞ�Þ

þOðg3S; m3
aÞ; ð7Þ

where a0 ¼ g2SN1N2e−mar0

4πMPE2r0
, b0 ¼ g2SN1N2

4πMPE2, and c0 ¼ ma.

We obtain the constraint on axion monopole coupling
from the Shapiro time delay as gS ≲ 3.59 × 10−22 for the
axion mass ma ≲ 1.35 × 10−18 eV. There is an extra

multiplicative factor of exp½− maL2

M � in Eqs. (5)–(7) if we
solve the perihelion shift, light bending, and Shapiro time
delay numerically for the axion mediated monopole-
monopole potential to incorporate the exponential suppres-
sion due to large values of axion mass.
The bound on the axion electron pseudoscalar coupling

can be obtained from the cooling of red giant stars and
white dwarfs. The axion electron coupling allows the stellar
energy loss by the bremsstrahlung ðeþ Ze → eþ Zeþ aÞ
and Compton process ðγ þ e → eþ aÞ [78,79]. The exces-
sive energy loss due to these processes will delay the
helium ignition in the red giant stars. Therefore the tip of
the red giant branch becomes brighter. The measurement of

FIG. 3. Bounds on monopole-dipole interaction strength from
single astrophysical observation.

FIG. 4. Monopole coupling of axions with nucleons in the Sun-
planet system.
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the tip of the red giant branch in the ω Centaury from
Gaia DR2 data put a bound on the axion-electron coupling
as gP ≲ 1.6 × 10−13 for the mass of the axions ma ≲
10 keV [61].
To obtain the bound on monopole-dipole coupling

ðgSgPÞ, we take the product of the bounds on gS obtained
from the tests of gravity (perihelion precession of planet,
gravitational light bending, and Shapiro time delay) and gP
obtained from the energy loss from the red giant branch. In
Fig. 5 we obtain the bounds on gSgP from two different
astrophysical observations. The perihelion precession of
the planet Mars and red giant branch give the bound on
monopole-dipole coupling as gSgP ≲ 5.61 × 10−38. We
also obtain the bound on gSgP from gravitational light
bending and red giant branch as gSgP ≲ 9.31 × 10−36.
Lastly, the bound on gSgP obtained from Shapiro time
delay and red giant branch is gSgP ≲ 5.74 × 10−35. These
bounds are only valid for the mass of the axion
ma ≲ 1.35 × 10−18 eV. We obtain the stronger bound on
gSgP from the perihelion precession of the planet Mars and
energy loss of the red giant branch. The shaded regions in
Fig. 5 are excluded. The bound gSgP ≲ 5.61 × 10−38 is 3
orders of magnitude stronger than the Eöt-Wash experiment
[80] and 1 order of magnitude stronger than the ðLabÞNS ×
ðAstroÞeP limit [45].
The behavior of the curves in Figs. 3 and 5 can be

effectively explained by considering Eqs. (2)–(7). The
expression of ðΔϕÞmonopole-dipole in Eq. (2) depends on
two terms. The first term is independent of the axion like
particle’s (ALP) mass, while the second term depends on
the ALP mass. For ALP masses at the lower end of the
spectrum, we can disregard the mass-dependent term,
resulting in flat curves within this range. This same
scenario applies to all the curves depicted in Figs. 3 and
5, except for the curve representing the perihelion pre-
cession of the planet in Fig. 5. In this case, at the lower
mass range, the curve does not remain flat; instead, it
exhibits an apparent slope. This is attributed to the fact that

in Eq. (5), ðΔϕÞmonopole-monopole solely comprises a term
dependent on the ALP mass. The monopole-monopole
coupling is approximately inversely proportional to the
ALP mass. Hence, in the lower mass region the curve
shows a negative slope. In the high ALP mass region, the

exponential suppression term exp ½− maL2

M � dominates
as usual.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we obtain constraints on monopole-dipole
coupling strength from single astrophysical observations
such as the perihelion precession of Earth, gravitational light
bending, and Shapiro time delay. These bounds are strictly
valid for the ALP mass ma ≲ 1.35 × 10−18 eV. Because of
the presence of a geomagnetic field, 1042 number of electrons
can be polarized in Earth and ALP mediated monopole-
dipole force can act between theEarth and the Sun.Weobtain
a stronger boundonmonopole-dipole coupling strength from
perihelion precession of the Earth as gSgP ≲ 1.75 × 10−16

from a single astrophysical observation.
The previous lab-astro bounds on gSgP obtained in the

literature are derived from two different observations. In
these studies, the monopole coupling gS and the dipole
coupling gP are measured independently from two different
observations and they are simply multiplied to get a bound
on gSgP. To get the bound in this way is overly stringent
and may not be completely reliable if the axion changes its
behavior in different environments. The bounds on gSgP
obtained from lab-lab experiments are only valid for the
axions of mass μeV≲ma ≲meV.
In this work, we have obtained the first bounds on gSgP

from single astrophysical observations. In all of these
observations, the massless limit gives the stronger bound
on monopole-dipole coupling strength. In the massless
limit, the perihelion shift is inversely proportional to the
Sun-planet distance. This means planets which are closer to
the Sun will put the best bound on gSgP. However, to
achieve an improved bound on gSgP from perihelion
precession, one needs to calculate accurately the number
of polarized spins in those planets.
The bounds on the monopole-dipole couplings that we

obtain from perihelion precession, gravitational light bend-
ing, and Shapiro time delay are the order of magnitude
calculations. These bounds strongly depend on the number
of polarized electrons in the Earth which is not a fixed
quantity at all its layers. In fact, this number depends on the
magnetic field and temperature at each layer of the Earth
which varies with its depth. Hence, at the massless limit, the
monopole-dipole coupling strength will not be a fixed
quantity and it should have different values at different
depths. We obtain the number of polarized electrons in
Earth as 1042 by taking the average values of Earth’s
magnetic field, temperature, and the number density of
unpaired electrons which we have taken as fixed quantities.

FIG. 5. Bounds on monopole-dipole interaction strength from
two different astrophysical observations.

TANMAY KUMAR PODDAR and DEBASHIS PACHHAR PHYS. REV. D 108, 103024 (2023)

103024-6



Therefore, our bounds on monopole-dipole couplings are
constant at the massless limits. This is the first study to
probe monopole-dipole coupling from single astrophysical
observations for ma ≲ 1.35 × 10−18 eV. Our bounds on the
monopole-dipole coupling are the order of magnitude
calculation and can be significantly improved by accurate
incorporation of the number of polarized spins at each layer
of Earth from geochemical and geological surveys. Such
analyses are important to probe these long-range spin-
dependent interactions.
We also obtain constraints on monopole-dipole coupling

strength from two different astrophysical observations. We
consider monopole coupling of axions with unpolarized
nucleons in the Earth and the Sun to obtain bounds on
monopole coupling from perihelion precession of the
planet Mars, gravitational light bending, and Shapiro time
delay. Multiplying these monopole couplings with the
dipole coupling obtained from excessive energy loss of
the red giant branch, we derive the monopole-dipole
coupling strength. For ma ≲ 1.35 × 10−18 eV, we obtain
gSgP ≲ 5.61 × 10−38 from perihelion precession and red
giant branch. This bound is 3 orders of magnitude stronger
than the Eöt-Wash experiment and 1 order of magnitude
stronger than the current ðLabÞNS × ðAstroÞeP limit. In
comparison to the pseudoscalar coupling of electrons in
the Earth, the scalar coupling of nucleons in the Earth does
not get stronger in the massless limit for the perihelion
precession measurements. In fact, in this case the scalar
coupling gets stronger for the planets which are further
away from the Sun.
We can also constrain the axion mediated monopole-

dipole coupling between nucleonic currents. The cooling
of hot neutron star HESS J1731-347 puts bound on axion
nucleon pseudoscalar coupling as gNP ≲ 2.8 × 10−10.We also
obtain axion nucleon scalar coupling as gNS ≲ 3.51×10−25.
Combining these two couplings, we obtain the bound on the
monopole-dipole coupling strength for only nucleonic cur-
rents as gNS g

N
P ≲ 9.83 × 10−35 for the mass of the axions

ma ≲ 1.35 × 10−18 eV. This bound is better than the pro-
jected ARIADNE experiment [81] and ðLabÞNS × ðAstroÞNP
by a factor of 2 [45]. Future space missions with better
precision can significantly improve the bounds ofmonopole-
dipole couplings. These ultralight axions can be promising
candidates for fuzzy dark matter.

ACKNOWLEDGMENTS

The authors would like to thank Srubabati Goswami for
useful discussions in the initial part of this work. The
authors would also like to thank Subhendra Mohanty for
reading the manuscript and Yevgeny Stadnik for useful
discussion. T. K. P. is indebted to Basudeb Dasgupta,
Ranjan Laha and Larry Hunter for fruitful discussions
and suggestions. The authors would also like to thank the
anonymous referee for useful comments.

APPENDIX A: MONOPOLE-DIPOLE POTENTIAL
DUE TO POLARIZED ELECTRON AND

UNPOLARIZED NUCLEON SCATTERING

In Fig. 1 we show the Feynman diagram of e−N
scattering mediated by pseudoscalar ALP (a). The axion
is coupled to the polarized electron with coupling constant
gP and to the unpolarized nucleon with coupling constant
gS. Hence, the amplitude of the above process becomes

iM ¼ ūs0
1
ðp0

1ÞgPγ5us1ðp1Þ
i

q2 −m2
a
ūs0

2
ðp0

2Þð−igSÞus2ðp2Þ

¼ gPgS
q2 −m2

a
ūs0

1
ðp0

1Þγ5us1ðp1Þūs0
2
ðp0

2Þus2ðp2Þ; ðA1Þ

where q ¼ p1 − p0
1 ¼ p0

2 − p2. In the nonrelativistic (NR)
limit, all three momentum components are much smaller
than the mass of the particle (m) and, hence, the energy of
the particle is E ≈m. We also choose the normalization
condition u†s0ðpÞusðpÞ ¼ δss0. We can write the positive
energy spinor in the NR limit as

usðpÞ ¼
�
1 −

γipi

2m

�
χs þOðp2Þ; ðA2Þ

where χs is a normalized eigenvector satisfying χ†sγ0 ¼ χ†s
and γ0χs ¼ χs. Here, γi denotes the Dirac gamma matrices
and i runs from 1 to 3. Hence, in the NR limit, we can
calculate the following bilinear terms using Eq. (A2) as

ūs0
2
ðp0

2Þus2ðp2Þ ¼ 1; ūs0
1
ðp0

1Þγ5us1ðp1Þ ¼
1

2me
χ†s0

1
σ:qχs1 ;

ðA3Þ
where σ denotes the Pauli spin vector and me denotes the
mass of the polarized electron. We can write the amplitude
[Eq. (A1)] of the e−N scattering process as

M ¼ igPgS
jqj2 þm2

a
ūs0

1
ðp0

1Þγ5us1ðp1Þūs0
2
ðp0

2Þus2ðp2Þ; ðA4Þ

where we can write q2 ¼ q02 − jqj2, and jq0j ≪ jqj in the
NR limit. Using, Eq. (A3) we can write the potential for
e−N scattering as

VðrÞ ¼ −
Z

d3q
ð2πÞ3 e

iq:r

�
igPgS

jqj2 þm2
a

�
s1:q
me

; ðA5Þ

where the spin vector is s1 ¼ σ
2
. Therefore, the potential

becomes

VðrÞ ¼ −
gPgS
me

ðs1:∇Þ
Z

d3q
ð2πÞ3

1

jqj2 þm2
a
eiq:r

¼ −
gPgS
me

ðs1:∇Þ
1

4πr
e−mar

¼ gPgS
4πme

ðs1:r̂Þ
�
ma

r
þ 1

r2

�
e−mar: ðA6Þ
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This is the expression for monopole-dipole potential which
can act between a polarized electron and an unpolarized
nucleon.

APPENDIX B: PERIHELION PRECESSION OF
EARTH IN THE PRESENCE OF A LONG-RANGE

MONOPOLE-DIPOLE POTENTIAL

If Earth contains polarized electrons then long-range
monopole-dipole potential can act between the Earth and
the Sun. This new long-range force mediated by ultralight
ALPs can contribute to the perihelion precession of Earth.
However, its contribution is limited to be no larger than the
uncertainty in the measurement of perihelion precession.
For a timelike particle, we can write gμνẋμẋν ¼ −1, where
gμν is the metric tensor for the Schwarzschild background
spacetime. In the presence of a long-range monopole-
dipole potential, we can write

E2 − 1

2
¼ ṙ2

2
þ L2

2r2
−
ML2

r3
−
M
r
−
βEma

MPr
e−mar

−
βE

MPr2
e−mar; ðB1Þ

where ṙ ¼ L
r2

dr
dϕ,M andMP are the masses of the Sun and the

Earth, respectively, and β ¼ gSgPN1N2

4πme
. N1 and N2 are the

numbers of polarized electrons in the Earth and unpolarized
nucleons in the Sun, respectively.We have also neglected the
Oðβ2Þ term because the coupling for the monopole-dipole
potential is small. E is a constant of motion which is termed
as the total energy per unit rest mass for a timelike geodesic
relative to an observer in rest frame at infinity. The total
energy of the system per unit mass for a very small eccentric
orbit in the presence of a monopole-dipole potential is

E ≈ 1 −
M
2D

−
gSgPN1N2

4πme
e−maD

�
ma

MPD
þ m2

a

2MP
þ 1

MPD2

�
;

ðB2Þ
and L is another constant of motion which is the angular
momentum per unit mass of the system. In Eq. (B1), the first
term on the right-hand side denotes the kinetic energy part,
the second term denotes the centrifugal potential part, the
third term arises due to the contribution of GR, the fourth
term denotes the Newtonian potential, and the last two
terms appear due to the contribution of monopole-dipole
potential. We can write Eq. (B1) in terms of reciprocal
coordinate u ¼ 1

r as

�
du
dϕ

�
2

þ u2 ¼ E2 − 1

L2
þ 2Mu3 þ 2Mu

L2

þ 2βEmau
L2MP

e−
ma
u þ 2βEu2

L2MP
e−

ma
u ; ðB3Þ

where ϕ denotes the azimuthal coordinate. Expanding the
exponential term in Eq. (B3) and taking the derivative with
respect to ϕ, we obtain

d2u
dϕ2

þ u ¼ M
L2

þ 3Mu2 þ 2βEu
L2MP

−
βEm3

a

3L2MPu2
: ðB4Þ

To solve this second order differential equation we consider
u ¼ u0ðϕÞ þ ΔuðϕÞ, where u0ðϕÞ is the solution for
Newton’s theory and ΔuðϕÞ is the solution due to the
contribution of GR and monopole-dipole potential. Hence,
we can write

d2u0
dϕ2

þ u0 ¼
M
L2

: ðB5Þ

The solution of Eq. (B5) becomes

u0ðϕÞ ¼
M
L2

ð1þ ϵ cosϕÞ; ðB6Þ

where ϵ is the eccentricity of the Earth-Sun elliptic orbit. The
differential equation for Δu is

d2Δu
dϕ2

þ Δu ¼ 3M3

L4
ð1þ ϵ2cos2ϕþ 2ϵ cosϕÞ

þ 2βME
L4MP

ð1þ ϵ cosϕÞ

−
βEm3

aL2

3MPM2ð1þ ϵ2 cosϕþ 2ϵ cosϕÞ : ðB7Þ

The solution of Eq. (B7) becomes

Δu ¼ 3M3

L4
ϵϕ sinϕþ βME

L4MP
ϵϕ sinϕþ βEm3

aL2

3MPM2

ϵ sinϕ

ð1 − ϵ2Þ32

×

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p

ð1þ ϵÞ ϕ; ðB8Þ

where we keep terms which are linear in ϕ and hence
contribute to the perihelion precession of Earth. Hence, the
total solution of Eq. (B4) becomes

u ¼ u0ðϕÞ þ ΔuðϕÞ ¼ M
L2

ð1þ ϵ cosϕÞ

þ 3M3

L4
ϵϕ sinϕþ βME

L4MP
ϵϕ sinϕ

þ βEm3
aL2

3MPM2

ϵ sinϕ
ð1þ ϵÞð1 − ϵ2Þ : ðB9Þ

We can also write Eq. (B9) as

u ¼ M
L2

½1þ ϵ cosϕð1 − γÞ�; ðB10Þ
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where

γ ¼ 3M2

L2
þ β

L2MP
þ βL4m3

a

3MPM3

1

ð1þ ϵÞð1 − ϵ2Þ : ðB11Þ

Here, we takeE ≈ 1 as other terms in Eq. (B2) are very small
compared to 1. Here, D denotes the semimajor axis of the
orbit. As ϕ → ϕþ 2π, u is not the same. Therefore, Earth
does not follow its previous orbit. Hence, the change in the
azimuthal angle or the perihelion shift becomes

Δϕ ¼ 2π

1 − γ
− 2π ¼ 2πγ ¼ 6πM2

L2
þ 2πβ

L2MP

þ 2πβL4m3
a

3MPM3

1

ð1þ ϵÞð1 − ϵ2Þ : ðB12Þ

SubstitutingL2 ¼ MDð1 − ϵ2Þ, and β ¼ gSgPN1N2

4πme
, we obtain

Δϕ ¼ 6πM
Dð1 − ϵ2Þ þ

gSgPN1N2

2MDð1 − ϵ2ÞMPme

þ gSgPN1N2D2m3
að1 − ϵ2Þ

6MPMð1þ ϵÞme
: ðB13Þ

Equation (B13) is the general expression for the perihelion
shift due to monopole-dipole potential between a polarized
object and an unpolarized object. The first term on the right-
hand side arises due to theGR contribution in perihelion shift
and its value for Earth is 3.84 arcsecond=century. The last
two terms arise due to the contribution of monopole-dipole
potential. In the gSgP → 0 limit, we get back the standardGR
term. Hence, the contribution of monopole-dipole potential
in perihelion shift is

Δϕmonopole-dipole ≃
gSgPN1N2

2MDð1 − ϵ2ÞMPme

þ gSgPN1N2D2m3
að1 − ϵ2Þ

6MPMð1þ ϵÞme

þOððgSgPÞ2; m4
aÞ: ðB14Þ

APPENDIX C: GRAVITATIONAL LIGHT
BENDING IN THE PRESENCE OF A
LONG-RANGE MONOPOLE-DIPOLE

POTENTIAL

Light follows the null geodesic which is given by

gμνVμVν ¼ 0; ðC1Þ

where Vμ ¼ dxμ
dλ is the tangent vector along the path para-

metrized by xμðλÞ, where λ is the affine parameter. For a
Schwarzschild background and planar motion, the con-
served quantities are E ¼ ð1 − 2M

r Þṫ and L ¼ r2ϕ̇. Here, E
and L denote the total energy and angular momentum per

unit mass of the system, respectively. We can write the null
geodesic in terms of these conserved quantities as

E2

2
¼ L2

2

�
du
dϕ

�
2

þ L2u2

2
ð1 − 2MuÞ; ðC2Þ

where we use ṙ ¼ dr
dλ ¼ L

r2
dr
dϕ and the reciprocal coordinate

u ¼ 1
r. The presence of long-range monopole-dipole poten-

tial changes the effective potential of the Sun-Earth system as

Veff ¼
L2

2

�
du
dϕ

�
2

þ L2u2

2
ð1 − 2MuÞ − βmau

MP
e−

ma
u

−
βu2

MP
e−

ma
u ; ðC3Þ

where the last two terms arise due to the presence of long-
range monopole-dipole potential. Hence, Eq. (C2) becomes

E2

2
¼L2

2

�
du
dϕ

�
2

þL2u2

2
ð1−2MuÞ− βmau

MP
e−

ma
u −

βu2

MP
e−

ma
u :

ðC4Þ
Differentiating Eq. (C4) and expanding the exponential term
we obtain

d2u
dϕ2

þ u ¼ 3Mu2 þ 2βu
MPL2

−
βm3

a

3u2MPL2
: ðC5Þ

To solve this second order differential equation, we consider
uðϕÞ ¼ u0ðϕÞ þ ΔuðϕÞ, where u0ðϕÞ is the solution for the
complementary function and ΔuðϕÞ is the solution for a
particular integral. Hence, we can write

d2u0
dϕ2

þ u0 ¼ 0; ðC6Þ

and the solution of Eq. (C6) is u0 ¼ sinϕ
b , where b is the

impact parameter. To find the solution to a particular integral,
we can write

d2Δu
dϕ2

þΔu¼ 3M sin2ϕ
b2

þ 2β sinϕ
MPL2b

−
βm3

ab2

3MPL2 sinϕ
: ðC7Þ

The solution of Eq. (C7) is

ΔuðϕÞ ¼ 3M
2b2

�
1þ 1

3
cos 2ϕ

�
þ 2β

MPL2b

�
−
ϕ cosϕ

2

�

−
βm3

ab2

3MPL2
½cos ϕ ln j csc ϕþ cot ϕj − 1�: ðC8Þ

Hence, the total solution of Eq. (C5) becomes

uðϕÞ ¼ sin ϕ

b
þ 3M
2b2

�
1þ 1

3
cos 2ϕ

�
−
βϕ cosϕ
MPL2b

−
βm3

ab2

3MPL2
½cos ϕ ln j csc ϕþ cot ϕj − 1�: ðC9Þ
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At a far distance from the Sun, u → 0 as ϕ → 0. Hence, we
can write the change in the angular coordinate as

δϕ ¼
− 2M

b2 þ βm3
ab2

3MPL2 ln 2

1
b −

β
MPL2b þ βm3

ab2

3MPL2

: ðC10Þ

From the symmetry argument, we can claim that the
contribution to δϕ before and after the turning points is
the same. Therefore, the total light bending is

Δϕ ¼ −2δϕ ¼
4M
b2 −

2βm3
ab2

3MPL2 ln 2

1
b −

β
MPL2b þ βm3

ab2

3MPL2

: ðC11Þ

In the β → 0 limit, we obtainΔϕ ¼ 4M
b , which is the standard

GR result for gravitational light bending. Hence, we can
write the contribution of monopole-dipole potential in
gravitational light bending as

Δϕmonopole-dipole ¼
4M
b2 −

2m3
ab2 ln 2

3MPL2

gSgPN1N2

4πme

1
b −

1
MPL2b

gSgPN1N2

4πme
þ m3

ab2

3MPL2

gSgPN1N2

4πme

−
4M
b

þOððgSgPÞ2; m4
aÞ: ðC12Þ

We can also write Eq. (C12) as

Δϕmonopole-dipole ≃ −
2m3

ab3gSgPN1N2 ln 2

3MPL2 × 4πme
þ gSgPN1N2

MPL2 × 4πme

×
4M
b

−
m3

ab3gSgPN1N2

3MPL2 × 4πme
×
4M
b

þOððgSgPÞ2; m4
aÞ: ðC13Þ

APPENDIX D: SHAPIRO TIME DELAY
IN THE PRESENCE OF A LONG-RANGE

MONOPOLE-DIPOLE POTENTIAL

When a radar signal is sent from the Earth to the Venus
and the signal reflects from the Venus to the Earth then due
to the presence of the Sun between the Earth and the Venus
there is a time delay in the round-trip compared to the case
if there is no Sun between the Earth and the Venus. We can
write Eq. (C4) as

E2

2
¼ ṙ2

2
þ L2

2r2

�
1 −

2M
r

�
−
βma

MPr
e−mar −

β

r2MP
e−mar;

ðD1Þ

where ṙ ¼ dr
dλ ¼ E

ð1−2M
r Þ

dr
dt. Therefore, we can write

Eq. (D1) as

E2

2
¼ E2

2ð1 − 2M
r Þ2

�
dr
dt

�
2

þ L2

2r2

�
1 −

2M
r

�
−
βma

MPr
e−mar

−
β

r2MP
e−mar: ðD2Þ

Let r ¼ r0 be the closest approach of light where dr
dt ¼ 0.

Putting r ¼ r0 and dr
dt ¼ 0 in Eq. (D2) we obtain

L2

E2
¼ r20

ð1 − 2M
r0
Þ
�
1þ 2β

MPr0E2

�
ma þ

1

r0

�
e−mar0

�
: ðD3Þ

In the absence of a monopole-dipole potential, Eq. (D3)

becomes L2

E2 ¼ r2
0

ð1−2M
r0
Þ. Using Eqs. (D2) and (D3), we

can write the time taken by the light to reach from r0
to r as

t ¼
Z

r

r0

dt
dr

dr ¼
Z

r

r0

dr
1

ð1 − 2M
r Þ

�
1 −

r20
r2
ð1 − 2M

r Þ
ð1 − 2M

r0
Þ ð1þ ηÞ

þ 2β

MPrE2

�
ma þ

1

r

�
e−mar

�
−1
2

; ðD4Þ

where η ¼ 2β
MPr0E2 ðma þ 1

r0
Þe−mar0 . The solution of Eq. (D4)

in the r ≫ r0 limit is

t1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r20

q
þ 2M ln

�
2r
r0

�
þM −

β

MPE2

�
M
r20

þ 1

r0

�

þ ηr0
2

�
1þ 2M

r0

�
: ðD5Þ

If re denotes the distance between the Sun and the Earth
and rv denotes the distance between the Sun and the Venus,
then the total time required for the signal to go from the
Earth to the Venus and return to the Earth is

T1 ¼ 2t1 ¼ 2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e − r20

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2v − r20

q
þ 2M ln

�
2re
r0

�

þ 2M ln

�
2rv
r0

�
þ 2M −

2βM
MPE2r20

−
2β

MPE2r0
þ ηr0

�
1þ 2M

r0

��
: ðD6Þ

If there is no massive gravitating object between Earth and
Venus, then the total time required for the pulse to go from
Earth to Venus and return to Earth is

T2 ¼ 2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e − r20

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2v − r20

q
−

2β

MPE2r0
þ ηr0

�
: ðD7Þ

TANMAY KUMAR PODDAR and DEBASHIS PACHHAR PHYS. REV. D 108, 103024 (2023)

103024-10



Hence, the excess time due to GR correction and monop-
ole-dipole potential is ΔT ¼ T1 − T2 and we can write

ΔT ¼ 4M

�
1þ ln

�
4rerv
r20

��
−

4M
MPE2r20

�
gSgPN1N2

4πme

�

þ 8M
MPr0E2

�
ma þ

1

r0

�
e−mar0

�
gSgPN1N2

4πme

�
; ðD8Þ

where we put the expressions of β and η. If there is
no monopole-dipole potential then gSgP → 0 and we
get back the standard GR contribution in Shapiro time
delay as

ΔTGR ¼ 4M

�
1þ ln

�
4rerv
r20

��
: ðD9Þ

Using the Earth-Sun distance re ¼ D ¼ 1.46 × 1011 m ¼
7.37 × 1026 GeV−1, the Venus-Earth distance rv ¼ 1.08×
1011 m ¼ 5.47 × 1026 GeV−1, and the solar radius r0 ¼
R⊙ ¼ 6.96 × 108 m ¼ 3.51 × 1024 GeV−1, we obtain the
GR contribution in Shapiro time delay as 2 × 10−4 s. Thus
the contribution of monopole-dipole potential in Shapiro
time delay is

ΔTmonopole-dipole ¼
8M

MPr0E2

�
maþ

1

r0

�
e−mar0

�
gSgPN1N2

4πme

�

−
4M

MPE2r20

�
gSgPN1N2

4πme

�

þOððgSgPÞ2;m2
a;M2Þ: ðD10Þ
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